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Abstract—In addition to static tracer uptake values used
routinely in clinical facilities, PET imaging can provide useful
information on tracer kinetics via the use of dynamic acquisitions
where a set of time frames are acquired starting from the
injection/inhalation of the radiotracer. In lung studies, kinetic
parameters, estimated from compartmental modelling, are how-
ever affected by respiratory motion. When only one attenuation
image is available, most existing motion compensation strategies
are not appropriate for the initial short time frames, especially as
the activity distribution changes rapidly over the early part of the
dynamic acquisition. This work presents a preliminary study to
handle respiratory motion using a two-step process that uses gated
dynamic data as input. We first use joint reconstruction of activity
and motion on the entire gated PET data to estimate deformation
fields. This allows the subsequent reconstruction of each time
frame separately with motion compensation. We present results
comparing on one hand the compartment model fit residuals with
and without respiratory motion compensation and on the other
hand the diaphragm position in non-attenuation corrected images
and from this method.

I. INTRODUCTION

POSITRON Emission Tomography (PET) is a powerful
tool to assess metabolism using a radiolabelled tracer.

In addition to providing metabolic uptake when the tracer
distribution has stabilised (“static” acquisitions), PET can be
used to assess kinetic processes (e.g., blood flow and metabolic
binding rates). Compartment models are often used to extract
such “kinetic parameters” [1] but their use is impeded in chest
PET acquisitions, where non-negligible cardiac and respiratory
motion occurs and gated reconstructions are not possible for
the initial short frames (sometimes less than 5 s).

This work aims to show the possibility of applying a Joint
PET Reconstruction and Motion Estimation (JRM) [2], [3],
in order to estimate the motion between gates for the entire
dynamic acquisition (i.e., summing time frames). The dynamic
respiratory-gated frames are then reconstructed with motion
compensation. The model also accounts for the motion of the

Manuscript received December 13, 2019. This work was supported by
GlaxoSmithKline (BIDS3000030921). Alexandre Bousse was funded by GE
Healthcare. Research was supported by NIHR UCLH Biomedical Research
Centre.

E. C. Emond is with the Institute of Nuclear Medicine, University College
London, London NW1 2BU, UK (e-mail: elise.emond.16@ucl.ac.uk).

M. Machado, A. M. Groves, B. F. Hutton and K. Thielemans are with the
Institute of Nuclear Medicine, University College London, UK.

A. Bousse was with the Institute of Nuclear Medicine, University Col-
lege London, London NW1 2BU, UK but is now with LaTIM, INSERM,
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attenuation map to prevent attenuation/activity misalignment.
We then apply compartment modelling to the reconstructed
time frames. The motion estimation from the joint reconstruc-
tion is validated against diaphragm position in non-attenuation
corrected (AC) gated images and CINE-CT images (when
available). The kinetic results are assessed by comparing the
compartment model fit residuals of the presented method and
of standard OSEM reconstructions.

II. THEORY

We assume that the data can be gated according to a
surrogate signal, where the deformation between the gates does
not depend on time. We can then first estimate the motion and
subsequently tracer kinetics.

a) Motion Estimation: The listmode data from the entire
dynamic acquisition is respiratory gated, assuming that the
deformation between gates does not depend on time. The
first part of the acquisition is however discarded to estimate
the motion, in order to avoid problems with fast kinetics
after injection (the duration can be determined by plotting
the number of counts versus acquisition time). The acquired
PET data g = {gm` }(`,m)∈J1,ngK×K1,nfK (where ng denotes
the number of gates and nf the number of time frames) is
binned into a collection of random vectors gm` , each following
a Poisson distribution:

∀(`,m) ∈ J1, ngK× J1, nfK, gm` ∼ Poisson(ḡm` (fm, ϕ`,µ)) ,

where ḡm` is the expected number of counts at gate ` and frame
m,

[ḡm` (fm, ϕ`,µ)]i = τ`,m ai(Wϕ`
µ)HiWϕ`

fm + si,`,m ,

depending on the activity image fm at a time frame m, the
attenuation image µ and ϕ` a deformation field corresponding
to the gate `. Wϕ`

is the warping operator defined by the
deformation ϕ`, τ`,m is the gate/frame duration, ai(Wϕ`

µ) is
the attenuation term along the line of response corresponding
to the bin i and Hi is the detection bin system response and
si,`,m is the background term. Note that in this model fm and
µ are affected by the same motion.

For computational reasons, the gated data are summed over
the frame index m, forming g` =

∑
gm` . We denote ϕ =

{ϕ`}`∈J1,ngK. The method uses the implementation of JRM in
Bousse et al. [3] as for a static acquisition, resulting in the
following optimisation problem:

(f̂ , ϕ̂) ∈ arg max
f ,ϕ

Φ(f ,ϕ,µ) .
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Fig. 1. Overview of the method

where Φ(f ,ϕ,µ) is the (penalised) log-likelihood, using a B-
spline parametrisation of the deformation fields. Here f̂ is an
average motion-compensated image, which will not be used as
we are only interested in the motion ϕ̂ for the next step.

b) Dynamic Reconstructions: Using the estimated de-
formation ϕ̂, Motion-Compensated Image Reconstruction
(MCIR) is performed for each time frame. The output is the
estimated motion-compensated activity images {f̂m}m at each
frame m.

c) Compartmental Modelling: A compartment model [1]
is used to estimate kinetic parameters from the previous
dynamic MCIR reconstructions. The lung tissue tracer con-
centration C(t) derived from a reversible 1-tissue compartment
model (accounting for time delays) is given by:

C(t) = VBCP(t− dt) + (1− VB)K1 exp(−k2t)⊗CP(t− dt)
(1)

where CP(t) is the plasma tracer concentration at an instant
t, dt is the time delay between the arrival of the tracer in the
blood and in the lung, K1 and k2 are the kinetic parameters. In
this work, CP is approximated with CB, the whole blood tracer
concentration (using an image-derived input function from a
region of interest drawn on the ascending aorta).

d) Method Representation: See Figure 1.

III. EXPERIMENTS AND RESULTS

A. Patient Data

11 patients underwent either a CTAC or CINE-CT
acquisition, followed by a dynamic PET acquisition
(12x5 s,12x10 s,6x20 s,5x60 s,2x120 s) on a GE Discovery 710
scanner [4] using monitoring with a Varian RPM system.
The entire listmode files were unlisted into 5 respiratory-
gated projection data based on the RPM displacement.
When available, the CINE-CT acquisition was binned into 5
respiratory-gated images. Similarly as in [5], the first minute
of the acquisition was skipped for the motion estimation. An
ungated time of flight (TOF) OSEM reconstruction of the
entire data was used as a first guess of f̂ in JRM. Following
that 6 alternations of motion estimation and MCIR were
performed on the entire dataset to estimate the deformation
fields ϕ̂. The gated dynamic data were then reconstructed
separately using an in-house implementation of TOF MCIR
(6 iterations, 8 subsets) using GE projectors and background
sinograms. Finally a reversible 1-tissue compartment model—
to estimate blood volume fractions VB [6]—was fitted, within
a dilated lung mask, to the dynamic reconstructed images.
The whole blood concentration was derived from a blood
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Fig. 2. Reconstructions from an early frame: a) standard OSEM, b) MCIR
OSEM, and from a later frame: c) standard OSEM and c) MCIR OSEM. The
yellow arrows mark positions where motion artefacts can visually be observed.
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Fig. 3. a) CT image; residuals of the kinetic model fits from: b) standard
OSEM, c) MCIR OSEM; VB images: c) standard OSEM and d) MCIR OSEM,
within the dilated lung mask. The yellow arrows show increased residuals near
the diaphragm and the blue arrows show lung structures.

time activity curve for a region of interest drawn onto the
Ascending Aorta and fitted to a predefined model [7].

B. Evaluation Methods

To assess the goodness of the motion estimation from
JRM, non-AC OSEM reconstructions (6 iterations, 8 subsets)
were performed on the respiratory gated data {g`} (entire
dynamic acquisition). The position of the diaphragm is then
compared to its position as given by JRM, warping the
JRM-reconstructed average image to end-expiration and end-
inspiration. The “residuals” in the lung (defined as the squared
differences between the actual concentration and the estimated
concentration from the model) are used to demonstrate the
goodness of fit.

Additionally, when available, the warped µ maps (using the
deformation fields from JRM) are visually assessed against
gated µ maps from the CINE-CT acquisition.

C. Results

The MCIR images are generally sharper than the standard
OSEM ones, with some misalignment artefacts (e.g. near the
diaphragm) clearly reduced after motion correction. Examples
for two different time frames are shown in Figure 2. The VB
and residual error images (in the lung) are shown in Figure 3.
Visually we can see that the fit residuals are higher near the
diaphragm, and that some structures from the CT image are
more visible in the MCIR VB image. We also observed that
the mean residual in the lung was reduced by 18.7% after
motion compensation in average for all acquisitions (result not
showed here).

The JRM motion was compared visually and using profiles
against gated non-AC reconstructions (Figure 4). We observe
that the images were properly corrected for attenuation thanks
to the realignment of µ to the gated data with the motion ϕ.
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Fig. 5. End-Expiration: a) µ map from CINE-CT, b) non-AC, c) warped µ
map; End-Inspiration: d) µ map from CINE-CT, e) non-AC, f) warped µ map.

Position 

End-Expiration

End-Inspiration

a) b)

d) e)

c)

f)

Fig. 4. Comparison of warped JRM images and non-AC gated reconstructions,
along a Anterior-Posterior profile: at end-expiration: a) warped JRM, b) non-
AC, c) profiles, and at end-inspiration: d) warped JRM, e) non-AC, f) profiles.
The black arrows show the matched diaphragm locations for the two gates.

Additionally for 4 acquisitions, CINE-CT acquisitions were
available. One of the patients moved between the CINE-CT and
the PET acquisitions (shift of approximately 1 cm), producing
conspicuous artefacts on the reconstructed images (ribs/around
the heart). The method mostly realigned the µ map to the
PET gates (as compared to the non-AC reconstructions), as
shown in Figure 5. For the three other patients, the warped
JRM µ maps were in good alignment with the CINE-CT µ
maps. although the lung densities are not matching due to the
expansion/dilation of the lungs [8].

IV. CONCLUSION AND DISCUSSION

The results of this work show that JRM can provide good
estimates of motion for dynamic acquisitions of ≈ 15-min
total duration. The compartmental modelling on the motion
corrected images had decreased residuals particularly near the
diaphragm. This method, however, relies on negligible bulk
motion during the PET acquisition and an accurate surrogate
signal (no drift). This could be assessed by estimating the
motion from 2 distinct subsets of the data. Jiao et al. 2017 [9]
has shown promising results in direct joint compartmental
modelling in the brain, approximating each dynamic frame
as motion-free. This is however not the case in the lung, but
an extended version of it could be possible with additional
respiratory gates.
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