Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder

Yunan Gao¹, Elaine E. Irvine², Ioanna Eleftheriadou¹, Carlos Jiménez Naranjo¹, Francesca Hearn-Yeates¹, Leontien Bosch¹, Justyna A. Glegola², Leah Murdoch³, Aleksandra Czerniak³, Ilaria Meloni⁴, Alessandra Renieri⁴, Maria Kinali⁵ & Nicholas D. Mazarakis¹*

¹Gene Therapy, Centre of Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK

²Metabolic Signalling Group, MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK

³CBS Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK

⁴Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy

⁵The Portland Hospital, 205-209 Great Portland Street, London, W1W 5AH, UK

*corresponding author. Tel: +44(0)2075947024: E-mail: n.mazarakis@imperial.ac.uk

Running title: Gene therapy in models of CDKL5 disorder
Abstract

Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females that typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterised the human cyclin-dependent kinase-like 5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons. We found that the isoform 1 and to a lesser extent the isoform 2 were expressed in human brain, and both neuronal and glial cell types. These isoforms were subsequently cloned into recombinant adeno-associated viral (AAV) vector genome and high-titre viral vectors were produced. Intrajugular delivery of green fluorescence protein via adeno-associated viral vectors serotype PHP.B in adult wild-type male mice transduced neurons and astrocytes throughout the brain more efficiently than serotype 9. Cyclin-dependent kinase-like 5 knockout male mice treated with the isoform 1 via intrajugular injection at age 28-30 days exhibited significant behavioural improvements compared to green fluorescence protein-treated controls (1 x 10^{12} vg per animal, n = 10 per group) with PHP.B vectors. Brain expression of the isoform 1 transgene was more abundant in hindbrain than forebrain and midbrain. Transgene brain expression was sporadic at the cellular level and most prominent in hippocampal neurons and cerebellar Purkinje cells. Correction of postsynaptic density protein 95 cerebellar misexpression, a major fine cerebellar structural abnormality in Cdkl5 knockout mice, was found in regions of high transgene expression within cerebellum. Adeno-associated viral vectors serotype DJ efficiently transduced cyclin-dependent kinase-like 5-mutant human induced pluripotent stem cell-derived neural progenitors, which were subsequently differentiated into mature neurons. When treating CDKL5-mutant neurons, isoform 1 expression led to an increased density of synaptic puncta, whilst isoform 2 ameliorated the calcium signalling defect compared to green fluorescence protein control, implying distinct functions of these isoforms in neurons. This study provides the first evidence that gene therapy mediated by adeno-associated viral vectors can be utilised for treating the cyclin-dependent kinase-like 5 disorder.

Keywords: AAV gene therapy/autism/CDKL5/hiPSC/motor deficits
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-ME</td>
<td>2-Mercaptoethanol</td>
</tr>
<tr>
<td>aa</td>
<td>Amino acid</td>
</tr>
<tr>
<td>AAV</td>
<td>Adeno-associated virus</td>
</tr>
<tr>
<td>ADHD</td>
<td>Attention deficit hyperactivity disorder</td>
</tr>
<tr>
<td>aEB</td>
<td>Adherent embryoid bodies</td>
</tr>
<tr>
<td>ASD</td>
<td>Autism spectrum disorder</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-brain barrier</td>
</tr>
<tr>
<td>BGH</td>
<td>Bovine growth hormone</td>
</tr>
<tr>
<td>CA1</td>
<td>Cornu Ammonis 1</td>
</tr>
<tr>
<td>CB</td>
<td>Calbindin D-28k</td>
</tr>
<tr>
<td>CBA</td>
<td>Chicken β-actin</td>
</tr>
<tr>
<td>CBh</td>
<td>CBA hybrid</td>
</tr>
<tr>
<td>CDS</td>
<td>Coding sequence</td>
</tr>
<tr>
<td>CGH</td>
<td>Comparative genomic hybridization</td>
</tr>
<tr>
<td>CS</td>
<td>Conditioned stimulus</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified Eagle's medium</td>
</tr>
<tr>
<td>DRG</td>
<td>Dorsal root ganglia</td>
</tr>
<tr>
<td>EMEM</td>
<td>Minimum essential medium Eagle</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence-activated cell sorting</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>GSP</td>
<td>Gene-specific primer</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hanks’ balanced salt solution</td>
</tr>
<tr>
<td>HEK</td>
<td>Human embryo kidney</td>
</tr>
<tr>
<td>hESC</td>
<td>Human embryonic stem cell</td>
</tr>
<tr>
<td>ICC</td>
<td>Immunocytochemistry</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>iPSC</td>
<td>Induced pluripotent stem cell</td>
</tr>
<tr>
<td>ITR</td>
<td>Inverted terminal repeat</td>
</tr>
<tr>
<td>KO</td>
<td>Knockout</td>
</tr>
<tr>
<td>KRH</td>
<td>Krebs-Ringer HEPES</td>
</tr>
<tr>
<td>NC</td>
<td>Negative control</td>
</tr>
<tr>
<td>NEAA</td>
<td>Non-essential amino acids</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>NHP</td>
<td>Non-human primate</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NPC</td>
<td>Neural progenitor cell</td>
</tr>
<tr>
<td>NTC</td>
<td>Non-template control</td>
</tr>
<tr>
<td>pA</td>
<td>BGH polyA</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PEI</td>
<td>Polyethylenimine</td>
</tr>
<tr>
<td>PEG</td>
<td>Poly(ethylene glycol)</td>
</tr>
<tr>
<td>PM</td>
<td>Purmorphamine</td>
</tr>
<tr>
<td>PVDF</td>
<td>Immobilon-P polyvinylidene fluoride</td>
</tr>
<tr>
<td>RACE</td>
<td>Rapid amplification of cDNA ends</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>sEB</td>
<td>Suspension embryoid body</td>
</tr>
<tr>
<td>ss</td>
<td>Single-stranded</td>
</tr>
<tr>
<td>SV40</td>
<td>Simian vacuolating virus 40</td>
</tr>
<tr>
<td>TFR</td>
<td>Transferrin receptor</td>
</tr>
<tr>
<td>UPM</td>
<td>Universal Primer A Mix</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>WB</td>
<td>Western blot</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
</tbody>
</table>
Introduction

CDKL5 disorder, or CDKL5 deficiency disorder, is a severe, neurodevelopmental disease predominantly affecting females, associated with a full spectrum of comorbidities. It is an ultra-rare X-linked dominant disorder caused by de novo mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene (Bahi-Buisson et al., 2008). Early-onset epilepsy occurs by 3 months of age in over 90% patients (Fehr et al., 2013), though age at onset may vary from 1 to 78 weeks (median 6 weeks) (Fehr et al., 2016). With time severe and global developmental delay develops, whilst gross motor deficits and other abnormalities such as gastrointestinal, sleep and behavioural comorbidities emerge (Bahi-Buisson and Bienvenu, 2012; Fehr et al., 2013; Fehr et al., 2016). Currently, there is no therapy apart from antiepileptic drugs providing poor seizure management (Bahi-Buisson et al., 2008; Fehr et al., 2016). In females, CDKL5 disorder is caused by haploinsufficiency, whilst the corresponding CDKL5 null genotype in males effects a generally more severe phenotype. Indeed, somatic mosaicism is frequently seen in male cases and is presumed to reduce the probability of embryonic lethality (Masliah-Plachon et al., 2010; Mirzaa et al., 2013; Mei et al., 2014).

The human CDKL5 gene is located on the Xp22.13 region of the X chromosome (Montini et al., 1998; Kalscheuer et al., 2003). It is composed of 27 exons: the first 6 exons (exons 1, 1a to 1e) are untranslated, whilst the remaining 21 exons (exons 2 – 22) encode a serine/threonine kinase (Hector et al., 2016). Five major transcript isoforms have been identified, hCDKL5_1-5, with hCDKL5_1 being the most abundant isoform in the CNS (Hector et al., 2016). hCDKL5_1-4 are ubiquitously expressed, whilst hCDKL5_5 is expressed only in the adult testes and foetal brain (Hector et al., 2016). The majority of the CDKL5 coding region is orthologous and well-conserved between human, rat and mouse (Hector et al., 2016, 2017a). Over a hundred pathogenic mutations have been reported thus far in CDKL5 disorder, consisting of point mutations throughout the CDKL5 coding sequence, and X-chromosomal rearrangements involving part or all of the CDKL5 gene (Kalscheuer et al., 2003; Van Esch et al., 2007; Tzschach et al., 2008; Thorson et al., 2010; Fehr et al., 2015; Hector et al., 2017b).

CDKL5 protein is a serine/threonine kinase ubiquitously expressed in all tissues, with the highest levels in the brain, thymus and testis (Lin et al., 2005; Rusconi et al., 2008). It consists of an N-terminal catalytic domain and a long C-terminal extension involved in the regulation of the catalytic activity of CDKL5 and its subcellular localization (Lin et al., 2005; Bertani et al., 2006; Rusconi et al., 2008). In the mouse brain, mCdkl5 was reported to be mainly...
expressed in neurons but virtually absent in glia (Rusconi et al., 2008). However, rCdkl5 expression was reported in cultured rat glial cells, though at lower level than in cultured rat cortical neurons, and as distinct glial isoform (CDKL5b or rCdkl5_1) from neuronal isoform (CDKL5a or rCdkl5_2) (Chen et al., 2010; Hector et al., 2017a). Furthermore, the cellular expression of hCDKL5 was detected in interfascicular glia in the corpus callosum of post-mortem human brain tissue (Rusconi et al., 2008).

CDKL5 appears to have numerous functions in neuronal cells via auto-phosphorylation (Bertani et al., 2006) and phosphorylating various proteins. Firstly, it regulates gene expression, both via phosphorylation of transcription factors MeCP2 and Dnmt1, and HDAC4 that regulates transcription factor MEF2A (Mari et al., 2005; Kameshita et al., 2008; Carouge et al., 2010; Trazzi et al., 2016); and via interaction with the nuclear speckles involved in the pre-mRNA processing (Ricciardi et al., 2009). Secondly, CDKL5 appears to directly impact neuronal morphogenesis via interaction with Rac1 for dendrite growth, palmitoylated PSD95 for spine development, and shootin 1 for neural polarization (Chen et al., 2010; Zhu et al., 2013; Nawaz et al., 2016). Thirdly, CDKL5 regulates synaptic stability and neuronal transmission via phosphorylation of NGL-1 to strengthen the NGL-1/PSD95 association, and Amph 1 to influence synaptic vesicle endocytosis (Ricciardi et al., 2012; Sekiguchi et al., 2013). Furthermore, CDKL5 has been found to regulate microtubule assembly, cilia-based signalling and polarity-based cellular networks via phosphorylation of microtubule-associated proteins MAP1S, EB2 and ARHGEF2, and CEP131 and DLG5 that regulates centrosome function, these being the first physiological substrates of CDKL5 identified in murine and human cells in two recent phosphoproteomic studies (Baltussen et al., 2018; Munoz et al., 2018).

Over the last decade, various CDKL5 disease models have been developed, including Cdkl5 knockout (KO) mouse and CDKL5-mutant human induced pluripotent stem cell (iPSC)-derived neuron models. Three constitutive Cdkl5 KO mouse models have been generated via deletion of either exon 2 (Okuda et al., 2017), exon 4 (Amendola et al., 2014) or exon 6 (Wang et al., 2012). Cdkl5 loss of function causes disruption of neural circuit communication and multiple signalling pathways, thereby mimicking certain clinical features of human CDKL5 disorder (Wang et al., 2012; Amendola et al., 2014; Sivilia et al., 2016; Okuda et al., 2017, 2018). The Cdkl5 KO mice exhibit motor deficits, autistic-like behaviours, and impaired learning and memory. Notably, all the Cdkl5 KO mouse models available to-date have failed to recapitulate the cardinal symptom of the disorder, the recurrent, unprovoked seizures.
Despite creating several conditional mutants and restricting mutations to different neuronal subsets, there were no unprovoked seizures, indicating either a fundamental difference in generation and propagation of seizures between humans and rodents (Amendola et al., 2014; Tang et al., 2017) and/or an incomplete gene compensation effect. Despite lack of spontaneous seizures, Cdkl5 KO mice showed significantly enhanced seizure susceptibility in response to N-methyl-D-aspartate (NMDA) relative to wild-type (WT) mice (Okuda et al., 2017).

Human iPSC lines carrying different CDKL5 mutations have been derived from patients with CDKL5 disorder (Amenduni et al., 2011; Livide et al., 2015). Female clones express either the mutant X-linked CDKL5 allele or the WT allele as an isogenic control due to X-chromosome inactivation (Amenduni et al., 2011). CDKL5-mutant iPSCs can be differentiated into neurons to model CDKL5 disorder in vitro compared to the isogenic control. CDKL5-mutant iPSC-derived neurons revealed severe deficits in spine density and morphology compared to WT neurons, indicated by the significant reduction in VGLUT1+ and PSD95+ synaptic density, aberrant long and thin spines and lack of SYP+ pre-synaptic terminals (Ricciardi et al., 2012).

To-date there is no disease-modifying therapy for CDKL5 disorder. Gene replacement therapy is well suited as a strategy for the correction/reversal of CDKL5 disease progression. Adeno-associated virus (AAV) serotype 9 (AAV9) offers a means of widespread transgene delivery to the CNS due to its ability to cross the blood-brain barrier (BBB) (Foust et al., 2009). Following systemic intravascular delivery, AAV9 vectors can extensively transduce both neurons and glia in mouse CNS as well as various peripheral tissues (Dufour et al., 2014; Foust et al., 2009). However, only 2% of global CNS transduction was achieved in non-human primates (NHPs) following an intrathecal route of delivery (Gray et al., 2013). Furthermore, the AAV9-mediated systemic delivery that has gone clinical for spinal muscular atrophy (Mendell et al., 2017) transduces predominantly glia in NHP brain and neurons in spinal cord (Bevan et al., 2011). AAV-PHP.B vectors, one of the AAV9 variants selected for global CNS transduction, such as AAV-PHP.B vectors injected via retro-orbital vein can transfer genes throughout mouse CNS with at least 40-fold greater efficiency than AAV9 via retro-orbital vein injection (Deverman et al., 2016). In NHPs, systemically delivered AAV-PHP.B led to significantly enhanced transgene expression in the CNS of adult cynomolgus monkeys relative to AAV9 following intravenous administration (Sah et al., 2018), whereas transduced marmoset brain at a similar level to AAV9 (Matsuzaki et al., 2018). In addition, recombinant AAV-DJ capsid, selected through a directed evolution approach, can mediate in vitro transduction up to 1 x 10^5-fold higher than AAV9 (Grimm et al., 2008).
In this study, we aimed to develop an effective disease-modifying gene replacement therapy, utilizing AAV-CDKL5 vectors in *in vivo* and *in vitro* models of CDKL5 disorder. Thus, we cloned and produced AAV9, AAV-DJ and AAV-PHP.B vectors expressing the major CDKL5 brain isoforms, at high titre and purity. We first investigated the effects of gene transfer of the most abundant brain isoform *in vivo* via intrajugular delivery of AAV-PHP.B-*hCDKL5_1* vectors in a *Cdkl5* KO mouse model; then compared the two brain isoforms *in vitro* via transduction of AAV-DJ-*hCDKL5_1* or -*hCDKL5_2* vectors in a CDKL5-mutant iPSC-derived neuron model. Our findings provide the first evidence that AAV-mediated gene replacement therapy could mediate functional recovery in CDKL5 disorder.
Materials and methods

Cell lines, culture and differentiation

Human embryo kidney (HEK) 293 cells were obtained from ECACC (85120602). HEK 293T cells were the derivatives of HEK 293 cells expressing a mutant version of simian vacuolating virus 40 (SV40) large T antigen, obtained from ATCC (HEK 293T/17, CRL-11268™). HeLa cells were obtained from ECACC (93021013). Primary human astrocytes were obtained from Lonza (CC-2565). SH-SY5Y cells are human neuroblastoma cells, thrice-cloned sub-line of bone marrow biopsy-derived line SK-N-SH (Biedler et al., 1978) acquired from ECACC (94030304), which can be used as a dopaminergic neuronal model. SNL cells are mouse SIM strain embryonic fibroblasts, kindly provided by Prof. Vasso Episkopou (Imperial College London, UK). HES-3 NKX2.1^{GFP/w} human embryonic stem cells (hESCs) were human embryonic stem cells with a GFP knockin construct inserted into the second exon of NKX2.1 gene (Goulburn et al., 2011), kindly provided by Prof. Andrew Elefanty (Murdoch Children's Research Institute, Australia). NKX2.1 expression can mark the ventral forebrain-specific identity in the developing CNS (Nicholas et al., 2013). RET849 iPSCs (#13 line carrying a pGlu55fs*74 frameshift mutation in exon 5; and #11 line as isogenic control) were obtained from the Cell lines and DNA bank of Rett Syndrome, X-linked mental retardation and other genetic diseases. See Supplementary methods for cell culture methods.

SH-SY5Y cells were differentiated using 10 µM all trans-retinoic acid (Sigma) for 7 days. HES-3 NKX2.1^{GFP/w} hESCs were differentiated into NKX2.1-GFP+ cortical interneurons using the B27 + 5F method as previously described (Nicholas et al., 2013). RET849 #11 isogenic control and #13 CDKL5-mutant iPSCs were differentiated into neural progenitor cells (NPCs) and then NPCs were terminally differentiated into neurons on astrocyte layer as previously described (Kim et al., 2011). See Supplementary methods for detailed differentiation methods.

Rapid Amplification of cDNA Ends (RACE) and RT-PCR

RACE of CDKL5 was performed using Human Brain Cerebral Cortex Poly A+ RNA (Takara Bio). Generally, the 1st-strand RACE-ready cDNA was synthesized using the SMARTer® RACE cDNA Amplification Kit (Takara Bio); followed by 3'- or 5'- RACE PCR reactions using the Advantage® 2 Polymerase Mix (Takara Bio) according to manufacturer’s instructions.
RT-PCR was performed using total RNA purified with RNeasy® Micro Kit (Qiagen) from up to 5 x 10^5 cells or RNeasy® Mini Kit (Qiagen) from up to 1 x 10^7 cells according to manufacturer’s instructions. Generally, the 1st-strand cDNA synthesis from RNA was performed using SuperScript® III First-Strand Synthesis SuperMix (Invitrogen) according to manufacturer’s instructions. Next, the 1st-strand cDNA was amplified by PCR using Platinum® Taq DNA Polymerase (Invitrogen).

Two gene specific primers (GSPs) were designed to pick up the ends of CDKL5 cDNA, GSP1 for 5’-RACE and GSP2 for 3’-RACE and RT-PCR. And for 3’-RACE and RT-PCR, two 3’-RACE coding sequence (CDS) primers were designed to amplify the alternative 3’-terminal sequences of hCDKL5 mRNA, 3’-CDS hCDKL5_1 primer of exon 19 and 3’-CDS hCDKL5_5 primer of exon 22 (Fig 1 A; Supplementary Table 1). RACE and RT-PCR products were cloned into the pCRTM4-TOPO® vectors (Invitrogen) using TOPO® TA Cloning® Kit for Sequencing (Invitrogen) according to manufacturer’s instructions. Positive clones were selected, sequenced and analyzed using DNADynamo (BlueTractorSoftware).

Cloning, production and titre determination of AAV vectors

The CDKL5 transgene sequences (GenBank: HQ171445.1) were 5’ tagged and codon-optimized, synthesized by GeneArt (Thermo), and cloned into single-stranded (ss)AAV vector genome to generate pTR-CBh-HA-hCDKL5_1-BGH polyA and pTR-CBh-Myc-hCDKL5_2-BGH polyA. pTR-CBh-eGFP-BGH polyA-LacZ stuffer vector plasmid was constructed as positive control. See Supplementary methods for detailed cloning methods.

AAV vectors were prepared via 3-plasmid co-transfection of HEK 293T cells using polyethylenimine (PEI) (Polysciences) as previously described (Gray *et al.*, 2011a; Deverman *et al.*, 2016). See Supplementary methods for detailed production methods.

rAAV titres were determined by measuring the number of vector genome extracted using DNeasy Blood & Tissue Kit (Qiagen) via qPCR performed in the Mx3000P QPCR System with MxPro QPCR software (Agilent), with linearized genome plasmid as a standard. The purity of each rAAV vector preparation was examined using SYPRO® Ruby Protein Gel Stain (Invitrogen) according to manufacturer’s instructions.

In vitro AAV transduction
For AAV transduction of iPSC-derived NPCs, 8-well glass chamber slides (Thermo) or 24-well plastic plates (Corning) were pre-coated with poly-L-ornithine/laminin. NPCs were seeded at the density of 5 x 10^4 cells in 400 µl medium per well in 8-well slides or 1 x 10^5 cells in 500 µl medium per well in 24-well plates. 24 hours post-seeding, 250 µl medium was removed and 50 µl medium containing AAV-DJ vectors at certain multiplicity of infection (MOI) was added dropwise per well. 6 hours post-transduction, 200 µl medium was topped up per well. 24 hours post-transduction, the transduction medium was replaced with 400 µl or 500 µl fresh culture medium per well in 8-well slides or 24-well plates, respectively. Transduced NPCs were incubated for 4 days and then dissociated for fluorescence-activated cell sorting (FACS) or fixed in slides for ICC staining; or incubated for 3 days and then re-plated on astrocyte layer for terminal differentiation (See Supplementary methods for details).

Animals

All animal procedures were approved by the local ethical committee and performed in accordance with the United Kingdom Animals Scientific Procedures Act (1986) and associated guidelines. The mouse strain C57BL/6 was used for the study of comparing *in vivo* biodistribution of AAV9 and AAV-PHP.B vectors via intrajugular injection. 20 C57BL/6 inbred male mice at 5-week age were supplied by Envigo. The mouse strain B6.129(FVB)-Cdkl5^{tm1.1Jloez/J}, also known as Cdkl5 KO mice, was used as the *in vivo* model of CDKL5 disorder. This Cdkl5 KO mouse model was originally generated by deletion of *mCdkl5* exon 6 (Wang *et al.*, 2012). Two hemizygous males (*Cdkl5^{-/-}* and two heterozygous females (*Cdkl5⁺⁻*)) were imported from The Jackson Laboratory (stock number 021967) and bred according to provider’s instructions to establish a colony. The *Cdkl5^{-/-}* and *Cdkl5⁺⁻* mice for testing were produced by crossing *Cdkl5⁺⁻* females with *Cdkl5^{-/-}* males, and *Cdkl5^{-/-}* females with *Cdkl5^{+-/-}* males.

In vivo AAV delivery

To compare the biodistribution of AAV9 and AAV-PHP.B vectors via intrajugular injection, a total of 19 male C57BL/6 mice were used at the age of 43 to 51 days. To investigate the therapeutic effects of CDKL5 expression in *Cdkl5* KO mouse model, a total of 20 *Cdkl5^{-/-}* mice were used at the age of 28 to 30 days (Supplementary Table 2). Animals were randomized into each vector group.
Prior to surgery, mice were weighed and deeply anaesthetized by inhalation of a mixture of 1.0 L/min O₂ and 3.0% isoflurane (Merial). Anesthetized mice were placed in a ventral recumbent position and the anesthetic mixture was lowered to 0.5 L/min oxygen and 1.0 – 2.0% isoflurane. A small incision was made lateral to the ventral midline, from the pectoral muscle to the lower neck. The right jugular vein was exposed with blunt dissection. AAV vectors or saline (Supplementary Table 2) were delivered into the systemic circulation through a direct injection using a 29-Gauge 0.5 ml Insulin Syringe (BD) into the right jugular vein at the rate of 100 µl/min. For those mice pre-treated with mannitol, 25% mannitol was injected at 8 µl/g body weight 6 minutes prior to AAV or saline injection.

Behavioural analysis

Behavioural testing was conducted on the *Cdkl5* KO mice group and AAV-injected *Cdkl5* KO mice group (Supplementary Table 3) as follows: open field, hind-limb clasping, rotarod, elevated O-maze, marble burying, social interaction, three-chambered social approach, nesting, Y-maze spontaneous alternation, and contextual and cued fear conditioning. See Supplementary methods for detailed behavioural methods. All the behavioural tests and analysis were performed blindly.

Immunohistochemistry (IHC), microscopy and image analysis

Mice were deeply anaesthetized and transcardially perfused with ice-cold heparin-saline followed by 4% PFA. Then the brain, spinal cord and dorsal root ganglia (DRG) were removed, as well as both eyes and one kidney from each mouse. Tissues were post-fixed in 4% PFA on ice for 2-4 hours. Fixed tissues were transferred to 30% sucrose – NaN₃ until they all sank and then frozen in O.C.T. compound (VWR) for cryo-sectioning. The brains were cryo-sectioned into 35 µm sagittal sections or 30 µm coronal sections of 12 series using a Leica CM1850 Cryostat. Spinal cords and DRGs were cryo-sectioned into 16 µm sagittal sections of 10 series onto SuperFrost Plus Microscope Slides (VWR). Eyes were cryo-sectioned into 18 µm sagittal sections of 8 series and kidneys into 16 µm coronal sections of 20 series onto slides.

IHC staining of free-floating brain sections was conducted in 12-well plates wrapped in aluminium, shaking at 120 rpm. Sections were washed 3 times in phosphate buffered saline (PBS), followed by blocking in 10% goat serum/0.25% Triton X-100/PBS at RT for 1 hour. Then sections were incubated with primary antibodies (Supplementary Table 4) diluted in 10% goat serum/0.25% Triton X-100/PBS for around 40 hours at 4°C. Subsequently, sections were
washed 4 times with PBS and re-blocked in 10% goat serum/0.25% Triton X-100/PBS at RT for 30 minutes. Then sections were incubated with secondary antibodies (Supplementary Table 5) diluted 1:500 in 10% goat serum/0.25% Triton X-100/PBS for 1 hour at RT. Afterwards, sections were washed 5 times with PBS and then mounted onto the SuperFrost Plus Microscope Slides. The slides were mounted with ProLong® Gold Antifade Mountant with DAPI (Invitrogen) and sealed with nail polish.

Tiling images were acquired using a Zeiss Axio Observer Inverted Widefield Microscope (Fig 2 A) or a Nikon Eclipse 80i Fluorescence Microscope (Supplementary Fig 4 A) with 10x objective. Fluorescence images were captured using a Nikon Eclipse TE2000-U Inverted Microscope (Fig 2 B-E; Supplementary Fig 3) or a Leica TCS SP5 Confocal Microscope (Fig 6 B and D; Supplementary Fig 4 C).

For image analysis, the number of animals per group was pre-established and no animal was excluded from the analysis. For the analysis of PSD95 pinceau volume, confocal images were acquired with the oil-immersion x63 lens, x1 scanner zoom, 1024 x 1024 pixels resolution as z series of images taken at 0.5 µm intervals. All images were acquired using the same microscope parameters for analysis purpose. Quantification of the PSD95 pinceau volume in each animal was performed blindly. The PSD95 estimated volume in the pinceau was measured cell-by-cell using Imaris (BitPlane). The PSD95 signal was detected by 3D voxel-based reconstruction of confocal z stacks, followed by surface recognition and finally referred as ‘estimated volume’ by Imaris as previously described (Sivilia et al., 2016).

Western blot (WB)

Cell lysate was prepared using RIPA Buffer (Thermo) supplemented with 1x Halt™ Protease and Phosphatase Inhibitor Cocktail (Thermo) and 1x EDTA Solution (Thermo) according to manufacturer’s instructions. Tissue lysate was prepared via homogenisation straight from frozen using Micropestle (Eppendorf) in 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-100 and 1 mM EDTA supplemented with 1x Halt™ Protease and Phosphatase Inhibitor Cocktail. Tissue lysate was left to solubilise for 30 minutes on ice and centrifuged at 13,000 x g for 10 minutes at 4 °C. Protein supernatant was stored at -80 °C.

Protein concentration was measured using the Pierce® BCA Protein Assay Kit (Thermo) according to manufacturer’s instructions. Equal amount of protein samples was resolved on a 5-12% tris-glycine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
For Peer Review

gel. Afterwards, separated proteins on the gel were transferred onto the Immobilon-P polyvinylidene fluoride (PVDF) membrane (Millipore). The resulting blots were blocked in 5% milk in 0.1% PBS-Tween (v/v) overnight at 4°C. The following day, blots were probed with primary antibodies (Supplementary Table 4) diluted in 5% milk in 0.1% PBS-Tween at RT for 2 hours. The primary antibodies used were listed in Supplementary Table 4. Then blots were washed and incubated with secondary antibodies (Supplementary Table 5) diluted in 5% milk in 0.1% PBS-Tween at RT for 1 hour. Alternatively, rapid processing of blots was conducted using SNAP i.d.® 2.0 Protein Detection System (Millipore) according to manufacturer’s instructions. HRPs on immunoblots were detected using the SuperSignal® West Pico Chemiluminescent Substrate (Thermo) according to manufacturer’s instructions. The chemiluminescent images of membranes were captured using GeneGnome XRQ imaging system and GeneSys image acquisition software (Syngene). Densitometry analysis on images was performed using FIJI (NIH). Intensity for each band was normalized to the intensity of the corresponding GAPDH band and the relative protein content was expressed as arbitrary units.

Calcium imaging

Calcium imaging was performed on iPSC-derived neurons on day 32 of terminal differentiation using Fluo-4 AM (Invitrogen) as calcium indicator according to manufacturer’s instructions. Briefly, cells were washed once with pre-warmed Hanks’ balanced salt solution (HBSS) (Gibco) and then incubated with 3 µM fluo-4 AM in the dark at 37°C for 30 minutes. Then the fluo-4-loaded cells were washed once with HBSS, followed by adding 200 µl of 5 mM Krebs-Ringer HEPES (KRH) solution (5 mM KCl, 130 mM NaCl, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 2 mM CaCl₂, 25 mM HEPES and 1.1 mg/ml glucose, pH 7.5) per well. Subsequently, cytosolic calcium changes indicated by fluo-4 in response to 50 mM KCl were observed under the Zeiss Axio Observer Inverted Widefield Microscope with 10x objective at 37°C and recorded at 1 Hz using Zen microscope software (ZEISS). After 30 seconds of recording at basal condition, 200 µl of 95 mM KRH solution (95mM KCl, 40 mM NaCl, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 2 mM CaCl₂, 25 mM HEPES and 1.1 mg/ml glucose, pH 7.5) was added per well to make a final concentration of 50 mM KCl, followed by further recording for at least 2.5 minutes. FIJI-based plugin Time Series Analyzer was used to analyse the cytosolic calcium changes.

Immunocytochemistry (ICC)

Cells were fixed directly in 8-well chamber slides using 2% PFA prior to staining. Fixed cells were washed 3 times with PBS and permeabilised with 2% BSA/0.1% Triton X-100/PBS at
RT for 10 minutes. After washing twice with PBS and once with 2% BSA/ PBS, cells were blocked with 2% BSA/PBS at RT for 15 minutes. Then cells were incubated with primary antibodies (Supplementary Table 4) diluted in 2% BSA/PBS in the dark at 4°C overnight. The following day, cells were washed three times with 2% BSA/PBS and incubated with secondary antibodies (Supplementary Table 5) diluted 1:400 in 2% BSA/PBS in the dark for 1 hour at RT. After washing three times with PBS, the slides were mounted ProLong® Gold Antifade Mountant with DAPI and sealed with nail polish.

Images were acquired using a Zeiss Axioskop 40FL Microscope (Supplementary Fig 7 C-D; Supplementary Fig 8 A-B) or a Zeiss LSM-780 Inverted Confocal Microscope (Fig 7 A-B, E-G). For synaptic analysis, confocal images were acquired with oil-immersion x63 lens, x1 scanner zoom, 2048 x 2048 pixels resolution as z series of images taken at 0.5 µm intervals. All images were acquired using the same microscope parameters for each experiment. Images were analysed blindly using FIJI software. Synaptic density was measured by automated counting of the number of puncta on secondary dendrites and expressed as the number of puncta per 10 µm dendritic length.

Statistical analysis

Statistical testing was performed in Prism 7 (GraphPad) with 95% confidence interval of difference. Two-tailed unpaired t-test, ordinary one-way ANOVA and one-way ANOVA with Tukey’s multiple comparisons test, ordinary two-way ANOVA and two-way ANOVA with Tukey’s multiple comparisons test, Bonferroni’s multiple comparisons test or Sidak’s multiple comparisons test were performed as specified in figure legends. A probability level of $P<0.05$ was considered to be statistically significant; $*P<0.05$, $**P<0.01$, $***P<0.001$, $****P<0.0001$.

Data availability

Data are available upon request from the corresponding author.
Results

Design and development of AAV-CDKL5 vectors

To determine which hCDKL5 isoform would be most suitable for gene replacement therapy, we initially characterised the CDKL5 transcript isoforms expressed in human cerebral cortex via RACE PCR, which had not been identified when this study began. We found that both hCDKL5_1 (634 bp product) and hCDKL5_2 (757 bp product) isoforms were expressed in human brain cerebral cortex and that hCDKL5_1 is more abundant than hCDKL5_2 (Fig 1 A-C). We also identified hCDKL5 isoforms in neuronal cell lines (neuroblastoma cell lines including undifferentiated and differentiated SH-SY5Y cells, and hESC-derived cortical interneurons) and glia (primary human astrocytes) via RT-PCR. We found that hCDKL5_1 and to a lesser extent hCDKL5_2 isoforms were expressed in both neuronal and glial cell types (Fig 1 A-C). In addition, both hCDKL5_1 and hCDKL5_5 (915 bp product) isoforms were expressed in human testis whilst hCDKL5_5 was expressed exclusively in the adult testis (Fig 1 A-C). These results were consistent with recently published data, though neither hCDKL5_3 nor hCDKL5_4 isoforms were detected in our analysis probably due to their low abundance of less than 5% of total brain isoforms (Hector et al., 2016). It was thus deduced that hCDKL5 isoforms 1 and/or 2 were the most suitable isoforms to be delivered by AAV vectors as a potential gene therapy for CDKL5 disorder. CDKL5 protein expression was detected in multiple human cell lines at different levels via WB (Fig 1 D). Since human neuronal and glial cells revealed similar cellular expression patterns of hCDKL5 isoforms (Fig 1 B and D), a hybrid form of the chicken β-actin (CBA) promoter, the CBh promoter, could be used to drive transgene expression, which provides robust, long-term and ubiquitous expression in all CNS cell types in vivo (Gray et al., 2011b).

We then cloned the codon-optimised coding region of hCDKL5_1 and hCDKL5_2 downstream of the CBh promoter into the ssAAV2 vector genome as follows: pTR-CBh-HA-hCDKL5_1-BGH polyA and pTR-CBh-Myc-hCDKL5_2-BGH polyA. In addition, pTR-CBh-eGFP-BGH polyA-LacZ stuffer vector plasmid was constructed as positive control (Fig 1 E). Next, expression of both transgenes and tags of the constructed AAV vector plasmids in transfected HEK 293T cells were verified via WB, including HA-hCDKL5_1, Myc-hCDKL5_2 and GFP (Fig 1 F). Furthermore, we produced high-titre rAAV vectors pseudotyped with AAV9, the variant capsid AAV-PHP.B for in vivo and the hybrid capsid AAV-DJ for in vitro applications.

In vivo gene transfer by AAV9 and AAV-PHP.B vectors following intrajugular delivery
To achieve optimal gene transfer in mouse CNS, *in vivo* CNS transduction efficiencies of ssAAV9 and ssAAV-PHP.B vectors were compared following intrajugular delivery into adult WT male mice. Pre-treatment with 25% mannitol before AAV injection has been reported to temporarily open the BBB and increase transduction in the brain following a systemic injection of AAV9 and other AAV serotypes (Fu *et al.*, 2003; McCarty *et al.*, 2009; Fu *et al.*, 2011).

AAV9-eGFP or AAV-PHP.B-eGFP vectors were administrated at a dose of 1×10^{12} vg per animal to WT male mice age 43-51 days via intrajugular injection, with saline as negative control (Supplementary Table 2). In total 11 mice were pre-treated with 25% mannitol at 8 µl/g body weight 6 minutes before injection (Supplementary Table 2). *In vivo* AAV transduction indicated by GFP expression was assessed 4 weeks post-injection via IHC. We found that AAV-PHP.B transduced the adult brain with high efficiency via intrajugular delivery (Fig 2 A). With mannitol pre-treatment, AAV-PHP.B transduced $33.215 \pm 25.785\%$ of the whole brain, higher than that of AAV9 ($0.560 \pm 0.284\%$) (Fig 2 F). When injected without mannitol pre-treatment, AAV-PHP.B transduced $54.293 \pm 19.968\%$ of the whole brain, significantly higher than that of AAV9 ($1.733 \pm 0.409\%$) (Fig 2 F). Thus, pre-treatment with 25% mannitol before AAV injection did not enhance AAV transduction in the brain following intrajugular injection of AAV9 or AAV-PHP.B vectors. Furthermore, both AAV9 and AAV-PHP.B vectors transduced NeuN$^+$ neurons in cortex, hippocampus, striatum and thalamus, as well as other cell types (Fig 2 B; Supplementary Fig 3). In cerebellum, NeuN$^+$ granular layers exhibited little GFP expression whilst Purkinje cells revealed high GFP expression (Fig 2 B; Supplementary Fig 3). In each brain region examined, AAV-PHP.B provided much greater gene transfer than AAV9 (Supplementary Fig 3).

Brain cell types transduced by AAV-PHP.B via intrajugular injection were examined via colocalization of GFP with cell markers: neuronal marker NeuN, astrocytic marker GFAP and dopaminergic neuronal marker TH. In addition to NeuN$^+$ neurons (Fig 2 B; Supplementary Fig 3), AAV-PHP.B also transduced GFAP$^+$ astrocytes in cortex, hippocampus and striatum, as well as TH$^+$ dopaminergic neurons in substantia nigra and Purkinje cells in cerebellum (Fig 2 B). Next, fractions of NeuN$^+$ neurons transduced by AAV-PHP.B were quantified in different brain regions, which revealed that AAV-PHP.B transduced $11.9 \pm 1.868\%$ NeuN$^+$ neurons in cortex, $7.967 \pm 0.491\%$ in striatum, $36.73 \pm 6.347\%$ in hippocampus and $15.4 \pm 5.549\%$ in thalamus (Fig 2 G). GFP expression was detected in both neurons and glial cells, as expected from using the CBh promoter (Fig 2 B; Gray *et al.*, 2011b). Tropism of AAV9 and AAV-PHP.B to various regions, such as hippocampal Cornu Ammonis 1 (CA1) subregion (Fig 2
A-B and G; Supplementary Fig 3), was similar to previous findings (Deverman et al., 2016), indicating increased density and sharing of entry receptor of AAV-PHP.B relative to AAV9.

In addition, AAV-PHP.B transduction was investigated in mouse spinal cord and DRGs. GFP expression was observed in spinal cords and DRGs of AAV-PHP.B-injected mice (Fig 2 C). Due to the auto-fluorescence of DRGs from saline-injected mice, the green fluorescence intensity ratio of AAV-PHP.B to saline was quantified in small (<25 µm), intermediate (25-40 µm) and large (>40 µm) diameter DRG neurons (Renganathan et al., 2000; Deshmukh, 2018) to verify the AAV-PHP.B transduction of DRGs. DRGs of AAV-PHP.B-injected mice showed 20-50% increase in green fluorescence signal compared to saline-injected ones (Fig 2 H), demonstrating AAV-PHP.B transduction of DRGs.

Moreover, AAV-PHP.B transduction was examined in a few mouse peripheral tissues including retina and kidney. In mouse retina, GFP expression was observed in different cell types throughout multiple layers (Fig 2 D). In mouse kidney, GFP expression was observed in both renal cortex and medulla (Fig 2 E).

To conclude, we found that AAV-PHP.B could cross the BBB with no need for mannitol pre-treatment, and transduced neurons and astrocytes throughout the mouse brain with significantly higher efficiency than AAV9. Spinal cord, DRGs, kidney and retina were also transduced by AAV-PHP.B vectors via this route. These data confirmed the previous findings that ssAAV-PHP.B vectors injected via the retro-orbital vein could transfer genes throughout the mouse CNS much more efficiently than ssAAV9 and transduce the majority of astrocytes and neurons across multiple CNS regions (Deverman et al., 2016). The intrajugular route (Dufour et al., 2014) chosen here was demonstrated to target CNS widely and safely, being considered more translational than the retro-orbital route that requires ophthalmic expertise.

Behavioural improvements in Cdkl5 KO mice following AAV-PHP.B- hCDKL5_1 gene delivery

The behavioural profile of adult Cdkl5 KO male mice (Cdkl5-/-) was initially characterised in comparison with their WT male littermates (Cdkl5+/+) (Supplementary Table 3). We found that Cdkl5 KO mice exhibited hyperactivity in open field test (Fig 3 A), impaired motor coordination in rotarod test (Fig 3 B), abnormal clasping in hind-limb clasping test (Fig 3 C), decreased repetitive behaviour in marble burying test (Fig 3 D), impaired nesting behaviour in nesting test (Fig 3 E), abnormal social interaction in social interaction test (Fig 3 F), normal
sociability whilst impaired social novelty in three-chambered social approach test (Fig 3 G),
normal anxiety in elevated O-maze test (Fig 3 H), impaired spontaneous alteration in Y-maze
test (Fig 3 I), and impaired contextual and cued fear memory in fear conditioning tests (Fig 3
J-K), when compared to WT littermates. These deficits in motor functions, social behaviours,
and learning and memory observed in Cdkl5 KO mice relative to WT (Fig 3) were consistent
with previously published data (Wang et al., 2012; Jhang et al., 2017).

To investigate the therapeutic effects of CDKL5 expression in the Cdkl5 KO mouse model, we
injected 10 Cdkl5+/y mice with AAV-PHP.B-HA-hCDKL5_1 and another 10 Cdkl5+/y mice with
AAV-PHP.B-eGFP, at 1 x 10¹² vg per animal via intrajugular delivery at a juvenile stage of
28-30 days (Supplementary Table 2). One month after injection, a battery of behavioural tests,
which were the same tests performed in behaviourally characterising the Cdkl5 KO mice (Fig
3), were conducted on the AAV-injected Cdkl5 KO mice (Supplementary Table 3) to look for
any improvement resulting from CDKL5 expression, including open field, rotarod, hind-limb
clasping, marble burying, nesting, social interaction, three-chambered social approach,
elevated O-maze, Y-maze spontaneous alternation, and contextual and cued fear conditioning.
For comparison, 7 saline-treated same-age Cdkl5+/y mice were included as positive control.
Among them, significant improvements were observed only in a subset of behavioural tests
performed (Fig 4). No significant improvements were observed in other behavioural tests
performed.

In the hind-limb clasping test, the clasping score of hCDKL5_1-treated Cdkl5+/y mice was
significantly decreased compared to the GFP-treated ones, though not as low as the clasping
score of Cdkl5+/+ mice. This indicated amelioration in hind-limb clasping in hCDKL5_1-treated
Cdkl5+/y mice (Fig 4 A). In the marble burying test, hCDKL5_1-treated Cdkl5+/y mice buried
significantly more marbles in total than GFP-treated mice, though not as many as Cdkl5+/+ mice.
Such results demonstrated that deficits in repetitive behaviours – which are thought to
reflect an autistic phenotype – were partially restored after hCDKL5_1 treatment (Fig 4 B).
Moreover, in the rotarod test, hCDKL5_1-treated Cdkl5+/y mice exhibited a rising trend in
latency to fall across 9 trials in 3 days. At day 3, hCDKL5_1-treated Cdkl5+/y mice showed a
significantly higher latency to fall than the GFP-treated ones and almost as high a latency as
Cdkl5+/+ mice (Fig 4 C left). Furthermore, the average latency to fall for all 3 days was
significantly higher in hCDKL5_1-treated Cdkl5+/y mice than in GFP-treated ones, though not
as high as Cdkl5+/+ mice (Fig 4 C right). Together, these data demonstrated partial restoration
of motor coordination in hCDKL5_1-treated Cdkl5+/y mice (Fig 4 C).
Nevertheless, in the contextual fear conditioning test, hCDKL5_1-treated Cdkl5^-/- mice showed no significant improvement in the percentage of time freezing compared to the GFP-treated ones, with only a slight trend towards Cdkl5^+/- mice (Fig 4 D). Interestingly, in the open field test, hCDKL5_1-treated Cdkl5^-/- mice, which showed a trend of increased hyperactivity compared to GFP-treated ones, were significantly more hyperactive than Cdkl5^+/- mice. Thus, hCDKL5_1 expression caused a trend of increased hyperactivity in Cdkl5^-/- mice beyond expectation (Fig 4 E).

Correction of PSD95 misexpression in cerebellum of Cdkl5 KO mice following AAV-PHP.B-hCDKL5_1 gene therapy

Brains from Cdkl5^-/- mice injected with AAV-PHP.B-eGFP or AAV-PHP.B-HA-hCDKL5_1 vectors were harvested 3 months post-injection when all the behavioural tests were completed, as well as their saline-injected Cdkl5^+/- and Cdkl5^-/- littermates. AAV-PHP.B distribution in Cdkl5^-/- mouse brain indicated by GFP expression was assessed via IHC relative to saline-injected Cdkl5^-/- mouse brain (Supplementary Fig 4 A-B). AAV-PHP.B-eGFP transduced 52.21 ± 6.869% of the whole brain (Supplementary Fig 4 B). AAV-PHP.B-mediated hCDKL5_1 expression level in Cdkl5 KO mice was closer to the WT Cdkl5 level in the hindbrain (Fig 5) than in the forebrain and midbrain (Supplementary Fig 5 A-B). hCDKL5_1-treated Cdkl5^-/- mice showed a trend of increased expression of CaMKII-α in forebrain and midbrain (Supplementary Fig 5 A and D) and decreased expression of PSD95 in hindbrain (Supplementary Fig 6 A and D) compared to GFP-treated ones. CaMKII-α expression was not detected in hindbrain by WB (Supplementary Fig 6 A). HA-hCDKL5_1 transgene brain expression as indicated by HA immunofluorescence was sparse at the cellular level and detected primarily at specific regions such as the hippocampal CA1 region, cerebellar Purkinje cells and cortical neurons (Supplementary Fig 4 C).

To elucidate the neurobiological substrate of the significant motor improvements in hCDKL5_1-treated Cdkl5^-/- mice, cerebellar regions with relatively high HA-hCDKL5_1 expression in Purkinje cells were first selected (Fig 6 A-C). The cerebellum was divided into 5 regions based on lobules for quantification purposes (White and Sillitoe, 2013): region a, lobules I – III; region b, lobules IV – V; region c, lobules VIa, VIb and VII; region d, lobules VIII – IX; and region e, lobule X (Fig 6 A). Relative HA fluorescence intensity was quantified on 50-84 Purkinje cells from 5 mice for each region (Fig 6 B-C). Quantitative analysis revealed that Purkinje cells in regions a (68.97 ± 1.173) and b (68.83 ± 1.051) had significantly higher
HA expression than those in regions c (60.69 ± 0.7342), d (61.11 ± 0.9196) and e (65.80 ± 0.5386) (Fig 6 C). Thus, regions a and b, which formed the anterior domain of the cerebellar vermis (Fig 6 A), had relatively high hCDKL5_1 expression among cerebellar regions. Taken together, the anterior domain of cerebellum was demonstrated to have the highest hCDKL5_1 expression in Purkinje cells delivered by AAV-PHP.B vectors via the intrajugular route.

Motor deficits associated with CDKL5 mutation have been preliminarily attributed to the impaired development of GABAergic cerebellar network, including altered inhibitory pathways, and fine cerebellar structural abnormalities such as increased estimated volume of PSD95+ pinceau (Sivilia et al., 2016). Thus, we examined potential alterations in fine anatomical structures in the anterior domain of cerebellar vermis in hCDKL5_1-treated Cdkl5^-/- mice relative to GFP-treated ones. PSD95+ pinceau was formed by the ramified axons of basket cells embracing the initial segment of cerebellar Purkinje cells (Iwakura et al., 2012). It has been reported that the estimated volume of PSD95+ pinceau was significantly increased in Cdkl5^-/- mice compared to Cdkl5^+/+ mice (Sivilia et al., 2016). Hence, the PSD95+ pinceau volume in the anterior domain of cerebellar vermis was compared between hCDKL5_1-treated and GFP-treated Cdkl5^-/- mice, to investigate any restoration following CDKL5 expression. Mouse cerebellum was co-labelled with cerebellar Purkinje cell marker Calbindin D-28k (CB) and pinceau marker PSD95. The cerebellar Purkinje cells exhibited strong CB staining, with PSD95+ pinceau surrounding their axon hillock (Fig 6 D). Quantitative analysis revealed that PSD95+ pinceau volume in the anterior domain of cerebellar vermis was significantly decreased in hCDKL5_1-treated Cdkl5^-/- mice (282.8 ± 12.18) compared to GFP-treated ones (355.2 ± 22.73), demonstrating correction of the abnormal increase of pinceau volume in Cdkl5 KO mice following CDKL5 expression (Fig 6 E).

Amelioration of synaptic and functional deficits in CDKL5-mutant iPSC-derived neurons via AAV-DJ-hCDKL5_1/hCDKL5_2 gene therapy

RET849 iPSCs were derived from fibroblasts of a 15-year old female patient with CDKL5 disorder and early-onset seizures, which comprised of two cell lines genotypically identical except for CDKL5 expression. The #13 line was the CDKL5-mutant iPSC, which carried a pGlu55fs*74 frameshift mutation in exon 5 in the kinase domain of CDKL5 gene; the #11 line was the isogenic control from the same patient.

We first characterized the RET849 iPSC lines to confirm its pGlu55fs*74 mutation, null CDKL5 expression, embryonic stem cell-like pluripotency, and normal karyotype. The #13
mutant line was demonstrated to have a deletion of GAAA in the CDKL5 exon 5 relative to the #11 isogenic line (Supplementary Fig 7 A), which caused the pGlu55fs*74 frameshift mutation from amino acid (aa) 55 and a premature truncation at aa 74, resulting in the complete loss of CDKL5 expression in the #13 iPSCs (Supplementary Fig 7 B). Both #11 and #13 iPSCs were validated to possess embryonic stem cell-like pluripotency via immunostaining of hESC markers SSEA4, TRA-1-60 and OCT4 (Supplementary Fig 7 C-D), and a normal 46 XX karyotype without chromosomal rearrangements via array-comparative genomic hybridization (CGH) analysis (Supplementary Fig 7 E-F). Then we differentiated both #11 and #13 iPSCs into NPCs and characterized the iPSC-derived NPCs with neural stem cell markers nestin and SOX1, and telencephalon marker FOXG1, which demonstrated these NPCs exhibiting characteristics of telencephalic neural stem cells (Supplementary Fig 8 A-B). The transduction efficiency of AAV-DJ vectors was tested on NPCs by transducing both #11 and #13 NPCs with AAV-DJ-eGFP vectors at MOIs from 3 x 10^3 to 1 x 10^5 vg per cell for 4 days. At each MOI tested, the %GFP+ cells of #11 and #13 NPCs were similar and both above 95%. At the lowest MOI 3 x 10^3 vg per cell tested, 95.16% of #11 NPCs and 95.28% of #13 NPCs were GFP+ (Supplementary Fig 8 C).

To investigate the therapeutic effects of hCDKL5_1 and hCDKL5_2 expression mediated by AAV-DJ vectors in CDKL5-mutant iPSC-derived neurons, RET849 #13 NPCs were transduced with AAV-DJ-HA-hCDKL5_1 or AAV-DJ-Myc-hCDKL5_2 vectors for 3 days, with AAV-DJ-eGFP as negative control, at an MOI of 3 x 10^3 vg per cell (Supplementary Fig 8 E). Next, the #13 NPCs transduced with AAV-DJ vectors, as well as the non-transduced #11 and #13 NPCs, were re-plated on astrocyte layers for 1 day and then terminally differentiated into neurons for 32 days (Supplementary Fig 8 D-E).

After terminal differentiation, we first investigated the deficits in synaptic contacts and functionality of #13 CDKL5-mutant neurons compared to #11 isogenic control neurons. Non-transduced #11 and #13 neurons were double stained with neuronal marker TUJ1 and glutamatergic neuronal marker VGLUT1 to characterize excitatory neurons. The #11 and #13 TUJ1+ neurons (Fig 7 A-B) exhibited robust staining of VGLUT1 along the dendrites, demonstrating that excitatory neurons were generated via iPSC differentiation. Quantitative analysis showed a slight trend of decreased VGLUT1+ puncta density on secondary dendrites in #13 neurons (17.59 ± 1.191 puncta per 10 µm) compared to #11 neurons (19.1 ± 1.281 puncta per 10 µm), although this was not statistically significant (Fig 7 C).
In addition, Ca^{2+} imaging was performed using fluo-4 AM on non-transduced #11 and #13 neurons. Both neurons and astrocytes were loaded with fluo-4 (Supplementary Fig 9 A and C). However, when given 50 mM KCl after 30 seconds of baseline recording, only neurons would show an increase in fluo-4 fluorescence, indicating the Ca^{2+} transient influxes. Changes of fluo-4 fluorescence were normalised to the basal fluorescence during the first 20 seconds throughout the 3-minute recording as ratios of the fluorescence change and basal fluorescence (ΔF/F_0).

Among the KCl-responding cells, both the #11 and #13 neurons depolarised immediately after the application of 50 mM KCl and reached the peak of around 40% ΔF/F_0. After the peak, ΔF/F_0 of #11 neurons decreased steadily throughout the remaining 2.5 minutes to below 10%. On the other hand, ΔF/F_0 of #13 neurons decreased rapidly within the first minute but then stayed almost unchanged at approximately 13% for the remaining 1.5 minutes (Fig 7 D; Supplementary Fig 9 B and D). This indicated that the CDKL5-mutant neurons had functional defects in neuronal activity, specifically in maintaining high concentration of cytosolic Ca^{2+} and recovering to basal state.

Next, the #13 CDKL5-mutant neurons transduced by AAV-DJ vectors were double-stained with one of the transgene markers (GFP, HA or Myc) and VGLUT1, to confirm hCDKL5 transgene expression in glutamatergic neurons (Fig 7 E-G). Among the AAV-DJ-transduced #13 neurons, hCDKL5_1 expression significantly increased synaptic density of VGLUT1^+ puncta along the secondary dendrites (16.58 ± 1.074 puncta per 10 µm) whilst hCDKL5_2 enhanced the VGLUT1^+ puncta density but not in a statistically significant manner (14.41 ± 1.706 puncta per 10 µm), when compared with neurons expressing GFP (12.79 ± 1.191 puncta per 10 µm) (Fig 7 H). Interestingly, the #13 neurons transduced with AAV-DJ-hCDKL5 vectors showed distinct KCl-induced Ca^{2+} signalling patterns (Fig 7 I). #13 neurons expressing hCDKL5_2 exhibited a ΔF/F_0 curve similar to that of the #11 neurons, with a steadily decreasing curve after the peak compared to the sharp decrease seen with the GFP control (Fig 7 I; Supplementary Fig 9). This indicated that hCDKL5_2 could ameliorate the excitation defects caused by the CDKL5 mutation. The #13 neurons expressing hCDKL5_1 showed merely a small increase of ΔF/F_0 for less than 10%, but a similar polarization rate to those expressing hCDKL5_2 (Fig 7 I; Supplementary Fig 9).
Discussion

In this study, we show that gene therapy utilizing AAV-CDKL5 vectors ameliorates deficits in both mouse and iPSC models of CDKL5 disorder. Due to the extensive CDKL5 expression in the CNS in both neurons and glia, AAV-PHP.B vector was selected over AAV9 so as to achieve this widespread expression pattern and thus increase chances of efficacy. AAV-PHP.B-mediated hCDKL5_1 treatment of Cdkl5 KO male juvenile mice, led to significant improvements in motor functions and autistic-like behaviours compared to GFP-treated controls, due to the hCDKL5_1 expression relatively high in the hindbrain and most prominent in hippocampal CA1 and cerebellar Purkinje neuronal cell layers. In cerebellar regions of high hCDKL5_1 expression, PSD95 cerebellar misexpression was corrected, which is a major fine cerebellar structural abnormality associated with motor symptoms in Cdkl5 KO mice (Sivilia et al., 2016). This indicates that protein re-expression even in the severe form of this disease at early stages could be therapeutic for some deficits. In addition, AAV-DJ-mediated hCDKL5_1 expression in CDKL5-mutant iPSC-derived neurons led to an increased density of synaptic puncta, whilst hCDKL5_2 ameliorated the calcium signalling defect compared to GFP control, implying distinct functions of these isoforms in neurons. Thereby we provide the first evidence that AAV-mediated gene therapy can be utilised for treating CDKL5 disorder.

For in vivo study, we used the B6.129(FVB)-Cdkl5^{tm1.1joez/J} as the Cdkl5 KO mouse model, which was originally generated by deletion of mCdkl5 exon 6 (Wang et al., 2012). Cdkl5^{+/y} mice were used as the in vivo model of CDKL5 disorder in this study, although CDKL5 patients are mostly female heterozygotes, and some male hemizygotes with generally a more severe phenotype than in females caused by haploinsufficiency. Theoretically, Cdkl5^{+/-} mice should be used to model CDKL5 female patients whilst Cdkl5^{+/y} mice for male patients in translational studies. Nevertheless, Cdkl5^{+/-} mice exhibited behavioural, cellular and molecular abnormalities at intermediate levels between Cdkl5^{+/y} and Cdkl5^{-/-} littermates. Moreover, multiple deficits in Cdkl5^{+/-} mice showed slight but not as significant differences as in Cdkl5^{+/y} mice compared to Cdkl5^{+/-} mice, which might be due to a mosaic of KO and WT cells caused by X-chromosome inactivation (Amendola et al., 2014; Fuchs et al., 2014, 2018b). Such minor deficits in Cdkl5^{+/-} mice are likely to hinder the assessment of potential improvements led by therapeutics. On the other hand, Cdkl5^{+/y} mice exhibited distinct and significant impairments relative to Cdkl5^{+/-} littermates (Wang et al., 2012; Amendola et al., 2014; Fuchs et al., 2014; Pizzo et al., 2016; Okuda et al., 2017, 2018), thus have been used in multiple translational studies of CDKL5 disorder to-date (Fuchs et al., 2015, 2018a; Della Sala et al., 2016; Trazzi
et al., 2018). Therefore, for the proof of concept purpose in the first gene therapy study of CDKL5 disorder, we considered the Cdkl5^{+/−} mice to be more suitable as the in vivo disease model than Cdkl5^{−/−} mice. We found that adult Cdkl5 KO male mice exhibited hyperactivity, abnormal clasping, impaired motor coordination, decreased repetitive behaviour, abnormal social interaction and social novelty, impaired nesting, and deficits in learning and memory when compared to WT, which confirmed the published behavioural data (Wang et al., 2012; Jhang et al., 2017).

The behavioural deficits identified in Cdkl5 KO mouse model were consistent with many of the phenotypes observed in CDKL5 patients. The impaired motor coordination and balance in mice in rotarod test may mimic the impaired ambulation and gait dyspraxia in patients (Fehr et al., 2015). Moreover, the hind-limb clasping may model the hand-wringing stereotypy in patients (Li et al., 2008; Lalonde and Strazielle, 2011), though human phenotype lacks the postural component displayed in mice. In addition, the abnormal social interaction and social novelty, reduced repetitive/perseverative behaviours evaluated by marble burying test, and impaired nesting behaviour in mice, which are phenotypes in mouse models of autism spectrum disorder (ASD), resemble the ASD-like phenotypes in patients (Jhang et al., 2017; Xiong et al., 2019). Furthermore, the deficits in learning and memory in fear conditioning tests can be linked to the severe intellectual disability in patients (Bahi-Buisson and Bienvenu, 2012).

Following single gene delivery of AAV-PHP.B-hCDKL5₁, young Cdkl5 KO mice exhibited significant improvements in motor deficits in hind-limb clasping and rotarod tests, and reduced autistic-like behavioural deficits in marble burying tests, in comparison with GFP-treated ones. The hind-limb clasping of Cdkl5 KO mice mimicking hand-wringing stereotypy in patients appears to involve various brain regions including cerebellum, basal ganglia and neocortex (Lalonde and Strazielle, 2011). In addition, the impaired motor coordination and balance in mice measured by rotarod test to model impaired ambulation and gait dyspraxia in patients also involves cerebellum, motor cortex and many other brain regions (Scholz et al., 2015). Therefore, such motor improvements could be attributed to the relatively high hCDKL5₁ expression in the hindbrain, especially the prominent expression in the cerebellar Purkinje cells. Furthermore, the repetitive/perseverative behaviours in mice evaluated by marble burying test have been reported to partially rely on hippocampal function (Deacon and Rawlins, 2005). Thus, the most prominent hCDKL5₁ expression in hippocampal CA1 region might lead to the partial restoration of autistic-like behaviours in Cdkl5 KO mice. The increased hyperactivity detected upon hCDKL5₁ treatment is difficult to explain; yet it is unlikely to be
due to a gene duplication effect (Szafranski et al., 2015), as both hCDKL5_1-treated mice and GFP controls exhibited hyperactivity.

The mechanism of motor deficits in alternate Cdkl5 KO mice has been previously reported to involve an increased volume of PSD95^+ pinceau, which constitutes the initial segment of cerebellar Purkinje cells (Iwakura et al., 2012; Sivilia et al., 2016). Although PSD95 is mainly associated with the post-synaptic density (PSD) of excitatory synapses throughout the brain (El-Husseini et al., 2000), it is also localised at the pre-synaptic terminals of GABAergic synapses in the adult cerebellum, exclusively in the pinceau (Castejón et al., 2004). We found that abnormal increase of PSD95^+ pinceau volume in Cdkl5 KO mice could be restored in parts of the cerebellum where hCDKL5_1 transduction was robust. As regular pinceau organisation is required for normal motor behaviours, including gait coordination (Bobik et al., 2004; Suárez et al., 2008), it could be that the correction of PSD95 misexpression and pinceau alteration were responsible for the significant motor improvements in hCDKL5_1-treated mice.

Despite significant improvements, behavioural deficits in Cdkl5 KO mice were partially restored via hCDKL5_1 expression, which might be attributed to the following reasons. First, the distribution pattern of hCDKL5_1 transgene expression in mouse brain was determined by the AAV-PHP.B vector tropism (Deverman et al., 2016): denser in hippocampus and cerebellum whilst sparser in cortex and striatum, which deviated from the Cdkl5 WT expression pattern in rodents: high levels in forebrain (i.e. cortex, hippocampus, striatum and olfactory bulb) whilst low levels in midbrain and hindbrain (Chen et al., 2010; Okuda et al., 2017). Loss of CDKL5 disrupted dopamine synthesis in the cortico-striatal areas, which might underlie the comorbid features of autism and attention deficit hyperactivity disorder (ADHD) in Cdkl5 KO mice (Jhang et al., 2017). Next, the absence of hCDKL5_2 co-expression might also be responsible, which contains the brain-specific exon 17 not present in hCDKL5_1 (Fichou et al., 2011; Hector et al., 2016). Due to volume limitation, simultaneous co-delivery of two vectors, even at the high titres obtained, was not feasible in this study. Additionally, such gene replacement approach might not be able to restore the activity-dependent expression, dephosphorylation and degradation of Cdkl5 at synaptic level (La Montanara et al., 2015) or the neurodevelopmental deficits caused by prenatal absence of Cdkl5 (Hector et al., 2016).

Furthermore, there is growing evidence that autistic traits are driven by a widespread synaptopathy in the CNS, necessitating a more robust CNS transduction to mediate behavioural changes (Benger et al., 2018), which might also explain the lack of impact on many such behavioural deficits in this model. Indeed, no rescue of autistic phenotypes and dendritic
dysfunction has been reported following AAV gene therapy in rodent models of other neurodevelopmental disorders, such as Rett syndrome (Garg et al., 2013; Gholizadeh et al., 2014; Gadalla et al., 2017). Some rescue of dendritic spine instability in juvenile Cdkl5-/- mice was reported following multiple subcutaneous injections of IGF1 (Della Sala et al., 2016); yet IGF1 has not demonstrated therapeutic efficacy to-date (Costales and Kolevzon 2016). Rescue of neurological phenotypes in Cdkl5-/- mice has been reported via CDKL5 protein substitution therapy delivered intracerebroventricularly or intravenously (Trazzi et al., 2018). However, in this study continuous administration was performed and only short-term outcomes were measured.

Cdkl5 KO mouse models available to-date have failed to recapitulate the spontaneous seizures in human disorder, as is often the case with epilepsy modelling in mice. Nevertheless, Cdkl5-/- mice showed significantly enhanced seizure susceptibility in response to NMDA relative to Cdkl5+/- mice. Severe generalized tonic-clonic seizures could be induced in Cdkl5-/- mice via intraperitoneal injection of NMDA (Okuda et al., 2017). Therefore, the alterations in the threshold for triggering epilepsy could be examined (Creson et al., 2019) following gene therapy in Cdkl5 KO mice, in order to speculate on possible therapeutic effects on seizures in human disorder in future trials.

For in vitro study, we used the RET849 iPSCs comprising of #13 CDKL5-mutant iPSC line and #11 isogenic control, the only iPSC line available that was completely null in CDKL5 expression due to the mutation in exon 5 affecting the kinase domain. These iPSCs were differentiated into neurons as previously described (Kim et al., 2011). We found that growth on a human astrocyte layer was essential for the derivation of a healthy glutamatergic neuronal population post-differentiation. It has been reported that CDKL5-mutant iPSC-derived neurons showed significant reduction in synaptic contacts indicated by VGLUT1+ and PSD95+ puncta density compared to the isogenic control (Ricciardi et al., 2012). In our study, we found that CDKL5-mutant neurons showed a slight trend towards decreased VGLUT1+ puncta density on secondary dendrites compared to isogenic control neurons, suggesting a potential decrease in excitatory neurotransmission caused by CDKL5 deletion. Moreover, the Ca2+ influx and efflux processes of CDKL5-mutant neurons were abnormal compared to isogenic neurons.

We tested AAV-DJ-hCDKL5_1/hCDKL5_2 vectors as gene replacement therapy in the CDKL5-mutant iPSC-derived neurons, which were treated pre-full neuronal differentiation at the neuronal precursor stage, thus representing an embryonic gene therapy intervention in this
human disorder, though of no translational possibility. Interestingly, these 2 isoforms exhibited
distinct effects in phenotypic and functional aspects. In phenotypic studies, \textit{hCDKL5\textsubscript{1}}
restored the synaptic defect of \textit{CDKL5}-mutant neurons by increasing VGLUT1+ puncta density
on secondary dendrites relative to GFP, in a trend similar to the isogenic neurons. Nevertheless,
no significant improvement of synaptic defects was observed in \textit{hCDKL5\textsubscript{2}}-treated \textit{CDKL5}-mutant
neurons compared to GFP. In functional studies, the abnormal Ca2+ influx and efflux
processes of \textit{CDKL5}-mutant neurons could be ameliorated by expression of \textit{hCDKL5\textsubscript{2}} rather
than \textit{hCDKL5\textsubscript{1}} isoform. These data provide the first functional evidence that \textit{hCDKL5\textsubscript{2}} is
crucial to CDKL5 functions, contrary to previous data (Hector \textit{et al.}, 2017). Both \textit{hCDKL5\textsubscript{1}}
and \textit{hCDKL5\textsubscript{2}} isoforms appear to mediate distinct roles in neurons and thus should probably
be co-expressed in the CNS for effective functional replacement. AAV-PHP.B vectors used in
our \textit{in vivo} studies were recently shown to transduce NHP CNS regions such as cortex,
cerebellum and spinal cord via intrathecal delivery (Liguore \textit{et al.}, 2019). This, coupled with
clinical applications of AAV vectors via intrathecal route (Bailey \textit{et al.}, 2018), open up the
potential for such an intervention in CDKL5 disorder. Further studies are now needed to test
the efficacy of such an approach and to decide on its translational applicability.
Acknowledgements

We thank Istvan Nagy for advising on calcium imaging, and Paolo La Montanara for advising on calcium imaging and analysis, and analysis of DRG neurons. We also thank Stephen Rothery at the Facility for Imaging by Light Microscopy (FILM) of Imperial College London for use of fluorescent tiling and confocal microscopes and synapse analysis. We are indebted to Mimoun Azzouz for help with AAV iodixanol gradients. We are also grateful to our previous colleagues Nelly Jolinon and Josephine Malmevik for advising on cloning, AAV production and in vivo work. We thank Matthew Benger for help in quantification and critical reading of manuscript, and Richard Reynolds for critical reading. We also thank Simone Di Giovanni and Thomas Knöpfel for fruitful discussions. We thank the Cell lines and DNA bank of Rett Syndrome, X-linked mental retardation and other genetic diseases, member of the Telethon Network of Genetic Biobanks (project no. GTB12001), funded by Telethon Italy, and of the EuroBioBank network and the ‘Associazione Italiana Rett O.N.L.U.S.’, for providing us with iPSC lines. We also thank the National Gene Vector Biorepository (NGVB) for providing AAV plasmids, Benjamin Deverman for AAV-PHP.B plasmid and Dirk Grimm for AAV-DJ plasmid.

Funding

This work was supported by funds from the Division of Brain Sciences, Imperial College London (NDM) and donations from an anonymous donor, Mr and Mrs Gao and Dr S Retsas.

Author contributions

IE, CJN, FH-Y, LB performed experiments; EEI and JAG performed behavioural studies; IM and AR provided cell lines; MK gave clinical advice and co-wrote paper; LM and AC performed mouse breeding; NDM and YG designed the study, obtained funding, performed experiments, supervised the research and co-wrote the paper.

Competing interests

The authors report no competing interests.
References

Bobik M, Ellisman MH, Rudy B, Martone ME. Potassium channel subunit Kv3.2 and the water channel aquaporin-4 are selectively localized to cerebellar pinceau. Brain Res 2004; 1026(2): 168-78.

Figure legends

Figure 1. Identification and molecular cloning of hCDKL5 brain isoforms.

A Schematic showing the structure of hCDKL5 gene and positions of CDKL5 primers (Supplementary Table 1). The dotted lines within exons represent alternative splice sites. The introns and 3’-untranslated regions (UTR) of exon 19 were not drawn to scale.

B Identification of hCDKL5 isoforms in human brain cerebral cortex, testis, neuronal cell lines and glia via RACE and RT-PCR. Electrophoretic gels were cropped to show bands under investigation only and full-length gels can be seen in Supplementary Fig 1. RACE and RT-PCR were conducted using 3’-CDS hCDKL5_1 primer to amplify hCDKL5_1 and/or hCDKL5_2 isoforms (top panels) or using 3’-CDS hCDKL5_5 primer to amplify hCDKL5_5 isoform (bottom panels). NC: negative control. NTC: non-template control.

Cerebral cortex: the hCDKL5_1 (634 bp product) and hCDKL5_2 (757 bp product) isoforms (top panels) were identified by RACE PCR using Human Cerebral Cortex Poly A+ RNA, whilst the hCDKL5_5 (915 bp product) isoform was not detected (bottom panels) (full-length gels: Supplementary Fig 1 C). Lanes 1 and 4: 634 bp product from hCDKL5_1 and 757 bp from hCDKL5_2 (top panel), no hCDKL5_5 product (bottom panel). Lane 2: NC 1: reverse primer (UPM: Universal Primer A Mix, Takara bio) only negative control. NC 2: forward primer (GSP2) only negative control.

Testis: the hCDKL5_1 (634 bp product) (top panel) and hCDKL5_5 (915 bp product) (bottom panel) isoforms were identified by RT-PCR using Human Testis Total RNA (Takara Bio) as positive control, based on the previous data on hCDKL5_1 and hCDKL5_5 isoforms in human testis (Williamson et al., 2012; Hector et al., 2016) (full-length gel: Supplementary Fig 1 D). Lane 1: 634 bp product from hCDKL5_1 (top panel) and 915 bp product from hCDKL5_5 (bottom panel). Lane 2: non-template control of Lane 1 reactions.

Neuronal cell lines: the hCDKL5_1 (634 bp product) (top panel) and hCDKL5_2 (757 bp product) isoforms were identified by RT-PCR using total RNA extracted from each neuronal cell line, whilst the hCDKL5_5 (915 bp product) isoform was not detected.

Neuroblastoma cell lines (full-length gel: Supplementary Fig 1 E): Lanes 1-2: undifferentiated SH-SY5Y cells (left panels). Lane 1: 634 bp product from hCDKL5_1 and 757 bp from hCDKL5_2 (top panel) but no hCDKL5_5 product (bottom panel); Lane 2: non-template control.
control of Lane 1 reaction. Lanes 3-4: differentiated SH-SY5Y cells (right panels), Lane 3: 634 bp product from \(hCDKL5_1 \) and 757 bp from \(hCDKL5_2 \) (top panel) but no \(hCDKL5_5 \) product (bottom panel). Lane 4: non-template control of Lane 3 reaction.

hESC-derived interneurons: Lanes 5-6: unsorted hESC-derived \(NKX2.1 \)-GFP\(^+\) cortical interneurons (left panel) (full-length gel: Supplementary Fig 1 F), 634 bp product from \(hCDKL5_1 \) and 757 bp from \(hCDKL5_2 \); hESC-derived culture without FACS-sorting was a mixture of \(NKX2.1 \)-GFP\(^+\) interneurons and GFP\(^-\) cells. Lane 5: Lane 6: non-template control of Lane 5 reaction. Lanes 7-8: FACS-sorted hESC-derived \(NKX2.1 \)-GFP\(^+\) cortical interneurons (right panel) (full-length gel: Supplementary Fig 1 G), 634 bp product from \(hCDKL5_1 \). \(NKX2.1 \)-GFP\(^+\) interneurons were selected from hESC-derived culture via FACS-sorting. Lane 7: Lane 8: non-template control of Lane 7 reaction.

Glia: the \(hCDKL5_1 \) (634 bp product) and \(hCDKL5_2 \) (757 bp product) isoforms (top panel) were identified by RT-PCR using total RNA extracted from primary human astrocytes, whilst the \(hCDKL5_5 \) (915 bp product) isoform was not detected (bottom panel) (full-length gel: Supplementary Fig 1 H). Lane 1: 634 bp product from \(hCDKL5_1 \) and 757 bp from \(hCDKL5_2 \) (top panel) but no \(hCDKL5_5 \) product (bottom panel). Lane 2: non-template control of Lane 1 reaction.

C Schematics showing the exon composition of 3 coding isoforms identified, \(hCDKL5_1 \), \(hCDKL5_2 \) and \(hCDKL5_5 \). \(hCDKL5_2 \) has the same exon composition as \(hCDKL5_1 \), but contains one extra exon, exon 17 (green), a highly conserved brain-specific exon (Fichou et al., 2011; Hector et al., 2016). \(hCDKL5_5 \) differs from the other isoforms at the 3’ end, with an alternative splice site in exon 19 (blue) and exons 20 to 22 (purple) (Hector et al., 2016). The introns and 3’-UTR of exon 19 were not drawn to scale.

D WB of CDKL5 expression in different human cell lines. Blots were cropped to show bands under investigation only and full-length blots can be seen in Supplementary Fig 2 A. Lane 1: Differentiated SH-SY5Y cells. Lane 2: Undifferentiated SH-SY5Y cells. Lane 3: HEK 293T cells. Lane 4: HEK 293 cells. Lane 5: HeLa cells: positive control according to the datasheet of mouse anti-CDKL5 monoclonal antibody used (Santa Cruz). Lane 6: Primary human astrocytes. Lane 7: HES-3 \(NKX2.1 \)-GFP\(^+\) hESCs. Lane 8: Cell lysis buffer (RIPA Lysis and Extraction Buffer, Thermo Scientific): no cell lysate, negative control. GAPDH: loading control. 8.7 \(\mu \)g total protein was loaded for each cell line.
E Schematics depicting transgene cassettes cloned into the ssAAV vector genome. Expression of HA-tagged \textit{hCDKL5_1}, Myc-tagged \textit{hCDKL5_2} and eGFP were driven by a CBh promoter. ITR: inverted terminal repeat. CBh: a hybrid form of CBA promoter. pA: bovine growth hormone (BGH) polyA.

F WB of transgene expression in HEK 293T cells transfected with AAV vector plasmids. Blots were cropped to show bands under investigation only and full-length blots can be seen in Supplementary Fig 2 B-C. 10 µg total protein was loaded for each sample. GFP: positive control. Untransfected 293T cells: negative control. GAPDH: loading control.

\textbf{Figure 2. AAV-PHP.B efficiently transduces CNS and peripheral tissues following intrajugular injection into adult WT male mice.}

A-E ssAAV9-CBh-eGFP or ssAAV-PHP.B-CBh-eGFP, at 1×10^{12} vg per animal, was intrajugularly injected into WT male mice at age 43-51 days, using saline as negative control. Images show GFP expression 4 weeks after injection.

A Representative sagittal brain sections with GFP (green) immunostaining of mice given saline (left), AAV9 (middle) or AAV-PHP.B (right).

B AAV-PHP.B transduced both neurons and astrocytes in various mouse brain regions. Representative images show that GFP$^+$ (green) cells colocalise with NeuN$^+$ (red) neurons and GFAP$^+$ (red) astrocytes in cortex, hippocampus and striatum (left and middle); NeuN$^+$ neurons in thalamus, Purkinje cells in cerebellum, and TH$^+$ (red) neurons in substantia nigra (right). Cell nuclei were counterstained with DAPI (blue). Scale bars: 50 µm.

C AAV-PHP.B transduced mouse spinal cords and DRGs. Representative images show spinal cord (left) and DRGs (right) with GFP (green) immunostaining of mice treated with AAV-PHP.B (top) or saline (bottom). Cell nuclei were counterstained with DAPI (blue). Scale bars: 100 µm.

D AAV-PHP.B transduced mouse retina. Representative images show retina with GFP (green) immunostaining of mice treated with AAV-PHP.B (top) or saline (bottom). Cell nuclei were counterstained with DAPI (blue). Scale bars: 50 µm.

E AAV-PHP.B transduced mouse kidney. Representative images show renal cortex (left) and medulla (right) with GFP (green) immunostaining of mice treated with AAV-PHP.B (top) or saline (bottom). Cell nuclei were counterstained with DAPI (blue). Scale bars: 50 µm.
F Quantitative analysis of AAV biodistribution in mouse brain. Data are presented as mean ± SEM. No mannitol group: saline, n = 2; AAV9, n = 3; AAV-PHP.B, n = 3. Mannitol group: saline, n = 4; AAV9, n = 5; AAV-PHP.B, n = 2. Two-way ANOVA with Sidak’s multiple comparisons test.

G Quantification of the percentage of GFP+ cells among NeuN+ neurons in different brain regions of AAV-PHP.B-injected mice. Data are presented as mean ± SEM. n = 3 per group.

H Quantitative analysis of relative GFP fluorescence intensity of DRG neurons in AAV-PHP.B-injected mice relative to autofluorescence in saline-injected mice. Data are presented as mean ± SEM. Small diameter DRG neurons (<25 µm): AAV-PHP.B, n = 11 cells from 3 mice; saline, n = 38 cells from 2 mice. Intermediate diameter DRG neurons (25-40 µm): AAV-PHP.B, n = 16 cells from 3 mice; saline, n = 23 cells from 2 mice. Large diameter DRG neurons (>40 µm): AAV-PHP.B, n = 13 cells from 3 mice; saline, n = 26 cells from 2 mice. Multiple t-tests; ****P<0.0001

Figure 3. Behavioural characterization of adult Cdkl5 KO male mice.

A Open field test demonstrating hyperactivity in Cdkl5 KO mice. Cdkl5−/y mice exhibited significantly increased activity relative to Cdkl5+/y mice (3-5 months). n = 10 per group.

B Rotarod test demonstrating impaired motor coordination in Cdkl5 KO mice. Cdkl5−/y mice exhibited significantly decreased latency to fall from accelerating rotating rod to Cdkl5+/y mice (3-5 months). n = 10 per group.

C Hind-limb clasping test demonstrating abnormal clasping in Cdkl5 KO mice. Cdkl5−/y mice exhibited significantly higher clasping score than Cdkl5+/y mice (3-5 months). n = 10 per group.

D Marble burying test demonstrating decreased repetitive behaviour in Cdkl5 KO mice. Cdkl5−/y mice buried significantly fewer marbles than Cdkl5+/y mice (3-5 months). n = 10 per group.

E Nesting test demonstrating impaired nesting behaviour in Cdkl5 KO mice. Cdkl5−/y mice exhibited significantly lower nesting score and more Nestlet left after the nesting test relative to Cdkl5+/y mice (5-7 months). n = 9 per group.

F Social interaction test demonstrating impaired social interaction in Cdkl5 KO mice. Cdkl5−/y mice exhibited a significant reduction in percentage of time spent interacting in 5 minutes and a trend of reduction in 10 minutes relative to Cdkl5+/y mice (4-6 months). n = 5 per group.
G Three-chambered social approach test demonstrating normal sociability but impaired social novelty in Cdkl5 KO mice. Cdkl5^{−/−} mice (n = 7) exhibited normal social approach but impaired social novelty relative to Cdkl5^{+/+} mice (n = 6) (4-6 months).

H Elevated O-maze test demonstrating normal anxiety in Cdkl5 KO mice. Cdkl5^{−/−} mice exhibited similar percentage of time spent in open area relative to Cdkl5^{+/+} mice (3-5 months). n = 10 per group.

I Y-maze test demonstrating impaired spontaneous alteration in Cdkl5 KO mice. Cdkl5^{−/−} mice exhibited a trend of decreased percentage of spontaneous alterations whilst increased percentage of alternative arm entries relative to Cdkl5^{+/+} mice (3-5 months). n = 10 per group.

J Contextual fear conditioning test demonstrating impaired contextual fear memory in Cdkl5 KO mice. Cdkl5^{−/−} mice exhibited significantly lower percentage of freezing whilst higher activity relative to Cdkl5^{+/+} mice (4-6 months) when placed back into the same testing box without shock or tone. n = 10 per group.

K Cued fear conditioning test demonstrating impaired cued fear memory in Cdkl5 KO mice. When placed into a novel testing box (Pre-CS), Cdkl5^{−/−} mice exhibited similar percentage of freezing and activity to Cdkl5^{+/+} mice. After given the same cued tone (90 dB, 10 kHz) (CS), Cdkl5^{−/−} mice showed significantly lower percentage of freezing and activity relative to Cdkl5^{+/+} mice (4-6 months). n = 10 per group. CS: conditioned stimulus.

Data are presented as mean ± SEM. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; unpaired t-test (A-F, H-J), and two-way ANOVA with Bonferroni’s multiple comparisons test (E, K) or Tukey’s multiple comparisons test (G) or Sidak’s multiple comparisons test (K).

Figure 4. Behavioural improvements in Cdkl5 KO male mice treated with AAV-PHP.B-hCDKL5₁.

AAV-PHP.B-HA-hCDKL5₁ or AAV-PHP.B-eGFP, at 1 × 10¹² vg per animal, was intrajugularly injected into Cdkl5^{−/−} mice at age 28-30 days. Behavioural tests were conducted during 1-3 months after AAV injection and saline-injected WT littermates were used as positive control.

A Hind-limb clasping test showed improved hind-limb clasping in hCDKL5₁-treated Cdkl5 KO mice relative to GFP-treated ones. Clasping score of hCDKL5₁-treated Cdkl5^{−/−} mice was significantly decreased compared to the GFP-treated ones.
B Marble burying test showed partially restored repetitive behaviour in hCDKL5_1-treated Cdkl5 KO mice relative to GFP-treated ones. hCDKL5_1-treated Cdkl5^{-/y} mice buried significantly more marbles in total than the GFP-treated ones.

C Rotarod test showed restored motor coordination in hCDKL5_1-treated Cdkl5 KO mice relative to GFP-treated ones. hCDKL5_1-treated Cdkl5^{-/y} mice revealed significantly higher latency to fall than the GFP-treated ones.

D Contextual fear conditioning test showed a modest improvement in contextual fear memory in hCDKL5_1-treated Cdkl5 KO mice relative to GFP-treated ones. hCDKL5_1-treated Cdkl5^{-/y} mice showed no significant improvement in percentage of time freezing compared to the GFP-treated ones.

E Open field test showed a tendency for increased hyperactivity in hCDKL5_1-treated Cdkl5 KO mice relative to GFP-treated ones. hCDKL5_1-treated Cdkl5^{-/y} mice were more hyperactive than the GFP-treated ones, which were themselves more hyperactive than Cdkl5^{+/y} mice.

Data are presented as mean ± SEM. n = 10 per group for all tests except for n = 9 of the hCDKL5_1-treated Cdkl5^{-/y} mice group in the open field test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; unpaired t-test (C), ordinary one-way ANOVA (A, B), and two-way ANOVA with Tukey’s multiple comparisons test (C, E).

Figure 5. Restored CDKL5 expression in the hindbrain of hCDKL5_1-treated Cdkl5 KO mice.

A WB analysis of CDKL5 expression in hindbrain. Blots were cropped to show bands under investigation only and full-length blots can be seen in Supplementary Fig 6 A. Cdkl5^{+/y} + saline: sample processing control of 2 blots. GAPDH: loading control. 34 μg total protein was loaded for each cell line.

B Quantitative analysis of CDKL5 expression normalised to GAPDH in hindbrain. The samples on the 2 blots were derived from the same experiment and blots were processed in parallel, using the same Cdkl5^{+/y} + saline sample loaded on each blot as the sample processing control. Data are presented as mean ± SEM. Saline-treated Cdkl5^{+/y} mice: n = 3; hCDKL5_1-treated Cdkl5^{-/y} mice: n = 5; GFP-treated Cdkl5^{-/y} mice: n = 5; saline-treated Cdkl5^{-/y} mice: n = 2. One-way ANOVA with Tukey’s multiple comparisons test; *P<0.05, **P<0.01.
Figure 6. Correction of PSD95 misexpression in the anterior domain of cerebellar vermis in hCDKL5_1-treated Cdkl5 KO mice.

A Regions a – e and 4 transverse domains in cerebellum. Region a: lobules I – III; region b: lobules IV – V; region c: lobules VIa, VIb and VII; region d: lobules VIII – IX; region e: lobule X.

B Representative images show HA+ (green) Purkinje cells in cerebellar regions a – e. Cell nuclei were counterstained with DAPI (blue). Scale bars: 25 µm.

C Quantitative analysis of relative HA fluorescence intensity of Purkinje cells in cerebellar regions a – e. region a: n = 75 cells from 5 mice; region b: n = 61 cells from 5 mice; region c: n = 84 cells from 5 mice; region d: n = 63 cells from 5 mice; region e: n = 50 cells from 5 mice. Data are presented as min to max. Two-way ANOVA with Tukey’s multiple comparisons test; **P<0.01, ****P<0.0001.

D Representative images of CB+ (green) Purkinje cells and PSD95+ (red) pinceau in the anterior domain of cerebellar vermis in Cdkl5−/y mice injected with AAV-PHP.B-hCDKL5_1 (bottom) relative to those with AAV-PHP.B-eGFP (top). Scale bars: 25 µm.

E Quantitative analysis of PSD95+ pinceau volume in the anterior domain of cerebellar vermis showed the abnormally increased pinceau volume in Cdkl5−/y mice was restored by hCDKL5_1 expression. hCDKL5_1-treated Cdkl5−/y mice exhibited a significant reduction in PSD95+ pinceau volume in the anterior cerebellar vermis relative to GFP-treated ones. Cdkl5−/y + GFP: n = 164 pinceau from 5 mice; Cdkl5−/y + hCDKL5_1: n = 209 pinceau from 5 mice. Data are presented as min to max. Ordinary two-way ANOVA; **P<0.01.

Box-and-whisker plots in C and E, from top to bottom: Maximum, Upper quartile, Median, Lower quartile and minimum.

Figure 7. Amelioration of deficits in CDKL5-mutant iPSC-derived neurons treated with AAV-DJ-hCDKL5_1/2.

A-D Comparison of VGLUT1+ puncta density and calcium signalling between #13 CDKL5-mutant iPSC-derived neurons and #11 isogenic control.
A-B TUJ1/VGLUT1 dual staining of #11 and #13 iPSC-derived neurons. #11 (A) and #13 (B) neurons were co-labelled with TUJ1 (green) and VGLUT1 (red). Cell nuclei were counterstained with DAPI (blue). Scale bars: 25 µm.

C Quantification of VGLUT1+ puncta density on the secondary dendrites of non-transduced #11 and #13 iPSC-derived neurons. #13 neurons exhibited a slight trend of decreased VGLUT1+ puncta density on the secondary dendrites relative to #11 neurons, although this was not statistically significant. Data are presented as mean ± SEM. #11 neurons: n = 31 secondary dendrites from 5 neurons; #13 neurons: n = 24 secondary dendrites from 5 neurons. Unpaired t-test.

D Transient cytosolic Ca\(^{2+}\) changes induced by bath application of 50 mM KCl in fluo-4-loaded #11 and #13 iPSC-derived neurons. Intracellular Ca\(^{2+}\) changes are presented as ratios of the fluorescence change and basal fluorescence (ΔF/ΔF). #13 neurons exhibited a sharp decrease after the peak relative to the steadily decreasing curve of #11 neurons, indicating the functional defects of CDKL5-mutant neurons in maintaining high concentration of cytosolic Ca\(^{2+}\) and recovering to basal state. n = 50 neurons per group. Data are presented as mean only for the comparison purpose. Data presented as mean ± SEM can be seen in Supplementary Fig 9.

E-I Improvement of VGLUT1+ puncta density by hCDKL5_1 expression and amelioration of calcium signalling defect by hCDKL5_2 expression in #13 CDKL5-mutant iPSC-derived neurons.

E-G Dual staining of #13 iPSC-derived neurons transduced by AAV-DJ vectors. #13 neurons transduced by AAV-DJ-eGFP were labelled with GFP (green) (E); those transduced by AAV-DJ-HA-hCDKL5_1 were labelled with HA (green) (F); and those transduced by AAV-DJ-Myc-hCDKL5_2 were labelled with Myc (green) (G). All #13 neurons were co-labelled with VGLUT1 (red). Scale bar: 25 µm.

H Quantification of VGLUT1 puncta density on the secondary dendrites of #13 neurons transduced by AAV-DJ vectors. hCDKL5_1 expression significantly increased synaptic density of VGLUT1+ puncta along the secondary dendrites, whilst hCDKL5_2 enhanced the VGLUT1+ puncta density but not in a statistically significant manner relative to GFP. Data are presented as mean ± SEM. GFP: n = 12 secondary dendrites from 5 neurons; hCDKL5_1: n = 27 secondary dendrites from 5 neurons; hCDKL5_2: n = 13 secondary dendrites from 5 neurons. Unpaired t-test.
Transient cytosolic Ca2+ changes induced by bath application of 50 mM KCl in fluo-4-loaded #13 neurons transduced with AAV-DJ-eGFP (n = 30), AAV-DJ-HA-\textit{hCDKL5}_1 (n = 30) or AAV-DJ-Myc-\textit{hCDKL5}_2 vectors (n = 26). Intracellular Ca2+ changes are presented as ratios of the fluorescence change and basal fluorescence (ΔF/F\textsubscript{0}). #13 neurons expressing \textit{hCDKL5}_2 exhibited a ΔF/F\textsubscript{0} curve similar to #11 neurons, with a steadily decreasing curve after the peak relative to the sharp decrease of GFP control. #13 neurons expressing \textit{hCDKL5}_1 showed a small increase of ΔF/F\textsubscript{0} for less than 10%, but a similar polarization rate to those expressing \textit{hCDKL5}_2. Data are presented as mean only for the comparison purpose. Data presented as mean ± SEM can be seen in Supplementary Fig 9.
Figure 1. Identification and molecular cloning of \textit{hCDKL5} brain isoforms

180x230mm (300 x 300 DPI)
Figure 2. AAV-PHP.B efficiently transduces CNS and peripheral tissues following intrajugular injection into adult WT male mice.
Figure 3. Behavioural characterization of adult Cdkl5 KO male mice
Figure 4. Behavioural improvements in Cdkl5 KO male mice treated with AAV-PHP.B-CDKL5_1

180x230mm (300 x 300 DPI)
Figure 5. Restored CDKL5 expression in the hindbrain of hCDKL5-1-treated Cdkl5 KO mice
Figure 6. Correction of PSD95 misexpression in the anterior domain of cerebellar vermis in hCDKL5_1-treated Cdkl5 KO mice.

180x230mm (300 x 300 DPI)
Figure 7. Amelioration of deficits in CDKL5-mutant iPSC-derived neurons treated with AAV-DJ-hCDKL5_1/2
Supplementary Materials

Supplementary Methods

Cell lines, culture and differentiation

All cell lines were incubated at 37°C in humid, 5% CO₂ HERAcell® 150 and 150i Incubators (Thermo) and handled under sterile conditions in the Biological Safety Cabinets Class II (NuAire or LaboGene). HEK 293 cells were culture in Minimum Essential Medium Eagle (EMEM) (Sigma) supplemented with 10% Fetal Bovine Serum (FBS) (Gibco), 2 mM L-Glutamine (200 mM) (Sigma), 1x Non-Essential Amino Acids (NEAA, 100×) (Gibco) and 1x Penicillin/Streptomycin (100x) (Sigma). HEK 293T cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) (Sigma) supplemented with 10% FBS, 2 mM L-Glutamine and 1x Penicillin/Streptomycin. HeLa cells were cultured in EMEM supplemented with 10% FBS, 2 mM L-Glutamine, 1x NEAA and 1x Penicillin/Streptomycin. Primary human astrocytes were cultured in ABM™ Astrocyte Basal Medium (Lonza) supplemented with AGM™ SingleQuots™ (Lonza) according to manufacturer’s instructions. SH-SY5Y cells were maintained in Ham's F-12 (Sigma): EMEM (1:1) supplemented with 15% FBS, 2 mM L-Glutamine, 1x NEAA and 1x Penicillin/Streptomycin. SNL cells were cultured in DMEM supplemented with 10% FBS, 2 mM L-Glutamine, 1x Penicillin/Streptomycin, 1x 2-Mercaptoethanol (2-ME) (55 mM, 1000x) (Gibco) and 200 µg/ml Geneticin™ Selective Antibiotic (Gibco). To make feeders, confluent SNL cells were incubated with DMEM supplemented with 10% FBS, 2 mM L-Glutamine, 1x Penicillin/Streptomycin, 1x 2-ME and 10 µg/ml Mitomycin C (Sigma) for 2-3 hours at 37°C and then split 1:2 into 0.1% gelatin-coated flasks. HES-3 NKX2.1GFP/hESCs were maintained on SNL-derived feeders in DMEM/F-12 (Gibco) supplemented with 20% KnockOut™ Serum Replacement (Gibco), 1x GlutaMAX™ Supplement (100x) (Gibco), 1x NEAA, 1x Penicillin/Streptomycin, 1x 2-ME and freshly added 10 ng/ml FGF2 (R&D). RET849 #11 and #13 iPSCs were maintained in mTeSR™ Basal Medium (Stemcell) supplemented with 1x mTeSR™ Supplement (5x) (Stemcell) and 1x Penicillin/Streptomycin.

SH-SY5Y cells were differentiated in Ham's F-12: EMEM (1:1) supplemented with 15% FBS, 2 mM L-Glutamine, 1x NEAA, 1x Penicillin/Streptomycin and 10 µM all trans-retinoic acid for 7 days.
HES-3 NKX2.1GFP/+ hESCs were differentiated into NKX2.1-GFP+ cortical interneurons using the B27 + 5F method as previously described (Nicholas et al., 2013). Briefly, cultured hESCs were dissociated using TrypLETM Select (Gibco) and feeders were removed by incubating the cell suspension on 0.1% gelatin-coated 100 mm dishes (Corning) at 37°C for 2 hours on day 0. Feeder-free hESCs were plated at the density of 1 x 104 cells per well into 96-well round-bottom ultralow-attachment microplates (Corning) in NB-A/B27 medium [NeurobasalTM-A Medium (Gibco) supplemented with 2% B-27 (Gibco), 1x NEAA, 1x Penicillin/Streptomycin, 1x GlutaMAX and 1x 2-ME] supplemented with 10 µM Y-27632 (Calbiochem), 10 µM SB 431542 (Tocris Bioscience), 2 µM Purmorphamine (PM) (Calbiochem), 1.5 µg/ml BMPRIA-Fc (R&D) and 250 ng/ml DKK1 (Gibco). After incubating at 37°C for 1 week, one large suspension embryoid body (sEB) was formed in each well. On day 7, sEBs from each 96-well microplate were transferred en bloc to a Matrigel-coated 100 mm dish and maintained in NB-A/B27 medium supplemented with 10 µM SB 431542, 2 µM PM, 1.5 µg/ml BMPRIA-Fc, and 250 ng/ml DKK1 for 1 week to form adherent embryoid bodies (aEBs). From day 14, aEBs were cultured in NB-A/B27 medium supplemented with 2 µM PM. On day 25 of differentiation, aEBs were dissociated using Accutase (Gibco) and then re-plated as dissociated monolayers of 3 x 105 cells per cm2 onto poly-L-ornithine/laminin-coated 100 mm dishes and 24-well plates in NB-A/B27 medium supplemented with 2 µM PM. From day 28, cells were differentiated in NB-A/B27 medium supplemented with 2 µM PM and 10 µM DAPT. On day 35, NKX2.1-GFP+ cells were sorted from the neural differentiation culture via FACS using undifferentiated hESCs as negative control. Cells were dissociated using Accutase and re-suspended in NB-A/B27 medium supplemented with 10 µM Y-27632. Cells were kept on ice till right before the FACS, when the cells were pelleted and re-suspended in HBSS (Sigma) supplemented with 1% FBS, 20 mM glucose, 1x Penicillin/Streptomycin and 10 µM Y-27632. Then cells were filtered using a 50 µm Cup-Type Filcon (BD) into a 5 ml Round Bottom High Clarity Polypropylene Test Tube (Corning). hESC-derived cells were FACS-sorted using FACSfamily II Flow Cytometer (BD), and FACS-sorted NKX2.1-GFP+ cells were collected into 500 µl NB-A/B27 medium supplemented with 10 µM Y-27632 and kept on ice till further analysis.

RET849#11 and #13 iPSCs (#13 CDKL5-mutant and #11 isogenic control) were differentiated into NPCs as previously described (Kim et al., 2011). Briefly, cultured iPSCs were pre-treated with 5 µM Y-27632 for 30 minutes and dissociated using Accutase on day 0. iPSCs were seeded at the density of 3 x 106 cells per well into AggreWellTM800 plate (Stemcell) in NB
medium [DMEM/F-12 with GlutaMAX™ Supplement (Gibco) supplemented with 1% N-2 (Gibco), 4% B-27, 1x Penicillin/Streptomycin and 1x 2-ME] supplemented with 5 μM Y-27632 and 200 ng/ml Noggin (R&D). On day 2, sEBs from each well of AggreWell™800 plate were transferred to a 90 mm Petri dish (Fisher) and cultured in NB medium supplemented with 5 μM Y-27632 and 200 ng/ml Noggin for 2 days. On day 4, sEBs were re-plated onto Matrigel-coated 60 mm dishes in NB medium supplemented with 200 ng/ml Noggin to form aEBs. From day 5, aEBs were maintained in NB medium supplemented with 20 ng/ml FGF2, 200 ng/ml Noggin and 200 ng/ml DKK1 to form rosettes for a few days. As soon as rosettes were clearly evident, they were collected and re-plated into Petri dishes and allowed to grow in suspension in NB medium supplemented with 20 ng/ml FGF2 and 10 ng/ml EGF (R&D) for 4 days to generate NPCs. iPSC-derived NPCs were expanded in NB medium supplemented with 20 ng/ml FGF2 and 10 ng/ml EGF in poly-L-ornithine/laminin-coated 6-well plates (Corning).

For the terminal differentiation of NPCs into neurons on astrocyte layer, astrocytes were seeded at 1 x 10^4 cells per well onto poly-D-lysine/fibronectin-coated 8-well glass chamber slides (Thermo). 1 day after seeding astrocytes, the #13 NPCs transduced with AAV-DJ vectors at the MOI of 3 x 10^3 vg per cell for 3 days, or the non-transduced #11 and #13 NPCs, were dissociated and re-plated on the astrocyte layer at 1-3 x 10^4 cells per well in NB medium supplemented with 20 ng/ml FGF2, 10 ng/ml EGF and 5 μM Y-27632. 1 day after seeding NPCs, terminal differentiation was initiated by replacing medium with TD medium (Neurobasal™ Medium (Gibco) supplemented with 1% N-2, 2% B-27, 15 mM HEPES solution (1 M) (Sigma), 1x NEAA, 1x Penicillin/Streptomycin, 1x GlutaMAX™ and 1x 2-ME) supplemented with 10 ng/ml BDNF (Alomone), 10 ng/ml GDNF (Alomone), 200 μM ascorbic acid (Sigma) and 1 mM dibutyryl cAMP (Sigma). NPCs were differentiated for 32 days into neurons.

Cloning and production of AAV vectors

The 5’ tagged and codon-optimized CDKL5 transgene sequences synthesized and cloned into ssAAV vector genome to generate pTR-CBh-HA-hCDKL5_1-BGH polyA and pTR-CBh-Myc-hCDKL5_2-BGH polyA. Briefly, the pTR-CBh-eGFP-BGH polyA was first constructed by replacing the CMV-LacZ sequence of pTR-CMV-LacZ-BGH polyA (NGVB) with CBh-eGFP insert from pTRs-KS-CBh-eGFP (NGVB). Then eGFP sequence was amplified by PCR using GFP primers (Supplementary Table 1) and re-cloned into pTR-CBh-eGFP-BGH polyA, in order to import a 5’ Nahel and a 3’ HindIII restriction site flanking the eGFP transgene. To
construct pTR-CBh-HA-\textit{hCDKL5}_1-BGH polyA plasmid, eGFP transgene of pTR-CBh-eGFP-BGH polyA was replaced with synthesized \textit{HA-hCDKL5}_1 sequence via restriction digest using NheI/BamHI followed by DNA ligation. To construct pTR-CBh-Myc-\textit{hCDKL5}_2-BGH polyA plasmid, eGFP transgene of pTR-CBh-eGFP-BGH polyA was replaced with synthesized Myc-\textit{hCDKL5}_2 sequence via restriction digest using NheI/HindIII followed by DNA ligation. pTR-CBh-eGFP-BGH polyA-\textit{LacZ} stuffer vector plasmid was constructed as positive control. A \textit{LacZ} stuffer sequence was inserted after BGH polyA to lengthen the eGFP plasmid size to 6864 bp, which was similar to the 6867 bp \textit{HA-hCDKL5}_1 and 7012 bp Myc-\textit{hCDKL5}_2 plasmids.

AAV9 and AAV-DJ vectors were prepared via 3-plasmid co-transfection of HEK 293T cells using PEI as previously described (Gray \textit{et al.}, 2011a). Briefly, HEK 293T cells in 150 mm dishes (Corning) (1.21 x 10^7 cells per dish) were transfected with 13 µg rAAV vector plasmid, 13 µg capsid plasmid and 26 µg pXX6-80 helper plasmid mixed with 156 µg PEI in 3 ml DMEM supplemented with 2 mM L-Glutamine and 1x Penicillin/Streptomycin per dish. 48-72 hours post-transfection, viral particles were harvested from both cells and media by centrifugation at 2500 x g for 10 minutes at 4 °C. Media supernatant was stored at 4°C and cell pellets were resuspended in 50 mM Tris-HCl, 150 mM NaCl and 2 mM MgCl\textsubscript{2}, pH 8.0, lysed through 3 sequential freeze-thaw cycles, and incubated with 50 U/ml Benzonase® Nuclease (Sigma) at 37°C for 30 minutes. Cell lysate was centrifuged at 2500 x g for 30 minutes at 4°C and the supernatant was combined with the previous media supernatant stored at 4°C. The clarified supernatant was precipitated with 8% poly(ethylene glycol) (PEG) (Sigma) and 0.5 M NaCl (Ayuso \textit{et al.}, 2010), centrifuged and then resuspended in PBS. rAAVs were purified using iodixanol gradients (15%, 25%, 40% and 54%) (Zolotukhin \textit{et al.}, 1999) prepared from OptiPrep™ Density Gradient Medium (60% iodixanol) (Sigma) by centrifugation at 69000 rpm for 90 minutes at 18°C and then concentrated using Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-100 membrane (Millipore) in PBS with 0.001% Pluronic F-68 (Gibco).

For the preparation of AAV-PHP.B vectors, the above rAAV production protocol was modified (Deverman \textit{et al.}, 2016) as follows. HEK 293T cells (9.12 x 10^6 cells per dish) were transfected with 5.7 µg rAAV vector plasmid, 22.8 µg AAV-PHP.B capsid plasmid and 11.4 µg pXX6-80 helper plasmid mixed with 142.12 µg PEI in 2 ml DPBS per dish. rAAVs were harvested from the media only at 72 hours post-transfection and from both cells and media at 120 hours. Cell pellets were resuspended in 50 mM Tris-HCl, 500 mM NaCl and 2 mM MgCl\textsubscript{2}, pH 8.5. Cell lysate was the incubated with 100 U/ml Salt Active Nuclease (Sigma) at 37°C for 1 hour.
Supernatant was precipitated with 8% PEG and 0.5 M NaCl before added to the cell lysate. And 60% iodixanol was used as the highest gradient instead of 54%.

Behavioural analysis

Open Field

Locomotor activity was assessed using EthoVision XT tracking software (Noldus). Mice were individually placed in a wooden arena (45 x 45 x 45 cm) with the base covered in sawdust. Each mouse was released into a corner of the box and was allowed to explore for 1 hour. Mice were videoed from above and the tracking system recorded the distance the mice travelled.

Hind-limb Clasping

Mice were suspended by tail for 10 seconds and clasping of hind limbs were scored from 0 to 3. Mice were assigned a score of 0 if the hind limbs were consistently splayed outward away from the abdomen. If one hind limb was retracted toward the abdomen for more than 50% of the time suspended, mice received a score of 1. If both hind limbs were partially retracted toward the abdomen for more than 50% of the time suspended, mice received a score of 2. A score of 3 was given if the hind limbs were entirely retracted and touching the abdomen for more than 50% of the time suspended [Guyenet et al., 2010].

Rotarod

A rotarod apparatus (Ugo Basile) was used to measure fore- and hind-limb motor coordination, balance and strength. Mice received three trials per day with an inter-trial interval of 1 hour for 3 consecutive days. The rod accelerated from 5 to 60 rpm over a period of 10 minutes and the latency to fall was recorded.

Elevated O-Maze

The elevated O-maze was used to assess anxiety-like state using EthoVision XT tracking software for automated tracking of location preference. The maze was elevated 50 cm above the floor, 53 cm in diameter with a corridor width of 8 cm and divided into 4 equal-sized zones. Two opposite quadrants were “open” and the remaining two “closed” quadrants were surrounded by 15 cm high dark, opaque walls. Mice were individually placed on the maze at a randomly chosen boundary between an open and a closed zone, facing the inside of the closed.
zone and allowed to explore for 10 minutes. Mice were videoed from above and the tracking system recorded the time spent in the open zones of the maze and the distance travelled.

Marble Burying

The marble burying test was used to assess repetitive and anxiety-like behaviour. Mice were individually placed in a wooden arena (45 x 45 x 45 cm) filled with 5 cm of sawdust and 20 marbles placed on top of the sawdust in a 5 x 4 formation. Mice were allowed to freely explore the cage for 20 minutes, and at the end of the test the number of successfully buried marbles was counted. A marble was defined as “buried” when only 1/3 of the marble was visible.

Social Interaction

Mice, who were not cage mates, were arranged into pairs of the same genotype. They were placed at opposite corners of a wooden arena (45 x 45 x 45 cm) which had the base covered with sawdust and allowed to freely interact with each other for 10 minutes. The time spent interacting was recorded.

Three-chambered social approach

The social approach apparatus is an open-topped box made of acrylic, which is divided into three chambers with two clear acrylic walls. The dividing walls have retractable doors allowing access into each chamber. Test mice were confined to the centre chamber at the beginning of each phase. Before the start of the test and in a counter-balanced order, one end chamber was designated the “social chamber” into which a stimulus mouse was placed, and the other end chamber was the “non-social chamber” that remained empty. In the habituation phase of the test, mice were placed in the centre chamber and allowed to explore all three chambers for 10 minutes. During this acclimation period, baseline measurements of how much time the mouse spent in each of the three chambers and how many transitions the mouse made between chambers were recorded. In the sociability phase of the test, a stimulus mouse (stranger 1) of a similar size was placed in a grid enclosure in the social chamber while an empty grid enclosure was placed into the non-social chamber. The test mouse was then allowed to explore for 10 minutes and the time spent in each of the 3 chambers and the number of transitions was then recorded. Following this phase, another stimulus mouse (stranger 2) was placed in the grid enclosure in the non-social chamber and again the test mouse was allowed to explore for 10 minutes. The time spent in each chamber and the number of transitions was recorded.
Nesting

Mice were individually placed in a cage with no environmental enrichment items such as tissues and tunnels. Approximately 1 hour before the dark cycle a Nestlet (Datesand) was weighed and then placed into each cage. The following morning the nests made by the mice were assessed and any untorn Nestlet pieces were weighed. The nests were given a score from 1-5 (Deacon, 2006). A score of 1 was given if the Nestlet was not noticeably touched (more than 90% intact). If the Nestlet was partially torn (50–90% remaining intact) it was given a score of 2. A score of 3 was given if the Nestlet mostly shredded but there was no obvious nest site. If the nest was identifiable but flat, then a score of 4 was given; and if a ‘perfect’ nest was seen then it was given a score of 5.

Y-maze Spontaneous Alternation

Mice were placed in a Plexiglas Y-maze apparatus that has 3 identical arms placed at 120° with respect to each other. Each mouse was placed at the end of one arm and allowed to explore the apparatus freely for 5 minutes. Spontaneous alternation performance (SAP) was assessed visually by scoring the pattern of entries into each arm during the 5-minute test. Spontaneous alternations (SAP) were defined as successive entries into each of the three arms as a triplet set (i.e., ABC, CBA, ...). Percentage spontaneous alternation was defined as the ratio of actual (= total alternations) to possible (=total arm entries -2) number of alternations × 100. Alternate arm returns (AAR) (i.e., ABA, CBC, …) were also scored. Total entries were scored as an index general activity in the Y-maze.

Contextual and Cued Fear Conditioning

Background fear conditioning has two components that can be tested; hippocampus- and amygda-dependent contextual fear conditioning and amygda-dependent cued fear conditioning (Anagnostaras et al., 2001). Mice were individually placed in a conditioning chamber in a soundproof box (NIR Video Fear Conditioning System, Med Associates). After 150 seconds, a tone (90 dB, 10 kHz) was presented for 30 seconds, the last 2 seconds coinciding with a footshock (0.7 mA). After a further 60 seconds, the mice received another tone and shock, and after 60 seconds were returned to their home cage. To test for contextual memory, the mice were placed back into the conditioning chamber 24 hours after training and freezing behaviour was scored. To assess cue-dependent fear conditioning the mice were placed into a novel chamber 24 hours after the context test. Freezing behaviour was assessed during a 3-
minute baseline period (Pre-CS), followed by a 3-min presentation of the tone (CS). Freezing behaviour was scored as no movement other than respiration and was scored by the NIR software.
Supplementary Tables

Supplementary Table 1. List of RACE and RT-PCR primers

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSP1</td>
<td>GAGACGGTTCTGCTGAGATCTGCTGTTTGAC</td>
</tr>
<tr>
<td>GSP2</td>
<td>GAGATCTACCATCAGAGAGCACAGTTCTGGAA</td>
</tr>
<tr>
<td>3’-CDS hCDKL5_1</td>
<td>AAGCAGTGGATCAACCGAGGTACGGCAGCTGTTTCAGAGTAGGAA</td>
</tr>
<tr>
<td>3’-CDS hCDKL5_5</td>
<td>AAGCAGTGGATCAACCGAGGTACGGCAGCTGTTTCAGAGTAGGAA</td>
</tr>
<tr>
<td>GFP Fwd</td>
<td>GCGCACCGGTTAGCTGACCTGAGCAAGGG</td>
</tr>
<tr>
<td>GFP Rev</td>
<td>GCGCGGATCCAGCTTGTACAGCTCGTCCATGCGG</td>
</tr>
</tbody>
</table>

Supplementary Table 2. List of mice injected with AAV vectors

<table>
<thead>
<tr>
<th>Mouse strain</th>
<th>Genotype</th>
<th>Vectors injected</th>
<th>Dose (vg per animal)</th>
<th>Number of animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>C57BL/6</td>
<td>WT</td>
<td>Saline</td>
<td>-</td>
<td>Pre-injected 25% mannitol: n = 4 No mannitol: n = 2</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>AAV9-eGFP</td>
<td>1 x 10^12</td>
<td>Pre-injected 25% mannitol: n = 5 No mannitol: n = 3</td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td>AAV-PHP.B-eGFP</td>
<td>1 x 10^12</td>
<td>Pre-injected 25% mannitol: n = 2 No mannitol: n = 3</td>
</tr>
<tr>
<td>Cdkl5 KO</td>
<td>Cdkl5^-y</td>
<td>AAV-PHP.B-eGFP</td>
<td>1 x 10^12</td>
<td>n = 10</td>
</tr>
<tr>
<td></td>
<td>Cdkl5^-y</td>
<td>AAV-PHP.B-HA- hCDKL5_1</td>
<td>1 x 10^12</td>
<td>n = 10</td>
</tr>
<tr>
<td></td>
<td>Saline</td>
<td>-</td>
<td></td>
<td>n = 7</td>
</tr>
</tbody>
</table>

Supplementary Table 3. List of mice for behavioural testing

<table>
<thead>
<tr>
<th>Group</th>
<th>Genotype</th>
<th>Vectors injected</th>
<th>Number of animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cdkl5 KO</td>
<td>Cdkl5^-y</td>
<td>Saline</td>
<td>n = 10</td>
</tr>
<tr>
<td></td>
<td>Cdkl5^-y</td>
<td>Saline</td>
<td>n = 10</td>
</tr>
<tr>
<td>AAV-injected Cdkl5 KO</td>
<td>Cdkl5^-y</td>
<td>AAV-PHP.B-eGFP (1 x 10^12 vg per animal)</td>
<td>n = 10</td>
</tr>
<tr>
<td></td>
<td>Cdkl5^-y</td>
<td>AAV-PHP.B-HA- hCDKL5_1 (1 x 10^12 vg per animal)</td>
<td>n = 10</td>
</tr>
<tr>
<td></td>
<td>Cdkl5^-y</td>
<td>Saline</td>
<td>n = 7</td>
</tr>
</tbody>
</table>
Supplementary Table 4. List of primary antibodies

<table>
<thead>
<tr>
<th>Primary antibody</th>
<th>Host species</th>
<th>Dilution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-6x His tag</td>
<td>Rabbit polyclonal</td>
<td>WB 1:500</td>
<td>Abcam, ab125262</td>
</tr>
<tr>
<td>Anti-CaMKII-α</td>
<td>Rabbit</td>
<td>WB 1:1000</td>
<td>CST, 3357</td>
</tr>
<tr>
<td>Anti-CB</td>
<td>Guinea pig polyclonal</td>
<td>IHC 1:500</td>
<td>Synaptic Systems, 214004</td>
</tr>
<tr>
<td>Anti-CDKL5</td>
<td>Mouse monoclonal</td>
<td>WB 1:500-1:1000</td>
<td>Santa Cruz, sc-376314</td>
</tr>
<tr>
<td>Anti-FOXG1</td>
<td>Rabbit polyclonal</td>
<td>ICC 1:1000</td>
<td>Abcam, ab18259</td>
</tr>
<tr>
<td>Anti-GAPDH</td>
<td>Mouse monoclonal</td>
<td>WB 1:1000</td>
<td>Santa Cruz, sc-47724</td>
</tr>
<tr>
<td>Anti-GFP</td>
<td>Goat polyclonal</td>
<td>ICC 1:1000</td>
<td>Abcam, ab5450</td>
</tr>
<tr>
<td>Anti-GFP</td>
<td>Chicken polyclonal</td>
<td>ICC 1:2000</td>
<td>Abcam, ab13970</td>
</tr>
<tr>
<td>Anti-GFP</td>
<td>Rabbit monoclonal</td>
<td>IHC 1:1000</td>
<td>Abcam, H3663</td>
</tr>
<tr>
<td>Anti-HA tag</td>
<td>Mouse monoclonal</td>
<td>ICC 1:1000</td>
<td>Sigma, H3663</td>
</tr>
<tr>
<td>Anti-HA tag</td>
<td>Rabbit polyclonal</td>
<td>WB 1:1000</td>
<td>Abcam, ab9110</td>
</tr>
<tr>
<td>Anti-HA tag</td>
<td>Rabbit monoclonal</td>
<td>IHC 1:500</td>
<td>CST, 3724</td>
</tr>
<tr>
<td>Anti-HA-HRP</td>
<td>Mouse monoclonal</td>
<td>WB 1:1000</td>
<td>MACS, 130-091-972</td>
</tr>
<tr>
<td>Anti-His tag</td>
<td>Mouse monoclonal</td>
<td>WB 1:1000</td>
<td>Millipore, 70796</td>
</tr>
<tr>
<td>Anti-Myc tag</td>
<td>Mouse monoclonal</td>
<td>ICC 1:1000</td>
<td>Millipore, 05-419</td>
</tr>
<tr>
<td>Anti-Myc tag</td>
<td>Rabbit polyclonal</td>
<td>ICC 1:500</td>
<td>Abcam, ab9106</td>
</tr>
<tr>
<td>Anti-Nestin</td>
<td>Mouse monoclonal</td>
<td>ICC 1:200</td>
<td>Millipore, MAB5326</td>
</tr>
<tr>
<td>Anti-NeuN</td>
<td>Rabbit monoclonal</td>
<td>IHC 1:1000</td>
<td>Abcam, ab177487</td>
</tr>
<tr>
<td>Anti-OCT4</td>
<td>Rabbit polyclonal</td>
<td>ICC 1:500</td>
<td>Abcam, ab19857</td>
</tr>
<tr>
<td>Anti-PSD95</td>
<td>Rabbit monoclonal</td>
<td>ICC 1:500</td>
<td>CST, 3450</td>
</tr>
<tr>
<td>Anti-PSD95</td>
<td>Rabbit monoclonal</td>
<td>IHC 1:500</td>
<td>CST, 3450</td>
</tr>
<tr>
<td>Anti-PSD95</td>
<td>Rabbit monoclonal</td>
<td>WB 1:1000</td>
<td>CST, 3450</td>
</tr>
<tr>
<td>Anti-SOX1</td>
<td>Goat polyclonal</td>
<td>ICC 1:200</td>
<td>R&D, AF3369</td>
</tr>
<tr>
<td>Anti-SSEA4</td>
<td>Mouse monoclonal</td>
<td>ICC 1:500</td>
<td>Abcam, ab16287</td>
</tr>
<tr>
<td>Anti-TH</td>
<td>Rabbit polyclonal</td>
<td>IHC 1:500</td>
<td>Millipore, AB152</td>
</tr>
<tr>
<td>Anti-TRA-1-60</td>
<td>Mouse monoclonal</td>
<td>ICC 1:500</td>
<td>Abcam, ab16288</td>
</tr>
<tr>
<td>Anti-TUJ1</td>
<td>Mouse</td>
<td>ICC 1:1000</td>
<td>BioLegend, 801201</td>
</tr>
<tr>
<td>Anti-VGLUT1</td>
<td>Rabbit polyclonal</td>
<td>ICC 1:2000</td>
<td>Synaptic Systems, 135302</td>
</tr>
</tbody>
</table>
Supplementary Table 5. List of secondary antibodies

<table>
<thead>
<tr>
<th>Secondary antibody</th>
<th>Dilution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488</td>
<td>ICC 1:400</td>
<td>Invitrogen, A11029</td>
</tr>
<tr>
<td>Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 546</td>
<td>ICC 1:400</td>
<td>Invitrogen, A11030</td>
</tr>
<tr>
<td>Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 594</td>
<td>ICC 1:400</td>
<td>Invitrogen, A11032</td>
</tr>
<tr>
<td>Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488</td>
<td>ICC 1:400</td>
<td>Invitrogen, A11034</td>
</tr>
<tr>
<td>Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 546</td>
<td>ICC 1:400</td>
<td>Invitrogen, A11035</td>
</tr>
<tr>
<td>Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 594</td>
<td>IHC 1:500</td>
<td>Invitrogen, A11037</td>
</tr>
<tr>
<td>Goat anti-Chicken IgY (H+L) Secondary Antibody, Alexa Fluor 488</td>
<td>ICC 1:400</td>
<td>Invitrogen, A11039</td>
</tr>
<tr>
<td></td>
<td>IHC 1:500</td>
<td></td>
</tr>
<tr>
<td>Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488</td>
<td>ICC 1:400</td>
<td>Invitrogen, A11055</td>
</tr>
<tr>
<td>Goat anti-Guinea Pig IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 633</td>
<td>IHC 1:500</td>
<td>Invitrogen, A21105</td>
</tr>
<tr>
<td>Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488</td>
<td>ICC 1:400</td>
<td>Invitrogen, A21202</td>
</tr>
<tr>
<td>Peroxidase AffiniPure Goat anti-Mouse IgG (H+L)</td>
<td>WB 1:10000</td>
<td>Jackson ImmunoResearch, 115-035-003</td>
</tr>
<tr>
<td>Donkey anti-Rabbit IgG H&L (HRP)</td>
<td>WB 1:2000</td>
<td>Abcam, ab16284</td>
</tr>
</tbody>
</table>
Supplementary Figure legends

Supplementary Figure 1. Identification of hCDKL5 isoforms in human brain cerebral cortex, testis, neuronal cell lines and glia via RACE and RT-PCR.

Full-length gels of Fig 1 B.

A Positive control RACE PCR of mouse transferrin receptor (TFR) using Mouse Heart Total RNA (Takara Bio). This was the internal positive control provided by the manufacturer, in order to confirm the reliability of the RACE results obtained in-house. Lane L1: 1 kb DNA ladder (NEB). Lane 1: 5’-RACE TFR product, 2.1 kb as expected according to manufacturer’s instructions. Lane 2: 3’-RACE TFR product, 3.1 kb as expected. Lane 3: 5’-internal positive control, 380 bp as expected. Lane 4: 3’-internal positive control, 380 bp as expected. Lane 5: non-template negative control. Lane L2: 100 bp DNA ladder (NEB).

B-D Identification of hCDKL5 isoforms in human brain cerebral cortex via RACE PCR using Human Cerebral Cortex Poly A+ RNA.

B 5’-RACE PCR of CDKL5. Lane L: 1 kb DNA ladder. Lane 1: 5’-RACE CDKL5 product, 1.6 kb, sequence corresponds to the hCDKL5_1 and/or hCDKL5_2 isoforms. Lane 2: 5’ internal positive control, 202 bp. Lane 3: Forward primer (UPM) only negative control. Lane 4: Reverse primer (GSP1) only negative control.

C-D 3’-RACE PCR of CDKL5. hCDKL5_1 (634 bp product) and to a lesser extent hCDKL5_2 (757 bp product) isoforms were detected in human brain cerebral cortex, whereas hCDKL5_5 (915 bp product) isoform was not detected.

C 3’-RACE PCR of CDKL5. Lanes L: 2-log DNA ladder (NEB). Lanes 1-3 and 7: 3’-RACE using 3’-CDS hCDKL5_1 primer to amplify hCDKL5_1 and/or hCDKL5_2 isoforms. Lanes 1 and 7: 3’-RACE CDKL5, 634 bp product from hCDKL5_1 and 757 bp from hCDKL5_2. Lane 2: Reverse primer (UPM) only negative control. Lane 3: Forward primer (GSP2) only negative control. Lanes 4-6 and 8: 3’-RACE using 3’-CDS hCDKL5_5 primer to amplify hCDKL5_5 isoform. Lanes 4 and 8: 3’-RACE CDKL5. Lane 5: Reverse primer (UPM) only negative control. Lane 6: Forward primer (GSP2) only negative control.

D Identification of hCDKL5 isoforms in human testis via RT-PCR using Human Testis Total RNA. This was the positive control RT-PCR to confirm the reliability of RT-PCR results from neuronal and glial cell lines. Lane L: 2-log DNA ladder. Lane 1: RT-PCR using 3’-CDS
hCDKL5_1 primer to amplify hCDKL5_1 and/or hCDKL5_2 isoforms, 634 bp product from hCDKL5_1. Lane 2: non-template control of Lane 1 reaction. Lane 3: RT-PCR using 3'-CDS hCDKL5_5 primer to amplify hCDKL5_5 isoform, 915 bp product from hCDKL5_5. Lane 4: non-template control of Lane 3 reaction. Both hCDKL5_1 (634 bp product) and hCDKL5_5 (915 bp product) isoforms were detected in human testis, consistent with previously published data (Williamson et al., 2012; Hector et al., 2016).

E-H Identification of hCDKL5 isoforms in neuronal (E-G) and glial (H) cell lines via RT-PCR using total RNA extracted. hCDKL5_1 (634 bp product) and to a lesser extent hCDKL5_2 (757 bp product) isoforms were detected in both neuronal and glial cell lines, whereas hCDKL5_5 (915 bp product) isoform was not detected.

E RT-PCR of CDKL5 using total RNA from undifferentiated and differentiated SH-SY5Y cells. Lanes L: 2-log DNA ladder. Lanes 1-4: undifferentiated SH-SY5Y cells. Lanes 5-8: differentiated SH-SY5Y cells. Lanes 1 and 5: RT-PCR using 3'-CDS hCDKL5_1 primer, 634 bp product from hCDKL5_1 and 757 bp from hCDKL5_2. Lanes 2 and 6: non-template control of Lanes 1 and 5 reactions, respectively. Lanes 3 and 7: RT-PCR using 3'-CDS hCDKL5_5 primer. Lanes 4 and 8: non-template control of Lanes 3 and 7 reactions, respectively.

F-G Identification of hCDKL5 isoforms in NKX2.1-GFP+ cortical interneurons.

F RT-PCR of CDKL5 using total RNA from unsorted hESC-derived NKX2.1-GFP+ cortical interneurons. hESC-derived culture without FACS-sorting was a mixture of NKX2.1-GFP+ interneurons and GFP- cells. L: 2-log DNA ladder. Lane 1: RT-PCR using 3'-CDS hCDKL5_1 primer, 634 bp product from hCDKL5_1 and 757 bp from hCDKL5_2. Lane 2: non-template control of Lane 1 reaction.

G RT-PCR of CDKL5 using total RNA from FACS-sorted hESC-derived NKX2.1-GFP+ cortical interneurons. NKX2.1-GFP+ interneurons were selected from hESC-derived culture via FACS-sorting. L: 2-log DNA ladder. Lane 1: RT-PCR using 3'-CDS hCDKL5_1 primer, 634 bp product from hCDKL5_1. Lane 2: non-template control of Lane 1 reaction. Only hCDKL5_1 was detected in FACS-sorted NKX2.1-GFP+ cortical interneurons, which might be due to the relatively low abundance of hCDKL5_2 in the brain (less than 10%) (Hector et al., 2016).

H RT-PCR of CDKL5 using total RNA from primary human astrocytes. Lane L: 2-log DNA ladder. Lane 1: RT-PCR using 3'-CDS hCDKL5_1 primer, 634 bp product from hCDKL5_1
and 757 bp from \textit{hCDKL5_2}. Lane 2: non-template control of Lane 1 reaction. Lane 3: RT-PCR using 3'-CDS \textit{hCDKL5_5} primer. Lane 4: non-template control of Lane 3 reaction.

Supplementary Figure 2. CDKL5 expression in different human cell lines and \textit{hCDKL5} transgene over-expression in HEK 293T cells transfected with AAV vector plasmids.

A WB of CDKL5 expression in different human cell lines. Full-length blots of Fig 1 D. Lanes S: protein standard (Novex™ Sharp Pre-stained Protein Standard, Invitrogen). Lane 1: Differentiated SH-SY5Y cells. Lane 2: Undifferentiated SH-SY5Y cells. Lane 3: HEK 293T cells. Lane 4: HEK 293 cells. Lane 5: HeLa cells, positive control according to the datasheet of mouse anti-CDKL5 monoclonal antibody. Lane 6: Primary human astrocytes. Lane 7: HESA-3 \textit{NKX2.1}^{GFP/w} hESCs. Lane 8: cell lysis buffer, no cell lysate, negative control. GAPDH: loading control. 8.7 \mu g total protein was loaded for each cell line.

B-C WB of transgene expression in HEK 293T cells transfected with AAV vector plasmids. Full-length blots of Fig 1 F. 10 \mu g total protein was loaded for each sample. Untransfected 293T cells: negative control. GAPDH: loading control.

B WB of \textit{hCDKL5} and tag expression in HEK 293T cells transfected with AAV-\textit{hCDKL5} plasmids. In addition to \textit{hCDKL5} transgene expression, WB of transgene tags was performed to examine the tag expression. Expression of the HA tag of HA-\textit{hCDKL5_1} and the Myc tag of Myc-\textit{hCDKL5_2} was detected via WB, whereas the His tag of His-\textit{hCDKL5_2} was not detected. Thus, expression of both transgenes and tags were verified for AAV-HA-\textit{hCDKL5_1} and AAV-Myc-\textit{hCDKL5_2} plasmids.

C WB of GFP over-expression in HEK 293T cells transfected with AAV-eGFP plasmids. This was used as positive control of WB.

Supplementary Figure 3. Comparison of AAV9 and AAV-PHP.B transduction in various mouse brain regions.

Representative images showing that both AAV9 and AAV-PHP.B vectors transduced NeuN+ (red) neurons in cortex, hippocampus, striatum and thalamus, and Purkinje cells in cerebellum. Cell nuclei were counterstained with DAPI (blue). Scale bars: 50 \mu m.

Supplementary Figure 4. AAV-PHP.B transduction in \textit{Cdkl5-/+} mouse brain following intrajugular injection.
AAV-PHP.B-HA-hCDKL5_1 or AAV-PHP.B-eGFP, at 1×10^{12} vg per animal, was intrajugularly injected into Cdkl5−/− mice at age 28-30 days. Images show transgene expression 3 months after injection.

A Representative sagittal brain sections with GFP immunostaining of Cdkl5−/− mice injected with AAV-PHP.B-eGFP (bottom) or saline (top).

B Quantitative analysis of AAV-PHP.B-eGFP biodistribution in Cdkl5−/− mouse brain relative to saline-injected controls. Data are presented as mean ± SEM. n = 5 per group. Unpaired t-test; ****$P<0.0001$.

C AAV-PHP.B-HA-hCDKL5_1 transduction in Cdkl5−/− mouse brain. HA-hCDKL5_1 expression delivered by AAV-PHP.B was mainly in hippocampal CA1 region and cerebellar Purkinje cells, and in cortex to a lesser extent. Due to the lack of a reliable and reproducible antibody that specifically detects CDKL5 in brain sections (Zhou et al., 2017), cells transduced by AAV-PHP.B-HA-hCDKL5_1 should be labelled with HA tag via IHC/IF, the signal of which is not as prominent as GFP. Scale bars: 25 µm.

Supplementary Figure 5. Alterations in protein expression profile in the forebrain and midbrain of Cdkl5−/− mice via hCDKL5_1 expression.

B-D Quantitative analysis of CDKL5 (B), PSD95 (C) and CaMKII-α (D) expression normalised to GAPDH in forebrain and midbrain. The samples on the 2 blots were derived from the same experiment and blots were processed in parallel, using the same Cdkl5−/− + saline sample loaded on each blot as the sample processing control (Lanes 1). Data are presented as mean ± SEM. Saline-treated Cdkl5−/− mice: n = 3; hCDKL5_1-treated Cdkl5−/− mice: n = 5; GFP-treated Cdkl5−/− mice: n = 5; saline-treated Cdkl5−/− mice: n = 2. One-way ANOVA with Tukey’s multiple comparisons test (B-C) and unpaired t-test (D); *$P<0.05$, **$P<0.01$, ***$P<0.001$.

Supplementary Figure 6. Alterations in protein expression profile in the hindbrain of Cdkl5^{-/-} mice via hCDKL5_1 expression.

A WB analysis of CDKL5, PSD95, CaMKII-α and GAPDH expression in hindbrain. Lanes S: protein standard. Lanes 1, 10 and 11: Cdkl5^{+/y} + saline. Lanes 2-6: Cdkl5^{-/-} + hCDKL5_1. Lanes 7-9 and 14-15: Cdkl5^{-/-} + GFP. Lanes 12-13: Cdkl5^{+/y} + saline, sample processing control of 2 blots. GAPDH: loading control. 34 μg total protein was loaded for each cell line.

B-C Quantitative analysis of CDKL5 (B) and PSD95 (C) expression normalised to GAPDH in hindbrain. CaMKII-α expression was not detected in the hindbrain for the quantification purpose. The samples on the 2 blots were derived from the same experiment and blots were processed in parallel, using the same Cdkl5^{+/y} + saline sample loaded on each blot as the sample processing control (Lanes 1). Data are presented as mean ± SEM. Saline-treated Cdkl5^{+/y} mice: n = 3; hCDKL5_1-treated Cdkl5^{-/-} mice: n = 5; GFP-treated Cdkl5^{-/-} mice: n = 5; saline-treated Cdkl5^{-/-} mice: n = 2. One-way ANOVA with Tukey’s multiple comparisons test; *P<0.05, **P<0.01, ***P<0.001.

Supplementary Figure 7. Characterization of RET849 #11 isogenic control and #13 CDKL5-mutant iPSC lines

A Direct sequencing of CDKL5 RT-PCR products using total RNA from RET849 iPSCs. #11 isogenic control and #13 mutant sequences are shown with the mutated nucleotide outlined in red. Compared to the #11 iPSCs, there was a deletion of GAAA in the exon 5 of CDKL5 gene in the #13 iPSCs, resulting in the pGlu55fs*74 frameshift mutation.

B WB analysis of CDKL5 expression in RET849 #11 and #13 iPSC lines verified no CDKL5 protein expression in #13 iPSCs relative to #11 cells. ‘+’: positive control, HeLa cells. ‘-’: negative control, cell lysis buffer, no cell lysate. GAPDH: loading control. 10 μg total protein was loaded for each cell line.

C-D ICC/IF of hESC markers in RET849 #11 and #13 iPSCs validated the embryonic stem cell-like pluripotency of both lines. #11 (C) and #13 (B) iPSC lines were labelled with SSEA4 (red), and co-labelled with TRA-1-60 (red) and OCT4 (green). Cell nuclei were counterstained with DAPI (blue). Scale bars: 50 μm.
E-F Array-CGH analysis on both #11 (E) and #13 (F) iPSC lines confirmed the presence of a normal 46 XX karyotype without chromosomal rearrangements. An overview of array results for all chromosomes is shown on the left; the ideogram of chromosome X is reported on the right.

Supplementary Figure 8. Characterization of RET849 iPSC-derived NPCs and terminal differentiation of non-transduced and AAV-DJ-transduced NPCs into neurons.

A-B ICC/IF of NPC markers in RET849 #11 and #13 iPSC-derived NPCs confirmed their characteristics of telencephalic neural stem cells. #11 (A) and #13 (B) iPSC-derived NPCs were co-labelled with neural stem cell markers Nestin (red) and SOX1 (green), and co-labelled with Nestin (red) and telencephalon marker FOXG1 (green). Cell nuclei were counterstained with DAPI (blue). Scale bars: 50 µm.

C *In vitro* AAV-DJ-eGFP transduction in #11 and #13 iPSC-derived NPCs. Non-transduced #11 and #13 NPCs were used as negative controls, with %GFP+ cells less than 0.1%, respectively.

D Diagram outlining terminal differentiation protocol for non-transduced #11 and #13 NPCs co-cultured with astrocytes into neurons for 32 days. Schematics representing NPCs, astrocytes and neurons were adopted from Russo *et al.* (2018).

E Diagram outlining terminal differentiation protocol for #13 NPCs transduced by AAV-DJ vectors co-cultured with astrocytes into neurons for 32 days. Schematics representing NPCs, astrocytes and neurons were adopted from Russo *et al.* (2018).

Supplementary Figure 9. Calcium imaging using fluo-4 in RET849 iPSC-derived neurons.

A Epifluorescence image of fluo-4 in #11 neurons and astrocytes.

B Transient cytosolic Ca\(^{2+}\) changes induced by bath application of 50 mM KCl in fluo-4-loaded #11 neurons (n = 50).

C Epifluorescence image of fluo-4 in #13 neurons and astrocytes.

D Transient cytosolic Ca\(^{2+}\) changes induced by bath application of 50 mM KCl in fluo-4-loaded #13 neurons (n = 50).
E Epifluorescence image of fluo-4 in #13 neurons transduced with AAV-DJ-eGFP vectors and astrocytes.

F Transient cytosolic Ca\(^{2+}\) changes induced by bath application of 50 mM KCl in fluo-4-loaded #13 neurons transduced with AAV-DJ-eGFP vectors (n = 30).

G Epifluorescence image of fluo-4 in #13 neurons transduced with AAV-DJ-HA-hCDKL5_1 vectors and astrocytes.

H Transient cytosolic Ca\(^{2+}\) changes induced by bath application of 50 mM KCl in fluo-4-loaded #13 neurons transduced with AAV-DJ-HA-hCDKL5_1 vectors (n = 30).

I Epifluorescence image of fluo-4 in #13 neurons transduced with AAV-DJ-Myc-hCDKL5_2 vectors and astrocytes.

J Transient cytosolic Ca\(^{2+}\) changes induced by bath application of 50 mM KCl in fluo-4-loaded #13 neurons transduced with AAV-DJ-Myc-hCDKL5_2 vectors (n = 26).

When given KCl stimulus, only neurons would show an increase in fluo-4 fluorescence indicating Ca\(^{2+}\) transient influxes, but not astrocytes. Intracellular Ca\(^{2+}\) changes are presented as ratios of the fluorescence change and basal fluorescence (ΔF/\(F_0\)). Data are presented as mean ± SEM. Scale bars: 25 µm.
Supplementary Figure 1
Supplementary Figure 2
Supplementary Figure 3
Supplementary Figure 4
Supplementary Figure 5
Supplementary Figure 6
Supplementary Figure 7
Supplementary Figure 8