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Topological photonics aims to utilize topological photonic bands and corresponding edge modes to implement
robust light manipulation, which can be readily achieved in the linear regime of light-matter interaction.
Importantly, unlike solid-state physics, the common test bed for new ideas in topological physics, topological
photonics provides an ideal platform to study wave mixing and other nonlinear interactions. These are well-
known topics in classical nonlinear optics but largely unexplored in the context of topological photonics. Here,
we investigate nonlinear interactions of one-way edge modes in frequency mixing processes in topological
photonic crystals. We present a detailed analysis of the band topology of two-dimensional photonic crystals
with hexagonal symmetry and demonstrate that nonlinear optical processes, such as second- and third-harmonic
generation, can be conveniently implemented via one-way edge modes in this setup. Moreover, we demonstrate
that more exotic phenomena, such as slow-light enhancement of nonlinear interactions and harmonic generation
upon interaction of backward-propagating (left-handed) edge modes, can also be realized. Our work opens up
new avenues towards topology-protected frequency mixing processes in photonics.

DOI: 10.1103/PhysRevB.101.155422

I. INTRODUCTION

One of the most important developments in condensed
matter physics in the past decades is the discovery of topo-
logical insulating materials [1,2]. These materials feature
gapped bulk but gapless edge modes, which propagate uni-
directionally along the system edge and are immune to local
disorder, thus opening a promising avenue towards robust
wave manipulation protected by topology. Inspired by this
development, the emerging field of topological photonics aims
to extend these topology-related ideas to the realm of pho-
tonics [3–9], which holds great promise for innovative optical
devices by exploiting robust, scattering-free light propagation
and manipulation. As the concept of the energy band exists
at the single-particle level in both condensed matter physics
and photonics, the goal of realizing photonic topological
insulators can be readily achieved in the linear regime of
light-matter interaction. Indeed, topological phenomena of
electromagnetic waves in a linear medium can be understood
by mapping Maxwell equations to the Schrödinger equation
[10,11].

Photonics, however, has several features not present in
solid-state physics. For example, optical gain and loss can
be utilized to implement non-Hermitian photonics based on
parity-time symmetry [12]. The recently realized topological
insulator laser demonstrates the power of this new ingredient
and could deepen our understanding of the interplay between
nonhermiticity and topology in active optical systems [13,14].
Another well-known feature is the existence of nonlinearity
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in many optical materials. In fact, optical nonlinear effects
play a key role in modern photonic applications, giving
rise to a variety of important phenomena, including the for-
mation of solitons, modulation and all-optical switching of
optical signals, and frequency conversion for the generation
of ultrashort pulses [15]. Thus one expects new physics to
emerge when adding nonlinearity to photonic systems with
nontrivial topological properties. Indeed, it has been shown
that when a photonic topological insulator is embedded in an
optical medium with Kerr nonlinearity, lattice edge solitons
can arise [16,17]. The possibility of enhancing the conversion
efficiency of harmonic generation in the presence of topo-
logical edge states has also been studied [18–20]. Moreover,
traveling-wave amplifiers [21], topological sources of quan-
tum light [22], and nonlinear control [23] and mapping [24]
of photonic topological edge states have also been achieved.
Despite these important advances, the feasibility of achiev-
ing nonlinear optical mixing of edge states of topological
photonic crystals (PhCs) via phase matching, which is one
of the most fundamental nonlinear optical processes, has not
yet been explored. We would also like to highlight the key
differences between our work and previous works [18–20,24]
on nonlinear optics pertaining to topological edge states: the
works [18–20] are based on one-dimensional (1D) systems,
so that the topological edge states are nonpropagating optical
modes localized at the edges of the 1D system, whereas the
system investigated in [24] is 2D, i.e., the same as ours, but
there is only one topological bandgap at the fundamental
frequency (FF), and thus there are no nonlinear optical inter-
actions between topological modes.

In this work, we study nonlinear optical interactions of
edge modes in topological photonic crystals, as per Fig. 1.
In particular, we present a detailed study of the band topology
of 2D PhCs with hexagonal symmetry by mapping out the
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FIG. 1. (a) Schematic band structure showing the emergent edge
modes due to the nontrivial topology of the bulk frequency bands.
The edge modes can couple via SHG and THG frequency mixing
processes. (b) Real-space illustration showing the unidirectional
propagation of coupled edge modes along the system edge. The
red arrow indicates the excitation source of the fundamental wave,
whereas the green and blue waves are generated as a result of
nonlinear wave mixing.

Chern-number-graded gap phase diagrams. Interestingly, we
find that most gaps in the phase diagrams have exactly one
edge state in each gap, thus providing a convenient configura-
tion to study the nonlinear interaction of these modes. To this
end, by properly tailoring the edge configuration to achieve
phase matching, we show that key nonlinear optical processes,
such as second- and third-harmonic generation (SHG, THG)
can be readily realized in this setup. Beyond this proof-of-
principle demonstration of these nonlinear optical processes,
we further show that some more exotic nonlinear optical phe-
nomena can also be observed in these topological PhCs, in-
cluding slow-light enhanced frequency conversion efficiency
and higher-harmonic generation upon interaction of so-called
backward-propagating (left-handed) modes. All these novel
ideas open up new avenues towards active photonic devices
with novel functionalities for photonic applications.

The article is organized as follows. In the next section
we present and discuss the linear optical properties of the
topological PhC, whereas in Sec. III we describe the nonlinear
optical interaction between one-way topological modes and
the coupled-mode theory (CMT) that governs the nonlinear
propagation of interacting topological modes. Moreover, in
Sec. IV we briefly discuss possible experimental implemen-
tations of the ideas presented in this study, whereas in Sec. V
we summarize the main conclusions of this work.

II. LINEAR OPTICAL PROPERTIES OF THE
INVESTIGATED TOPOLOGICAL PHOTONIC CRYSTAL

In this section we describe the geometry and material
parameters of the topological PhC investigated in this work, as
well as the topological properties of the bulk frequency bands
and edge topological modes.

A. The system

We begin by describing the system setup. In the first step,
2D PhCs possessing topological frequency gaps around fre-
quencies of ω0, �2 = 2ω0, and �3 = 3ω0 are designed in or-
der to study SHG and THG via the corresponding edge modes
located inside these gaps. As such, in principle any PhC
satisfying this condition could be employed. Nonetheless, it
would be beneficial if the first gap were topological since
typically the spectral separation among frequency bands and
the gap widths decrease as the frequency increases. In view of
this, employing the transverse magnetic modes of a PhC with
a hexagonal symmetry lattice, which features Dirac cones at
K and K ′ points of the first Brillouin zone (FBZ) between
the first and the second bands [25], is a natural choice. More
specifically, one expects that for this configuration the first gap
becomes topological when gapping the Dirac cones by break-
ing the time-reversal symmetry. Consequently, we consider
triangular PhCs whose unit cell contains only one cylinder
with radius r as depicted in Fig. 2(a). Lattice structures with
hexagonal symmetry but having more cylinders in each unit
cell, like honeycomb and Kagome lattices with two and three
cylinders, respectively, could potentially be employed too.
The second step in our design procedure is to include mag-
netic and nonlinear materials. To guide potential experimental
implementations and for the sake of specificity, we consider
cylinders with low-permittivity (ε1), nonmagnetic nonlinear
material immersed in a magnetic background material with
a high permittivity (ε2). Note that the permittivity of the
cylinders has to be lower than that of the background to ensure
that Dirac cones exist.

B. Topological properties of the bulk frequency bands

We now move on to the topological properties of the
bulk frequency bands of the proposed nonmagnetic (μ = μ0)
PhCs whose unit cell and FBZ are shown in Figs. 2(a) and
2(b). In the following, we use the normalized frequency and
momentum, ω = ωa/2πc and k = ka/π , respectively, where
c is the speed of light and a is the lattice constant. Figure 2(c)
shows the photonic band structure of the PhC with r = 0.4a,
ε1 = 3, and ε2 = 18, from which one can see the Dirac cone
between the first and the second bands at K and K ′ points.
All band structures presented in this work were calculated
using COMSOL MULTIPHYSICS 5.3 [26], a commercial software
package based on the finite-element method, and validated
using Synopsis’s BandSOLVE software [27].

It is known that the Chern number of each band is 0 in
systems with time-reversal symmetry [28]. A common way
to break time-reversal symmetry and generate bands with a
nonzero Chern number is to use magnetic materials [29–33],
where the permeability tensor of the material under an ex-
ternal magnetic field along the z axis possesses off-diagonal
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FIG. 2. (a) Unit cell with lattice constant a of the PhC, where r and ε1 are the radius and relative permittivity of the cylinders, respectively,
and ε2 and μi are the relative permittivity and off-diagonal component of the relative permeability of the background magnetic material,
respectively. (b) The first Brillouin zone with symmetry points �, K , K ′, and M. (c) Photonic band structure of the PhC, computed for
r = 0.4a, ε1 = 3, ε2 = 18, and μi = 0. (d) Nontrivial topological bands for μi = 0.8 [other parameters are the same as in (c)], where the
Chern number of each band and the gap Chern numbers are provided (except for the last two bands, which touch each other and thus have the
same Chern number). (e) Chern-number-graded gap phase diagrams when varying r, ε1, ε2, and μi, determined for r = 0.4a, ε1 = 3, ε2 = 18,
and μi = 0.8.

components in the x-y plane, i.e.,

μ =
⎛
⎝ μ0 iμi 0

−iμi μ0 0
0 0 μ0

⎞
⎠. (1)

Here, we set μ0 = 1 and take μi as a parameter to quantify the
effect of time-reversal symmetry breaking. Figure 2(d) shows
the photonic band structure for μi = 0.8, where one can see
that the Dirac cone is now gapped.

To characterize the topology of the frequency bands, we
calculate the Chern number of the nth band, defined as [3,10]

Cn = 1

2π

∮
FBZ
Fn(k) · dk, (2)

whereAn(k) = 〈En(k)|i∇k|En(k)〉 andFn(k) = ∇k ×An(k)
are the Berry connection and Berry curvature, respectively,
with En(k) being the electric field of the nth band mode with
momentum k. The momentum-space integral is performed
over the FBZ, whereas the inner product of the Berry con-
nection is defined as 〈Eα|Eβ〉 = ∫∫

ε(r)Eα (r) · Eβ (r)dr, with
the real-space integral performed over the unit cell. The Chern
number is calculated using the algorithm described in [34] (for
more details about this algorithm, see Appendix A).

The calculated Chern numbers of the photonic bands are
indicated in Fig. 2(d) on each band, and the gap Chern
number, defined as the sum of the Chern numbers of the
bands below the gap, is also given for each gap. The gap
Chern number characterizes the topology of the gap in the
sense that its sign determines the propagation direction of the

edge modes and its value indicates the number of edge states
located inside the gap [3]. An interesting feature revealed in
Fig. 2(d) is that the first few gaps have Chern number C = 1,
which means that there is one edge mode in each gap and all
propagate in the same direction. Therefore, this configuration
provides a convenient platform to study nonlinear optical
processes, e.g., SHG and THG.

To understand intuitively what regimes can be achieved
with this setup, it is instructive to map out the Chern-number-
graded gap phase diagrams, defined as the variation of the gap
Chern numbers with the system parameters r, ε1, ε2, and μi.
We show these gap phase diagrams in Fig. 2(e) for r = 0.4a,
ε1 = 3, ε2 = 18, and μi = 0.8, when one parameter is varied
while the others are kept fixed. The results show that most
domains of the phase diagrams have C = 1. Moreover, one
can also see gaps with C = 2 and C = 3 and, importantly,
even gaps with negative Chern numbers, C = −1 and C =
−2. As we demonstrate, this variety of values of the gap Chern
numbers leads to particularly rich physics when nonlinear
interactions of topological modes are considered.

C. Topological properties of the edge modes

Guided by the phase diagrams in Fig. 2(e), we choose
suitable parameters to create photonic gaps suitable for study-
ing SHG and THG. According to the principle of bulk-edge
correspondence in systems of a finite size, when the gap has a
nonzero Chern number, one-way edge modes will emerge in
the gap. We present in Fig. 3(a) the photonic band structure of

155422-3



LAN, YOU, AND PANOIU PHYSICAL REVIEW B 101, 155422 (2020)

FIG. 3. (a) Photonic band structure of a 1D PhC strip that is
periodic along the x axis and has a finite size of 30 unit cells
along the y axis (top and bottom edges are terminated by a perfect
electric conductor at r = 0.42a). Other simulation parameters are
ε1 = 3, ε2 = 20, and μi = 0.8. Edge modes in the three gaps around
ω = 0.2, 0.4, and 0.6 are depicted by red and blue lines and are
formed at the top and bottom edges of the PhC, respectively. (b) Field
profiles of the three one-way edge modes at ω = 0.2, 0.4, and 0.6
of the top edge. Exponential decay of the field around the PhC
edge can be observed (integers indicate the number of unit cells).
(c) Dispersion curves of edge modes can be tailored by changing the
edge termination, as indicated in the sketch.

a PhC strip with 30 unit cells along the y axis and periodic
along the x axis. This figure illustrates the emergence of
various edge states across bulk photonic gaps in a range of
frequencies. For the sake of clarity, we show in red and blue
the edge states formed at the top and bottom edges of the
PhC strip, respectively. The field profiles of the edge states
at frequencies ω = 0.2, �2 = 2ω = 0.4, and �3 = 3ω = 0.6,
presented in Fig. 3(b), highlight the key feature of the edge
state—exponential decay of the field away from the edge.

A well-known prerequisite for achieving efficient fre-
quency conversion processes is to phase-match the interacting

waves [15]. In the current context, this requires a method
to tune the wave vectors of the edge modes. As far as we
know this issue has not been previously discussed, perhaps
due to the irrelevance of phase-matching in other (linear)
physics involving edge modes. We find that the wave vector
of edge modes can be readily tuned by simply changing the
configuration of the edge termination. Figure 3(c) shows how
the edge-mode band of the top edge changes when the location
of the edge termination is varied [see the sketch at the top
of Fig. 3(c)]. In general, we find that the edge-mode band
shifts by about one reciprocal lattice vector, G = 2π/a, as one
increases the width of the PhC strip by one unit cell. Note that
due to the periodicity of the system along the x axis, one can
always shift the wave vector of the edge mode to the region of
[−π/a, π/a] by adding a momentum of nG, with n a suitable
integer.

III. NONLINEAR OPTICAL INTERACTION BETWEEN
ONE-WAY TOPOLOGICAL MODES

In this section we first introduce the coupled-mode the-
ory for SHG mediated by the topological edge modes (a
similar derivation for THG is given in Appendix B). We
then present proof-of-concept results, both numerical and
analytical, on topics such as SHG and THG upon edge-
mode interaction, SHG in the slow-light regime, and SHG via
interaction between forward- and backward-propagating edge
modes.

A. Coupled-mode theory describing
second-harmonic generation

The derivation of the CMT for SHG upon nonlinear in-
teraction of topological edge modes follows the formula-
tion of the CMT governing nonlinear pulse interactions in
nonlinear PhC slab waveguides [35,36]. To begin with, we
note that our system contains magneto-optic materials, i.e.,
μ̂ �= μ̂T , but rather μ̂ = μ̂†, so that we use the conjugated
form of the Lorentz reciprocity theorem [37] for the vector
field F = E∗

1 × H2 + E2 × H∗
1, where {E1, H1} are the elec-

tric and magnetic fields of an eigenmode of the topological
PhC, whereas {E2, H2} are the electric and magnetic fields
under the effect of nonlinear polarization PNL. Here, μ̂ is the
magnetic permeability tensor and the symbols “T ” and “†”
indicate the transpose and Hermitian transpose operations,
respectively. Note also that as we consider 2D PhCs, we
denote by ẑ the out-of-plane direction, and all the physical
quantities depend only on the x and y coordinates.

To start with, we write the eigenmodes of the topological
PhC, at both the fundamental ( f ) and the second-harmonic (s)
frequencies, denoted ω0 and �2 = 2ω0, respectively, in their
Bloch forms, i.e.,

E f
1 (r, ω0) = e f (r, ω0)√

Pf
eik f (ω0 )x, (3a)

H f
1 (r, ω0) = h f (r, ω0)√

Pf
eik f (ω0 )x (3b)
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and

Es
1(r,�2) = es(r,�2)√

Ps
eiks (�2 )x, (4a)

Hs
1(r,�2) = hs(r,�2)√

Ps
eiks (�2 )x. (4b)

In these equations, {e f , h f } and {es, hs} are the lattice-
periodic electric and magnetic Bloch fields of the fundamental
and second-harmonic waves, respectively, k f ,s are the corre-
sponding Bloch wave vectors, assuming that the waves propa-
gate along the x axis, and the vector r lies in the transverse
(x, y) plane. If we choose the normalization constants Pf ,s

such that

1

4

∫ ∞

−∞
(e∗

f ,s × h f ,s + e f ,s × h∗
f ,s) · x̂dy = Pf ,s, (5)

the modes {E f
1 , H f

1 } and {Es
1, Hs

1} in Eqs. (3) and (4), respec-
tively, carry 1 W per unit length along the longitudinal z axis.

The mode power is related to the mode energy per unit
length contained in one unit cell, W , and the group velocity,
vg, via the relation

Pf ,s = Wf ,s

a
v f ,s

g = W el
f ,s + W mag

f ,s

a
v f ,s

g , (6)

where, for nondispersive media, the electric and magnetic
energies are given by the following formulas:

W el
f ,s = 1

4

∫
Acell

e∗
f ,s · ε̂e f ,sdA, (7a)

W mag
f ,s = 1

4

∫
Acell

h∗
f ,s · μ̂h f ,sdA. (7b)

One can also define an effective width of the mode, weff, in
terms of the Poynting vector of the field [36],

weff
f ,s =

( ∫ ∞
−∞ |e f ,s × h f ,s|dy

)2

∫ ∞
−∞ |e f ,s × h f ,s|2dy

. (8)

From the Maxwell equations, one can readily infer that, in
the frequency domain, the optical modes satisfy the equations

∇ × E1 = iωμ̂H1, (9)

∇ × H1 = −iωε̂E1, (10)

where ω = ω0 and ω = �2 for the fundamental and second-
harmonic waves, respectively.

Following the CMT, for the perturbed problem, we write
the electric and magnetic fields of the fundamental and
second-harmonic waves as

E f
2 (r, ω0) = A f (x)

e f (r, ω0)√
Pf

eik f (ω0 )x, (11a)

H f
2 (r, ω0) = A f (x)

h f (r, ω0)√
Pf

eik f (ω0 )x (11b)

and

Es
2(r,�2) = As(x)

es(r,�2)√
Ps

eiks (�2 )x, (12a)

Hs
2(r,�2) = As(x)

hs(r,�2)√
Ps

eiks (�2 )x, (12b)

where A f (x) and As(x) are the slowly varying envelopes of the
fundamental and second-harmonic waves, respectively, under
the effect of the nonlinear polarization PNL. The power per
unit length carried by the fundamental and second-harmonic
fields are |A f (x)|2 and |As(x)|2, respectively, meaning that
these field amplitudes are measured in

√
W/m.

The Maxwell equations for the perturbed fields are

∇ × E2 = iωμ̂H2, (13)

∇ × H2 = −iωε̂E2 − iωPω
NL, (14)

where ω = ω0 and ω = �2 for the fundamental and second-
harmonic waves, respectively. Moreover, starting from the
equation for the second-order nonlinear polarization in the
time domain, PNL(r, t ) = χ̂ (2)(r, t ) : E(r, t )E(r, t ), where
χ̂ (2) is the second-order susceptibility tensor, one can easily
show that the nonlinear polarization at the fundamental and
second-harmonic frequencies can be written as

P f
NL(r, ω0) = 2A∗

f (x)As(x)√
Pf Ps

χ̂ (2) : e∗
f (r, ω0)es(r,�2)ei(ks−k f )x,

(15a)

Ps
NL(r,�2) = A2

f (x)

Pf
χ̂ (2) : e f (r, ω0)e f (r, ω0)e2ik f x. (15b)

We now use the 2D form of the divergence theorem, which
states that for any general function F,∫

A
∇ · FdA = ∂

∂x

∫
A

F · x̂dA +
∮

∂A
F · n̂dl, (16)

where A is an arbitrary cross section perpendicular to the
direction of wave propagation, x̂, and n̂ is the unit vector
outwardly normal onto ∂A in the plane of A. If we take A to
extend to ∞ along the y axis, the line integral vanishes for
fields that decay exponentially to ∞. Moreover, the left-hand
side (l.h.s.) of Eq. (16) can be written as∫ ∞

−∞
∇ · Fdy = iω

∫ ∞

−∞
E∗

1 · Pω
NLdy. (17)

In deriving this equation, we used the vector identity ∇ · (A ×
B) = B · (∇ × A) − A · (∇ × B) and the fact that, since ε̂ and
μ̂ are Hermitian, the identities E∗

1 · ε̂E2 = (ε̂E1)∗ · E2 and
H∗

1 · μ̂H2 = (μ̂H1)∗ · H2 hold.
Let us now consider Eq. (17), written for the fundamental

frequency,
∫ ∞

−∞
∇ · Fdy = 2iω0A∗

f Asei�kx

Pf
√

Ps

×
∫ ∞

−∞
e∗

f · χ̂ (2)(ω0; −ω0,�2) : e∗
f esdy,

(18)
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where �k = ks(�2) − 2k f (ω0) is the wave-vector mismatch.
Moreover, the right-hand side (r.h.s.) of Eq. (16) can be cast
as

∂

∂x

∫ ∞

−∞
F · x̂dy = ∂

∂x

∫ ∞

−∞

(
E f ∗

1 × H f
2 + E f

2 × H f ∗
1

) · x̂dy

= dA f (x)

dx

1

Pf

∫ ∞

−∞
(e∗

f × h f + e f × h∗
f ) · x̂dy = 4

dA f (x)

dx
.

(19)

Comparing Eqs. (18) and (19), we arrive at the equation
describing the slowly varying mode amplitude A f (x),

dA f (x)

dx
= iγ (2)

f (x)A∗
f (x)As(x)ei�kx, (20)

where the nonlinear coefficient at the fundamental frequency
is

γ
(2)
f (x) = ω0

2Pf
√

Ps

∫ ∞

−∞
e∗

f · χ̂ (2)(ω0; −ω0,�2) : e∗
f esdy.

(21)
The equation governing the evolution of the slowly varying

mode amplitude of the second-harmonic, As(x), is derived
in a similar way. Thus, when ω = �2, the l.h.s. of Eq. (16)
becomes∫ ∞

−∞
∇ · Fdy = i�2A2

f e−i�kx

Pf
√

Ps

×
∫ ∞

−∞
e∗

s · χ̂ (2)(�2; ω0, ω0) : e f e f dy, (22)

and the r.h.s. of Eq. (16) can be expressed as

∂

∂x

∫ ∞

−∞
F · x̂dy = ∂

∂x

∫ ∞

−∞

(
Es∗

1 × Hs
2 + Es

2 × Hs∗
1

) · x̂dy

= dAs(x)

dx

1

Ps

∫ ∞

−∞
(e∗

s × hs + es × h∗
s ) · x̂dy = 4

dAs(x)

dx
.

(23)

Finally, from Eqs. (22) and (23), we obtain the governing
equation for the slowly varying amplitude As(x),

dAs(x)

dx
= iγ (2)

s (x)A2
f (x)e−i�kx, (24)

where the nonlinear coefficient at the second harmonic is

γ (2)
s (x) = �2

4Pf
√

Ps

∫ ∞

−∞
e∗

s · χ̂ (2)(�2; ω0, ω0) : e f e f dy. (25)

In order to better understand the effects of the slow light on
the strength of the nonlinear interaction, we use Eq. (6) in con-
junction with Eq. (7) to express the nonlinear coefficients as

γ
(2)
f (x) = 4Z3/2

0 ω0ng, f
√

ng,s√
a

χ
(2)
eff, f (x)

= 4ω0√
aε

3/2
0 vg, f

√
vg,s

χ
(2)
eff, f (x), (26a)

γ (2)
s (x) = 2Z3/2

0 �2ng, f
√

ng,s√
a

χ
(2)
eff,s(x)

= 2�2√
aε

3/2
0 vg, f

√
vg,s

χ
(2)
eff,s(x), (26b)

where Z0 is the vacuum impedance, ng, f /s = c/vg, f /s are the
group indices of the two interacting modes, and the effective
second-order susceptibilities χ

(2)
eff, f /s(x) are defined by the

following relations:

χ
(2)
eff, f (x) =

a2
∫ ∞

−∞
e∗

f · χ̂ (2)(ω0; −ω0,�2) : e∗
f esdy

∫
Acell

(
e∗

f · ε̂re f + Z2
0 h∗

f · μ̂rh f
)
dA

[ ∫
Acell

(
e∗

s · ε̂res + Z2
0 h∗

s · μ̂rhs
)
dA

]1/2 , (27a)

χ
(2)
eff,s(x) =

a2
∫ ∞

−∞
e∗

s · χ̂ (2)(�2; ω0, ω0) : e f e f dy

∫
Acell

(
e∗

f · ε̂re f + Z2
0 h∗

f · μ̂rh f
)
dA

[ ∫
Acell

(
e∗

s · ε̂res + Z2
0 h∗

s · μ̂rhs
)
dA

]1/2 . (27b)

It should be noted that the nonlinear coefficients and non-
linear effective susceptibilities vary with the x coordinate over
a characteristic length equal to the lattice constant, a, whereas
the characteristic length over which the field amplitudes vary
is equal to 1/�k. When the two interacting waves are nearly
phase-matched, a 
 1/�k. Therefore, in order to describe the
nonlinear mode interactions, it is convenient to introduce the
averaged physical quantities

γ
(2)
f ,s = 1

a

∫ x0+a

x0

γ
(2)
f ,s (x)dx, (28a)

χ
(2)
eff, f /s = 1

a

∫ x0+a

x0

χ
(2)
eff, f /s(x)dx, (28b)

where x0 is arbitrary. Then, by averaging Eqs. (20) and (24),
we arrive at the system of CMT governing the nonlinear
dynamics of the interacting modes,

dA f (x)

dx
= iγ (2)

f A
∗
f (x)As(x)ei�kx, (29a)

dAs(x)

dx
= iγ (2)

s A
2
f (x)e−i�kx, (29b)

where A f (x) and As(x) are the averaged mode amplitudes
at the fundamental and second-harmonic frequencies, respec-
tively.
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B. Description of the full-wave numerical simulations approach

The full-wave dynamics of the nonlinear interaction of
topological edge modes (SHG and THG) were determined
numerically using the module “Electromagnetic Waves, Fre-
quency Domain” of COMSOL MULTIPHYSICS. Thus, to sim-
ulate the nonlinear frequency mixing processes in COMSOL,
we defined two “Electromagnetic Waves, Frequency Do-
main” models: one for the fundamental frequency ω0 and
one for the second (third) harmonic frequency �2 (�3).
The two models are coupled using a “Polarization” feature
added to each of the models. We assumed that for both the
SHG and the THG cases the nonlinear susceptibilities are
diagonal tensors, the diagonal elements being χ2 and χ3,
respectively.

For the study of SHG (where we consider transverse-
magnetic-polarized modes), the nonlinear polarizations at the
FF and second harmonic (SH) are

Pω0
NL,z = 2χ2E2zE

∗
1z, (30a)

P�2
NL,z = χ2E2

1z. (30b)

For the study of THG, the corresponding nonlinear polar-
izations are

Pω0
NL,z = 3χ3E3zE

∗
1z

2
, (31a)

P�3
NL,z = χ3E3

1z. (31b)

C. Second-harmonic generation and third-harmonic generation
upon edge-mode interaction

We now investigate nonlinear frequency conversion pro-
cesses via the edge modes indicated in Fig. 3(a) using full-
wave numerical simulations of Maxwell equations with the
results summarized in Fig. 4. In the following, we mainly
focus on the discussion of SHG, as the results of THG can
be understood similarly.

We consider cylinders made of homogeneous and isotropic
nonlinear material with a scalar nonlinear second-order sus-
ceptibility of χ (2) = 10−21 C V−2 (the typical value of χ (2)

varies from 10−24 to 10−21 C V−2 [38]). The pump electric
field E1 is induced by an external source; E2, by the nonlinear
polarization at the SH, generated by E1. The amplitude of
E1 is chosen such that the undepleted pump approximation
holds, i.e., the amplitude of E1 is much larger than that of
E2 and thus E1 is roughly constant during the frequency
conversion process. Note, however, that our analysis remains
valid when this condition is not fulfilled also, our choice
being chiefly guided by a more facile comparison between
numerical and theoretical results, which is possible in this
propagation regime.

From Figs. 4(a) and 4(b), one can observe that the field
profiles of E1 and E2 are indeed the same as the profiles of the
edge modes shown in Fig. 3(b), indicating that the two edge
modes are indeed nonlinearly interacting via the SHG—a key
result of our work. The physics of this nonlinear process can
be accurately captured by the CMT (see Appendix C). In
particular, the period of spatial oscillations of the SH field E2

is determined by the wave-vector mismatch �k = kSH − 2kFF

[�k = kTH − 3kFF for third-harmonic (TH) generation]. As
a result, we can straightforwardly compare the numerically

extracted oscillation period of E2 with the theoretical predic-
tion of 
2 = 2π/�k, thus confirming that the key physics of
nonlinear frequency conversion processes is validated by our
simulations.

We further validate these conclusions using a much larger
simulation domain, with the corresponding results being
presented in Figs. 4(d)–4(f). In Fig. 4(d), where ω0 = 0.2,
�2 = 0.4, and �k = 0.054, we have 
2 = 37. The agreement
between the predictions of the CMT and direct numerical
simulations, for both the period and the amplitude of SH
power oscillation along the propagation distance, is excellent.
We calculate �k for all the frequencies of the interacting
edge modes in Fig. 4(e) and present the theoretically cal-
culated and numerically extracted oscillation period 
2 in
Fig. 4(f). An excellent agreement between the two results can
be observed, which confirms the key physics of SHG, namely,
phase-matching is indeed at work in our photonic system and
SHG purely via nonlinear interaction of edge modes occurs in
our setup. We also confirm the edge-mode-mediated THG as
shown in Figs. 4(g)–4(i), where the discrepancy in Fig. 4(i)
between the numerical and the theoretical results is due to
inherent limitations of numerical simulations at very small
�k.

While the SHG and THG of one-way edge modes are
governed by the usual mechanism of topological protection
from the chiral nature of the edge modes, where the modes can
bypass structural defects, such as the sharp bends shown in
Figs. 4(a)–4(c), without undergoing backscattering, the effect
of structural defects on the coherence properties of nonlinear
processes is an important but less understood problem. In
order to answer this key question, and taking SHG as an
example, we introduce a structural defect at a certain location
along the edge where the fundamental and second-harmonic
modes copropagate and present the corresponding simulation
results in Fig. 4(j). Thus, it can be seen that, as expected,
both the fundamental and the second-harmonic modes bypass
the defect without experiencing backscattering. More impor-
tantly, by comparing the results in Figs. 4(j) and 4(d), one
can infer that the coherence length of the SHG, namely, the
oscillation period of the amplitude of the interacting modes,
is not altered by the interaction with the structural defect.
In other words, the coherence of the nonlinear interaction is
preserved in the presence of defects, meaning that the phase-
matched nature of the nonlinear mode interaction process
is immediately regenerated after the mode interaction with
each defect. As the coherence length crucially determines the
conversion efficiency of the nonlinear processes, topological
protection of the coherence length in nonlinear frequency
mixing processes demonstrates a new area where topology
can boost the performance of photonic devices based on
nonlinear optical processes.

Another relevant question, which we do not intend to fully
answer here, is how other types of perturbations affect the
phase-matching condition of the nonlinear optical interaction
of topological modes. From a practical point of view, the
most relevant such perturbation is structural disorder, and
in this context we consider two cases, namely, weak and
strong disorder. The case of weak disorder can be analyzed
using perturbative methods. Thus, let us assume that in the
absence of disorder the frequency-dependent wave-vector
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mismatch, �ki(ω), vanishes at a certain frequency ω0, that is,
�ki(ω0) = 0. Then, adding weak disorder to the unperturbed
system will change the modal dispersion of the interacting
modes, such that the wave-vector mismatch varies, say, by
a small quantity, δk(ω). Furthermore, since one expects that
δk(ω) has a constant sign around the frequency ω0, it can
be seen that there is a frequency ω0 + δω0 at which the
wave-vector mismatch in the presence of disorder, �k f (ω) =
�ki(ω) + δk(ω), vanishes, that is, �k f (ω0 + δω0) = 0. To
validate this argument, one would have to employ full-wave
simulations of the nonlinear optical interaction of topolog-
ical modes and average the results over an ensemble of
disorder realizations large enough to achieve convergence
of the ensemble average. This computational analysis would
be rather unfeasible, as just a single full-wave simulation
requires several days to complete. On the other hand, for
large values of disorder strength, concepts such as opti-

cal modes, topological properties, and photonic bandgaps
cease to exist, and therefore we do not investigate this case
further.

D. Second-harmonic generation in the slow-light regime

The slow-light regime, characterized by a significantly re-
duced group velocity, vg = dω/dk, can be particularly effec-
tive in enhancing the efficiency of nonlinear wave interactions.
In the context of SHG, this can be achieved when vg is reduced
at one or both interacting waves. As Fig. 3(c) suggests, when
one varies the location of the edge termination, the shift of
the dispersion curve of the edge modes is accompanied by
a change in its shape. For example, we find that for t =
0.24a, the dispersion curve of the edge mode at the FF has
a plateau [see Fig. 5(a)], leading to a peak of the group
index, ng = c/vg, at ωg (see Fig. 5(b), where we define the
slow-light regime by the condition ng > 20 [36]). On the other

0 20 40 60 80 10 0

0 20 40 60 80 10 0

E1

E2

E3

1.5 2.0 2.5 3.0
0.36

0.38

0.40

0.42

0.44

k

2 0

2

0.38 0.39 0.4 0.41 0.42 0.43

15

25

35

k2

simulation
2 / k

0.38 0.430.05

0.15

2.5 3.0 3.5 4.0 4.5

0.58

0.60

0.62

0.64 3 0

3

k
0.58 0.6 0.62 0.64

20
40
60
80
100
120 simulation

2 / k

0.58 0.650.

0.2
3 k

P2

1
simulation
CMT

1
simulation
CMTP3

L

L

E1

E2

(a)

(b)

(c)

(d)

(e)
(f)

(g)

(h) (i)

(j)

FIG. 4. (a–c) Simulated field profile intensities of E1, E2, and E3 at ω = 0.2, �2 = 2ω = 0.4, and �3 = 3ω = 0.6, respectively, where E1

is induced by an external source indicated by an arrow, whereas E2 and E3 are generated by the corresponding nonlinear polarizations. SHG
and THG are simulated separately with χ (2) = 10−21 C V−2 and χ (3) = 10−30 C m V−3. In the simulations, the absorbing boundary condition
(ABC) is used for the left edge and PEC for the other edges. (d–f) Detailed analysis of SHG, where (d) shows the field intensity profile and
power P2 (normalized by its peak value) at SH in a much larger simulation domain so as to resolve the oscillations of P2 due to the small phase
mismatch �k of the edge modes at FF ω = 0.2 and SH �2 = 0.4 (dotted and solid lines correspond to full numerical simulations and CMT,
respectively); (e) shows the edge modes at FF ω0 (plotted in terms of 2ω0) and, for SHG, �2; and (f) shows the effect of phase matching, where
the theoretically calculated 
2 = 2π/�k and numerically extracted oscillation period of E2 are in excellent agreement. The ω(�k) curve is
calculated according to the edge modes presented in (e). (g–i) Results corresponding to (d)–(f), respectively, but calculated for the THG. (j)
Illustration of the effect of a structural defect (simulated as the thin PEC rectangle) on the SHG interaction of topologically protected modes.
Compared to the defect-free case shown in (d), one can see that the oscillation period of the amplitude of the second-harmonic mode after
bypassing the defect is the same as that in (d).
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FIG. 5. (a) Dispersion of edge modes at ω0 and �2 determined
for t = 0.24a, as in Fig. 3(c), whereas the other simulation parame-
ters are the same as in Fig. 4. (b) The dispersion curve of the FF mode
now shows a plateau leading to a peak of ng at ωg = 0.1968. The
frequency of the phase-matching point ωk ≡ ω (�k = 0) is ωk =
0.1972. (c) Enhancement of the SH conversion efficiency due to the
slow-light effect. Left panel: An example where the SH power P2

at two frequencies, ωl = 0.1960 and ωh = 0.1975, shows the same
oscillation period, yet its oscillation amplitude at ωl (closer to the
maximum of ng, located at ωg) is enhanced compared to that at ωh.
Right panels: Schematics of the formal definition of the enhancement
factor η (top) and its frequency dependence in the slow-light regime
(bottom).

hand, the fact that the phase-matching spectral point ωk ≡
ω(�k = 0) �= ωg provides a valuable approach to study of
the interplay between slow-light and phase-matching effects
in the enhancement of SH conversion efficiency.

To this end, we fix the power of the FF at P1 = 1 W and
compare the conversion efficiencies at two frequencies, ωl and
ωh, lower and higher compared to ωk , respectively, chosen
such that �k(ωl ) = −�k(ωh) [see the sketch in Fig. 5(c)].
As such, phase-matching has the same influence on the wave
interaction in the two cases and the conversion efficiency
enhancement, η = P2(ωl )/P2(ωh), is purely due to slow-light
effects. The results in Fig. 5(c) show that slow-light contri-
bution to η can be larger than 20×. Alternative scenarios to
enhance the SH conversion efficiency can also be devised,
e.g., by using PhCs for which ωk = ωg or PhCs for which the
edge modes at both the FF and the SH are slow-light edge
modes.

E. Second-harmonic generation via interaction between
forward- and backward-propagating edge modes

We now move on to an important class of nonlinear pro-
cesses, which are challenging to achieve in regular optical
media, and demonstrate SHG via interaction of backward-
propagating edge modes. To this end, we exploit the existence
of photonic gaps with a negative Chern number in our system,
as per Fig. 2(e). In particular, we explore a case where the
gap at the FF has C = 1, while the gap at the SH has C =
−1. The corresponding edge modes are shown in Fig. 6(c),

FIG. 6. SHG via interaction between forward- and backward-
propagating edge modes. This setting exploits the existence of a gap
with a negative Chern number at the SH for r = 0.41a, ε1 = 3, ε2 =
20, μi = 0.82 [see Fig. 2(e)] and edge termination at t = 0.82a [see
Fig. 3(c)]. (a, b) Field intensity profiles of E1 and E2 calculated for
2ω0 = 0.74, illustrating that whereas the mode at the FF propagates
clockwise (C = 1 for the ω0 gap), the edge mode at the SH is
backward propagating (C = −1 for the �2 gap). In the simulation,
ABC is used for the bottom edge and PEC boundaries for the other
edges. (c) Edge states of the two gaps, which show the hallmark
of edge modes with a negative Chern number: the slope of the
dispersion curve of the edge mode at the SH is negative. (d) Com-
parison between the theoretically calculated and the numerically
extracted oscillation period 
2, confirming that the phase-matching
mechanism is involved in this unusual nonlinear interaction regime.

which illustrates the signature of modes with a negative Chern
number, i.e., the slope of the mode dispersion curve (at �2)
is negative. The simulation results of the field profiles are
presented in Figs. 6(a) and 6(b). It clearly shows that whereas
the mode at the FF propagates clockwise, as it is a forward-
propagating mode, the SH wave propagates counterclockwise
because in the left-half region of the simulation domain there
is no field at the FF and consequently no nonlinear polar-
ization at the SH (note that we placed the source of the FF
wave at the middle of the top edge and used the absorbing
boundary condition for the bottom edge). We also confirm
that the phase-matching mechanism is involved in this unusual
mode interaction regime, as per the results in Fig. 6(d). This
backward-propagating mode regime is promising for practical
applications where one is required to separate the FF mode
from the mode generated at the SH.

IV. EXPERIMENTAL CONSIDERATIONS

The key idea of this work involves coupling the edge states
within different topological frequency bandgaps via optical
nonlinearity. This central idea of our study is rather general
and can potentially be implemented in different experimental
platforms available for topological photonics. In this section,
for the sake of completeness, we first present a set of materials
and parameters that can be used to experimentally implement
our model system. Then we discuss further possible experi-
mental platforms that can be used to implement the theoretic
ideas and results presented in our work.

Since we separate the magnetic and nonlinear material
components as the background and cylindrical regions of
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the PhC, respectively, possible experimental implementations
could be readily conceived considering the fact that at mi-
crowave frequencies, magnetic materials to realize topological
bandgaps [29–33] and nonlinear materials to realize frequency
mixing [39–42] are routinely used. For example, to demon-
strate the topology-protected SHG, one can use as the back-
ground medium yttrium iron garnet (YIG) [43], a magnetic
material widely used in recent experiments in topological
photonics [29–33]. This material has relative permittivity
ε = 15 and a saturation magnetization of 4πMs = 1780 G.
At a frequency of 10 GHz and an external magnetic field
of H0 = 1000 Oe along the z axis, the components of the
permeability of YIG in the x-y plane are μdiag = 0.85 and
μoff-diag = 0.54. For the nonlinear material, one could use
NaNO2, which has relative permittivityε = 4.18 and χ (2) =
3.2 × 10−22 C V−2 frequency of tens of GHz [39]. Setting
the radius of the cylinders to r = 0.35a, with a ≈ 3mm, the
system has topological bandgaps at ω0 ∈ [0.195, 0.23] and
�2 ∈ [0.385, 0.41], so that SHG is achieved in the frequency
interval of ω0 ∈ [0.195, 0.205]. The effects of material losses
and frequency dispersion in a ferrite at microwave frequencies
have been discussed in Ref. [28], showing that for YIG, the
decay length is around 1300a, thus far exceeding practical
structural dimensions, and the bandgap width slightly de-
creases, by about 6%.

Furthermore, recent advances in different experimental
platforms for topological photonics [3–9] provide a variety
of choices available to implement the idea of topologically
protected nonlinear frequency mixing processes in diverse
photonic systems. More specifically, as nonlinearity exists
in many optical materials and is easy to incorporate in an
experimental platform, the key task reduces to designing pho-
tonic systems with several topological frequency bandgaps
that can satisfy the frequency and phase-matching conditions.
Regarding this requirement, we stress that several recent
experiments have demonstrated the existence of topological
bandgaps using coupled waveguides or resonators [44–46].
In these tight-binding systems, further topological bandgaps
at higher frequencies can readily be created by considering
waveguide or resonance modes at higher frequencies.

In what follows, we outline and briefly discuss several such
experimental configurations in which this can potentially be
achieved.

(i) Nonlinear and magnetic metamaterials. Magnetism
and nonlinearity can be easily implemented using metamate-
rials [47–50], which provides an alternative to using regular
materials, such as YIG and NaNO2, suggested above. For
example, to create nonlinear metamaterials, approaches such
as insertion of nonlinear elements, nonlinear host medium,
and nonlinear transmission lines are commonly used [49]. Ar-
tificial magnetism at optical frequencies can be created using
metamaterials based on split-ring resonators [47]. Harmonic
generation and topological edge states have also been studied
in such types of metamaterials [48,50].

(ii) Graphene plasmonic crystals [51–54]. In Ref. [52]
(see Fig. 3(c) therein) the existence of topological edge modes
within different bandgaps of a graphene plasmonic crystal
has been demonstrated. Moreover, in another study [51] (see
Fig. 2(a) therein) the existence of two Dirac points at the
frequencies of 3.4 and 6.8 THz has been demonstrated. These

Dirac points can be gapped out to form two topological
bandgaps (ideal for SHG) under an external magnetic field
as shown in [52] and [53]. In fact, recently, we have studied
the topologically protected four-wave mixing process in a
graphene metasurface [54].

(iii) Mimicking time-reversal breaking and synthesizing
magnetic fields for photons [44,45,55]. Using an array of
evanescently coupled helical waveguides, topological one-
way edge states similar to that presented in Fig. 3 can be
created without the need for an external magnetic field (see,
e.g., Fig. 2(b) in Ref. [44]). Alternatively, one can also create
one-way edge states using synthetic magnetic fields rather
than a real magnetic field in an array of coupled optical-
ring resonators (e.g., see Fig. 4 in Ref. [45]). Furthermore,
additional topological bandgaps at higher frequencies can be
readily created by considering waveguide modes at corre-
sponding frequencies.

(iv) Photonic quantum valley [46,56–58] or spin [24,59–
64] Hall (QVH or QSH) crystals with time-reversal symmetry.
Recent experiments on valley-Hall-like photonic systems have
demonstrated the existence of one [46,56,57] or two [58] (see
Fig. 2(b) therein) topological bandgaps and corresponding
edge modes within the gaps. As for photonic QSH systems,
the experiments in [24], [60], and [61] have demonstrated the
existence of one topological bandgap. Moreover, the proposal
in [64] (see Figs. 3 and 4 therein) using optically passive
elements to realize the optical version of the QSH insulator
has shown the existence of multiple topological bandgaps.

V. CONCLUSIONS

In this work, we have demonstrated topology-protected
nonlinear frequency conversion processes via one-way edge
modes of topological photonic crystals. Apart from the proof-
of-concept implementations, such as SHG and THG, we also
showed that more complex behaviors, such as slow-light
effects and counter-propagating mode interaction, can also
be realized within the setup. A special aspect of nonlinear
processes, i.e., the phase-matching condition, requires a new
level of control of the edge modes, which has not been
discussed previously. This condition requires a method to
tune the dispersion of the edge modes, which we found can
be conveniently achieved by tailoring the geometry of the
edge termination. Our work reveals that the coherence length
characterizing the nonlinear optical interactions considered
in this study, which crucially determines the efficiency of
the topologically protected nonlinear frequency mixing pro-
cesses, is robust against structural defects. Our proposed setup
provides a platform for studying additional phenomena, e.g.,
when the frequency gap has a large Chern number (|C| �= 0, 1
[65]) one can explore how to excite one of the several edge
modes in the gap or how to couple edge modes belonging to
different gaps via the nonlinearity of the medium.

Importantly, nonlinear interactions of topological modes,
such as sum- and difference-frequency generation, high-
harmonic generation, and four-wave mixing, can be readily
implemented within our setup. Our work may also stimulate
the search for other lattice geometries or setups where one
can optimize the gap properties for specific applications. For
example, in the Chern number graded gap phase diagrams
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in Fig. 2(e), apart from the gap of C = 1, other gaps with
C = −1, −2, 2, and 3 are typically narrow and appear at high
frequencies, so designing setups where these gaps are wide
and are formed at low frequencies is particularly relevant from
the experimental point of view. Beyond the experimental im-
plementation of our model system at microwave frequencies
using magnetic and nonlinear materials, we also discussed
several different possible implementations using diverse ex-
perimental platforms available for topologic photonics. Last
but not least, the concept of topology-protected nonlinear
frequency mixing is very general in that it applies not only
to photonics, but also to plasmonics [52,53,66,67], phononics
[68–70], magnonics [71–73], and exciton-polariton systems
[74–77], thus we expect that our work will have a broad
impact.
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APPENDIX A: COMPUTATION OF CHERN NUMBERS

The Chern number of the nth band of the photonic crystal
is defined by Eq. (2) based on Refs. [3] and [10]. An efficient
numerical algorithm to compute it was introduced in Ref. [34].
In this method, from the eigenmode |En(k)〉 of the nth band,
which can be accessed directly from the eigenfrequency solver
of COMSOL, one can define a U (1) link variable,

Uα (kl ) = 〈En(kl )|En(kl + eα ) 〉
|〈En(kl )|En(kl + eα ) 〉| , (A1)

where kl is a lattice point in the discretized Brillouin zone and
eα is the lattice displacement in the direction α (α = 1, 2).
Furthermore, a lattice field strength can be defined by the link
variable,

F12(kl ) = ln
[
U1(kl )U2(kl + e1)U −1

1 (kl + e2)U −1
2 (kl )

]
,

(A2)

where the lattice field strength is defined as the principal
branch of the logarithm −π < F12((kl )/i � π . Finally, the
Chern number of the nth band can be calculated from the
lattice field strength according to

Cn = 1

2π i

∑
l

F12(kl ), (A3)

where the sum is taken over all the lattice points in the
discretized Brillouin zone. The Cn defined above is manifestly
gauge invariant and strictly an integer for arbitrary lattice
parameters. This is because if we introduce a gauge potential

Aα (kl ) = ln Uα (kl ), −π < Aα (kl )/i � π, (A4)

we can get

F12(kl ) = �1A2(kl ) − �2A1(kl ) + i2πn12(kl ), (A5)

where �α f (kl ) = f (kl + eα ) − f (kl ) and n12(kl ) is an
integer-valued field, chosen in such a way that F12(kl )/i takes

a value within the principal branch. Consequently, we can get

Cn =
∑

l

n12(kl ), (A6)

which shows that Cn is an integer. Certainly, this does not
mean that any coarse discretization of the FBZ will ensure
a converged Chern number; nevertheless, asymptotic conver-
gence of the Chern number requires only a moderately dense
discretization. In our calculations of the data presented in
Fig. 2(e), we find that a 20 × 20 discretization of the FBZ
suffices.

APPENDIX B: COUPLED-MODE THEORY FOR
THIRD-HARMONIC GENERATION

The coupled-mode equations for third-harmonic genera-
tion can be derived in a way similar to that for second-
harmonic generation presented in Sec. III A. Here we out-
line the main steps [35,36]. First, one can write down the
expressions for the fundamental ( f ) and third (t) harmonic
waves, (E f

1 , H f
1 , E f

2 , H f
2 , P f

NL) and (Et
1, Ht

1, Et
2, Ht

2, Pt
NL), in

the Bloch forms

E f
1 (r, ω0) = e f (r, ω0)√

Pf
eik f (ω0 )x, (B1a)

H f
1 (r, ω0) = h f (r, ω0)√

Pf
eik f (ω0 )x, (B1b)

Et
1(r,�3) = et (r,�3)√

Pt
eikt (�3 )x, (B1c)

Ht
1(r,�3) = ht (r,�3)√

Pt
eikt (�3 )x (B1d)

and

E f
2 (r, ω0) = A f (x)

e f (r, ω0)√
Pf

eik f (ω0 )x, (B2a)

H f
2 (r, ω0) = A f (x)

h f (r, ω0)√
Pf

eik f (ω0 )x, (B2b)

Et
2(r,�3) = At (x)

et (r,�3)√
Pt

eikt (�3 )x, (B2c)

Ht
2(r,�3) = At (x)

ht (r,�3)√
Pt

eikt (�3 )x, (B2d)

where �3 = 3ω0 and P f
NL, Pt

NL can be derived from

PNL(r, t ) = χ̂ (3)(r, t )
...E(r, t )E(r, t )E(r, t ) with E(r, t ) =

E f
2 (r, t ) + Et

2(r, t ) and χ̂ (3) the third-order susceptibility
tensor. After some simple algebra, the nonlinear polarizations
at the fundamental and third-harmonic frequencies can be
written as

P f
NL(r, ω0)

= 3A∗
f

2(x)At (x)

Pf
√

Pt
χ̂ (3)...e∗

f (r, ω0)e∗
f (r, ω0)et (r,�3)ei(kt −2k f )x,

(B3a)
Pt

NL(r,�3)

= A3
f (x)

Pf
√

Pf
χ̂ (3)...e f (r, ω0)e f (r, ω0)e f (r, ω0)e3ik f x. (B3b)
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If we now consider the fields (E f
1 , H f

1 , E f
2 , H f

2 , P f
NL), the

l.h.s. of Eq. (16) gives

∫ ∞

−∞
∇ · Fdy = 3iω0A∗

f
2At ei�kx

Pf
√

Pf Pt

∫ ∞

−∞
e∗

f · χ̂ (3)...e∗
f e∗

f et dy,

(B4)

where �k = kt (�3) − 3k f (ω0), and the r.h.s. of Eq. (16) leads
to

∂

∂x

∫ ∞

−∞
F · x̂dy = ∂

∂x

∫ ∞

−∞

(
E f ∗

1 × H f
2 + E f

2 × H f ∗
1

) · x̂dy

= dA f (x)

dx

1

Pf

∫ ∞

−∞
(e∗

f × h f + e f × h∗
f ) · x̂dy = 4

dA f (x)

dx
.

(B5)

Comparing Eqs. (B4) and (B5), we obtain the coupled-mode
equation for the slowly varying mode amplitude A f (x),

dA f (x)

dx
= iγ (3)

f (x)A∗
f

2(x)At (x)ei�kx, (B6)

where the nonlinear coefficient at the fundamental frequency
is

γ
(3)
f (x)

= 3ω0

4Pf
√

Pf Pt

∫ ∞

−∞
e∗

f · χ̂ (3)(ω0; −ω0,−ω0,�3)
...e∗

f e∗
f et dy.

(B7)

Similarly, if we consider the fields (Et
1, Ht

1, Et
2, Ht

2, Pt
NL),

the l.h.s. of Eq. (16) gives
∫ ∞

−∞
∇ · Fdy = i�3A3

f ei�kx

Pf
√

Pf Pt

×
∫ ∞

−∞
e∗

t · χ̂ (3)(�3; ω0, ω0, ω0)
...e f e f e f dy,

(B8)

and the r.h.s. of Eq. (16) can be written as

∂

∂x

∫ ∞

−∞
F · x̂dy = ∂

∂x

∫ ∞

−∞

(
Et∗

1 × Ht
2 + Et

2 × Ht∗
1

) · x̂dy

= dAt (x)

dx

1

Pt

∫ ∞

−∞
(e∗

t × ht + et × h∗
t ) · x̂dy = 4

dAt (x)

dx
.

(B9)

Finally, from Eqs. (B8) and (B9), we get the coupled-mode
equation for the slowly varying amplitude At (x) as

dAt (x)

dx
= iγ (3)

t (x)A3
f (x)e−i�kx, (B10)

where the nonlinear coefficient at the third-harmonic fre-
quency is

γ
(3)

t (x)= �3

4Pf
√

Pf Pt

∫ ∞

−∞
e∗

t · χ̂ (3)(�3; ω0, ω0, ω0)
...e f e f e f dy.

(B11)
We can also express the nonlinear coefficients in terms of

the group indices and the effective third-order susceptibilities,
χ

(3)
eff, f /t (x), of the two interacting modes,

γ
(3)
f (x) = 12ω0

aε2
0vg, f

√
vg, f vg,t

χ
(3)
eff, f (x), (B12a)

γ
(3)

t (x) = 4�3

aε2
0vg, f

√
vg, f vg,t

χ
(3)
eff,t (x), (B12b)

where

χ
(3)
eff, f (x) =

a3
∫ ∞

−∞
e∗

f · χ̂ (3)(ω0; −ω0,−ω0,�3)
...e∗

f e∗
f et dy

[ ∫
Acell

(
e∗

f · ε̂re f + Z2
0 h∗

f · μ̂rh f
)
dA

]3/2[ ∫
Acell

(
e∗

t · ε̂ret + Z2
0 h∗

t · μ̂rht
)
dA

]1/2 , (B13a)

χ
(3)
eff,t (x) =

a3
∫ ∞

−∞
e∗

t · χ̂ (3)(�3; ω0, ω0, ω0)
...e f e f e f dy

[ ∫
Acell

(
e∗

f · ε̂re f + Z2
0 h∗

f · μ̂rh f
)
dA

]3/2[ ∫
Acell

(
e∗

t · ε̂ret + Z2
0 h∗

t · μ̂rht
)
dA

]1/2 . (B13b)

Introducing the averaged physical quantities,

γ
(3)
f ,t = 1

a

∫ x0+a

x0

γ
(3)
f ,t (x)dx, (B14a)

γ
(3)
eff, f /t = 1

a

∫ x0+a

x0

γ
(3)

eff, f /t (x)dx, (B14b)

and then averaging Eqs. (B6) and (B10) over one lattice
constant, we obtain the coupled-mode equations governing
the nonlinear dynamics of the interacting modes,

dA f (x)

dx
= iγ (3)

f A
∗
f

2
(x)At (x)ei�kx, (B15a)

dAt (x)

dx
= iγ (3)

t A
3
f (x)e−i�kx, (B15b)
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FIG. 7. (a, c) Real and (b, d) imaginary parts of χ
(2)
eff, f (x) and

χ
(2)
eff,s(x) of Eq. (27) for SHG in one unit cell. While the real parts

of χ
(2)
eff, f (x) and χ

(2)
eff,s(x) are even functions, with respect to the center

of the unit cell, the imaginary parts of χ
(2)
eff, f (x) and χ

(2)
eff,s(x) are odd

functions.

where A f (x) and At (x) are the averaged mode amplitudes at
the fundamental and third-harmonic frequencies, respectively.

APPENDIX C: COMPARISON BETWEEN RIGOROUS
NUMERICAL SIMULATIONS AND
THE COUPLED-MODE THEORY

In this Appendix, we present a computational analysis that
illustrates how the coupled-mode theory derived above can
be used to explain the full-wave dynamics obtained using
COMSOL.

1. Second-harmonic generation described by the
coupled-mode theory

The key quantities that characterize the coupled-mode
theory describing second-harmonic generation are χ

(2)
eff, f (x)

and χ
(2)
eff,s(x), as defined by Eqs. (27a) and (27b), respectively.

As we consider photonic crystals that are periodic in space,
χ

(2)
eff, f (x) and χ

(2)
eff,s(x) are periodic functions of x, and we only

need to show their x dependence in one unit cell. Thus, in
Fig. 7 we depict the x dependence of χ

(2)
eff, f (x) and χ

(2)
eff,s(x) in

one unit cell. As one can see, while the real parts of χ
(2)
eff, f (x)

and χ
(2)
eff,s(x) are even functions, with respect to the center

of the unit cell, the imaginary parts of χ
(2)
eff, f (x) and χ

(2)
eff,s(x)

are odd functions. In fact, it can be easily demonstrated that
χ

(2)
eff, f (x) = χ

(2)
eff,s

∗
(x). Therefore, the averages of χ

(2)
eff, f (x) and

χ
(2)
eff,s(x) in one unit cell are real numbers and are equal to each

other.
After one computes γ

(2)
f ,s and χ

(2)
eff, f /s by averaging γ

(2)
f ,s (x)

and χ
(2)
eff, f /s(x), respectively, in one unit cell, one can straight-

forwardly solve the coupled-mode equations expressed as
Eqs. (29). Thus, we present in Fig. 8 the evolution of
the generated second-harmonic wave as a function of the
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FIG. 8. Evolution of the power of the second-harmonic wave as
a function of the propagation distance. Red circles are from rigorous
full-wave numerical simulations, while the black curve is obtained
from solving the coupled-mode equations expressed as Eqs. (29).

propagation distance. It is shown in this figure that there is a
good agreement between the coupled-mode theory and rigor-
ous numerical simulations with regard to both the oscillation
period and the amplitude of the power of the second-harmonic
wave.

2. Third-harmonic generation described by the
coupled-mode theory

Similarly to the case of SHG, the key quantities that charac-
terize the coupled-mode theory of third-harmonic generation
are χ

(3)
eff, f (x) and χ

(3)
eff,t (x), as defined by Eqs. (B13). Both these

physical quantities are periodic functions of the x coordinate,
their x dependence being presented in Fig. 9. Also similarly
to the case of SHG, while the real parts of χ

(3)
eff, f (x) and

x(a) x(a)

x(a) x(a)

R
e[

χ
(3

)
e
ff
,f
(x

)]
/χ

(3
)

R
e[

χ
(3

)
e
ff
,t
(x

)]
/
χ

(3
)

I
m

[χ
(3

)
e
ff
,t
(x

)]
/χ

(3
)

I
m

[χ
(3

)
e
ff
,f
(x

)]
/χ

(3
)
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FIG. 9. (a, c) Real and (b, d) imaginary parts of χ
(3)
eff, f (x) and

χ
(3)
eff,t (x) of Eqs. (B13) for THG in one unit cell. Similarly to the

case of SHG, while the real parts of χ
(3)
eff, f (x) and χ

(3)
eff,t (x) are

even functions, the imaginary parts of χ
(3)
eff, f (x) and χ

(3)
eff,t (x) are odd

functions.
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FIG. 10. Evolution of the power of the third-harmonic wave vs.
the propagation distance. Red circles are from numerical simulations,
while the black curve is from solving Eqs. (B15).

χ
(3)
eff,t (x) are even functions, the imaginary parts of χ

(3)
eff, f (x)

and χ
(3)
eff,t (x) are odd functions. Therefore, the averages of

χ
(3)
eff, f (x) and χ

(3)
eff,t (x) in one unit cell are real numbers and are

equal to each other.
We have solved Eqs. (B15) using γ

(3)
f ,t obtained by averag-

ing γ
(3)
f ,t (x) in one unit cell and present the results in Fig. 10.

We again find a good agreement between the coupled-mode
theory and rigorous numerical simulations regarding both the
oscillation period and the amplitude of the power of the third-
harmonic wave.

3. Coupled-mode theory of slow-light nonlinearity enhancement

The group index ng of the edge modes in a generic case,
e.g., Fig. 4, is limited to 5–7. However, we have shown in
the text that the shape of the dispersion curve of the one-way
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ω̄fast = 0.21
ω̄slow = 0.197

(

FIG. 11. (a) χ
(2)
eff, f /s(x) defined by Eqs. (27a) and (27b) for SHG

in one unit cell at two frequencies, ω̄slow = 0.197 and ω̄fast = 0.21,
where the group indices of the fundamental wave at the two fre-
quencies are n f

g (ω̄slow) � 174 and n f
g (ω̄fast ) � 12 [ns

g(ω̄slow) � 5 and

ns
g(ω̄fast ) � 4]. (b) The nonlinear coefficient γ

(2)
f /s(x) of Eqs. (21) and

(25) in one unit cell at the two frequencies ω̄slow and ω̄fast. One can see
the enhancement of the nonlinear coefficient due to the slow-light ef-
fect [n f

g (ω̄slow)/n f
g (ω̄fast ) � 15, whereas γ̄

(2)
f ,s (ω̄slow)/γ̄ (2)

f ,s (ω̄fast ) � 18
according to Eq. (28)].

edge modes can be tailored, leading to much larger ng, as
per Fig. 5. As is well known, this will enhance the efficiency
of the nonlinear process. We plot in Fig. 11(a) the function
χ

(2)
eff, f /s(x) at two frequencies, ω̄slow = 0.197 and ω̄fast = 0.21,

with n f
g (ω̄slow) � 174 and n f

g (ω̄fast ) � 12 [ns
g(ω̄slow) � 5 and

ns
g(ω̄fast ) � 4 have similar values at these two frequencies].

While the amplitudes of χ
(2)
eff, f /s(x) at these two frequencies are

comparable, from Fig. 11(b), which shows the nonlinear co-
efficient γ

(2)
f /s(x) of Eqs. (21) and (25), one can see that γ

(2)
f /s(x)

at ω̄slow is significantly enhanced compared to γ
(2)
f /s(x) at ω̄fast.

The ratio of the averaged nonlinear coefficient in one unit cell
according to Eq. (28) and Fig. 5(b) is γ̄

(2)
f ,s (ω̄slow)/γ̄ (2)

f ,s (ω̄fast ) �
18, which roughly agrees with n f

g (ω̄slow)/n f
g (ω̄fast ) � 15. This

enhancement of the nonlinear coefficient leads to the enhance-
ment of the efficiency of SHG [see, e.g., Fig. 5(c)].
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