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Pyruvate kinase variant of fission yeast tunes
carbon metabolism, cell regulation, growth and
stress resistance
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Abstract

Cells balance glycolysis with respiration to support their metabolic
needs in different environmental or physiological contexts. With
abundant glucose, many cells prefer to grow by aerobic glycolysis or
fermentation. Using 161 natural isolates of fission yeast, we investi-
gated the genetic basis and phenotypic effects of the fermentation–
respiration balance. The laboratory and a few other strains depended
more on respiration. This trait was associated with a single nucleo-
tide polymorphism in a conserved region of Pyk1, the sole pyruvate
kinase in fission yeast. This variant reduced Pyk1 activity and glyco-
lytic flux. Replacing the “low-activity” pyk1 allele in the laboratory
strain with the “high-activity” allele was sufficient to increase
fermentation and decrease respiration. This metabolic rebalancing
triggered systems-level adjustments in the transcriptome and
proteome and in cellular traits, including increased growth and
chronological lifespan but decreased resistance to oxidative stress.
Thus, low Pyk1 activity does not lead to a growth advantage but to
stress tolerance. The genetic tuning of glycolytic flux may reflect an
adaptive trade-off in a species lacking pyruvate kinase isoforms.
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Introduction

Inter-linked pathways for carbon metabolism generate both energy

in the form of ATP and fulfil key anabolic roles. Organisms tune

their carbon metabolism to environmental conditions, including

stress or available nutrients, which affects fundamental biological

processes such as cell proliferation, stress resistance and ageing

(New et al, 2014; Valvezan & Manning, 2019). Accordingly, aber-

rant carbon metabolism is the cause of multiple human diseases

(Zanella et al, 2005; Wallace & Fan, 2010; Djouadi & Bastin, 2019).

Glycolysis converts glucose to pyruvate, which is further processed

in alternative pathways; for example, pyruvate can be converted to

ethanol (fermentation) or it can be metabolised in mitochondria via

the citric acid cycle and oxidative phosphorylation (respiration).

Fermentation and respiration are antagonistically regulated in

response to glucose or physiological factors (Molenaar et al, 2009;

Takeda et al, 2015). In the presence of glucose, many microbes

suppress respiration and grow preferentially by glycolysis, even

with oxygen being available. This metabolic state, called aerobic

glycolysis (Crabtree, 1929), appears paradoxical, because only full

glucose oxidation via the citric acid cycle and respiration will maxi-

mise the ATP yield generated per glucose. Aerobic glycolysis, found

in Crabtree-positive species, may have been selected because it

enables higher rates of ATP production (Pfeiffer & Morley, 2014).

Analogously, human cancer cells typically grow by aerobic glycoly-

sis, known as the Warburg effect (Warburg, 1927), thought to

increase biosynthetic capacity (Diaz-Ruiz et al, 2009; Lunt &

Vander Heiden, 2011; Costa & Frezza, 2017). Proposed explana-

tions for how aerobic glycolysis allows faster proliferation involve

efficient resource allocation (Basan et al, 2015; Mori et al, 2019),

molecular crowding (Andersen & von Meyenburg, 1980; Zhuang

et al, 2011; Vazquez & Oltvai, 2016; Szenk et al, 2017), an upper

limit to the cellular Gibbs energy dissipation rate (Niebel et al,

2019), among others (Dai et al, 2016; de Alteriis et al, 2018; de

Groot et al, 2019).
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Crabtree-positive organisms, including the model yeasts Saccha-

romyces cerevisiae and Schizosaccharomyces pombe (Skinner & Lin,

2010), still require some oxygen and basal respiration for optimal

cell proliferation (Chan & Roth, 2008). S. cerevisiae cells without

mitochondrial genome, and thus without respiratory capacity,

feature a slow-growth “petite” phenotype (Ephrussi et al, 1949).

S. pombe cannot normally grow without a mitochondrial genome

(Haffter & Fox, 1992; Heslot et al, 1970; Chiron et al, 2007), and

blocking oxidative phosphorylation with antimycin A leads to

moderate or strong growth inhibition, respectively, in rich or mini-

mal glucose media (Malecki et al, 2016). In conditions of low

glucose uptake, such as stationary phase, the metabolism of yeast

cells is reconfigured towards respiration (DeRisi et al, 1997; Zuin

et al, 2010). Thus, cells tune the balance between respiration and

fermentation to meet their metabolic needs (Molenaar et al, 2009)

in a more nuanced way than captured by qualitative descriptions of

aerobic glycolysis.

Given its impact on health and disease, it is important to under-

stand the genetic and regulatory factors that affect cellular carbon

metabolism. Here, we investigated the genetic basis and physiological

implications for the regulatory balance between fermentation and

respiration, using our collection of natural S. pombe isolates (Jeffares

et al, 2015). A few strains featured a higher reliance on respiration

during growth on glucose. This trait was associated with a missense

variant in pyruvate kinase (PYK). PYK catalyses the final, ATP yield-

ing step of glycolysis, the conversion of phosphoenolpyruvate to pyru-

vate. PYK can coordinate the activity of central metabolic pathways

(Pearce et al, 2001; Grüning et al, 2011; Yu et al, 2018). Most organ-

isms encode several PYK isoforms that are expressed in specific

tissues or developmental stages (Allert et al, 1991; Muñoz & Ponce,

2003; Bluemlein et al, 2011; Israelsen & Vander Heiden, 2015; Bradley

et al, 2019). Work in budding yeast has implied that the switch from a

high- to a low-activity PYK isoform causes increased oxygen uptake,

triggering a shift from fermentative to oxidative metabolism (Grüning

et al, 2011; Yu et al, 2018). S. pombe possesses only one PYK, Pyk1

(Nairn et al, 1995). Exchanging the Pyk1 variant of the standard labo-

ratory strain triggered increased glycolytic flux, which in turn led to

substantial adjustments in the metabolome, transcriptome and

proteome. These results show that altered PYK activity is self-

sufficient to reprogramme metabolism even in the absence of an

evolved regulatory signalling system. These findings define a natural

metabolic tuning, consisting of a single amino acid change, possibly

reflecting an adaptation in a species lacking multiple PYK isoforms.

Notably, the standard laboratory strain is among a minority of natural

isolates locked in the low-activity state and is thus metabolically and

physiologically unusual. These findings highlight the importance of

glycolysis in general, and PYK in particular, as a hub in cross-regu-

lating metabolic pathways and coordinating energy metabolism with

cell regulation and physiology, including growth and stress resistance.

Results

Increased respiration dependence is associated with a missense
PYK variant

Treating aerobic glycolysis as a complex, quantitative trait, we

assessed the amount of residual respiration on glucose-rich media

across a set of genotypically and phenotypically diverse wild

S. pombe isolates. Resistance to antimycin A, which blocks the

respiratory chain by inhibiting ubiquinol-cytochrome c oxidoreduc-

tase (Kim et al, 1999), was used as a proxy read-out for cellular

dependence on oxidative phosphorylation. The standard laboratory

strain 972 h� shows a moderate reduction in maximum growth

rate and biomass yield in this condition (Malecki & Bähler, 2016;

Malecki et al, 2016). We applied a colony-based assay to deter-

mine relative fitness of each strain in rich glucose media with and

without antimycin A. The resulting resistance scores, i.e. ratios of

growth with vs. without antimycin A, showed a large diversity

between strains (Fig 1A, Appendix Fig S1, Dataset EV1). Notably,

the laboratory strain was among the most sensitive (score = 1,

rank = 10 of 154), with the mean score being 1.25 � 0.15 for all

strains tested.

The antimycin A resistance trait showed an estimated narrow-

sense heritability of 0.54, reflecting the fraction of phenotypic vari-

ance explained by additive genetic effects. This heritability was

substantially higher than for most of the 223 phenotypes previously

reported (Jeffares et al, 2015), which indicates a strong genetic basis

▸Figure 1. A variant in conserved pyk1 region is associated with increased sensitivity to antimycin A.

A Distribution of antimycin A resistance scores for wild isolates, compared to standard laboratory strain (red vertical line). Resistance scores are the ratio of fitness on
rich glucose media with vs. without 500 lg/l antimycin A. Fitness was estimated based on colony size on solid media, corrected for spatial and plate effects
(Materials and Methods). After quality control, we obtained quantitative fitness scores for 154 strains, with a signal-to-noise ratio of 29.8 and an unexplained
variance of 0.12.

B Volcano plot of a genome-wide association using mixed-model linear regression of antimycin A resistance for 118,527 genetic variants. Variants with moderate or
high impact are shown in blue. Red dot: the variant at locus I:3,845,516, which causes a T343A change in the Pyk1 amino acid sequence. This variant was among the
top scoring (effect size = �0.645, rank 34; P = 0.0008, rank 70).

C Boxplot showing antimycin A resistance for 154 strains grouped by the two alleles at the pyk1 locus. Strains carrying a C at this genomic locus (orange box) generally
have higher antimycin resistance than strains carrying the reference allele T (blue box). As is standard, this boxplot and all other boxplots in this manuscript show the
median of the data as central line, the quartiles as box and the extend of the rest of the distribution as whiskers. Points which are 1.5 times the inter-quartile range
beyond the high and low quartiles are considered outliers and shown individually.

D Sequence alignment of the region of interest in eukaryotic PYK proteins. The threonine residue at the highlighted position 343 is unique for the reference (laboratory)
S. pombe strains. For this analysis, we collected 25 Pyk1 homologues from a wide variety of eukaryotes, including animals, plants and fungi, using the HomoloGene
resource (Accession 37650). We manually expanded the homologous group to include three other species of the Schizosaccharomyces genus (Rhind et al, 2011).
Sequences were aligned with MAFFT (Katoh et al, 2017) and visualised with Jalview (Waterhouse et al, 2009).

E Phylogenetic tree based on 31 biallelic SNPs in pyk1 and in 500bp up- and downstream regions. Strains carrying the common A-allele are in orange, while strains
carrying the unusual T-allele are in blue (strain names as in ref. Jeffares et al (2015)). Strains JB22 and JB50 (underlined and bold) refer to heterothallic and
homothallic versions of the laboratory strain, respectively. The pie chart shows the relative allele frequencies at the genomic locus across all wild strains. Genotype
calls at the locus were checked manually and were conclusive, i.e. no strain produced reads with both alleles.
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for the dependence on respiration. We performed a genome-wide

association study (GWAS) to identify loci linked to resistance among

118,527 small genetic variants, including single nucleotide

polymorphisms (SNPs) and small insertions or deletions (Fig 1B).

Compared to a recent GWAS in budding yeast (Peter et al, 2018),

our statistical power was lower, partly due to the low number of
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strains and the strong population substructure (Jeffares et al, 2015).

We therefore manually assessed the associated variants, based on P-

value, effect size and literature. Among the top-100 associations (by

P-value, Dataset EV2), eight were predicted to have moderate or

high impact as defined by SnpEff (Cingolani et al, 2012), and six of

those were located in genes with functional annotation in PomBase

(Wood et al, 2012). Two of these six variants were in S. pombe

specific genes: wtf16 and wtf8 (Hu et al, 2017). Other variants were

in ubp9, encoding a ubiquitin C-terminal hydrolase, in pfl5, encod-

ing a cell-surface glycoprotein, and in jac1, encoding a mitochon-

drial 2Fe-2S cluster assembly co-chaperone. One missense variant

caught our particular attention: this SNP was among the top scoring

(Fig 1B) and leads to a T343A amino acid sequence change in Pyk1,

encoding the single PYK in S. pombe. Strains with a threonine

residue at position 343 (“T-allele”) showed a median resistance

score of 1.07, while strains with an alanine (“A-allele”) showed a

~15% higher median resistance of 1.28 (Fig 1C).

An analysis of 26 PYK protein sequences from diverse eukaryotes

revealed strong conservation, showing 45–93% agreement with the

consensus sequence called from the alignment (Fig 1D). The T343A

mutation was in a region of the protein that is annotated as part of

the ADP binding pocket in homologous proteins (Schormann et al,

2019). The threonine residue in the reference (laboratory) strain of

S. pombe was unique in this highly conserved region of all PYK

sequences. All other species featured an alanine residue at this posi-

tion, including three other Schizosaccharomyces species (Fig 1D).

The reference allele (T-allele) in the laboratory strain was the minor

allele in our strain collection, found only in 18 of 161 strains

(Fig 1E). The rare T-allele occurred in four unique sequences in the

phylogenetic tree, split up over two highly divergent lineages

(Fig 1E). This result was confirmed by considering a consensus tree

based on the entire genome (Jeffares et al, 2015). For 10 of the 18

T-allele strains, the geographical origin is known, with most being

isolated in Europe but also one each from Asia and Australia. The

substrate is predominantly fermenting grapes (as for most other

strains) and one each from lychee and glace syrup, reflecting that

most S. pombe strains have been isolated from human-created

niches. We conclude that the T-allele at position 343 is a rare, natu-

rally occurring allele which appears to have arisen, and been main-

tained, independently in two distant lineages.

Replacing pyk1 allele in laboratory strain leads to higher PYK
activity and metabolic adjustment

Many species possess two or more PYK isozymes with different

activity and/or expression patterns. In S. cerevisiae, the minor

isozyme can complement the loss of the major isozyme (Boles

et al, 1997). The S. pombe reference genome (Wood et al, 2002),

based on the laboratory strain 972, features only one PYK

isoform. To test whether this is also the case for the other

strains, we searched the de novo assemblies of each wild strain

genome (Jeffares et al, 2015) for Pyk1 homologues with tblastn

(Camacho et al, 2009). This search consistently produced a single

hit only (Pyk1 itself).

We set out to analyse the effect of the pyk1 SNP on cellular meta-

bolism. Using seamless CRISPR/Cas9-based gene editing

(Rodrı́guez-López et al, 2016), we replaced the pyk1 T-allele in the

laboratory strain for the more common A-allele. We introduced the

A-allele in both a heterothallic h� and a homothallic h90 laboratory

strain, without any other genetic perturbations. We then selected

three independently edited strains for both h� and h90 backgrounds

to use as biological replicates throughout this study. Below, we use

the abbreviations “T-strain” for the normal laboratory strains and

“A-strains” for the edited pyk1T343Ah�/h90 strains. These strains

allowed us to study the impact of the pyk1 SNP in a controlled and

well-characterised genetic background.

It has been reported that S. pombe features lower PYK activity

than S. cerevisiae (Nairn et al, 1995, 1998). However, this conclu-

sion has been derived from the laboratory strain, which contains the

unusual pyk1 allele. To investigate the impact of the pyk1 SNP on

metabolism, we applied a targeted metabolomics workflow based

on liquid chromatography–selective reaction monitoring (LC-SRM).

We quantified key metabolites potentially affected by PYK activity

(Bluemlein et al, 2012; Gruning et al, 2014), including glycolytic,

▸Figure 2. Multi-omic functional investigation of Pyk1 variants.

A PCA of metabolite data based on concentrations of 27 central carbon metabolism intermediates. To visualise this high-dimensional data set, we divided the
concentration of each metabolite by the median concentration of the T-strain. This normalisation corrects for the large differences in concentrations observed
between metabolites but maintains the relative variance within each metabolite. Biological replicates of the T- and A-strains show distinct profiles, largely driven by
concentrations of phosphoenolpyruvate, 2-/3-phosphoglyceric acid, NADH and NADPH, as indicated by top loading vectors for each principal component. The
biological repeats for the three edited A-strains (circles, squares and triangles) behave similarly, with a variance comparable to that of the biological replicates of the
single T-strain.

B Left boxplot: two glycolytic intermediates directly upstream of PYK were strongly depleted in the A-strain (nT-strain = 9, nA-strain = 8). Right barplot: PYK activity was
directly measured using a lactate dehydrogenase-coupled colorimetric enzyme activity assay, showing the mean and standard deviation of substrate conversion rate
for three biological replicates, each measured in technical duplicates.

C Concentrations of fructose-1,6-bisphosphate, which correlate with glycolytic flux, are significantly higher in A-strain (ratio = 1.35, nT-strain = 9, nA-strain = 8).
D Boxplots for selected metabolomics data indicate differences in energy and redox status between T- and A-strains (nT-strain = 9, nA-strain = 8).
E Heatmap of the 432 genes that are differentially expressed at the RNA level between the T- and A-strains (FDR < 10%) and are measured in all four conditions

(columns). First column: genes ordered by increasing fold-changes for RNAs (computed as log2[T]-log2[A]). Second column: fold-changes for proteins (computed as
log2[T]-log2[A]). Third column: fold-changes for RNAs in cells treated with rapamycin and caffeine (TORC1 inhibition; computed as log2[treatment]-log2[control]) (data
from ref. Rallis et al, 2013). Fourth column: fold-changes for RNAs in cells treated with H2O2 (oxidative stress; computed as log2[treatment]-log2[control]) (data from
Chen et al, 2003). Log2 fold-changes are capped at absolute values of 1 for all columns.

F Gene Ontology (GO) enrichment analysis of differentially expressed transcripts (using all measured transcripts as background). Shown are Biological Process terms
only, with additional plots for Molecular Function and Cellular Component terms in Appendix Fig S5. The length of the bar represents the significance of the
enrichment, while its colour reflects the direction and magnitude of differential expression (A- vs. T-strain) of individual genes annotated to this term.

Data information: Significance keys: *P < 0.05, **P < 0.005, ***P < 0.0005 (Welch’s t-test).
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pentose-phosphate pathway and citric acid cycle intermediates as

well as redox cofactors and adenine nucleotides. Data were obtained

for nine replicates of the T-strain and eight replicates of the A-strain

(Figs 2A–D and 3, Appendix Figs S2 and S3, Dataset EV3). Technical

replicates sampled from the same culture, but prepared and

measured separately, were highly correlated (rPearson = 0.93), indi-

cating that our workflow was robust and that most of the observed

variation was biological. Over the entire data set, the median coeffi-

cient of variation was 17.2%. A principal component analysis (PCA)

of metabolite data distinguished all strains based on the SNP in

pyk1 (Fig 2A).

We observed a strong depletion of glycolytic intermediates

upstream of PYK, with mean levels of phosphoenolpyruvate and 2-/

3-phosphoglyceric acid in the A-strains only 25.9% and 12.7% of

A B

F

***

***

0 5 .8 11 .6 17 .4

81
24

21
14

15
9

19
7
7

21

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8≤ −1 ≥1
RNA log2(A-strain/T-strain)

-log10(p)

rRNA processing GO:0006364
ribosomal large subunit biogenesis GO:0042273

maturation of SSU-rRNA GO:0030490
mito. ATP synthesis coupled electron transport GO:0042775

ribosomal subunit export from nucleus GO:0000054
mito. ATP synthesis coupled proton transport GO:0042776

dicarboxylic acid metabolic process GO:0043648
pyrimidine nucleobase metabolic process GO:0006206

monocarboxylic acid catabolic process GO:0072329
ribonucleoside monophosphate biosynthetic pr. GO:0009156

E

C

*****

D

Phosphoenol-
pyruvic acid

2-/3-Phospho-
glyceric acid (pool)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

re
la

tiv
e 

ab
un

da
nc

e

pyk1 allele

T

A

T A
pyk1 allele

80

100

120

140

fru
ct

os
e 

1,
6-

bi
ph

os
ph

at
e 

(μ
M

/O
D

)

T A
pyk1 allele

0.76

0.78

0.80

0.82

0.84

0.86

en
er

gy
 c

ha
rg

e

T A
pyk1 allele

0.02

0.04

0.06

0.08

0.10

0.12

re
du

ce
d/

ox
id

is
ed

NAD(H)

T A
pyk1 allele

2.5

3.0

3.5

4.0

4.5

5.0

NADP(H)

 *

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

PC1 (47.2%)

−1.0

−0.5

0.0

0.5

1.0

P
C

2 
(2

6.
4%

)

2-/3-Phosphoglyceric acid (pool)

Dihydroxyacetone phosphateDD
Fructose 6-phosphate

NADH
NADPH

Phosphoenolpyruvic acid

alpha-Ketoglutaric acid

T A
pyk1 allele

0

2

4

6

8

10

12

P
Y

K
 a

ct
iv

ity
 in

 ly
sa

te
-μ

m
ol

 N
A

D
H

 / 
(m

in
ut

e 
* 

cu
ltu

re
 O

D
)

* *

−1

0

1

T-/A-strain
RNA 

T-/A-strain
Protein

  TORC1 inh.

lo
g2

(F
C

)

Oxidat.stress
RNA RNA 

T-strain
A-strain 1
A-strain 2
A-strain 3

Figure 2.

ª 2020 The Authors Molecular Systems Biology 16: e9270 | 2020 5 of 19

Stephan Kamrad et al Molecular Systems Biology



those in the T-strain (Fig 2B, Padj = 8.7 × 10�8 and 3.7 × 10�6,

Welch’s t-test, Benjamini–Hochberg-corrected, t-tests are unpaired

and two-sided throughout). This result suggests that the A343T

mutation reduces the activity of the Pyk1 enzyme. We directly

tested this hypothesis by determining PYK activity in lysates of 3

biological replicates each of the A- and T-strain grown in rich

glucose media, using a lactate dehydrogenase-coupled photometric

assay, in technical duplicates. With a buffer composition similar to

those previously used (Gehrig et al, 2017), the A-strains showed a

87.3% higher activity compared to the T-strain (P = 0.0072,

Welch’s t-test) (Fig 2B, Appendix Fig S4).

The metabolomics data allowed us to also estimate several physi-

ological parameters. The A-strains exhibited significantly higher

levels of the flux-signalling metabolite fructose 1,6-bisphosphate (ra-

tio 1.35, Padj = 0.015; (Litsios et al, 2018; Fig 2C). The levels of this

metabolite strongly correlate with glycolytic flux in several yeast

species (Christen & Sauer, 2011; Huberts et al, 2012), consistent

with a higher flux in the A-strain. Furthermore, cellular energy

charge was 4.7% higher in the A-strains (Fig 2D; P = 0.002,

Welch’s t-test; Atkinson & Walton, 1967). These values were within

the range reported for other organisms (De la Fuente et al, 2014).

We used the ratio of the reduced to oxidised forms of NAD(H),

NADP(H) and L-glutathione as read-outs for cellular redox status

(Fig 2D). For NAD(H), the A-strains showed an increase from 0.048

to 0.096 (P = 0.0001, Welch’s t-test). The same pattern was evident

for NADP(H), where the median ratio was 3.24 in the A-strains, but

only 2.43 in the T-strain (P = 0.024). Data regarding the oxidation

state of glutathione were not entirely conclusive: the A-strain

showed a significantly higher concentration of the reduced isoform

of L-glutathione (ratio 1.30, Padj = 0.015, Welch’s t-test;

Appendix Fig S3, Dataset EV3), but no significant difference was

apparent in the ratio of the reduced to oxidised isoforms, where the

median for the A-strains was 2.01 vs. 1.89 for the T-strain

(P = 0.289, Welch’s t-test). Overall, these results are in line with the

paradigm that NADH/NAD+ ratios are maintained at low levels to

maximise availability of electron acceptors for catabolic processes,

while NADPH/NADP+ ratios are maintained at high levels to

provide electrons for anabolic processes and the antioxidant

response (Blacker & Duchen, 2016). As part of the antioxidant

defence, which includes glutathione-, peroxiredoxin- and thiore-

doxin-dependent reduction systems, NADPH is limiting when cells

are challenged with oxidative stress (Carmel-Harel & Storz, 2000;

Drakulic et al, 2005; Vivancos et al, 2006; Veal et al, 2014). While

analytical methods cannot distinguish between different compart-

ments or sub-populations of these cofactors (Sun et al, 2012), and

our sample extraction method may allow some interconversion

between reduced and oxidised isoforms (Lu et al, 2018), these find-

ings are consistent with the hypothesis that the A-strain respires less

and thus has a lower oxidative burden.

Increased PYK activity leads to transcriptome and proteome
changes reflecting increased fermentation and decreased
respiration

To further analyse the effects of the pyk1 SNP, we characterised the

transcriptomes and proteomes of the T- and A-strains using RNAseq

and mass spectrometry. We could quantify 7,750 transcripts (includ-

ing non-coding RNAs) and 3,234 proteins in both strains (Dataset

EV4), allowing for a broad analysis of genome regulation. The

expression of pyk1 itself was similar in the T- and A-strains at both

the transcript (log2[fold change] = 0.016, Padj = 0.91) and protein

level (log2[fold change] = �0.001, Padj = 0.94), indicating that the

differences between the two strains were not caused by changes in

pyk1 expression. Notably, the pyk1 allele replacement led to

substantial changes in both the transcriptome and proteome. Over-

all, 960 transcripts and 434 proteins were differentially expressed

between the T- and A-strains, at a false discovery rate (FDR) of

≤ 10%. While changes at the transcriptome and proteome levels

generally correlated well (r = 0.65 for all genes with differentially

expressed transcripts and/or proteins), we also found a large

number of genes to be regulated exclusively at the protein level

(Appendix Fig S7). These proteins were enriched in functions

related to cytoplasmic translation and depleted in functions related

to ribosome biogenesis (Appendix Tables S1 and S2). This result

raises the possibility that post-transcriptional gene regulation plays

an important role in controlling translation in this case.

The differentially expressed genes were enriched in functions

related to respiration and energy-demanding processes, like transla-

tion and ribosome biogenesis. These enrichments were evident at

both the level of the transcriptome (Fig 2F, Appendix Fig S5) and

proteome (Appendix Fig S6). Transcripts encoding respiratory chain

and oxidative phosphorylation proteins were more highly expressed

in the T-strain (Fig 3), while those related to ribosome biogenesis

and rRNA processing were more highly expressed in the A-strain.

Some functional terms (e.g. NAD-binding) contained genes that

were strongly regulated in either direction. Several of the most dif-

ferentially expressed transcripts and proteins were directly involved

in pyruvate metabolism (Fig 3). The mae2 gene was most strongly

regulated at both transcript and protein levels, being more highly

expressed in the T-strain. Mae2 is an enzyme that catalyses the reac-

tion from malate and oxaloacetate to pyruvate (Viljoen et al, 1994).

Thus, the T-strain may up-regulate Mae2 to replenish pyruvate

using an alternate way that is largely independent of glycolytic flux;

alternatively, Mae2 could function as anaplerotic enzyme. The

pdc101 and atd1 genes, on the other hand, were expressed more

highly in the A-strain. These genes encode pyruvate decarboxylase

and aldehyde dehydrogenase, respectively, and their induction is

consistent with higher glycolytic flux and increased fermentation

(Malecki et al, 2016). These expression changes are consistent with

the central role of PYK in glycolysis and the observed metabolic

effects mediated by the Pyk1 variants.

The target of rapamycin complex 1 (TORC1) signalling pathway

controls carbon metabolism and promotes aerobic glycolysis in

response to cellular nutrients (Valvezan & Manning, 2019). Enrich-

ment analysis using AnGeLi (Bitton et al, 2015) revealed substantial

overlaps between the differential expression signature of the T- and

A-strains and the signature of TORC1 inhibition (Fig 2E; Rallis et al,

2013): 58 transcripts and 33 proteins induced by TORC1 inhibition

were more highly expressed in the T-strain (P = 6.1 × 10�12 and

4.1 × 10�7, respectively), while 118 transcripts and 72 proteins

repressed by TORC1 inhibition were more lowly expressed in the T-

strain (P = 1.8 × 10�59 and 2.1 × 10�30, respectively). Thus, the

expression signature of the T-strain resembles the signature caused

by TORC1 inhibition, which leads to reduced glycolysis. Moreover,

genes induced in response to oxidative stress were also differentially

expressed; examples include gpx1, encoding glutathione peroxidase,
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and grx1, encoding glutaredoxin. Accordingly, the differential

expression signature between the T- and A-strains also showed

substantial overlaps with the core environmental stress response

triggered by oxidants and other stresses (Fig 2E; Chen et al, 2003):

63 transcripts induced by oxidative stress were higher expressed in

the T-strain (P = 7.0 × 10�4), while 149 transcripts and 94 proteins
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repressed by stress were lower expressed in the T-strain

(P = 2.8 × 10�68 and 1.4 × 10�37), respectively. Thus, the expres-

sion signature of the T-strain also resembles the general signature of

cells exposed to different types of stress, likely reflecting the higher

load of reactive oxygen species from respiration. Together, the

observed gene-expression reprogramming suggests that the T-strain

features higher respiration and pentose-phosphate pathway activity

(Fig 3). Similarly, budding yeast strains genetically engineered to

alter PYK activity reconfigure their metabolism, with a reduced

activity leading to higher respiration (to meet energy demands) and

pentose-phosphate metabolism (to increase reducing agents

required to detoxify reactive oxygen species produced by respira-

tion; Grüning et al, 2011).

Increased glycolytic flux increases cellular growth and glucose
uptake but decreases oxygen consumption and biomass yield

Given the metabolic and gene-expression changes associated with

the pyk1 allele replacement, we expected that the A-strain will

feature phenotypic changes at the cellular level, in particular

increased growth. We grew the A- and T-strains in biological tripli-

cates in rich media and measured growth by optical density at

600 nm for 6 h of exponential growth. As expected, the A-strain

grew more rapidly than the T-strain (Fig 4A). Growth rates were

calculated by fitting a line to log2-transformed data (Fig 4B). The

doubling times were 1.94 and 1.85 h for the T- and A-strains,

respectively, a 4.7% decrease. Our metabolomics and gene-expres-

sion data suggested that this faster growth rate is due to a shift in

the fermentation/respiration balance towards fermentation. Accord-

ingly, we detected less residual glucose in A-strain cultures after 8 h

of exponential growth, normalised to the final OD (Fig 4C, P = 0.04,

Welch’s t-test). Moreover, the A-strain consumed oxygen at a 35%

lower rate than the T-strain (Fig 4D). Since energy production from

respiration is more efficient than from fermentation, we expected a

lower final biomass in the A-strain. Indeed, the final biomass,

reported as the ratio of dry biomass to glucose in the fresh media,

was 10.38 � 0.14% for the A-strain compared with 10.88 � 0.19%

for the T-strain (P = 0.02, Welch’s t-test; Fig 4E). The final biomass,

however, could potentially be confounded by growth phases using

other carbon sources, previously produced by the cells or found in

the media. Overall, we conclude that the SNP in pyk1 has a

pronounced inhibitory effect on cell proliferation in the standard

laboratory strain under a standard growth condition.

Increased glycolytic flux modulates stress resistance and
chronological lifespan

We next investigated which other cellular phenotypes are affected

by this change in glycolytic flux. We first confirmed that the T-strain

was more sensitive to inhibition of respiration by antimycin A than

the A-strain (Fig 5A), which supports the prediction from the

GWAS. We hypothesised that a natural SNP in a key metabolic

enzyme could differentially affect fitness on different carbon

sources. While the A-strain grew more rapidly on glucose, the T-

strain might have fitness advantages in other conditions. To test for

such a trade-off, we examined 12 common carbon sources in four

different base media (Fig 5B, Dataset EV5). Both strains showed

rapid cell growth on glucose, fructose and sucrose, intermediate

growth on raffinose, mannose and maltose, and slow growth on the

other carbon sources. Consistent with the result in Fig 4, the A-

strain grew faster than the T-strain on the fermentable carbon

sources glucose, fructose and sucrose. In the other carbon sources,

the two strains showed similar growth. Thus, the T-strain did not

show increased fitness in any of our conditions. We also tested for

differential growth of the A- and T-strains on different nitrogen

sources. Both strains showed substantial growth on 54 of the 95

nitrogen sources (Fig 5C, Dataset EV6). The A-strain grew about

twofold better than the T-strain on L-phenylalanine but worse on L-

cysteine. Validation by spot assays on solid media, however, could

only confirm the difference for phenylalanine (Fig 5E). In conclu-

sion, these broad phenotypic assays did not support the idea that

the T-allele might represent an adaptation to specific carbon or

nitrogen sources.

Only a fraction of natural environments might enable rapid

proliferation as in the laboratory. Thus, resistance to stress could be

a more important selection factor in determining fitness. Trade-offs

are a key concept in evolutionary adaptation (Ferenci, 2016), and

microbes show an anti-correlation between growth rate and stress

resistance (López-Maury et al, 2008; Zakrzewska et al, 2011). In

budding yeast, artificially reduced glycolytic flux leads to increased

resistance to oxidative stress (Grüning et al, 2011), and mammalian

cells show a similar feature (Anastasiou et al, 2011). We therefore

assessed the ability of the A- and T- strains to endure oxidative

stress triggered by hydrogen peroxide (H2O2) or diamide. Indeed,

the T-strain was substantially more resistant to both oxidants than

the A-strain (Fig 5A). Oxidative stress is a by-product of cellular

respiration, and the T-strain may feature a higher basal protection

from oxidative stress due to higher respiratory activity. This protec-

tion is consistent with our observation that core environmental

stress response genes were more highly expressed in the T-strain.

The environment can also be a source of oxidants, e.g. in microbial

communities with H2O2-producing lactic acid bacteria (Ito et al,

2003; Ponomarova et al, 2017). Thus, a natural SNP promoting

oxidative stress resistance may be beneficial. Our observation that

lower glycolytic flux increases oxidative stress resistance, via higher

pentose-phosphate pathway flux, is in line with previous studies in

S. cerevisiae, where glycolytic flux has been reduced by mutations

in triosephosphate isomerase (Ralser et al, 2007; Gruning et al,

2014). We conclude that the slower growth of the T-strain,

compared to the A-strain, is offset by an increased resistance to

oxidative stress. Both traits may be systemic properties emerging

from the up-regulation of respiration at the cost of fermentation,

triggered by the T-allele.

We wondered whether the T-strain might feature fitness advan-

tages in stress conditions other than oxidative stress. To this end,

we screened for differential growth of the A- and T-strains on 72 dif-

ferent drugs and toxins. The strains appeared to be differentially

sensitive to nine compounds (Fig 5D). The A-strain was more resis-

tant to barium chloride, D-L-alanine hydroxamate, caffeine (pleio-

tropic effects, including TOR inhibition, Rallis et al, 2013),

chlorpromazine (causes membrane stress, De Filippi et al, 2007),

capreomycin (binds to ribosomes, Lin et al, 2014) and phenylarsine

oxide (inhibitor of tyrosine phosphatases, Oustrin et al, 1995).

Notably, the A-strain was also more resistant to thallium (I) acetate,

which is highly toxic due to its similarity to potassium ions and

binds to mammalian PYK with a stronger affinity, but weaker
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activating effect, than potassium (Kayne, 1971; Reuben & Kayne,

1971). The T-strain, on the other hand, was more resistant to acri-

flavine, an antiseptic, and to EGTA, a chelator of bivalent cations

(including Mg2+ which activates S. cerevisiae PYK, Rhodes et al,

1986). We manually inspected dose–response curves (Appendix Fig

S8) to select compounds for validation based on overall difference

in maximum growth rate and consistency across concentrations.

Using spot assays, we could validate the differential sensitivity to

four selected compounds: caffeine, phenylarsine oxide, EGTA and

chlorpromazine (Fig 5E). It is striking that the pyk1 SNP differen-

tially affected the resistance to this broad range of stresses, suggest-

ing a general role of glycolysis in stress resistance beyond the

known role in oxidative stress.

The existence of a fundamental link between metabolism and

lifespan is well known, e.g. through the observation that dietary

restriction extends lifespan from yeast to humans (Al-Regaiey,
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Figure 4. Physiological characterisation of pyk1 variant.

A Growth measured by optical density (OD) at 600 nm for 3 biological replicates each of the T- and A-strains over 6 hrs of exponential growth in YES media. The x-axis
refers to the time since inoculation of the culture.

B The same data as in (A) plotted on a log2 scale (solid lines) with lines fitted (dotted lines). The doubling time is the inverse of the slope.
C Media samples were taken from the same cultures (n = 3 for both strains) at the 8 hr timepoint and the remaining glucose was quantified. The consumed glucose

was calculated based on the amount of glucose measured in the same, fresh media and normalised to the OD of each culture at the time of sampling.
D Oxygen consumption rates in A- and T-strains (ratio of means = 0.65, P = 0.0002, Welch’s t-test, three biological replicates, each measured in technical duplicates).
E Culture dry weight after 24 h was measured reported as a fraction of the weight of glucose put into the media for three biological replicates per strain.

Data information: Vertical bars show the mean of the data. Error bars and shaded areas in all cases denote standard deviation. Significance keys: *P < 0.05,
***P < 0.0005 (Welch’s t-test).
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2016). In various model systems, increased respiration (Bonawitz

et al, 2007; Roux et al, 2009; Zuin et al, 2010; Pan et al, 2011) and

slower growth (Yang et al, 2011; Rallis et al, 2014; Janssens & Veen-

hoff, 2016; Smith et al, 2018) correlate with increased lifespan. We

therefore expected the T-strain to be longer-lived than the A-strain

and measured the chronological lifespan of both strains. Surpris-

ingly, the A-strain was longer-lived, with a mean viability of 25.3%

after 3 days, compared to 6.5% for the T-strain (Fig 5F). Reduced

glycolytic flux has been reported to shorten replicative lifespan in

budding yeast (Ralser et al, 2007). We therefore speculate that unre-

stricted glycolytic flux generally promotes longevity, but mechanis-

tic processes involved will require further investigation.

Our findings show that the pyk1 SNP has substantial effects on

growth rate and oxidative stress resistance in the genetic back-

ground of the standard laboratory strain. Are such effects generally

evident in other strain backgrounds? To address this question, we

measured oxidative stress resistance and growth rates for all wild

strains. Indeed, the T-allele was significantly associated with higher

resistance to H2O2 (Fig 5G). With respect to growth rate, on the

other hand, no significant difference was evident between strains

containing the T- or A-alleles (Fig 5H). These results suggest that

the pyk1 SNP can play a substantial role in oxidative stress resis-

tance, while growth rate may be a more complex trait, which is

controlled by many other loci or buffered by counteracting muta-

tions.

Discussion

Many eukaryotes, from budding yeast to humans, possess low-

and high-activity PYK isozymes. PYK activity has been implicated

in coordinating fermentation with respiration in synthetic S. cere-

visiae models (Pearce et al, 2001; Grüning et al, 2011). The low-

activity isoform of S. cerevisiae is expressed under respiratory

growth conditions (Boles et al, 1997). Using an unbiased, genome-

wide approach, we identified a naturally occurring SNP in the sole

S. pombe PYK gene. Our findings show that this SNP affects PYK

activity, possibly by impairing substrate binding, and glycolytic

flux which is sufficient to cause a shift in the respiration–

fermentation balance. When we replaced the T-allele of the labora-

tory strain with the common A-allele, which is broadly conserved

in most S. pombe strains and in all other eukaryotes examined,

glycolytic flux increased and oxygen consumption decreased. This

metabolic adjustment led to changes in gene expression at the

transcriptome and proteome levels, resembling the signatures of

rapidly proliferating cells with high TORC1 activity and no stress

exposure. At the cellular level, the allele replacement led to

increased growth and chronological lifespan but decreased resis-

tance to oxidative stress. Cellular growth and stress resistance are

linked with gene regulation, although cause–effect relationships

are poorly understood (López-Maury et al, 2008; Morano et al,

2012; Pir et al, 2012; Slavov & Botstein, 2013; Tamari et al, 2014;

Hesketh et al, 2019).

The extraordinary plasticity in response to altered glycolytic flux,

triggered by a single nucleotide change, highlights the fundamental

impact of glycolysis on cellular control, physiology and adaptation.

Possessing only a single PYK isoform, S. pombe is unlikely to have

a pre-existing genetic or signalling programme for the regulation of

high- and low-activity PYK states. Yet, a mutation in Pyk1 that

changes its activity is sufficient to induce coherent metabolic, regu-

latory and cellular responses. A PYK-induced change in glycolytic

flux is hence the cause, not a consequence, of major changes in

cellular metabolism, regulation and physiology. The finding that a

new metabolic programme can be triggered by an intracellular cue

is consistent with a report showing that overexpression of one tran-

scription factor in Komagataella phaffii is sufficient to turn this

Crabtree-negative yeast into a Crabtree-positive one (Ata et al,

2018). These findings support the idea that a flux-sensing mecha-

nism could regulate the balance between respiration and fermenta-

tion (Huberts et al, 2012).

What might be the evolutionary and ecological role of the pyk1

SNP? We propose that the mutation in the laboratory strain is bene-

ficial given its maintenance at a strongly conserved position, its

occurrence in two independent S. pombe lineages, its associated

phenotypes and the use of low-activity isoforms in other organisms.

The literature suggests that low PYK activity could help cells to

retain more carbon intermediates for biosynthesis (Christofk et al,

2008; Lunt et al, 2015; Allen & Locasale, 2018). Our results, and

◀ Figure 5. Cellular phenotypes mediated by pyk1 allele replacement.

A Spot assays on solid media from a threefold dilution series of exponential cultures at the same cell density in 96-well plates (3 biological replicates of each strain) and
spotted in 16 technical replicates (each dilution in 4 × 4 square). The A-strain is more resistant to antimycin A but less resistant to oxidative stress triggered by H2O2

or diamide. A control without toxin (left) was included in each batch of spot assays performed and a representative image is shown here.
B Fitness (approximated by maximum slope of smoothed growth curves) of A- and T-strains on 12 carbon sources, with either yeast extract (YE) or ammonium (NH4),

with or without 0.1% priming glucose to support initial growth. For all 48 conditions, two biological replicates of A- and T-strains were grown in technical
quadruplicates each. Dotted lines in panels B-D mark a fitness ratio of 1 (i.e. same fitness).

C Fitness of A- and T-strains on 95 nitrogen sources on Biolog Phenotype MicroArrays. Conditions with no substantial growth were excluded (black circles, maximum
slope < 0.015). Red lines show arbitrary significance cut-off, put at |log2(A-strain/T-strain)| > 0.75.

D Fitness of A- and T-strains on 72 different drugs and toxins, at 4 concentrations each, on Biolog Phenotype MicroArrays. Graph details and cut-off as in (C). (Results
for benzamidine were inconclusive, with both strains comparatively resistant in one concentration each.)

E Spot assays as in (A) to validate selected results from (C) and (D). Several assays were performed with both h- and h90 strains, and no mating-type-specific
differences were evident between the two sets of allele swap strains.

F Chronological lifespan of A- and T-strains, i.e. the proportion of non-dividing cells in stationary phase that maintain proliferative potential after refeeding. The data
show colony forming units (CFUs) per ml of culture over 7 days of stationary phase in glucose-depleted rich media. Three biological repeats were carried out for both
strains, with each repeat measured as technical triplicates. Error bars represent standard error of the biological replicates.

G Boxplot showing resistance to 3 mM H2O2 grouped by pyk1 allele for 156 strains from our collection. The T-strains had a higher mean fitness in H2O2 than the A-
strains (1.01 � 0.06 vs. 0.95 � 0.11; P = 0.0021, Welch’s t-test). The resistance score was obtained as for antimycin A.

H Boxplot showing growth fitness on rich media, grouped by pyk1 allele for 158 S. pombe strains (0.88 � 0.16 vs. 0.94 � 0.24; P = 0.18, Welch’s t-test).
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other recent research (Morita et al, 2018), do not support this

hypothesis as cells with low Pyk1 activity grow slower and form less

biomass. Our phenotypic assays also do not support the possibility

that the pyk1 SNP is adaptive on specific carbon or nitrogen sources.

However, we have identified several stress conditions where the

laboratory strain exhibits higher fitness than the allele replacement

strain, most notably oxidative stress. It is plausible that stress resis-

tance has provided the selection factor for the low-activity Pyk1

allele. Accordingly, we propose that altered stress tolerance

provides a biological rationale for the evolution of systems that

allow conditional switching between high- and low-activity PYK

isozymes.

Materials and Methods

Wild strain phenotyping and GWAS

We constructed two arrays of 384 strains, each containing a refer-

ence grid of 96 JB22 colonies (standard laboratory strain 972),

around which 159 wild isolates from our collection (Jeffares et al,

2015) were randomly arranged in triplicates, with additional inter-

nal, interspersed JB22 controls. A RoToR HDA pinning robot

(Singer Instruments) was used to copy the arrayed strains onto

various growth media. Plates were grown for 2 days at 32°C, and

images were acquired by transmission scanning (Epson V800

Photo). Colony sizes were determined with gitter (Wagih & Parts,

2014) and corrected for spatial biases using reference-grid normal-

isation (Zackrisson et al, 2016), as implemented in our freely

available pipeline (preprint: Kamrad et al, 2020). Further, strains

which did not grow at all (colony size < 10 pixels at 600 dpi

scanning resolution) or showed abnormal circularity values (> 1.1

or < 0.85) were excluded from further analysis. Strains for which

no consistent fitness estimate could be obtained were also

excluded (standard deviation of triplicates greater than standard

deviation of all colonies of all strains), which removed two

strains from our data set. For the rest, individual corrected colony

sizes were averaged and condition-specific resistance/fitness

scores were determined by dividing the corrected colony size in

the condition of interest by that of the control condition without

drug. Signal-to-noise ratios were determined by dividing the mean

fitness of the internal controls by their standard deviation. The

fraction of unexplained variance was determined by dividing the

standard deviation of the internal controls by that of the entire

dataset.

For GWAS, phenotype values were transformed to normal shape

using the Box–Cox method, mean-centred at zero and normalised to

unit variance, using PowerTransformer of scikit-learn (Pedregosa

et al, 2011). Genomic variants were called from published and

aligned sequence data (Jeffares et al, 2015) using freebayes

(preprint: Garrison & Marth, 2012), with the following options:

–ploidy 1 –standard-filters –min-coverage 10 –min-alternate-count 3.

The version of the reference genome used was ASM294v2. SNPs

within 3 bp of an indel were filtered out using the –SnpGap option

of bcftools (Li et al, 2009). Low-quality calls and loci where > 50%

of the population was not genotyped were removed using the –max-

missing 0.5 –minQ 30 –remove-filtered-all options of vcftools

(Danecek et al, 2011). Variant effects were predicted using SnpEff

(Cingolani et al, 2012). Variants were filtered for a minor allele

frequency of > 5% and converted to plink format using plink (Pur-

cell et al, 2007). A kinship matrix was constructed in LDAK5 (Speed

et al, 2012, 2017) by first cutting and thinning predictors, then

calculating their weights and finally using the direct method for

obtaining the kinship matrix. All steps used default options. Heri-

tability estimates were obtained by REML as implemented in

LDAK5. Linear mixed-model association was performed in LDAK5,

using the previously generated kinship matrix to correct for popula-

tion structure.

Phylogenetics

The phylogenetic tree in Fig 1 was constructed by filtering biallelic

SNPs in the region � 500 bp around the pyk1 gene (I:1:3,844,243–

3,847,145) using bcftools. This vcf was converted to a pseudo align-

ment in fasta format with VCF-kit (Cook & Andersen, 2017). The

tree was constructed by the neighbour-joining method, implemented

in ClustalW2 (Larkin et al, 2007), accessed through the EBI web

interface (Goujon et al, 2010) and drawn in seaview (Gouy et al,

2010).

Construction of allele replacement strains

The allele replacement strains were generated using the CRISPR-

Cas9 system. The plasmid containing the gRNA targeting the pyk1

SNP in 968 h90 (homothallic) and 972 h� (heterothallic) was gener-

ated as described (Rodrı́guez-López et al, 2016) using the following

primers: gRNA.JB50-F: GCTTTCCGGTGAGACTACCAgttttagagctagaa

atagc and gRNA.JB50-R: TGGTAGTCTCACCGGAAAGCttcttcggtac

aggttatgt.

Proper gRNA cloning was assessed by Sanger sequencing. The

template for homologous recombination was generated using the

following primers (underlined is the point mutation introduced in

the T-strain to convert it to the A-strain):

HR_JB50-F: ACCCTCGTCCTACTCGTGCCGAGGTTTCCGATGTTGG

TAACGCCGTTCTCGATGGTGCTGACTTGGTCATGCTTTCCGGTGAG

ACTGCCAAGGGTTCTTA

HR_JB50-R: GTAAGGGATGGAAGCCTCAGCAACACGGGCAGTCT

CAGCCATGTAGGTAACGGCTTCAACGGGGTAAGAACCCTTGGCAG

TCTCACCGGAAAGCATGACC

The following primers were used to identify and confirm success-

ful mutants, of which three were kept (referred to as A,B,C in this

manuscript) and used for experiments in order to reduce the risk of

observing the effects of off-target mutations:

Pyk1ck-F: GATGTTGGTAACGCCGTTCT

Pyk1ck-R: GGACGGTACTTGGAGCAGAG

Cell culture for multi-omics experiments

Transcriptomes and proteomes were measured from the same

cell culture, in five biological repeats per strain. Strains were

woken up on yeast extract with supplement (YES) agar and

incubated for 2 days at 32°C. Then, 50 ml pre-cultures (YES

medium, 32°C, 170 rpm) were grown overnight and used to

inoculate 200 ml cultures (YES medium) at an OD600 of 0.1.

These cells were then grown until OD600 of 0.8 and harvested

as described below.
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Transcriptomics experiments

When cells reached OD 0.8, 25 ml was collected by centrifugation

and snap-frozen in liquid nitrogen. RNA was extracted with a hot

phenol method as described in Ref. Lyne et al (2003). RNA was

further purified with Qiagen RNAeasy columns, and DNAse treat-

ment was performed in the columns (as suggested by manufacturer)

prior to library preparation. RNA quality was assessed with a Bioan-

alyzer instrument (Agilent), and all samples presented a RIN (RNA

Integrity Number) > 9. cDNA libraries were prepared with the Illu-

mina TruSeq stranded mRNA kit, according to the manufacturer’s

specifications, by the Cologne Center for Genomics (CCG) facility.

The samples were sequenced on a single lane of an Illumina Hise-

q4000 to produce 2 × 75 nt reads.

Reads were trimmed with Trimmomatic (Bolger et al, 2014)

v0.36, with the following parameters differing from default settings:

LEADING:0 TRAILING:0 SLIDINGWINDOW:4:15 MINLEN:25. The

reference genome was indexed with bowtie2-build with default

settings. Paired reads were aligned to the reference genome using

bowtie2 with default settings (v2.3.4.1) (Langmead & Salzberg,

2012). In the case of the A-strain, the reference genome was edited

to reflect the base substitution within pyk1. Aligned reads were

counted using intersect from the bedtools package (v2.27.1) (Quin-

lan & Hall, 2010), with the parameters -wb -f 0.55 -s -bed. Identical

reads were only counted once.

Readcounts were tested for differential expression between

strains using DESeq2 v1.18.1, with default settings (Love et al,

2014).

Proteomics experiments

For sample preparation, cells were washed with PBS and centrifuged

(3 min, 600 g, RT). Subsequently, cells were washed with 1 ml RT

lysis buffer (LB: 100 mM HEPES, 1 mM MgCl2, 150 mM KCl, pH

7.5) and transferred to 1.5-ml tubes and centrifuged (5 min, 600 g,

RT). Cell pellets were flash-frozen and stored at �80°C. Cell pellets

were resuspended in 400 ll cold LB, mixed with the same volume

of acid-washed glass beads (Sigma-Aldrich), transferred to a

FastPrep-24TM 5G Instrument (MP Biomedicals), and disrupted at

4°C by 8 rounds of bead-beating at 30 s with 200 s pauses between

the runs. Samples were centrifuged (2 min, 1,000 g, 4°C), super-

natants collected, and protein concentrations determined with the

bicinchoninic acid assay (Thermo Fisher Scientific). Then, 100 lg of

proteome samples was subjected to the sample preparation work-

flow for MS analysis as reported (Piazza et al, 2018). Peptide

samples were analysed on a Q Exactive HF Orbitrap mass spectrom-

eter (Thermo Fisher Scientific), equipped with a nano-electrospray

ion source and a nano-flow LC system (Waters-M-class). For shot-

gun LC-MS/MS data acquisition (DDA), 1 ll peptide digests from

each sample were injected independently at a concentration of

1 lg/ll. MS1 spectra were acquired as described (Piazza et al,

2018). One ll peptide digest from the same samples was also

measured in data-independent acquisition (DIA) mode on using the

DIA settings reported (Piazza et al, 2018). The collected DDA spec-

tra were searched against the S. pombe fasta database (Clément-Ziza

et al, 2014), using the SorcererTM-SEQUEST� database search engine

(Thermo Electron) as reported (Piazza et al, 2018). For generation

of spectral libraries, the DDA spectra were analysed with Proteome

Discoverer 2.2 as described above and imported in the Spectronaut

software (version 8, Biognosys AG). DIA-MS targeted data extrac-

tion was performed with Spectronaut version 8 (Biognosys AG) with

default settings.

Analyses of protein abundance were performed with the MSstat

package (Choi et al, 2014) using default parameters, unless stated

otherwise. Spectronaut output was converted to the input format of

MSstats with the SpectronauttoMSstatsFormat function. The normal-

ised peak areas were further processed with the function dataPro-

cess and intensity = “NormalizedPeakArea”. This included log2
transformation, median normalisation, the summary of fragments to

peptides, and the summary of peptides to proteins. The parameter

featureSubset was set to “all”. We used the groupComparison func-

tion with linear mixed models to compare protein abundances

between the replicates for the two strains. The FDRs and log2 fold-

changes between strains returned by groupComparison were used

for further analyses.

Functional enrichment analyses

Gene ontology (GO) enrichment analysis was performed with the

topGO package (v2.30.1) (Alexa et al, 2006). The annotations were

downloaded from PomBase (uploaded on 1st Sept 2015; Wood et al,

2012). The transcriptome and proteome were tested separately. All

genes with an FDR ≤ 10% were included in the test set, while all

other genes formed the background. Importantly, only those genes

with available measurements were included in the background to

avoid false-positive enrichments. The nodeSize was set to 10. We

performed Fisher’s exact tests with the elim-algorithm. All terms

with P ≤ 0.01 were included in the plots. We used AnGeLi (Bitton

et al, 2015) for functional enrichment analysis to confirm the GO

enrichments and to reveal overlap with core environmental stress

and TORC1 response genes.

Metabolomics experiments

Overnight, cell pre-cultures were diluted to OD600 of 0.1, and 5 ml

was quenched in 20 ml dry-ice-cold methanol when an OD600 of 0.8

was reached. This suspension was spun down (600 g, 3 min, 4°C),

and the supernatant was discarded by inversion. The pellet was

resuspended in the remaining liquid and transferred to a small tube

and spun down again with the same parameters. The supernatant

was removed completely, and the pellet was frozen in liquid nitro-

gen and stored at �80°C until further processing.

The samples were extracted as described (Bligh & Dyer, 1959).

Acid-washed Zirkonia beads were added to the pellet, together with

140 ll of 10:4 MeOH/water, and cells were lysed mechanically

(FastPrep Instrument, 40 s, 6.5 m/s). Then, 50 ll chloroform was

added and mixed thoroughly, followed by 50 ll water and 50 ll chlo-
roform. Insoluble components were removed by centrifugation at

5,000 g for 10 min. The aqueous phase was recovered and used with-

out further conditioning. One microlitre was injected for LC-MS/MS

analysis. The sample was diluted 1:20 for the analysis of free amino

acids, except for glutamine which was quantified without dilution.

The compounds were resolved on an Agilent 1290 liquid chro-

matography system, using a HILIC amide column (Waters BEH

Amide, 2.1 × 100 mm, 1.7 lm particle size) with acetonitrile (sol-

vent A) and 100 mM aqueous ammonium carbonate (solvent B) for
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gradient elution at a constant flow rate of 0.3 ml/min and column

temperature of 35°C. The gradient programme started at 30% B and

was kept constant for 3 min before a steady increase to 60% B over

4 min. Solvent B was maintained at 60% for 1 min before returning

to initial conditions. The column was washed and equilibrated for

2 min resulting in a total analysis time of 10 min. Compounds were

identified by comparing retention time and fragmentation patterns

with analytical standards. The samples were analysed by tandem

mass spectrometry coupled to an Agilent 6470 triple quadrupole.

The sample was acquired using the Agilent dynamic MRM (dMRM)

approach with polarity switching. Peak areas were converted to

concentrations using external calibration by standard curves and

corrected for the optical density of the culture at the time of

harvesting.

Enzyme assays

Pyruvate kinase activity was assayed as described (Gehrig et al,

2017). The homothallic A- and T-strains were grown overnight in

3 ml of YES pre-cultures, diluted to OD 0.15, and grown for a further

5 h. The OD600 of cultures at the time of sampling was approximately

1. Lysate was prepared by spinning 2 ml of culture (800 g, 3 min,

RT), discarding the supernatant, adding a small amount of glass

beads and 200 ll of lysis buffer (10 mM Tris at pH 7, 100 mM KCl,

5 mM MgCl2, 1 mM DTT), breaking the cells with a FastPrep instru-

ment (MP Biomedicals), operated at 4°C, three times for 40 s with 1-

min breaks in between, spinning at 8,000 g (3 min, 4°C), and trans-

ferring the supernatant to a fresh tube kept on ice and used fresh.

Reactions with a total volume of 200 ll in a 96-well plate contained

10 mM Tris at pH 7, 100 mM KCl, 5 mM MgCl2, 20 lg L-lactate

dehydrogenase from rabbit muscle, 5 mM ADP (all by Sigma-

Aldrich), 10 mM PEP (Molekula) and 200 lM NADH (Bioworld).

The reaction mix was warmed to 32°C for 1 min and the reaction

was started by adding 4 ll of lysate. The absorbance at 340 nm was

measured every ~15 s in a Tecan Infinite M200 Pro plate reader set

to 32°C. Absorbance values below 0.2 were set to NA. Absorbance

values were converted to concentration using the extinction coeffi-

cient 6220 M�1 cm�1 and a path length of 0.5411 cm (calculated

from reaction volume and well diameter). The slope of the concen-

tration trace was determined using the linregress function from the

scipy python package, background subtracted (reaction mix without

lysate), and divided by the OD of the culture at the time of sampling.

Measurement of growth rates

For each biological replicate, a colony was picked and grown over-

night in a 5 ml YES pre-culture. The pre-culture was diluted to OD600

0.2 in 60 ml of fresh YES with 2% glucose and grown for 8 h, with

sampling starting at 2 h and every 2 h. The OD600 was determined

using a spectrophotometer (WPA Biowave CO8000). To determine

doubling times, growth data was log2-transformed and a line-fitted,

where the doubling time is the inverse of the slope of the fitted line.

Glucose uptake measurements

After 8 h of growth, media samples were taken, cleared of cells by

centrifugation and stored at �80°C until further processing. Glucose

concentrations were determined using a commercial, colorimetric kit

(Glucose (HK) Assay Kit, Sigma-Aldrich, catalogue number

GAHK20), following the instructions of the manufacturer with the

following modifications. A standard curve was prepared from a

twofold dilution series of the supplied standard. Samples were diluted

1:20 in water. Then, 10 ll of diluted sample was added to 190 ll of
assay buffer in a 96-well plate and incubated for 15 min. The absorp-

tion at 340 nm was measured with a plate reader (Tecan Infinite

M200 Pro). Values were subtracted by the water blank and converted

to concentrations using the standard curve and dilution factor. For

each sample, the measured concentration was subtracted from the

amount of glucose in fresh media (determined by the same method)

and divided by the OD of the culture at the time of sampling.

Dry weight measurements

We inoculated 100 ml YES cultures from overnight 5 ml YES pre-

cultures at an initial OD600 of 0.2 and grew them for 24 h. Cultures

were centrifuged, washed once in dH2O, dried at 70°C for 48hrs and

weighed on a high-resolution balance.

Oxygen consumption rate measurements

YES cell cultures (100 ml) were grown overnight to an OD600

between 1 and 3. A ~25 ml sample was put into a 25-ml Erlenmeyer

flask and stirred at 900 rpm using a magnetic stirrer bar. An oxygen

probe (Hanna HI 98193), held with a clamp, was inserted into the

flask, resulting in it being completely filled with no remaining air

inside it, and the flask was sealed with multiple layers of parafilm.

The oxygen saturation of the culture was followed over 7 min and

recorded every ~1 min. The slope of the concentration trace was

determined using the linregress function from the scipy python

package and divided by the OD of the culture.

Carbon source screen

We used Edinburgh minimal medium (EMM) or YES, depending on

the nitrogen source in the final assay medium (Moreno et al, 1991).

Cells were pre-cultured overnight (5 ml), diluted to approximately

OD600 0.2 in the morning, grown for 6 h, centrifuged (400 g, 4 min,

RT), washed once in EMM without glucose or YES, resuspended

and diluted to OD600 0.2 in EMM without glucose or YES. Carbon

sources were used at the same molarity as glucose in standard EMM

(2% w/w, 111 mM), except for sucrose, maltose and raffinose

(where amount was corrected for number of monosaccharides they

contain), pectin (where a saturated solution was used), and gluta-

mine (16% w/w due to low solubility). The OD600 was recorded in

384-well plates, every 15 min, with short shaking (15 s) before each

measurement in a plate reader (Tecan Infinite M200 Pro). Growth

curves were smoothed by first applying a median filter of size 5 and

a Gaussian filter with sigma = 3. We obtained maximum slopes for

each well by fitting all linear regression models for 12 timepoints

over the course of the growth curve and retaining the best one.

Biolog phenotyping screen

The resistance to various chemical compounds was assessed using

Biolog Phenotype MicroArray plates PM22, PM23 and PM25. JB50

and pyk1-A-allele h90 were grown overnight in EMM, diluted to OD600
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0.15 in fresh EMM and grown for 6 h at 25°C. Cultures were then

diluted to OD600 0.05, and 100 ll was added to each well. For each

plate type, two individual plates were used (one per strain). Growth

curves were recorded by measuring the absorbance at 610 nm every

30 min in an EnVision 2104 plate reader (PerkinElmer) with stacker

module. The room was not strictly temperature controlled but was

stable at 23.5 � 1°C over the course of the experiment. Growth

curves exhibited considerable noise levels and were smoothed by first

applying a median filter of size 5 and a Gaussian filter with

sigma = 3. We obtained maximum slopes for each well by fitting all

linear regression models for 12 timepoints over the course of the

growth curve and retaining the best one. Each plate contained multi-

ple concentrations of the same compound, and dose–response curves

were plotted for all, with hits identified by manual inspection.

To assess the ability of both strains for using different nitrogen

sources (Biolog Phenotype MicroArray plate PM3), we applied the

same strategy with the following modifications. We used strains with

the heterothallic h� mating type to prevent mating and sporulation in

poor nutrient conditions. Pre-cultures were diluted to OD600 0.2 and

grown for 6 h at 25°C. Cultures were then centrifuged (300 g, 3 min,

RT), washed in EMM without nitrogen or carbon (EMM-N-C), resus-

pended in EMM-N at an OD600 of 0.2 and 100 ll of cells was added to

each well of the assay plates. OD610 was recorded in 15-min intervals,

and the fit range for maximum slope extraction was accordingly

doubled to 24 timepoints. Growth curves were otherwise acquired

and analysed similarly. Nitrogen sources in which both strains had a

maximum growth rate < 0.015 were excluded from further analysis.

Spot assays

Three independent pre-cultures were used for the T-strain and one

pre-culture per independent CRISPR-engineered mutant. Pre-cultures

were grown in either YES or EMMmedia depending on the plate used

for the actual assay. Overnight cultures were diluted to an OD600 of

0.15 and grown for an additional ~6 h. Cultures were then diluted to

a OD600 of 0.4, with a threefold dilution series prepared in a 96-well

plate (one culture per column). The “1 to 16 array single source”

program of the RoToR HDA (Singer Instruments) was used to create

the read-out plates. For each batch, a control plate without toxin was

prepared to check for any accidental bias in strain dilutions.

Chronological lifespan assays

Chronological lifespan assays were performed as previously

described (Rallis et al, 2013). Single colonies were picked and inocu-

lated in YES. Cells were grown for 48 h, which was treated as the

beginning of stationary phase (Day 0). For the A-strain, three inde-

pendent CRISPR-engineered mutants were used as biological repeats.

Data availability

The datasets produced in this study have been made available as

described below:

• Mass spectrometry proteomics data: PRIDE (Perez-Riverol et al,

2019) PXD017833 (http://www.ebi.ac.uk/pride/archive/projects/

PXD017833)

• RNAseq data: ArrayExpress E-MTAB-8847 (http://www.ebi.ac.

uk/arrayexpress/arrayexpress/experiments/E-MTAB-8847/)

• GWAS phenotypes: Dataset EV1

• GWAS top hits: Dataset EV2

• Metabolomics data: Dataset EV3

• Gene-expression data: Dataset EV4

• Carbon source screen: Dataset EV5

• Nitrogen source screen: Dataset EV6

Expanded View for this article is available online.
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