UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Transcriptional control during the G1 and S phases of the cell cycle in yeast

Cooke, Sophie Louise; (2020) Transcriptional control during the G1 and S phases of the cell cycle in yeast. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Thesis_S_Cooke_revised_250320.pdf]
Preview
Text
Thesis_S_Cooke_revised_250320.pdf - Accepted Version

Download (14MB) | Preview

Abstract

Cell division is a tightly coordinated process that involves doubling of the cellular content and its separation into two genetically identical daughter cells. In G1 phase of the cell cycle activation of the G1/S transcriptional wave initiates entry into S phase, during which the genomic DNA is replicated, and thereby activation of G1/S transcription commits cells to a new round of division. In the budding yeast, Saccharomyces cerevisiae, this transcriptional wave is controlled by two transcription factors, MBF and SBF. Previous work suggested that changes to the chromatin state through histone acetylation has an important role in regulating G1/S transcription. In this thesis I show that the HAT Gcn5 and HDAC Rpd3, which control histone acetylation, have a limited contribution to G1/S transcriptional regulation. The G1/S transcription factors MBF and SBF are highly similar, yet MBF regulates G1/S transcription through repression of its targets, and SBF through activation. My findings suggest that the local chromatin environment is unlikely to explain their opposing mechanisms. During S phase the process of DNA replication causes an imbalance in gene copy number between early- and late-replicating genes, which could alter their transcription levels. It was previously reported that S. cerevisiae exhibits gene expression homeostasis, defined as the buffering of transcription levels against DNA copy number changes during S phase. My work confirms a previously indicated requirement of the protein Tos4 in this process, and suggests this is dependent upon its binding to HDACs. I also demonstrate that Tos4, and therefore gene expression homeostasis, confers a fitness advantage. Loss of Tos4-dependent gene expression homeostasis may increase dependence upon components of the gene expression and protein production pathways. Overall this work provides new insights into transcriptional regulation at distinct cell cycle stages: in the contribution of the chromatin state to G1/S transcriptional regulation, and the control of transcription during DNA replication.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Transcriptional control during the G1 and S phases of the cell cycle in yeast
Event: UCL
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Lab for Molecular Cell Bio MRC-UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10096667
Downloads since deposit
355Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item