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Response Time Concealed Information Test on 
Smartphones
Gáspár Lukács*,†, Bennett Kleinberg‡, Melissa Kunzi* and Ulrich Ansorge*,§

The Response Time-Based Concealed Information Test (RT-CIT) can reveal when a person recognizes a 
relevant (probe) item among other, irrelevant items, based on comparatively slower responding to the probe 
item. Thereby, if a person is concealing the knowledge about the relevance of this item (e.g., recognizing 
it as a murder weapon), this deception can be revealed. So far, the RT-CIT has been used only on desktop 
computers. In Experiment 1 (n = 72; within-subject), we compare the probe-irrelevant differences when 
using the conventional desktop-based CIT to using a smartphone-based CIT, demonstrating practical 
equivalence. In Experiment 2 (n = 116; within-subject), we demonstrate that using thumbs for responses 
(while holding the smartphone) leads to equally efficient CIT results as using conventional index finger 
responses. At the same time, this second experiment also demonstrates how smartphone-based studies 
may be efficiently run in large groups, using the participants’ own smartphones. Finally, as an interesting 
addition, here for the first time we also measured keypress durations (i.e., the time durations of holding 
down the response keys) in the RT-CIT, which we found to be significantly shorter for probe than for 
irrelevant items. 
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Undetected deception may lead to extreme costs 
in certain scenarios such as counterterrorism, pre-
employment screening for intelligence agencies, or high-
stakes criminal proceedings. However, meta-analyses have 
repeatedly shown that without special aid, based on their 
own best judgment only, people (including police officers, 
detectives, and professional judges) distinguish lies from 
truths on a level hardly better than mere chance (Bond 
& DePaulo, 2006; Hartwig & Bond, 2011; Kraut, 1980). 
Therefore, researchers have advocated special techniques 
that facilitate lie detection, among which the most 
prominent ones are information-elicitation interviewing 
techniques (e.g., Vrij & Granhag, 2012) and the use of 
technology (e.g., computerized tasks as in the present 
study).

One of the potential technological aids is the Concealed 
Information Test (CIT; Lykken, 1959; Meijer, Selle, Elber, 
& Ben-Shakhar, 2014). The CIT aims to disclose whether 

examinees recognize certain relevant items, such as a 
weapon used in a recent homicide, among a set of other 
objects, when they actually try to conceal any knowledge 
about the criminal case. In the response time (RT)-based 
CIT, participants classify the presented stimuli as the 
target or as one of several non-targets by pressing one 
of two keys (Seymour, Seifert, Shafto, & Mosmann, 2000; 
Suchotzki, Verschuere, Van Bockstaele, Ben-Shakhar, & 
Crombez, 2017; Varga, Visu-Petra, Miclea, & Buş, 2014). 
Typically, five non-targets are presented, among which 
one is the probe, which is an item that only a guilty person 
would recognize, and the rest are irrelevants, which are 
similar to the probe and, thus, indistinguishable from it 
for an innocent person. For example, in a murder case 
where the true murder weapon was a knife, the probe 
could be the word “knife,” while irrelevants could be 
“gun,” “rope,” etc. Assuming that the innocent examinees 
are not informed about how the murder was committed, 
they would not know which of the items is the probe. The 
items are repeatedly shown in a random sequence, and all 
of them have to be responded to with the same response 
keys, except one arbitrary target – a randomly selected, 
originally also irrelevant item that has to be responded 
to with the other response key. Since guilty examinees 
recognize the probe as the relevant item in respect of 
the deception detection scenario, it will become unique 
among the irrelevants and in this respect more similar to 
the rarely occurring target (Lukács & Ansorge, 2019a). Due 
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to this conflict between instructed response classification 
of probes as non-targets on the one hand, and the probe’s 
uniqueness and, thus, greater similarity to the alternative 
response classification as potential targets on the other 
hand, the response to the probe will be generally slower 
in comparison to the irrelevants (Seymour & Schumacher, 
2009). Consequently, based on the probe-to-irrelevant RT 
differences, guilty (i.e., knowledgeable) examinees can be 
distinguished from innocent (i.e., naive) examinees.

The RT-CIT takes little time (5–10 mins), its 
administration requires no special expertise,1 and its 
results can be analyzed instantaneously, in a standardized 
way.

RT-CIT Application for Smartphones
The primary aim of our study was to show that the RT-CIT 
can be used just as well on a smartphone as on a desktop 
computer: This would provide a cost-free portable CIT 
lie detector that could be useful in various scenarios. 
Nonetheless, our study also has more general implications. 
In particular, while some recent studies have shown that 
RT tests may be validly administered on a smartphone 
(Burke et al., 2017; Kay et al., 2013; Schatz, Ybarra, & 
Leitner, 2015), this is the first study to directly compare RT 
task results on a smartphone versus on a desktop.

The main practical difference between smartphone and 
desktop is arguably the use of touchscreen versus physical 
keyboard (Kay et al., 2013). The former requires holding 
the finger hovering over the response surface, and tapping 
it as response in the task: very shortly touching the screen 
and then lifting up the finger. In the case of a desktop 
keyboard, the finger lies on the response key, which 
needs to be pressed down with force, afterwards letting 
it raise back by itself (i.e., by ceasing to exert force). Other 
potential differences may be hypothesized as well, such as 
increased allocation of attention to the screen due to the 
joint location of the presented stimuli and the response 
buttons in case of the smartphone, or the differing user 
experience associated with the given devices (i.e., people 
are habituated to different applications and corresponding 
finger movement patterns on a smartphone compared to 
a desktop). However, we presumed that all such potential 
differences are nonessential in respect of a task where 
the dependent variables are always based on a within-
subject comparison (probe RT mean vs. irrelevant RT 
mean). Therefore, in Experiment 1, we directly compared 
the RT-CIT on Smartphone versus on Desktop, expecting 
no difference in the RT-CIT effect (probe-to-irrelevant 
RT differences in case of participants simulating guilty 
suspects). 

Experiment 1
Method
The experiment was preregistered at https://osf.io/9cgjn/ 
(Foster & Deardorff, 2017; Wagenmakers, Wetzels, 
Borsboom, van der Maas, & Kievit, 2012).

Participants 
The tests were conducted at a behavioral experiment 
laboratory of the University of Vienna, where 77 
psychology students completed our experiment (to 

receive experiment participation credits for curriculum 
requirements). The experiment was run in a within-subject 
design: Each participant completed once the Smartphone 
version, once the Desktop version. The test was taken in 
groups of two: While one participant was first tested in 
the Smartphone condition, the other was first tested in 
the Desktop condition, after which they did the reverse. 
All participants were tested with their own personal first 
and last names as probes in the CIT task, simulating a 
guilty suspect trying to conceal the recognition of these 
two names (see, e.g., Lukács, Gula, Szegedi-Hallgató, & 
Csifcsák, 2017; Verschuere & Kleinberg, 2015).

The data from the intended first two participants were 
excluded immediately after the completion of the test, 
due to small technical issues. The preregistered number 
of 75 participants were collected subsequently. Out of 
these, two participants were excluded due to entering, to 
be used as a probe, a double first name (i.e., including a 
middle name; despite our warning). Our exclusion criteria 
were an accuracy rate not over 50% for targets or not over 
75% for main items (probe or irrelevant items). There was 
only one related exclusion (due to too low target accuracy). 
This left 72 valid participants (Mage ± SDage = 21.14 ± 1.65; 
12 male; 36 started with Smartphone). 

Procedure 
Before the beginning of the experiment, each participant 
read and signed an informed consent form, which also 
included the information that the following task simulates 
a lie detection scenario, during which participants should 
try to hide their identities.

For the CIT that came next, both the smartphone and the 
desktop applications were written in HTML5/JavaScript 
(for the use of this framework in RT tasks in general, 
see Reimers & Stewart, 2015; or in RT-CIT in specific, see 
Kleinberg & Verschuere, 2015). The Desktop version was 
run in Google Chrome (Version 70.0.3538), while for the 
Smartphone version the same code was adapted into the 
Ionic Framework to create a hybrid mobile application 
(built for Android; see e.g., Khandeparkar, Gupta, & 
Sindhya, 2015). This latter allowed the implementation 
of several useful native smartphone functionalities; in 
particular true full screen (no interfering notification 
or navigation bars) and automatic local storage of the 
resulting data.

The consequent tests on the Smartphone and Desktop 
were identical, except for the following points. In case of 
the keyboard (Logitech K120 920-003626) of the desktop 
computer, a simple keypress was required: key “F” as 
response on the left, and key “K” as response on the right. 
(For corresponding response categories, see below.) In case 
of the touchscreen of the smartphone (Moto G5 XT1676), 
a tap was required as response: the touching of the screen 
(finger down) and releasing it (finger lifted up; within 300 
ms of the touch start). The layout of the two response fields 
was designed to have approximately the same size (and 
form) as the surface of the keyboard keys. The distance 
between the left and right response fields was the same 
as the distance between the left and right keyboard keys 
(ca. 6.5 cm; surface size per field or key: ca. 2.4 × 2.2 cm). 
The keyboard and the smartphone were switched in the 

https://osf.io/9cgjn/
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same place after the first test, so that, in the second test, 
the position of the responses (keys or fields) remained 
the same. In case of the keyboard, the key letters (“F,” “K”) 
were mentioned only once in the beginning of the task; 
afterwards, same as in case of Smartphone, the responses 
were referred to only as left-side or right-side response. In 
either case, participants used their left and right index 
fingers to respond. In case of Desktop, the monitor was 
placed next to the keyboard, and the items in the CIT task 
appeared in the middle of its screen (37.5 × 30.0 cm). In 
case of the Smartphone screen (11.0 × 6.2 cm; always in 
horizontal mode), the items appeared above the response 
fields, in the top half of the screen (see Figure 1). Both 
screens were the same distance from the eyes of the 
participant (ca. 55 cm). Consequently, participants looked 
at the smartphone screen in a larger angle from horizontal 
(ca. 50°) than at the desktop screen (ca. 24°). Each detail 
of the rest of the description, as follows below, applies to 
both versions equally.

Participants entered their first names (along with 
gender) and last names, which then served as the two 
probe items in the task.2 For each probe, five items were 
randomly chosen from a list of frequent German names 
(with corresponding gender for first names; 117 female 
and 138 male first names; 100 last names), out of which 
one was randomly chosen to serve as target, while the 
remaining four served as irrelevants. The random choice 
was restricted in that these five items had the closest 
possible character length to the given probe, and not any 
two of the six items started with the same letter. Thus, 
for each participant, there were altogether 12 unique 
items: two probes, two targets, and eight irrelevants (all 12 
identical in the Desktop and Smartphone conditions.) We 
refer to the probes and irrelevants jointly as non-targets.

Next, participants were presented the two target names, 
and were asked to memorize these items in order to 
recognize them as requiring a different response during 
the following task. On the next page, participants were 
asked to recall the memorized items, and could proceed 
only if they entered these items correctly. If any of the 
entered items was incorrect, the participant received a 
warning and was redirected to the previous page in order 
to have another look at the same items.

During the task, the items were presented one by one 
on the screen (in 0.65 cm tall uppercase letters; in white 
font color on black background) and participants had to 
categorize them with one of the two response alternatives. 
Participants were told that the right-side response means 
“Yes,” they recognize the item, while the left-side response 
means “No,” they do not recognize the item – and they 
were correspondingly instructed to say “Yes” to the 
targets, and “No” to all other, non-target words (i.e., both 
the irrelevants and the probes). 

We implemented the simplest version of the RT-based 
CIT (single-probe protocol; see Verschuere, Kleinberg, & 
Theocharidou, 2015). We decided for this version in order 
to focus exclusively on the most general aspect of the CIT, 
namely the recognition of a single relevant detail among 
irrelevant details, without any additional complexities 
that are involved in more efficient protocols (e.g., Lukács 
& Ansorge, 2019b; Lukács, Kleinberg, & Verschuere, 2017; 
Verschuere & Kleinberg, 2015). 

More precisely, there are two obvious superior 
alternatives: the multiple-probe protocol (Verschuere et 
al., 2015) and the single-probe protocol enhanced with 
familiarity-related filler items (Lukács, Kleinberg, et al., 
2017; or the even more complex related alternatives; 
Lukács & Ansorge, 2019b). The former mixes all item 
categories within the CIT (e.g., first and last names) 
randomly together in one block, while the latter includes 
additional familiarity- and unfamiliarity-referring items 
(e.g., “familiar” and “unknown”). Thus, in both cases the 
trial sequence randomization can result in an unequal 
distribution of preceding items for any given item (e.g., 
several targets preceding a probe), whose semantic 
priming effect may influence the response speed to the 
upcoming word (e.g., Foss, 1982; Meyer & Schvaneveldt, 
1971), hence, introducing theoretically uninteresting 
statistical noise in the data. Furthermore, the single-
probe protocol has several practical advantages as 
compared to the multiple-probe protocol (as detailed 
by Lukács, Kleinberg, et al., 2017): applicability even 
in case of a limited number of probe items (Podlesny, 
2003), compatibility with common test procedures and 
scoring algorithms (Krapohl, 2011), and sequential testing 
to narrow down possibilities (Lukács, Kleinberg, et al., 
2017), and that (consequently) practitioners currently also 
consider the single-probe protocol to be the only viable 
option (Ogawa, Matsuda, Tsuneoka, & Verschuere, 2015). 
The addition of familiarity-related fillers, on the other 
hand, is also a recent development, and we preferred to 
use a well-established CIT protocol.

In sum, we found it best to use the simplest possible 
protocol, which is the single-probe protocol. We presume 
that the difference between the use of smartphone versus 
desktop involves very basic cognitive and behavioral 
processes (mainly: quite simply the pressing of key vs. 
touching a touchscreen) that could hardly be affected 
by specific CIT versions – therefore, the outcome of the 
comparison can be subsequently extrapolated to any of 
the more complex designs. (Relatedly, to ensure that we 
still obtain large enough probe versus irrelevant effects to 
be compared between devices, we chose very high salient 
probes, namely, the participants’ personal names.)

Figure 1: Example screenshot from the first practice 
phase of the Smartphone-based CIT, with “MICHAEL” 
displayed as the item awaiting a response. (In the fol-
lowing practice and main tasks, the reminder captions 
[Erkannt? – “Recognized?”; Nein – “No”; Ja – “Yes”] were 
not displayed anymore.)
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During the comprehension check and the first practice 
task (see below), reminder captions were displayed: 
“Recognized?” (Erkannt?) at the top of the screen, and, in 
the lower part of the screen, “No” (Nein) on the left and 
“Yes” (Ja) on the right (Figure 1). Starting from the second 
practice task (and throughout the main blocks), these 
captions were not displayed anymore.

The inter-trial interval (i.e., between the end of one trial 
and the beginning of the next) always randomly varied 
between 300 and 800 ms. In case of a correct response, 
the next trial followed. In case of an incorrect response 
or no response within the given time limit, the caption 
“Wrong!” (Falsch!) or “Too slow” (Zu langsam!) appeared, 
respectively, below the stimulus in red color for 400 ms, 
followed by the next trial.

The main task was preceded by a comprehension check 
and two practice tasks. The check served to ensure that 
the participant had fully understood the task. All 12 items 
were displayed in a random order, and participants had 
plenty of time (10.5 s) to choose a response – however, 
each trial required a correct response. In case of an 
incorrect response, the participant immediately got a 
corresponding feedback, was reminded of the instructions, 
and had to repeat this check. This check guaranteed that 
the eventual differences (if any) between the responses 
to the probe and the responses to the irrelevants were 
not due to misunderstanding of the instructions or any 
uncertainty about the required responses in the eventual 
task.

In the following first practice task, the response window 
was longer than in the main task (2 s instead of 800 ms), 
while the second practice task had the same design as the 
main task. Both practice tasks consisted of 12 trials (first 
the six items from one name category, then the six from 
the other; in the order of the main blocks; see below). In 
either practice task, in case of too few valid responses, 
the participants received a corresponding feedback, 
were reminded of the instructions, and had to repeat the 
practice task. The requirement was a minimum of 60% 
valid responses (correct response between 150 and 800 
ms) for targets and for main items (probes and irrelevants 
together). 

The main task contained two blocks: one with first names 
only, and one with last names only (order counterbalanced 
across participants, but, for each participant, same order 
in each condition, Desktop and Smartphone). Each probe, 
irrelevant, and target was repeated 18 times in each block 
(hence, altogether 36 probe, 72 irrelevant, and 36 target 
trials). Within each block, the order of the items was 
randomized in groups: first, all six items (one probe, four 
irrelevants, and one target) in the given category were 
presented in a random order, then the same six items 
were presented in another random order (but with the 
restriction that the first item in the next group was never 
the same as the last item in the previous group). 

After this test was completed in both conditions 
(Desktop and Smartphone), participants gave their 
demographic details and completed a very brief 
questionnaire regarding their alertness during the task 

(see Appendix A). Finally, participants were given more 
detailed information about the experiment and contact 
details for potential further inquiries. The experiment 
took about 30 min per session.

Data Analysis 
We conducted preregistered analyses, except where 
explicitly noted otherwise. 

For the main questions, the dependent variable was 
the probe-to-irrelevant RT mean (i.e., probe RT mean 
minus irrelevant RT mean, per each participant), which 
was compared between the Desktop and Smartphone 
conditions with three statistical tests: (a) a simple t-test to 
test the potential difference, (b) Bayesian likelihood ratio 
to test the null hypothesis, and (c) a two one-sided t-test 
(TOST) procedure, as a frequentist approach for testing 
the equivalence, with equivalence bounds of d = –0.4 and 
d = 0.4 (see below). Following the suggestion of a reviewer 
of a previous version of this manuscript, for probe-
irrelevant RT means we report Spearman-Brown split-half 
reliability coefficients (Brown, 1910; Eisinga, Grotenhuis, 
& Pelzer, 2013; Spearman, 1910; for CIT, Kleinberg & 
Verschuere, 2015).

While in the RT-CIT usually only RT means are used as 
predictors (for guilty-innocent classifications), certain 
extents of probe-to-irrelevant differences are also often 
observed in accuracy rates as well, and therefore may be 
of interest (in particular, see Lukács & Ansorge, 2019b; 
Lukács, Gula, et al., 2017). Consequently, the three tests 
above were repeated with probe-to-irrelevant accuracy 
rate differences (i.e., probe accuracy rate minus irrelevant 
accuracy rate, per each participant), in place of RT means, 
as dependent variables.

In the preregistration, we only mentioned comparing 
keypress- and touch-durations (from here on, we designate 
these collectively as hold-durations), and the potential 
effects of self-reported alertness, as potential exploratory 
analyses. Here, we specify that, for hold-durations, we 
decided for an analysis of variance (ANOVA) with the 
two factors Trial Type (probe vs. irrelevant) and Device 
(Desktop vs. Smartphone).3

Regarding the alertness questionnaire, we tested the 
correlations of the aggregated ratings, in case of desktop 
and smartphone separately, with (a) probe-to-irrelevant RT 
mean differences, and (b) probe-to-irrelevant accuracy rate 
differences; these analyses are reported in Appendix A.

Finally, as a preliminary assessment of the potential 
incremental benefit of hold-durations, we report 
exploratory binary logistic regression analysis combining 
RT means and hold-durations, and present illustrative 
simulated areas under the curves (AUCs; see below) based 
on the fitted values. For each simulation, to represent 
the hypothetical “innocent” (or “naive”) suspect’s data, 
we generated a sample of 1,000 values in perfect normal 
distribution with a mean of zero (see in the R script 
uploaded to the OSF repository). In case of each predictor, 
we used the SD of the same predictor from the real 
participants’ data.4 For example, the probe-irrelevant RT 
mean SD in the Desktop condition was 27.1 ms; hence, the 
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simulated data was a normally distributed 1,000 values 
with SD = 27.1 (and a mean of zero).

Bayesian analysis 
We report Bayes factors using the default r-scale of 
0.707 (Morey & Rouder, 2018). The Bayes factor is a 
ratio between the likelihood of the data fitting under 
the null hypothesis and the likelihood of fitting under 
the alternative hypothesis (Jarosz & Wiley, 2014; 
Wagenmakers, 2007). For example, a Bayes factor (BF) of 
3 means that the obtained data is three times as likely to 
be observed if the alternative hypothesis is true, while a 
BF of 0.5 means that the obtained data is twice as likely 
to be observed if the null hypothesis is true. Here, for 
more readily interpretable numbers, we denote Bayesian 
factors as BF10 for supporting alternative hypothesis, 
and as BF01 for supporting null hypothesis. Thus, for 
example, BF01 = 2 again means that the obtained data is 
twice as likely under the null hypotheses than under the 
alternative hypothesis. Typically, BF = 3 is interpreted as 
the minimum likelihood ratio for “substantial” evidence 
for either the null or the alternative hypothesis (Jeffreys, 
1961).

TOST 
In the TOST procedure, the null hypothesis, analogous 
to a simple t-test, is the presence of a true difference in 
either direction, with the effect sizes specified as the 
equivalence bounds, in our case d = 0.4 in either direction. 
If the p value for the one-sided t-tests examining either 
direction (or both) is below the alpha level (.05), we can 
assume that, in the given direction, there is no difference 
larger than the specified effect size (Lakens, 2017; 
Schuirmann, 1987).5 As described in our preregistration, 
the conventional medium effect size of d = 0.5 has been 
shown, in previous studies, to be a reasonable practical 
indication of substantially increased CIT efficiency (e.g., 
Lukács & Ansorge, 2019b; Lukács, Kleinberg, et al., 2017; 
Verschuere et al., 2015). Therefore, for an insubstantial 
difference, we chose a somewhat lower effect size. To 
note, we aim to reveal whether there is an equivalence 
within these bounds of d = –0.4 and d = 0.4, but this is not 
to say that differences smaller than that are always fully 
negligible in all respects – however, this is a reasonable 
estimation for the potential usefulness of the smartphone-
based alternative of the RT-CIT. 

AUCs 
To illustrate the potential efficiency of discriminating 
between guilty and innocent suspects, we calculated AUCs 
(a diagnostic efficiency measure, for binary classification, 
that takes into account the distribution of all predictor 
values; Rice & Harris, 2005; Zou, O’Malley, & Mauri, 
2007) for receiver operating characteristics (ROCs). The 
AUC can range from 0 to 1, where .5 means chance level 
classification, and 1 means flawless classification (i.e., 
all guilty and informed innocent classifications can be 
correctly made based on the given predictor variable, at a 
given cutoff point). 

Effect sizes 
To demonstrate the magnitude of the observed effects, 
for F-tests we report generalized eta squared (ηG

2) and 
partial eta squared (ηp

2) with 90% CIs (Lakens, 2013). 
We report Welch-corrected t-tests (Delacre, Lakens, 
& Leys, 2017), with corresponding Cohen’s d values 
as standardized mean differences and their 95% CIs 
(Lakens, 2013). In case of TOST, we also report 90% CIs 
to show the effect size bounds at alpha level. We used 
the conventional alpha level of .05 for all statistical 
significance tests.

For all analyses, RTs below 150 ms were excluded. For RT 
analyses, only correct responses were used. Accuracy was 
calculated as the number of correct responses divided by 
the number of all trials (after the exclusion of those with 
an RT below 150 ms). 

All analyses were conducted in R (R Core Team, 2019; 
via Kelley, 2019; Lawrence, 2016; Lukács, 2019; Makowski, 
Ben-Shachar, & Lüdecke, 2019; Morey & Rouder, 2018).

Results
Aggregated RT mean, accuracy rate, and hold-duration, for 
the different stimulus types in each condition (Desktop 
and Smartphone), are given in Table 1, along with related 
effect sizes.

RT means 
The t-test between the probe-to-irrelevant RT means 
of Desktop and Smartphone indicated no significant 
difference, t(71) = –0.18, p = .860, dwithin = –0.02, 95% CI 
[–0.25, 0.21], 90% CI [–0.21, 0.17]. Bayesian hypothesis 
testing indicated substantial evidence in favor of the null-
hypothesis, BF01 = 7.60. The TOST showed that the 90% CI 
of the effect is well within the equivalence bounds (d = –0.4 
and d = 0.4): The one-sided t-test against the upper bound 
(null hypothesis of larger probe-to-irrelevant RT means 
for Desktop than for Smartphone) was significant, t(71) = 
–3.57, p < .001, as well as the one against the lower bound 
(null hypothesis of larger values for Smartphone), t(71) = 
3.22, p < .001. The reliability coefficients were ρ = .549 for 
Desktop, and ρ = .695 for Smartphone.

Accuracy rates 
The t-test between the probe-to-irrelevant accuracy rates 
of Desktop and Smartphone indicated no significant 
difference, t(71) = 0.77, p = .443, dwithin = 0.09, 95% CI 
[–0.14, 0.32], 90% CI [–0.10, 0.28], and BF01 = 5.80. The 
TOST again showed that the 90% CI of the effect is well 
within the equivalence bounds (d = –0.4 and d = 0.4): The 
one-sided t-test against the upper bound (null hypothesis 
of larger values for Desktop) was significant, t(71) = –2.62, 
p = .005, as well as the one against the lower bound (null 
hypothesis of larger values for Smartphone), t(71) = 4.17, 
p < .001.

Exploratory analysis: Hold-durations 
The ANOVA for hold-durations as dependent variable, 
with within-subject factors Trial Type and Device, revealed 
significant main effects for Trial Type (shorter duration for 
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probe items), F(1, 71) = 10.39, p = .002, ηp
2 = .128, 90% 

CI [.030, .249], ηG
2 = .001, as well as for Device (shorter 

duration for Smartphone), F(1, 71) = 121.42, p < .001, ηp
2 

= .631, 90% CI [.512, .706], ηG
2 = .263. The significant Trial 

Type main effect may be surprising considering the small 
real difference (1–2 ms, see Table 1), but it is explained 
by the extremely high correlation of probe and irrelevant 
hold-durations: r(70) = .977, 95% CI [.964, .986] for 
Desktop, r(70) = .983, 95% CI [.974, .990] for Smartphone. 
(That is: the raw time difference may appear very small 
[as compared to, e.g., the RT mean differences], but, even 
relative to its millisecond magnitude, it is very consistent 
across participants.) We found no Trial Type × Device 
interaction, F(1, 71) = 1.54, p = .218, ηp

2 = .021, 90% CI [0, 
.103], ηG

2 < .001. 

Exploratory analysis: Logistic model-based predictors 
Using probe-irrelevant RT mean differences and probe-
irrelevant hold-duration differences as two potential 
predictors in a logistic regression model, we fitted values 
in order to assess the potential incremental value of hold-
durations in predicting the (simulated) conditions of 
guilt and innocence. The assessment of goodness-of-fit 
revealed a significant improvement relative to a constant-
only model for both conditions, Desktop: χ2(2) = 60.6, 
p < .001, and Smartphone: χ2(2) = 71.3, p < .001. In both 
cases, the outcome (guilt vs. innocence) was significantly 
associated with both RT means (Desktop: B = 0.25, 
χ2 [1] = 60.0, p < .001; Smartphone: B = 0.16, χ2 [1] = 70.7, 
p < .001) and, importantly, hold-durations (Desktop: 
B = –1.21, χ2 [1] = 52.2, p < .001; Smartphone: B = –0.97, 
χ2 [1] = 54.3, p < .001), as individually contributing 
predictors, meaning that the inclusion of hold-duration 
did lead to significant improvement in predictions. 
Additionally, with a likelihood-ratio test we compared the 
model including only RT means with the model combining 
RT means and hold-durations: The latter model proved to 
be a statistically significant improvement in case of both 
versions (Desktop: χ2 [1] = 222.7, p < .001; Smartphone: χ2 
[1] = 184.0, p < .001).

The AUC for the model-based predictors (fitted values) 
was .903 for Desktop, and .843 for Smartphone.

Discussion
Using a single-probe protocol RT-CIT with the participants’ 
first and last names as probes, Experiment 1 has shown 
that, as hypothesized, the smartphone-based version 
can be as efficient as the desktop-based version. There 
is, however, an additional aspect of using smartphone as 
compared to desktop computer: namely, the touchscreen 
of the smartphone can also easily be operated with 
thumbs instead of index fingers; which allows more 
mobility for the user, and which is in fact the more 
common and natural way for smartphone usage in general 
(e.g., Azenkot & Zhai, 2012; Bröhl, Mertens, & Ziefle, 
2017). Several studies have shown that using index finger 
responses instead of thumbs can lead to different results: 
In particular, it has been consistently found that more 
accurate general input (mainly: typing) can be given using 
index fingers (Buschek, De Luca, & Alt, 2016; Lehmann & 
Kipp, 2018; Wang & Ren, 2009; Wobbrock, Myers, & Aung, 
2008). However, results have been mixed regarding speed 
differences, which seems to depend on the particular 
input type and study design (Azenkot & Zhai, 2012; Goel, 
Jansen, Mandel, Patel, & Wobbrock, 2013; Lehmann & 
Kipp, 2018; Wobbrock et al., 2008). In any case, to our 
knowledge, no studies have explored the potential effect 
of this difference in a regular experimental RT task yet, 
let alone in the RT-CIT. Therefore, in Experiment 2, we 
compared the conditions of using index fingers (Index 
finger condition) and of using thumbs (Thumb condition), 
to see whether the latter is at least as efficient as the 
former (i.e., yielding at least as large probe-to-irrelevant 
differences).

In Experiment 1, we also had a novel, exploratory finding: 
shorter hold-durations for probe compared to irrelevant 
items. This finding was significant in both conditions 
– though with a rather small effect, especially in the 
smartphone conditions. Therefore, an additional reason 
for Experiment 2 was to replicate this novel finding; with a 
larger sample size, and now, based on Experiment 1, with 
a data-based prediction before the experiment.

Finally, in Experiment 2, we also demonstrate how 
smartphone-based experiments may be efficiently run in 
larger groups, using the participants’ own smartphones.

Table 1: RT Means, Accuracy Rates, and Hold-Durations, in Experiment 1.

RT mean Accuracy rate Hold-duration

Desktop Smartphone Desktop Smartphone Desktop Smartphone

Probe 441 ± 55 496 ± 45 98.0 ± 3.4 97.6 ± 3.6 113 ± 23 86 ± 22

Irrelevant 404 ± 44 458 ± 33 99.2 ± 0.8 99.2 ± 1.0 114 ± 24 87 ± 22

Target 499 ± 43 573 ± 33 83.1 ± 10.7 86.1 ± 9.4 112 ± 23 80 ± 19

P – I 37.2 ± 27.1 37.8 ± 27.6 –1.26 ± 3.46 –1.59 ± 3.41 –1.8 ± 5.1 –0.9 ± 3.9

dPvsI 1.38 
[1.05, 1.70]

1.37 
[1.04, 1.69]

–0.36 
[–0.60, –0.12]

–0.46 
[–0.71, –0.22]

–0.35 
[–0.58, –0.11]

–0.24 
[–0.47, 0.00]

AUC .834 .839 .579 .607 .596 .574

Note: Means and SDs (in the format of M ± SD) for individual RT means, accuracy rates, and hold-durations; for Probe (participants’ 
own names), Irrelevant (other names), Target (the designated irrelevant details that require different response), P – I (individual 
probe minus irrelevant values); separately for the Smartphone and Desktop computer conditions. Cohen’s d effect sizes (as dPvsI) and 
simulated AUCs for the probe-to-irrelevant differences are given under each respective column.
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Experiment 2
Method 
The experiment was preregistered at https://osf.io/
g98nm/.

Participants 
Participants were recruited similarly as in Experiment 
1 (but those from Experiment 1 were not allowed to 
participate again). The difference was that participants 
brought their own smartphones for performing the test. 
Consequently, larger groups could be tested at once. For 
the first test, only six participants were invited (five signed 
up and were tested in a laboratory) as a final assurance of 
the technical feasibility before inviting larger groups. Since 
there were no issues, these participants were also included 
in the final sample. For all following tests, participants 
were invited in groups of 20, and the tests were conducted 
in a small classroom. (Average turnout was 11.1 persons 
per session; somewhat lower than expected, presumably 
due to the concurrent exam period.)

To avoid unexpected issues and facilitate the experiment 
procedure, participants were asked to (1) download, install, 
and make a quick pretest6 with a small application similar 
to the one used in the experiment, and (2) download 
the application for the experiment in advance. In those 
relatively few cases when a participant did not make these 
preparations, they were still allowed to participate with 
their own smartphone if it had an Android operating 
system (OS)7 – or otherwise they were provided with one 
(14 out of the 116 cases).

Again, the experiment was run with a within-subject 
design: Each participant completed the test once 
using their index finder, once using their thumbs (with 
order counterbalanced across participants). Again, all 
participants were tested with their own personal first and 
last names as probes, simulating a guilty suspect.

We stopped opening new slots for participants when the 
participant number first passed the preregistered number 
of 112. Up to that point, 116 participants completed the 
task (Mage ± SDage = 21.15 ± 2.42; 43 male; 58 started with 
Index finger), none of whom had to be excluded.8 

Procedure 
Same as in Experiment 1, before the beginning of the 
experiment, each participant read and signed an informed 
consent form. Here, they also received an additional 
sheet with short instructions on how to download the 
application in case they had not already done that. 
Participants were also warned on this instruction sheet to 
disable all data connections and switch on airplane mode 
before starting the test.9 

Next, the screen size of each smartphone was measured 
and entered on the start screen of the application – for 
all related details, see Appendix B. (The subject number 
was also entered at the same time: These numbers were 
printed on the information sheet, and the order of 
conditions and blocks were afterwards automatically 
assigned in the application based on the entered numbers: 
start with Index finger for every second participant; start 
with last names for every third and fourth). When every 

participant present at the session reached that point and 
was ready to start, the experimenter went around to make 
the application, using a hidden swipe area, move on to the 
rest of the test (the actual CIT).

The CIT was exactly the same as described in 
Experiment 1, except for the two conditions (Index finger 
vs. Thumb instead of Desktop vs. Smartphone), and 
some minor details, as follows. The sizes of the displays, 
including all shapes and text (captions, stimuli) were 
automatically sized relative to the smartphone on which 
the application was opened. (Note though, that this size 
variance is practically imperceptible in the CIT: Even for 
a difference between a 4.5- and a 5.5-inch screen, the 
stimulus height varies only as 0.59 and 0.72 cm, i.e., 
hardly more than a one-millimeter difference.) 

After the completion of the first test (one block with first 
names, one with last names, in random order, in either 
Index finger or Thumb condition), each participant was 
asked to change their hand position, while keeping the 
smartphone approximately in the same position. In the 
Index finger condition, the smartphone lay on the desk, 
with participants using their index fingers for responding. 
In the Thumb condition, participants used their thumbs 
for responding, holding the smartphone in their hands, 
while their hand lay on the desk. Unlike Experiment 1, 
only the last practice phase was repeated after changing 
conditions (from Index finger to Thumb, or vice versa.) 
The use of correct condition was verified by an onlooking 
experimenter. (Participants were given consecutive subject 
numbers, and, thereby, consecutive orders of condition, 
by desk. Hence, someone using a wrong hand position 
would have been easy to notice.)

After the completion of the task in both conditions 
(Index finger and Thumb), each participant sent their 
results data file via email, using a button in the application 
that automatically prepared the message and included the 
data file as attachment.

On the end page, along with general information about 
the task, participants were also informed about whether 
they were classified as “guilty” or not (of concealing the 
recognition of their true personal names), based on their 
RTs. Here, for the first time, we used a proper automatic 
calculation for individual probe-to-irrelevant effect sizes, 
as dCIT = (MRT (probes) – MRT (irrelevants))/SDRT (irrelevants) (from all 
four main blocks, valid trials only: correct responses with 
RT between 150 and 800 ms), with an arbitrary limit of 
minimum dCIT = 0.1 to evaluate an outcome indicating 
concealed knowledge (Noordraven & Verschuere, 2013). 

Participants were asked to remain silent at their place 
until everyone finished. The entire experiment, including 
all preparations, took about 30 min per session.

Data Analysis 
We again conducted preregistered analyses (https://osf.
io/g98nm/), except where explicitly noted otherwise. 

For the main hypothesis (Thumb at least as efficient 
as Index finger), the dependent variable was the probe-
to-irrelevant RT mean, which was compared between the 
Index finger and Thumb conditions with three statistical 
tests, analogously to Experiment 1: (1) a simple t-test, 

https://osf.io/g98nm/
https://osf.io/g98nm/
https://osf.io/g98nm/
https://osf.io/g98nm/
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(2) Bayesian hypothesis tests, and (3) a TOST procedure 
with equivalence bounds of d = –0.4 and d = 0.4. Again, 
these three tests were repeated with probe-to-irrelevant 
accuracy rates as dependent variables.

We preregistered the testing of hold-duration 
between probe and irrelevant items using a one-sided 
t-test, expecting shorter durations for probes (based on 
Experiment 1), along with a complementary Bayesian 
analysis. Here, we further specify that we do this separately 
for Index finger and Thumb conditions (and designate it 
as exploratory analysis). To provide more justification for 
this, we first perform an ANOVA, similarly as in Experiment 
1, with the two factors Trial Type (probe vs. irrelevant) and 
Hand-position (Index finger vs. Thumb), to show whether 
there is an interaction.

Regarding correlation tests of the physical screen 
size with probe-to-irrelevant RT mean differences and 
with probe-to-irrelevant accuracy rate differences, see 
Appendix B.

Finally, as in Experiment 1, we report exploratory 
logistic regression analysis combining RT means and hold-
durations, and present illustrative simulated AUCs.

Results 
Aggregated RT mean, accuracy rate, hold-duration, for the 
different stimulus types in each condition (Index finger 
and Thumb), are given in Table 2, along with related 
effect sizes.

RT means 
The t-test between the probe-to-irrelevant RT means 
of Index finger and Thumb conditions indicated no 
significant difference, with Bayesian hypothesis testing 
supporting the null hypothesis; t(115) = 0.19, p = .848, 
dwithin = 0.02, 95% CI [–0.16, 0.20], 90% CI [–0.13, 0.17], 
BF01 = 9.53. The TOST showed that the 90% CI of the 
effect is well within the equivalence bounds (d = –0.4 and 
d = 0.4): The one-sided t-test against the upper bound 
(null hypothesis of larger probe-to-irrelevant RT means 
for Index finger than for Thumb) was significant, t(115) 
= –3.57, p < .001, as well as the one against the lower 

bound (null hypothesis of larger values for Thumb), t(115) 
= 3.22, p < .001. The reliability coefficients were ρ = .739 
for Index finger, and ρ = .608 for Thumb.

Accuracy rates 
Unlike in case of RT means, the t-test between the 
probe-to-irrelevant accuracy rates of Index finger and 
Thumb indicated a small but statistically significant 
difference, though with an inconclusive BF; t(115) = 
2.02, p = .046, dwithin = 0.19, 95% CI [0.00, 0.37], 90% 
CI [0.03, 0.34], BF01 = 1.37. The TOST again showed 
that the 90% CI of the effect is within the equivalence 
bounds (d = –0.4 and d = 0.4): The one-sided t-test 
against the upper bound (null hypothesis of larger 
values for Index finger) was significant, t(115) = –2.29, 
p = .012, as well as the one against the lower bound 
(null hypothesis of larger values for Thumb), t(115) = 
6.33, p < .001. This altogether means that the accuracy 
rate difference between probe and irrelevant was 
statistically shown to be significantly larger in case of 
the Thumb condition, but at the same time, based on 
our predefined equivalence bounds, this difference is 
not of notable practical relevance.

Exploratory analysis: Hold-durations 
The ANOVA for hold-durations as dependent variable, 
with within-subject factors Trial Type and Hand-position, 
revealed significant main effects for Trial Type (replicating 
shorter duration for probe items), F(1, 115) = 4.66, 
p = .033, ηp

2 = .039, 90% CI [.002, .111], ηG
2 < .001, as well 

as for Hand-position (shorter duration for Index finger), 
F(1, 115) = 38.65, p < .001, ηp

2 = .252, 90% CI [.143, .353], 
ηG

2 = .066. Here, we also found a significant Trial Type 
× Hand-position interaction, F(1, 115) = 8.61, p = .004, 
ηp

2 = .070, 90% CI [.013, .153], ηG
2 < .001, indicating 

larger probe-to-irrelevant differences for the Index finger 
condition. The follow-up one-sided t-tests indicated that 
the probe-to-irrelevant difference was significant only for 
Index finger, with BF strongly supporting this alternative 
hypothesis, t(115) = –3.37, p < .001, dwithin = –0.31, 95% 
CI [–0.50, –0.13], BF10 = 20.22, and not for Thumb, with a 

Table 2: RT Means, Accuracy Rates, and Hold-Durations, in Experiment 2.

RT mean Accuracy rate Hold-duration

Index Thumb Index Thumb Index Thumb

Probe 487 ± 54 478 ± 48 97.8 ± 3.3 97.3 ± 3.0 81 ± 21 93 ± 22

Irrelevant 451 ± 43 443 ± 39 98.8 ± 1.5 99.1 ± 1.2 82 ± 21 93 ± 22

Target 570 ± 53 550 ± 46 81.2 ± 10.9 80.2 ± 10.0 75 ± 19 94 ± 22

P – I 35.3 ± 29.0 34.9 ± 26.3 –0.99 ± 3.26 –1.76 ± 3.20 –1.4 ± 4.4 0.1 ± 3.9

dPvsI 1.22 
[0.97, 1.46]

1.33 
[1.08, 1.58]

–0.30 
[–0.49, –0.12]

–0.55 
[–0.74, –0.35]

–0.31 
[–0.50, –0.13]

0.03 
[–0.16, 0.21]

AUC .803 .828 .567 .640 .581 .499

Note: Means and SDs (in the format of M ± SD) for individual RT means, accuracy rates, and hold-durations; for Probe (participants’ 
own names), Irrelevant (other names), Target (the designated irrelevant details that require different response), P – I (individual 
probe minus irrelevant values); separately for the Thumb (using thumbs) and Index (using index fingers) conditions. Cohen’s d 
effect sizes (as dPvsI) and simulated AUCs for the probe-to-irrelevant differences are given under each respective column.
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BF supporting the null hypothesis, t(115) = 0.29, p = .614, 
dwithin = 0.03, 95% CI [–0.16, 0.21], BF01 = 9.31. 

Exploratory analysis: Logistic model-based classification 
Using probe-irrelevant RT mean differences and probe-
irrelevant hold-duration differences in a logistic regression 
model, we fitted values in order to assess the potential 
incremental value of hold-durations in predicting guilt or 
innocence. The assessment of goodness-of-fit revealed a 
significant improvement relative to a constant-only model 
for both conditions, Index finger: χ2(2) = 90.9, p < .001, 
and Thumb: χ2(2) = 92.6, p < .001. In both cases, the 
outcome was significantly associated with both RT means 
(Index finger: B = 0.17, χ2 [1] = 90.1, p < .001; Thumb: 
B = 0.15, χ2 [1] = 86.9, p < .001) and hold-durations (Index 
finger: B = –1.05, χ2 [1] = 75.9, p < .001; Thumb: B = –0.80, 
χ2 [1] = 60.8, p < .001), as individually contributing 
predictors. Additionally, with a likelihood-ratio test we 
compared the model including only RT means with the 
model combining RT means and hold-durations: The latter 
model proved to be a statistically significant improvement 
in case of both versions (Desktop: χ2 [1] = 266.9, p < .001; 
Smartphone: χ2 [1] = 169.2, p < .001).

The AUC for the model-based predictors was .857 for 
Index finger, and .838 for Thumb.

Discussion 
In this second experiment we have shown that the hand 
position (using index fingers vs. thumbs for responses) 
plays no role in the results of the RT-CIT, at least regarding 
RT means. Regarding accuracy rates, we have shown that 
there is a small difference, in that slightly higher probe-to-
irrelevant accuracy rate differences are found when using 
thumbs. This may be because using thumbs, as opposed to 
index fingers, is more sensitive to tasks requiring accuracy, 
and more prone to error rates in general (Buschek et 
al., 2016; Lehmann & Kipp, 2018; Wang & Ren, 2009; 
Wobbrock et al., 2008). This aspect could be explored in 
the future. 

However, probe-to-irrelevant accuracy rate differences 
are in any case generally low in the RT-CIT, and have only 
rarely been used as predictors of guilt, but even in those 
cases only as secondary predictors. Nonetheless, if this 
aspect may be of any interest in the future, the method 
can still very well be always used with thumbs, as there 
is no general opposing reason or practical limitation. 
Note also that we have proven the equivalence, for the 
same accuracy rate differences, between the desktop 
and smartphone using index fingers. Consequently, the 
larger differences when using thumbs can only be an 
improvement (in respect of guilty-innocent predictions) 
as compared to the regular desktop version. 

Our previous finding of shorter hold-durations for index 
finger was successfully replicated in this second experiment 
(p < .001). At the same time, this difference was absent in 
case of using thumbs. We have strong statistical support 
for this finding through both the ANOVA interaction 
(larger probe-to-irrelevant differences for Index finger; 
p = .004) and the Bayesian likelihood supporting the null 
finding (probe-to-irrelevant differences in case of Thumb; 

BF01 = 9.31). We also see a reasonable explanation for this. 
People are much more used to tapping with thumbs, as 
required by smartphone applications (for which usually 
thumbs are used): Touchscreens typically have a specific 
required hold-duration, only at the end of which is the 
given function executed (e.g., opening a folder). Hence, 
participants may be more strongly adapted to thumb taps, 
which are thereby more resistant to minor influences 
such as the probe-to-irrelevant differences in the RT-CIT. 
Nonetheless, this finding was not explicitly expected 
prior to the study and, therefore, would deserve further 
research. 

General Discussion
In the present study, we have shown that the Response 
Time-Based Concealed Information Test (RT-CIT) can 
be used just as well on a smartphone as on a desktop 
computer. Before real life use, replication studies 
would be advisable, in particular field settings, and also 
including more efficient CIT protocols (Lukács, Kleinberg, 
et al., 2017; Verschuere et al., 2015). However, it already 
appears to be a valid method for various potential 
applications, facilitating the use of CIT in any situation 
where desktop computers are not available, limited, or 
impractical: such as border control (e.g., mass screening 
for the detection of country of origin10), pre-employment 
screening via remote interviews (where the smartphone 
application could automatically verify the device ID or 
phone number), or an immediately available test for 
appropriate investigating authorities, such as those in 
the police force, or in the military, at battlefronts (cf. the 
“handheld polygraph” of the U. S. Army; Dedman, 2008; 
Gordon, 2017; National Research Council, 2010; United 
States Office of the Secretary of Defense, 2018).

While not directly related to the main question of our 
study, we included an exploratory analysis in our first 
experiment on keypress- and touch-durations as topics 
relevant to other smartphone-based studies as well (e.g., 
Buschek, De Luca, & Alt, 2015; Goel et al., 2013). We 
found shorter durations for probes (i.e., when participants 
saw their own names), and replicated this finding in the 
second experiment (though only when using index fingers 
for touchscreen taps, and not when using thumbs). As 
compared to the use of RT mean alone, the combination 
of RT mean with hold-duration as model-based predictor 
led to noteworthy increases in classification efficiencies 
(AUCs) in two out of the four cases.

One reason for the duration differences could be that the 
lifting of the fingers corresponded to a second response 
and that some of the delay in the probe conditions 
was used to plan this second response in a sequence of 
responses consisting of key press and release (see Verwey, 
1995). As a post-hoc test for this hypothesis, we calculated 
the correlations of response times and hold-durations 
per individual: These correlations were on average very 
weak (all correlation means between –.08 and .02) for 
both probe and irrelevant trial types in both conditions 
in both experiments – making the proposed hypothesis 
unlikely. Another potential explanation, however, is that 
participants perhaps felt their delay in the probe trials in 
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general (see Corallo, Sackur, Dehaene, & Sigman, 2008) 
and made an effort to compensate for the delay by a swifter 
key release. It could be interesting to explore whether this 
phenomenon appears in other RT tasks that contain target 
items, or any sort of response conflict or interference (e.g., 
Stroop tasks, cuing tasks, etc.).

Finally, while the feasibility of RT tasks on smartphones 
has been suggested before (Burke et al., 2017; Kay et al., 
2013; Schatz et al., 2015), we provide strong evidence 
that such results can be identical to the ones obtained 
on regular computers. As demonstrated in our second 
experiment, using the participants’ own smartphones, 
data can be easily collected in groups of 10–20, requiring 
nothing but an empty classroom. In the future, entire 
studies, with, say, over a hundred participants gathered in 
an auditorium, could be conducted this way within half an 
hour, with no equipment needed by the researchers. This 
would be a great advantage especially for less wealthy, 
less well-equipped universities and research institutes 
anywhere in the world. 

Limitations
Our probe versus irrelevant effect sizes and simulated 
classification rates probably do not reflect well those that 
would be obtained in real life cases. While the personal 
relevance of the presented self-related autobiographical 
details arguably also resembles the relevance of real-life 
incriminating items, the extent of applicability is yet to 
be explored. In a specific situation very similar to the one 
simulated in the present study, authorities may test the 
true identity of the person, in which case the results may 
be assumed comparable to those in our study (regarding 
higher stakes at hand, see Kleinberg & Verschuere, 2016). 
This is, however, likely not a frequent case. The relevance 
of the more probable crime-related items (such as a 
murder weapon), which may be contributed to by the 
various emotions related to the actually committed crime 
(guilt, suspense, etc.), would be very difficult to simulate 
in a controlled experiment, and may require field studies 
in the future. In general, more realistic settings would be 
needed for a proper assessment of classification efficiency, 
as opposed to the highly controlled laboratory studies 
such as the present one, and indeed as it is in most RT-CIT 
studies.

Importantly, the primary aim of this study was to 
assess whether the smartphone-based CIT could be as 
efficient as the desktop-based one, and this comparison 
does not depend on precise or realistic demonstration of 
classification efficiencies. There is, however, one finding 
that could be substantially influenced by these biases: 
Namely, the incremental contribution of the novel hold-
duration measure. This measure is, as we explicitly stated, 
an exploratory finding whose efficiency, usefulness, and 
mechanism should be assessed in future studies.

Conclusions
In the present study, using a single-probe protocol 
RT-CIT with the participants’ first and last names as 
probes, we have (a) demonstrated that the smartphone-
based version can be just as well used as the desktop-

based version – using, for responses, either index fingers 
or thumbs (thus, simply holding the device in the 
hand), (b) shown that responses to probes compared 
to irrelevants in the RT-CIT have shorter keypress- and 
touch-durations – a difference that may be used as 
additional predictor of concealed knowledge, and which 
may be explored in other psychological tests as well, and 
(c) demonstrated a large-group experimental procedure 
using participants’ smartphones, which may be adopted 
for any computerized tasks for fast and costless data 
collection in future studies.

Data Accessibility Statement
The source codes for all three experimental tasks, along 
with all behavioral data (original as well as aggregated per 
participant) and the R scripts for the analyses, are available 
via https://osf.io/fjvna/. For the smartphone applications, 
the original executable files are also available.

Appendix A
Alertness questionnaire
In Experiment 1, the short questionnaire at the end of 
the task consisted of the following four question: (1) At 
the moment I feel alert. (Im Moment fühle ich mich 
aufgeweckt.), (2) I was very focused on the task. (Ich war 
sehr auf die Aufgabe fokussiert.), (3) I felt very awake (alert) 
before the test. (Vor dem Test fühlte ich mich sehr wach.), 
(4) It was easy for me to stay concentrated during the test. 
(Es fiel mir leicht, während des Tests konzentriert zu bleiben.)

Each question could be rated on a six-point scale; 
from “I absolutely disagree” (ich stimme absolut nicht zu) 
to “I absolutely agree” (ich stimme absolut zu). For the 
analysis, the answers were assigned the value from 1 to 6, 
correspondingly, and were taken as one average from the 
four questions by each participant.

Calculating with CIT results from the desktop condition, 
the correlation of the ratings (Mrating ± SDrating = 4.08 ± 
0.68) with the probe-to-irrelevant RT mean differences 
was significant, r(70) = –.248, 95% CI [–.454, –.018], 
p = .035; but not with the probe-to-irrelevant accuracy rate 
differences, r(70) = –.082, 95% CI [–.308, .015], p = .492. 
Regarding the smartphone condition, the correlation 
was neither significant with probe-to-irrelevant RT mean 
differences, r(70) = –.096, 95% CI [–.320, .139], p = .423; 
nor with the probe-to-irrelevant accuracy rate differences, 
r(70) = .164, 95% CI [–.071, .381], p = .169.

The negative correlation of self-reported alertness with 
probe-to-irrelevant RT mean differences may be logical: 
For less alert participants, the CIT poses a larger cognitive 
load, that is, they might find it more difficult to make a 
quick categorization of the probe in spite of the response 
conflict (Visu-Petra, Varga, Miclea, & Visu-Petra, 2013). 
Nonetheless, it is not clear why this was significant only in 
case of the desktop CIT results. Furthermore, the difference 
is weak and hardly below the alpha level; thus, it may 
be just accidental. This topic should be addressed more 
thoroughly with a dedicated study, using a more proper, 
standardized questionnaire, and possibly an experimental 
manipulation (e.g., having the test performed in the 
morning vs. in the late evening).

https://osf.io/fjvna/
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Appendix B
Screen size measure
In Experiment 2, since participants used their own phones, 
we expected the screen sizes of the devices to vary to some 
small extent. This could not affect the outcome of our main 
results, since our study had a within-subject design. However, 
it still seemed worthwhile to record this data for potential 
exploratory analyses, in particular to see whether it has any 
effect on the CIT task’s probe-to-irrelevant differences (as 
we preregistered it as a last secondary analysis). Therefore, 
the handout instruction sheet also included a printed but 
real size ruler with a corresponding grid (see via https://osf.
io/fjvna/), which participants could use to measure the side 
lengths of their smartphone screens – by laying the paper’s 
grid area over the screen, in which the screen margins (sides) 
were highlighted in red (via the CIT application), and could 
therefore be clearly seen through the paper. The entered 
numbers were double-checked by the experimenter before 
moving on to the CIT task.

Nonetheless, this was of very minor interest, and 
therefore it was noticed only after having collected data 
from 75 participants that the screen size information was 
not written out to the data file, and, hence, was lost for 
all these participants. This mistake was then immediately 
corrected, and, thus, these values were correctly saved for 
the remaining 41 participants. The related results below 
are reported with this partial data.

The correlation of the screen sizes (Msize ± SDsize = 
76.43 ± 9.89 cm2) with the probe-to-irrelevant RT mean 
differences or accuracy rates were not significant in either 
condition: for RT means, with Index finger, r(39) = .237, 
95% CI [–.126, .469], p = .237, with Thumb, r(39) = .159, 
95% CI [–.156, .445], p = .320; for accuracy rates, with 
Index finger, r(39) = –.061, 95% CI [–.362, .252], p = .706, 
with Thumb, r(39) = –.098, 95% CI [–.393, .217], p = .544.

Our sample size and the corresponding statistical 
power are much less for this analysis than as originally 
calculated – however, since this comparison was not at all 
the main subject of our study, we simply report it here as 
a tentative supplementary information. In any case, while 
it cannot be ruled out that the device size affects results 
(see, e.g., Lakens, Schneider, Jostmann, & Schubert, 2011; 
Lin, 2013), this effect, as also supported to some extent by 
our present data, is very unlikely to be substantial for the 
relatively small variance between typical smartphone sizes. 
Nonetheless, this may also be addressed in the future with 
more direct manipulation: For example, a within-subject 
design, where each participant performs the CIT using a 
large, a medium size, and a small device.

Notes
 1 Of course, using the CIT does require the proper 

understanding of the method’s rationale, in order to 
appropriately select test items and correctly interpret 
the results – which is, however, quite straightforward.

 2 We confirmed in a post-hoc analysis that, in the final 
dataset, the entered names were always identical in 
the Desktop and Smartphone tests.

 3 In case of RT mean and accuracy rates, we did not 
include Trial Type as a factor, but, merely for simplicity 

and clarity, we used (as preregistered) one probe-
to-irrelevant difference value instead of including 
probe and irrelevant results separately. (Note that 
separate inclusion of probe and irrelevant values gives 
identical results.) This was done because, unlike for 
hold-durations, there is ample unanimous evidence 
regarding the significant RT mean and accuracy rate 
differences between probes and irrelevants.

 4 Variations of this procedure make very little difference 
in the obtained AUCs. 

 5 From another perspective, we can also say: We assume 
equivalence when the 90% CI of the effect size is 
within the specified bounds. The lower and upper 
limits of the 90% CI are therefore the points where 
the TOST test yields p = .05 for the given comparison. 
Hence, with α = .05, using any bound within these 
intervals will be statistically nonsignificant (p > .05), 
while using any bound outside these intervals will be 
statistically significant (p < .05).

 6 The pretest consisted merely of opening the application 
and then creating an email message via a button click 
inside the opened application.

 7 To simplify both the development testing and the 
experiment procedure, we deployed the application 
for Android OS only. However, via the Ionic Framework, 
the same source code can just as well be deployed for 
iOS, or even for Microsoft Windows.

 8 Same as in Experiment 1, our exclusion criteria were an 
accuracy rate not over 50% for targets or not over 75% 
for main items, but no one in Experiment 2 violated 
these rules.

 9 If, on opening the application, internet connection 
was nonetheless detected, the participants were 
warned again automatically by an alert prompt within 
the application.

 10 The use of the CIT in this context would be most 
straightforward when there is only one, or at least only 
few, suspected place(s) of origin (see various examples 
by, e.g., McNamara, Van Den Hazelkamp, & Verrips, 
2016), which could then be used as probes. It is, 
however, theoretically also possible to simultaneously 
test for a larger number of items in an “unknown 
probe scenario,” with all test items as potential probes 
(for details, see, e.g., Meixner & Rosenfeld, 2011), 
although the diagnostic accuracy of such a test is yet 
to be demonstrated.
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