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An iterative CT reconstruction algorithm for fast
fluid flow imaging

G. Van Eyndhoven*, K.J. Batenburg, D. Kazantsev, V. Van Nieuwenhove, P.D. Lee, K.J. Dobson, and J. Sijbers

Abstract—The study of fluid flow through solid matter by
computed tomography (CT) imaging has many applications,
ranging from petroleum and aquifer engineering to biomedical,
manufacturing and environmental research. To avoid motion
artifacts, current experiments are often limited to slow fluid flow
dynamics. This severely limits the applicability of the technique.

In this paper, a new iterative CT reconstruction algorithm
for improved temporal/spatial resolution in the imaging of fluid
flow through solid matter is introduced. The proposed algorithm
exploits prior knowledge in two ways. Firstly, the time-varying
object is assumed to consist of stationary (the solid matter) and
dynamic regions (the fluid flow). Secondly, the attenuation curve
of a particular voxel in the dynamic region is modeled by a
piecewise constant function over time, which is in accordance
with the actual advancing fluid/air boundary.

Quantitative and qualitative results on different simulation
experiments and a real neutron tomography dataset show that, in
comparison to state-of-the-art algorithms, the proposed algorithm
allows reconstruction from substantially fewer projections per ro-
tation without image quality loss. Therefore, temporal resolution
can be substantially increased and thus fluid flow experiments
with faster dynamics can be performed.

Index Terms—CT, neutron tomography, iterative reconstruc-
tion, fluid flow experiments

I. INTRODUCTION

DYNAMIC computed tomography (CT) is a versatile tool
for the non-invasive imaging of time-varying objects,

as images collected with high temporal frequency allow the
visualization of dynamic processes. The CT technique has
great potential in fluid flow experiments, where the main goal
is to visualize, understand and model the dynamics of the
fluid over time. Recent advances in image acquisition speed
are now permitting preliminary studies [1]–[3], but current
temporal resolutions are insufficient to capture high speed
behavior in low viscosity fluids. True high speed dynamic CT
of multi-phase flow has potential applications across petroleum
and geoscience research [4]–[6], in civil and environmental
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engineering [7]–[10], as well as for biomedical and materials
science applications.

Conventionally, each time point (also referred to as time
frame) in a fluid flow experiment is reconstructed indepen-
dently using projection data that was acquired over a full 180◦

(or 360◦) angular range, typically using classical analytical
algorithms such as filtered back-projection (FBP) [11] or
algebraic algorithms like the simultaneous iterative reconstruc-
tion technique (SIRT) [12]. Afterwards, the reconstructed 4D
(3D+t) volume can be processed further for quantification
of the fluid flow. The main issue with this conventional
approach is that the dynamic process should be slow enough
to ensure a nearly stable object during the acquisition of all
projections at every time frame. If this assumption is violated,
blurring artifacts distort the reconstructed images and further
quantification becomes difficult. A straightforward approach
to increase the temporal resolution is to reduce the scanning
time at each time frame. This can be achieved by lowering
either the number of acquired projections per time frame
or the exposure time per projection. However, reducing the
number of projections typically results in limited data artifacts
in the reconstructed images while shortening the exposure
time results in a decreased signal-to-noise ratio. This implies
a trade-off between spatial and temporal resolution, which
ultimately limits current fluid flow experiments to experiments
with slow temporal dynamics. This is especially true for
neutron tomography, which can image very low concentrations
of hydrous fluids but has long projection acquisition times.

In the literature, several approaches for improving the tem-
poral resolution in fluid flow imaging by means of an adapted
reconstruction algorithm have already been suggested. Most
approaches assume that an a priori high quality reconstruction
of the dry stage (i.e., the sample without fluid flow) is
available. The simulated projection data of this reconstruction
is then subtracted from the measured projection data of the
dynamic object, resulting in projection data that corresponds
solely to the dynamic component in the reconstruction, i.e., the
fluid flow. Myers et al. utilized this approach to iteratively re-
construct the fluid flow, while also enforcing prior knowledge
about the porous nature of the material matrix and dynamics
of the fluid flow, allowing for faster fluid flow imaging [13]–
[15]. Another way of exploiting the prior image consists
of minimizing a sparsity measure on the image difference
between the dynamic reconstruction and the prior image. Chen
et al. combined this sparsity constraint with a data fidelity term
to achieve improved image quality [16]. A more statistical
approach, i.e., a maximum a posteriori probability (MAP)
estimation method, was presented in [17]. Other approaches
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do not rely on a prior high quality image, such as the spatial-
temporal regularization approach based on non-local means
proposed by Kazantsev et al. [18], [19] and the region-based
SIRT (rSIRT) method, which assumes only prior knowledge
about the location of stationary voxels and dynamic voxels
[20].

In this paper, we present a 4D reconstruction algorithm for
fluid flow imaging in which specific models describing the
space-time evolution of each voxel are exploited during the
reconstruction process. It allows for a substantial reduction
of acquired projection data per time frame (thus increasing
temporal resolution) while maintaining image quality. The pro-
posed algorithm exploits two types of prior knowledge. Firstly,
following the approach of [20], a dynamic reconstruction is
generated assuming the presence of stationary regions (the
solid matter) and dynamic regions (the fluid flow) throughout
the reconstruction domain. Secondly, corresponding to the
actual physical advancing fluid/air boundary, the attenuation of
a particular voxel over time in the dynamic region can typically
be described by a piecewise constant (PWC) function. As such,
the attenuation curves of all voxels in the dynamic region are
approximated by PWC functions at intermediate iterations.

In Section II, a brief introduction to algebraic reconstruction
methods and computed tomography of static and dynamic
objects is given. In section III, the region-based SIRT al-
gorithm with intermediate PWC function estimation (rSIRT-
PWC) algorithm is introduced. Experiments with simulation
phantoms and with a real neutron tomography dataset are
reported in Section IV. The results are discussed in Section V
and the paper is concluded in Section VI.

II. NOTATION AND CONCEPTS

In this section, the basic notations and concepts of computed
tomography are introduced. A brief introduction of the tomog-
raphy model is given in section II-A. Next, a description of
the SIRT algorithm is given in section II-B. Finally, in section
II-C, the concepts of computed tomography are generalized
from static objects to dynamic objects.

A. Tomography model

In what follows, the tomography model is introduced for the
2D case; extension to 3D, however, is trivial. The reconstructed
image of the scanned object is represented on a pixel grid
consisting of N pixels. The pixel values of the image are
ordered in a column vector x = (xj) ∈ RN . Let M denote
the total number of measured projection values for all angles,
which are log-corrected and ordered in a vector p = (pi) ∈
RM . We refer to p as the measured projection data.

The projection data corresponding to a reconstructed image
x can be simulated by forward projecting x, resulting in the
vector q = (qi) ∈ RM of which the ith component is defined
by the linear combination qi :=

∑N
j=1 wijxj . The weight wij

represents the contribution of pixel j to the projection value
with index i, as is illustrated in Fig. 1.

The collection of weights form a sparse matrix W =
(wij) ∈ RM×N that models the relationship between the re-
construction x and the simulated projection data as q = Wx.

Fig. 1. Illustration of the projection process, with the contribution wij of
pixel j to the projection value with index i represented as the ray-intersection
length of projection line i with pixel j.

Directly solving the system of linear equations Wx = p
for an exact solution x is typically infeasible, since noise
and discretization effects render the system of linear equations
inconsistent. Therefore, algebraic methods typically minimize
the projection distance ||Wx−p|| with respect to x for some
norm || · ||.

B. SIRT

The methods introduced in this paper are based on
the Simultaneous Iterative Reconstruction Technique (SIRT)
[12]. SIRT is known to converge to a solution of
argminx

(
||Wx− p||2R

)
, where R = (rij) ∈ RM×M is the

diagonal matrix with inverse row sums of the projection matrix
W ; its diagonal elements are given by rii = 1/

∑
j wij .

Starting from an initial reconstruction x(0) = 0, the SIRT
algorithm iteratively updates the reconstruction as follows:

x(k+1) = x(k) +CW TR(p−Wx(k)) , (1)

where C = (cij) ∈ RN×N is defined as the diagonal matrix
with the inverse column sums of W (i.e., cjj = 1/

∑
i wij).

C. Dynamic set-up

In section II-A, the classical tomography model was de-
scribed, which assumes the scanned object to remain unaltered
throughout the entire data acquisition process. This assumption
is no longer valid in fluid flow imaging. Therefore, the
dynamic object is typically represented as a time series of
images xr ∈ RN , where each r ∈ {1, . . . , R} is the index
referring to a particular point in time (i.e., a time frame) and
R is the total number of time frames. The entire time series is
represented by the vertical concatenation of x1,x2, . . . ,xR,
i.e., x̃ := (xT

1 ,x
T
2 , . . . ,x

T
R)

T ∈ RRN . To reconstruct this
time series of images, projection data is acquired for each time
frame by rotating source and detector multiple times around
the object, or, equivalently, by rotating the object itself in
between a fixed source and detector. Standard approaches then
typically reconstruct the object at each time frame individually
solely based on the projection data corresponding to a single
180◦ or 360◦ rotation.

There are two main angle selection schemes for acquiring
this projection data per time frame:
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Fig. 2. Flowchart of the rSIRT-PWC algorithm.

1) A predefined number of equiangular acquisition angles
over the complete angular range are defined for each time
frame.

2) A “golden ratio” scanning scheme, where source and
detector are rotated over a fixed angular step of 4θ =
π(1 +

√
5)/2 radians to determine the next acquisition

angle [21].
In the first angle selection scheme the user must select the
number of projections per time frame before the experiment
starts. The golden ratio scanning scheme is more flexible in the
sense that it allows the user to select an arbitrary number of
projections per time frame after the data acquisition, while still
approximately covering equiangular positions over the entire
angular range for each time frame. Since this allows the user
to balance the temporal and spatial resolution a posteriori, this
scanning protocol was utilized in the experiments of this paper.

For every r ∈ {1, . . . , R}, let pr ∈ RM be the measured
projection data corresponding to the rth time frame. Define
W ∈ RRM×N as the forward projection matrix that models
all projection angles of the golden ratio scanning scheme
and Wr ∈ RM×N as the submatrix of W that models the
forward projection for the rth time frame. Furthermore, let
the full vector of measured projection data p̃ ∈ RRM be the
vertical concatenation of p1,p2, . . . ,pR. Analogously to the
reconstruction problem for the static case, the goal in dynamic
tomography is to find a reconstruction x̃ that minimizes

||W̃ x̃− p̃|| (2)

for some norm || · ||, where W̃ represents the block diagonal
matrix consisting of blocks W1,W2, . . . ,WR. If only few
projections are available per time frame, finding x̃ such that

Eq. (2) is minimal represents an ill-posed problem. This is
mainly due to the large null space of the forward operator
W̃ and the noise in the measured projection data p̃. This
problem can be alleviated by imposing constraints on the
reconstruction x̃, resulting in a smaller solution space. Our
proposed reconstruction algorithm follows this approach. The
enforced model assumptions on the reconstruction x̃ result
in a more accurately modeled reconstruction problem, which
ultimately leads to better reconstruction quality. Details on the
model assumptions are described in the Section III-A.

III. METHOD

The proposed rSIRT-PWC method is visualized in the
flowchart of Fig. 2. It is designed to frequently exploit two
important model assumptions for fluid flow imaging, which
are explained in Section III-A. Starting from an initial estimate
x̃(0) = 0, rSIRT-PWC continues with the following steps:

1) First, K rSIRT iterations are executed, which is visualized
in the bottom most part of the flowchart in Fig. 2.

2) Next, PWC functions are estimated for all voxels in the
dynamic region. This is illustrated in the upper most part
of the flowchart in Fig. 2.

3) Go back to step 1.

This process is repeated iteratively for Ktot iterations. The
first step, i.e., the rSIRT iterations, is based on the first model
assumption of Section III-A and is explained more thoroughly
in Section III-B. The second step in which the PWC functions
are estimated is based on the second model assumption of
Section III-A and is elaborated in Section III-C.
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A. Model assumptions

In fluid flow experiments, several assumptions about the
scanned object can be made:

1) The presence of stationary regions: The scanned object
is assumed to consist of stationary regions (the solid matter)
and regions that change over time, i.e., dynamic regions (the
fluid flow). In mathematical terms, this assumption means
that there is a set S ⊂ {1, . . . , N} of voxel indices that
correspond to the stationary regions, such that xr(j) = xr′(j)
for all j ∈ S and r, r′ ∈ {1, . . . , R}. This is not necessarily
true for voxels in the dynamic region, of which the voxel
indices belong to V := {1, . . . , N}\S. These sets (S and V )
can be calculated prior to the actual fluid flow experiment
by generating a segmentation of the solid matter based on a
reconstruction of the object before the fluid flow initiated.

In what follows, the set V is further partitioned into two
distinct subsets V = VB ∪ VF with VB ∩ VF = ∅. The set
VB contains the indices corresponding to voxels on the border
between the dynamic and the stationary region and the set
VF = V \VB contains indices corresponding to voxels that are
fully inside the dynamic region.

2) Two-phase incompressible fluid flow: Since a two-phase
incompressible fluid flow is imaged, voxels in the dynamic
region can only contain fluid or air. Furthermore, the attenu-
ation value of a homogeneous incompressible fluid is a fixed
value (in space and time). This means that, in the dynamic
region, the attenuation over time of a particular voxel, i.e., its
attenuation curve, can be modeled by a PWC function with
one fixed attenuation value for the fluid and a zero attenuation
value for air, in full accordance with the actual physically
advancing fluid/air boundary. That is, in the first time frame,
a voxel will contain air. At a certain point in time, fluid will
enter the voxel and the voxel’s attenuation value will change
to the attenuation value of the fluid. Once the fluid leaves the
voxel, the attenuation value will return to zero. This can be
modeled by a PWC function. In what follows, the attenuation
value of the fluid is denoted as af .

B. region-based SIRT (rSIRT)

Let IV ∈ {0, 1}N×N be the binary diagonal matrix rep-
resenting the operator that sets all voxels belonging to the
stationary region to 0. Its diagonal elements are given by
IV (j, j) = χV (j) where χV is the characteristic function
for the set V . Analogously, the binary diagonal matrix IS ∈
{0, 1}N×N is defined as the operator setting all voxels in the
dynamic region to 0, i.e., IS(j, j) = χS(j). Finally, define
Rr ∈ RM×M and Cr ∈ RN×N as the diagonal matrices
with inverse row sums and inverse column sums of Wr,
respectively. The introduced notations allow us to describe the
rSIRT algorithm as the following iterative process:

x(k+1)
r = x(k)

r + ISCW TR(p̃− W̃ x̃(k))

+ IV CrW
T
r Rr(pr −Wrx

(k)
r ). (3)

This update needs to be calculated for every r ∈ {1, . . . , R}
before incrementing the iteration count k. Eq. (3) calculates
a traditional SIRT update for the stationary region using all
available projection data p̃ and then a second update for

the dynamic region using only the projection data from the
relevant time frame.

C. Piecewise constant function estimation

In the dynamic region, the attenuation curves of each voxel
are replaced by PWC functions at intermediate iterations.
The PWC functions are estimated with a different approach
depending on the position of the specific voxel. The different
types of distinguished voxel positions are displayed in Fig. 3.

Fig. 3. Illustration of the different types of voxels. Voxel type #1 is situated on
the border between the dynamic and the stationary region. Voxels of type #3
are in the fully dynamic region and contain fluid at some point in time. Voxels
of type #4 are also classified as dynamic but never contain fluid. Voxel type
#2 is located on the border of the fluid and void space in the fully dynamic
region.

The set VB corresponds to voxels of type #1. The voxel
types in the fully dynamic region VF , i.e., voxel types #2, #3
and #4, are assigned during each PWC estimation step, which
is explained below.

1) Voxels in the fully dynamic region VF : The PWC esti-
mation for voxels in the fully dynamic region VF is subdivided
into 4 steps (upper panel in Fig. 2).

In the first step, the time attenuation curve (TAC) is ex-
tracted for each voxel with index j ∈ VF . It is defined by
TACj(tr) = xr(j), where tr represents the time correspon-
ding to the rth time frame. For each of these attenuation curves,
a two-class Otsu segmentation [22] of the attenuation values
is calculated.

In the second step, the mean of the attenuation values in
the upper Otsu class, defined as Mj , is utilized to define the
PWC function

PWC
0,Mj

ta,tb
(t) =

{
Mj if ta < t < tb
0 otherwise , (4)

where ta and tb are discrete parameters that can be chosen
from the finite set {t1, . . . , tR}, indicating the time points at
which the fluid enters and exits the voxel. Note that the PWC
function was defined with the mean Mj of the upper Otsu
segmentation class rather than the fluid’s attenuation value af ,
because iterative algorithms like SIRT typically underestimate
the higher attenuation values in the first iterations. This func-
tion is used to approximate the extracted attenuation curves
TACj by solving the following problem:

(ta, tb) = argmin
ta,tb

R∑
r=1

(PWC
0,Mj

ta,tb
(tr)− TACj(tr))

2 . (5)
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Eq. (5) is solved by testing all possible combinations of ta and
tb.

In the third step, a statistical test is performed to check
whether or not the estimated PWC is relevant. For this purpose,
the attenuation values in the original attenuation curve for
which ta < t < tb (referred to as upper class samples) and for
which (t < ta)|(t > tb) (referred to as lower class samples)
are extracted. With these two sets of samples, a Kolmogorov-
Smirnov (K-S) test is performed, which checks the nul hy-
pothesis that claims that the upper and lower class samples are
drawn from the same underlying continuous population [23].
This nul hypothesis is rejected at a significance level of 1%,
i.e., if the associated P -value is less than 1%. With a rejection
of the nul hypothesis, the two sets of samples (the upper
and the lower class) are regarded as sufficiently separated and
hence the estimated PWC is regarded as relevant, i.e., it does
not fit the noise in the extracted attenuation curve.

In the fourth step, the attenuation curves are replaced by
different PWC functions depending on the type of voxel (type
#2, #3 or #4). To obtain the type of each voxel, the fully
dynamic region VF is subdivided using two conditions that
determine if a voxel contains fluid over time:

1) The K-S test, performed in step 3, results in a rejection of
the nul hypothesis at a 1% significance level. This indi-
cates that the different classes are sufficiently separated.

2) The upper class mean attenuation value (i.e., the mean of
TACj for time points satisfying ta < t < tb) is larger
than af/2.

The region of voxels that contain fluid over time is defined by
voxels that satisfy both conditions. Voxels on the border of this
region are assigned type #2 and voxels that are fully contained
in this region (i.e., not on the border) are assigned type #3. If
the nul hypothesis is not rejected at the 1% significance level
or the mean of the upper class is smaller than af/2, the voxel
is assigned type #4.

Since voxels of type #2 contain both fluid and air, their
attenuation curve is replaced by the PWC curve defined in
Eq. (4). Voxels of type #3 are either fully emersed by fluid
or contain only void space, therefore their corresponding
attenuation curves are replaced by

PWC
0,af

ta,tb
(t) =

{
af if ta < t < tb
0 otherwise . (6)

Voxels of type #4 never contain any fluid and are hence
replaced by zero.

2) Voxels in the stationary/dynamic region VB: The four
steps of the PWC estimation procedure introduced previously
are slightly adjusted. Since voxels in the stationary/dynamic
region VB can contain a combination of solid matter and fluid
or air, the use of a PWC function as defined in Eq. (4) is incor-
rect. Instead, the mean of the lower Otsu class mj is calculated
in step 1 and the attenuation curves are approximated by the
PWC function

PWC
mj ,Mj

ta,tb
(t) =

{
Mj if ta < t < tb
mj otherwise (7)

in step 2. The same K-S test is performed in step 3. Finally,
in step 4, the attenuation curves are replaced by Eq. (7) if the

null hypothesis is rejected at the 1% significance level and by
their mean if the null hypothesis is accepted.

IV. EXPERIMENTS

In this section, various experiments for the validation of the
rSIRT-PWC algorithm are described. First, the figures of merit
are introduced in Section IV-A and the reconstruction methods
to which rSIRT-PWC is compared are described in Section
IV-B. Next, in Section IV-C, different simulation experiments
are introduced. An experiment with real neutron tomography
data is described in Section IV-D. The results for all these
experiments are reported in Section V.

A. Figures of merit

The Relative Root Mean Squared Error (RRMSE) is utilized
as a quality measure and is defined as

RRMSE(x̃) =

√∑
i(x̃(i)− ỹ(i))2∑

i(ỹ(i))
2

, (8)

where x̃ denotes the calculated reconstruction and ỹ denotes
the ground truth phantom. For some experiments, the RRMSE
is inspected only in a Region of Interest (ROI), in which case
the sum in Eq. (8) sums over all points in time and over all
voxels in the specific ROI.

B. Reconstruction methods

The rSIRT-PWC method is compared to the following
reconstruction methods.
• SIRT: The SIRT algorithm (see Section II-B) individually

applied to the projection data associated with each time
frame.

• SIRT PWC: In order to have a fair comparison, the SIRT
reconstruction was also post-processed with our PWC
function estimation method. We refer to this reconstruc-
tion as SIRT PWC.

• rSIRT: The region-based SIRT algorithm (see Section
III-B and [20]).

• Myers et al.: The fluid flow reconstruction method intro-
duced by Myers et al. and implemented as described in
[13]. For the numerical experiments, the reconstructions
are modeled on a 200 × 200 voxel grid. Therefore,
following Myers et al., the static reconstruction was
calculated with FBP based on the full set of 315 ≈
200 ∗ π/2 projections, which guarantees accurate image
quality [24]. These projections were simulated from the
ground truth image assuming an incoming beam intensity
of I0 = 5 × 104 (photon count), which is 10 times the
number of photons that were assumed for generating the
projections of the dynamically evolving object. Also, the
soft thresholding parameter and convergence tolerance
(which is denoted by ε in [13]) were optimized by
selecting those parameters that gave the lowest RRMSE
with respect to the ground truth. This optimal parameter
selection was repeated for each and every experiment.
That is, whenever a different number of projections per
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time frame was utilized, new optimal parameters were se-
lected, thereby applying the method by Myers et al. at its
full strength. In the neutron tomography experiment, there
is no ground truth available. Therefore, the algorithmic
parameters were chosen manually by visual assessment
for the neutron data. All other parameters were chosen
as described in [13].

• CGLS-NLST: The Conjugate Gradient Least Squares
method with Non-Local Spatio-Temporal penalty (CGLS-
NLST) developed by Kazantsev et al. and implemented
as described in [19]. The reader is referred to [19] for
details about the method and its parameters. The prior
image containing structural information was set to be the
same static reconstruction that was utilized in the method
by Meyers et al. Most algorithm parameters were adapted
from [19], except for the number of iterations, the reg-
ularization parameter and the noise-dependent parameter
(denoted by MaxOuter, β and h in [19], respectively),
since these parameters are problem dependent. These
three parameters were optimized for lowest RRMSE with
respect to the ground truth for each and every experiment
in the simulation experiments and selected manually
based on visual assessment in the neutron tomography
experiment. The parameter expressing the level of trust
(strength of smoothing) in the dynamic data (denoted
by γ in [19]) was also manually tuned in the neutron
tomography experiment.

The rSIRT-PWC algorithm was implemented as described
in Section III with the PWC estimation applied every 20th

iteration starting from the 60th iteration. Every method was
implemented with a positivity constraint, i.e., voxels with an
attenuation value smaller than zero are set to zero after each
iteration. All reconstruction methods were applied with 200
iterations, with the exception of the CGLS-NLST method,
where this parameter was optimized for lowest RRMSE with
respect to the ground truth image. The algorithms were im-
plemented with the ASTRA toolbox [25]–[27].

C. Numerical simulations
Two different simulation phantoms were created. In the

simulation experiments, the projections were generated with a
strip kernel [11] and a parallel beam geometry. The data was
simulated from a higher resolution version of the phantom,
i.e., on a 400 × 400 isotropic voxel grid. The number of
detector bins was set to 200, with each detector pixel of twice
the size as the voxel size in the high resolution version of
the phantom. Projection angles were selected with the golden
ratio scanning scheme. Poisson distributed noise was applied
to the projection data, assuming an incoming beam intensity
of 5×103 (photon count). Reconstructions were calculated on
a 200× 200 isotropic voxel grid and with a linear projection
model [11], to avoid the “inverse crime” of generating the
data with the same model as the model for calculating the
reconstruction [28].

1) Shepp-Logan phantom: The first phantom is a Shepp-
Logan type phantom in which fluid flows from one chamber
into another during the acquisition of the CT data. The phan-
tom was simulated on 20 time frames, of which frame 1, 10

and 20 are displayed in Fig. 4(a), (b) and (c), respectively. The
mask that separates the stationary from the dynamic voxels is
displayed in Fig. 4(d). For each time frame, 10 projections
were simulated.

(a) (b) (c) (d)

Fig. 4. The adjusted Shepp-Logan phantom on time frame 1, 10 and 20 (a-
c) and the mask for stationary region (d), where the white and black region
correspond to the stationary and the dynamic region, respectively.

2) Porous rock phantom: The second simulation phantom
was created from a high quality FBP reconstruction of an
X-ray tomography dataset of rock (porous gravel) acquired
on a Nikon XTH 225 ST scanner at the Manchester X-ray
Imaging Facility (Fig. 5(a)). In this reconstruction, all voxels

(a) High quality FBP re-
construction

(b) Processed FBP re-
construction

(c) Mask for the station-
ary region

Fig. 5. The high quality reconstruction of the porous gravel (a), its segmented
version (b) and the corresponding mask for the stationary region (c).

that do not belong to the rock (the void volume) were set
to zero (Fig. 5(b)) and fluid flow was simulated in the void
space. The time point at which the fluid enters a certain voxel
was randomly generated by a properly scaled 2D Perlin noise
image [29], the same approach was utilized to select the time
point at which the fluid leaves a certain voxel. The stationary
region (Fig. 5(c)) was defined as the region containing rock
and the region outside the sample container. The phantom
was simulated on 20 time frames, of which frame 1, 4, 5,
10, 15 and 20 are displayed in the first row of Fig. 9. In this
experiment, 20 projections were simulated per time frame.

D. Neutron tomography dataset

A neutron tomography dataset was acquired at the cold
neutron imaging Beamline ICON at the SINQ spallation
neutron source, Paul Scherrer Institute, Switzerland. Granitic
gravel particles with a 5-10 mm diameter were loaded into a 25
mm thin walled Al tube and mounted in a gravity driven flow
cell. Parallel beam projection images were acquired under the
golden ratio scanning scheme [30] with an exposure time of 20
seconds per projection. After a 2×2 rebinning, the dimension
of the detector was given by 1023 × 1030 pixels with pixel
size 26 µm. Reconstructions were calculated on the central
slice on a 1030× 1030 pixel grid, also with pixel size 26 µm.
Initially, the sample was scanned in its dry stage (no fluid flow)
at 154 projection angles and a reconstruction was calculated
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with 200 SIRT iterations (Fig. 6(a)). A mask for the stationary
region (Fig. 6(b)) was extracted from this SIRT reconstruction.
Next, after starting the fluid flow, another 326 “wet stage”
projections were acquired. The projection data of the dry stage
and the wet stage were combined to form a projection data set
corresponding to 480 projection angles. This set of projections
served as the input for all evaluated reconstruction methods.
Since angles were selected with the golden ratio scanning
scheme, the projection data can be subdivided in arbitrary
subsets which allows for selecting the number of time frames
as desired.

The stationary region mask in Fig. 6(b) was utilized as prior
knowledge in rSIRT, rSIRT-PWC and the method by Myers et
al. The latter method and CGLS-NLST were applied with the
dry stage SIRT reconstruction (Fig. 6(a)) as the prior image.

(a) Dry stage SIRT reconstruction (b) Mask for the stationary voxels

Fig. 6. The dry stage reconstruction (a) and the extracted mask (b) of the
gravel particles in the neutron tomography experiment.

V. RESULTS

A. Shepp-Logan phantom

Frame 10 of the reconstructions for all algorithms are
displayed in Fig. 7. The reconstruction method by Myers et al.
is based on more projection data (i.e., the projection data to
generate the prior image and the projection data acquired from
the dynamically evolving object) in comparison to the other
methods. A fully fair comparison is hence only possible if
the rSIRT-PWC method is allowed to use this projection data
as well. For this reason, the reconstruction in Fig. 7(g) was
created, it is the rSIRT-PWC reconstruction generated from
the combination of the projection data used in the generation
of the prior image for the method by Myers et al. and
the projection data acquired from the dynamically evolving
object. From Fig. 7, it is obvious that the standard SIRT
algorithm suffers from limited data artifacts. This is improved
by rSIRT (Fig. 7(c)) and substantially improved by CGLS-
NLST, the method of Myers et al. and rSIRT-PWC (Fig. 7(d-
g)). Furthermore, the rSIRT-PWC has better image quality in
the dynamic region in comparison to CGLS-NLST and the
method by Myers et al. These observations are confirmed by
the RRMSE values in Table I. Since the reconstruction by
the method of Myers et al. is based on a prior high quality
reconstruction, it is obvious that it has better image quality in
the stationary region.

To test the algorithms’ performance with respect to the
amount of available projection data, the previous experiment

SIRT SIRT rSIRT CGLS- Myers rSIRT-
PWC NLST et al. PWC

full ROI 0.5938 0.5819 0.2598 0.3806 0.2796 0.2536
stat. ROI 0.6414 0.6406 0.2653 0.4117 0.2607 0.2669
dyn. ROI 0.3845 0.3014 0.2304 0.2360 0.3187 0.1905

TABLE I
RRMSE VALUES FOR THE SHEPP-LOGAN PHANTOM EVALUATED FOR

DIFFERENT RECONSTRUCTIONS (COLUMNS) IN THE FULL
RECONSTRUCTION DOMAIN (FIRST ROW), IN THE STATIONARY ROI

(MIDDLE ROW) AND IN THE DYNAMIC ROI (LAST ROW). IN THIS
EXPERIMENT, 10 PROJECTIONS WERE SIMULATED PER TIME FRAME.

was repeated for a varying number of projections per time
frame, while keeping all other experimental parameters the
same. The RRMSE for each of these experiments is plotted as
function of the number of projections per time frame in Fig. 8.
From these plots, it is obvious that rSIRT-PWC outperforms
all other reconstruction methods in almost all scenarios. One
exception is the stationary region’s image quality if only few
projection data (less than 15 projections per time frame) is
available: in this case the method by Myers et al. gives better
results than the proposed rSIRT-PWC method. This is again
due to the fact that the stationary region’s reconstruction for
the method by Myers et al. is based on more projection data
(315 projections) than the rSIRT-PWC reconstruction. As soon
as sufficient projection data becomes available (more than
15 projections per time frame), the rSIRT-PWC method also
outperforms the method of Myers et al. with respect to image
quality in the stationary region. Furthermore, by comparing the
RRMSE values at 50 projections per time frame for the SIRT
method and 5 projections per time frame for the rSIRT-PWC
method in Fig. 8(c), it can be observed that the rSIRT-PWC
reconstruction method achieves comparable image quality in
the dynamic region with up to an order of magnitude fewer
projections than the conventional SIRT method.

B. Porous rock phantom

The reconstructions in time frame 1, 4, 5, 10, 15 and 20 for
all algorithms are displayed in Fig. 9. The RRMSE values can
be found in Table II. It is clear, both visually from Fig. 9 and

SIRT SIRT rSIRT CGLS- Myers rSIRT-
PWC NLST et al. PWC

full ROI 0.3084 0.2716 0.2037 0.2004 0.1839 0.1655
stat. ROI 0.2472 0.2446 0.1488 0.1597 0.1479 0.1357
dyn. ROI 0.8999 0.4974 0.6358 0.4984 0.4637 0.3330

TABLE II
RRMSE VALUES FOR THE POROUS ROCK PHANTOM EVALUATED IN THE

FULL RECONSTRUCTION DOMAIN (FIRST ROW), IN THE STATIONARY ROI
(MIDDLE ROW) AND IN THE DYNAMIC ROI (LAST ROW). THE DIFFERENT
COLUMNS REPRESENT DIFFERENT RECONSTRUCTION ALGORITHMS. IN

THIS EXPERIMENT, 20 PROJECTIONS WERE SIMULATED PER TIME FRAME.

numerically from Table II, that a conventional reconstruction
approach such as SIRT suffers from limited data artifacts if
only 20 projections are available per time frame. The rSIRT
reconstruction can more accurately reconstruct the stationary
region. However, mainly because the lack of model restrictions
in the dynamic region, the rSIRT reconstruction is strongly
influenced by noise in the dynamic region. The CGLS-NLST
method improves image quality in both stationary and dynamic
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(a) Ground truth (b) SIRT (c) rSIRT (d) CGLS-NLST (e) Myers et al. (f) rSIRT-PWC (g) rSIRT-PWC (all
data)

Fig. 7. Reconstructions (displayed in time frame 10) for the simulation experiment with the adjusted Shepp-Logan phantom. All reconstructions were calculated
based on 10 simulated projections per time frame.
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(a) RRMSE calculated in the full reconstruction
domain
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(b) RRMSE calculated in the stationary region

10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

0.45

0.5

#projections / time frame

R
R

M
S

E
 d

yn
am

ic
 R

O
I

 

 SIRT
rSIRT
SIRT PWC
CGLS−NLST
Myers et al.
rSIRT−PWC

(c) RRMSE calculated in the dynamic region

Fig. 8. The RRMSE as function of the number of projections per time frame for SIRT, rSIRT, the method by Myers et al. and rSIRT-PWC for the Shepp-Logan
phantom.

region, but due to the high level of noise in the projection data
and the low number of projections, the optimal smoothing
parameters were rather large and hence the fine structures
are partially erased. The method by Myers et al. also has
improved image quality in both the stationary and the dynamic
region. The rSIRT-PWC reconstruction, however, has even
better image quality. The fluid’s dynamics are captured more
correctly and the region on the edge between stationary and
dynamic region has a better correspondence to the ground truth
image.

The previous experiment was repeated for a varying number
of projections per time frame, while keeping all other ex-
perimental parameters the same. The RRMSE as function of
the number of projections per time frame can be observed
in Fig. 10. It can be concluded that the proposed rSIRT-
PWC algorithm outperforms all other algorithms. Notice that
the stationary region of the reconstruction by Myers et al.
has better image quality for a low number of projections
per time frame (Fig. 10(b)). This is again due to the fact
that this region of the reconstruction domain is based on
the prior image, which was reconstructed a priori with FBP
based on 315 projection images. The rSIRT-PWC algorithm
does not utilize this data. However, starting from around
15 projections per time frame (which corresponds to a total
of 300 projections for all 20 time frames) the rSIRT-PWC
stationary region reconstruction has better quality than the
reconstruction of Myers et al. At that point, rSIRT-PWC
has acces to approximately an equal number of projections
for reconstructing the stationary region and due to the fact
that rSIRT-PWC is based on an iterative technique (which
generally outperforms FBP) the reconstruction quality in the
stationary region becomes better. Analogously to the Shepp-
Logan experiment, it can also be observed in Fig. 10(c) that
the rSIRT-PWC reconstruction method achieves comparable

image quality in the dynamic region with up to an order of
magnitude fewer projections than the other methods.

C. Neutron tomography dataset

The projection dataset was first subdivided into 48 time
frames of 10 projections each. The corresponding reconstruc-
tions generated by SIRT, rSIRT, CGLS-NLST, the method by
Myers et al. and rSIRT-PWC on time frame 1, 30, 31 and
48 are displayed in Fig. 11. The reconstructions generated by
SIRT and rSIRT are heavily influenced by both noise and
artifacts in the dynamic region, as are those produced by the
CGLS-NLST and Myers et al. method because the prior image
does not have perfect quality in this experiment. The rSIRT-
PWC reconstruction has good contrast both in the stationary
and the dynamic regions.

In a second experiment, the projection dataset was respec-
tively subdivided into 10 subsets of 48 projections each, 20
subsets of 24 projections each, 30 subsets of 16 projections
each and 48 subsets of 10 projections each. The resulting re-
constructions on the last time frame can be observed in Fig. 12.
The rSIRT-PWC reconstruction (bottom row in Fig. 12) is the
least affected by having small numbers of projections available
per time frame, which illustrates the ability of rSIRT-PWC to
increase the temporal resolution without affecting the image
quality.

VI. CONCLUSION

Capturing the high speed dynamics of fluid flow by means
of CT imaging requires a short acquisition time, which can
be achieved by acquiring only few projection images per
time frame. However, reconstructing data from undersampled
projection data is a difficult problem, and conventional ap-
proaches that reconstruct the object independently at different
time frames result in images containing limited data artifacts.
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Fig. 9. Ground truth images and reconstructions of the porous rock phantom showing the evolution through time. The columns represent different time frames
and the rows represent the ground truth phantom and the different reconstruction methods. All reconstructions are based on 20 simulated projections in each
time frame.

In this paper, the rSIRT-PWC algorithm was introduced,
an iterative method tailored specifically to fluid flow recon-
struction problems. The algorithm divides the reconstruction
domain into stationary (the solid matter) and dynamic (the
fluid flow) regions, and assumes the shape of the attenuation
curves in the dynamic region to be piecewise constant in
accordance with a physical advancing air-fluid boundary. Since
the reconstruction problem is modeled more accurately, the
size of the solution space is substantially reduced and the final
image quality improves. Therefore, the rSIRT-PWC algorithm
allows for a significant reduction in the number of projections
per time frame without image quality loss. The rSIRT-PWC

reconstruction method achieves comparable image quality in
the dynamic region with up to an order of magnitude fewer
projections than conventional methods. It therefore provides a
much-needed method for probing high speed fluid dynamics.
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(b) RRMSE calculated in the stationary region
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Fig. 10. The RRMSE as function of the number of projections per time frame for SIRT, rSIRT, the method by Myers et al. and rSIRT-PWC for the porous
rock phantom.
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Fig. 11. Single slice through the reconstructed neutron tomography data showing the evolution through time. The columns correspond to different time frames
and the rows to the different reconstruction methods. In this experiment, the projection dataset was subdivided in 48 time frames with 10 projections each.
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Fig. 12. Single slice through the reconstructed neutron tomography data on the last time frame. Column labels refer to the number of projections per time
frame. Row labels indicate the reconstruction method employed.


