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Abstract 

The brain-age paradigm is proving increasingly useful for exploring ageing-related disease 

and can predict important future health outcomes. Most brain-age research utilises structural 

neuroimaging to index brain volume. However, ageing affects multiple aspects of brain 

structure and function, which can be examined using multi-modality neuroimaging. Using UK 

Biobank, brain-age was modelled in n=2,205 healthy people with T1-weighted MRI, T2-

FLAIR, T2*, diffusion-MRI, task fMRI and resting-state fMRI. In a held-out healthy validation 

set (n=520), chronological age was accurately predicted (r=0.78, mean absolute error=3.55 

years) using LASSO regression, higher than using any modality separately. Thirty-four 

neuroimaging phenotypes were deemed informative by the regression (after bootstrapping); 

predominantly grey-matter volume and white-matter microstructure measures. When applied 

to new individuals from UK Biobank (n=14,701), significant associations with multi-modality 

brain-predicted age difference (brain-PAD) were found for: stroke history, diabetes 

diagnosis, smoking, alcohol intake and some, but not all, cognitive measures (corrected 

p<0.05). Multi-modality neuroimaging can improve brain-age prediction, and derived brain-

PAD values are sensitive to biomedical and lifestyle factors that negatively impact brain and 

cognitive health. 
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1. Introduction 

Ageing has a pronounced effect on the human brain, resulting in cognitive decline and an 

increased risk of neurodegenerative diseases and dementia. Though brain ageing is 

ubiquitous, differences between individuals can be substantial. Some people experience 

cognitive decline, neurodegeneration and age-related brain diseases in midlife, while others 

retain the majority of their cognitive function well into their tenth decade (Deary, et al., 2009, 

Mendez, 2017, Wyss-Coray, 2016). 

Poorer brain-health during ageing has a pronounced negative impact for individuals, their 

families and for society (Wasay, et al., 2016). Hence, ways of identifying people at risk of 

poorer brain health during ageing have become an important research goal. One such 

approach, the so-called ‘brain-age paradigm’ (Cole and Franke, 2017, Franke and Gaser, 

2019), aims to define the brain’s ‘biological age’ (Jackson, et al., 2003, Ludwig and Smoke, 

1980). The idea here is that genetic and environmental influences can influence the rate at 

which age-associated biological changes accumulate, and that one’s biological age might be 

a better predictor of disease-risk, functional capacity and residual lifespan, than 

chronological age. By defining a statistical model of healthy brain ageing, using 

neuroimaging data to predict chronological age, one can then evaluate neuroimaging data 

from new individuals, and consider whether their ‘brain-age’ appears younger or older than 

their chronological age. 

Having an older-appearing brain has previously associated with markers of physiological 

ageing (e.g., grip strength, lung function, walking speed) and cognitive ageing (Cole, et al., 

2018), suggesting that brain and body ageing are related (Cole, et al., 2019c). An older brain 

age has also been associated with poor future outcomes, including progression from mild 

cognitive impairment to dementia (Franke and Gaser, 2012, Gaser, et al., 2013) and 

mortality (Cole, et al., 2018). Brain-age can also be moderated by a range of different 

neurological and psychiatric diseases (reviewed in Cole, et al., 2019b). 



Statistical methods for modelling brain age using neuroimaging are generally highly 

accurate, with most approaches able to account for >90% of the variance in chronological 

age. The mean absolute error (MAE) of predictions are generally around 4-5 years (when 

predicting between 18-90 years), though the winners of a recent competition achieved MAE 

< 3 years using an ensemble deep-learning method (https://www.photon-ai.com/pac2019). 

Nevertheless, further improving model accuracy is important step towards application in 

clinical settings, where predictions will be made at the individual level. Potential clinical uses 

include screening for poorer brain-health in cognitively normal middle-aged adults, in 

stratifying clinical trial recruitment or as a surrogate outcome measure of neuroprotective 

treatments.  

Most brain-age models use only T1-weighted structural MRI, reflecting brain volumes. Given 

that ageing impacts many aspects of brain structure and function, and that these can be 

measured with other neuroimaging modalities, one could potentially improve accuracy by 

incorporating complementary data on brain connectivity, white-matter hyperintensities, iron 

deposition and brain activity during tasks and at rest. A multi-modality approach has the 

benefit of providing a richer and more comprehensive explanation of the mechanisms 

underlying individual differences in brain ageing. For example, changes in white-matter 

microstructure may precede alterations in brain volume, or there may be regional differences 

in the susceptibility to age-related brain changes. Including more measurements should 

capture more age-related variance and thus improve model accuracy. Multi-modality 

imaging could also be used to generate an array of modality-specific brain “ages”. For 

example, an individual could have a structural brain-age, a diffusion brain-age and a 

functional connectivity brain-age. In healthy people, these separate “ages” should be closely 

related, according to the concept of biological age, but for patient groups, distinct patterns of 

aberrant brain ageing could emerge. 

Several previous brain-age studies have used two or three modalities (Brown, et al., 2012, 

Cherubini, et al., 2016, Groves, et al., 2012, Liem, et al., 2017, Niu, et al., 2019, Richard, et 



al., 2018). In one of the first brain age studies, Brown and colleagues (2012) used T1-

weighted measures of regional volumes and cortical thickness, T2-weighted normalised 

signal intensity and diffusion-MRI measures to predict age during neurodevelopment (ages 

3-20 years). The resulting multi-modality model was highly accurate in this age range (mean 

error = 1.1 years), though they did not explicitly compare this model with the performance of 

its unimodal constituents. Liem and colleagues (2017) studied n=2354 people, finding 

improved accuracy when combining T1-weighted structural MRI with resting-state fMRI 

(MAE = 4.29 years). Structural MRI resulted in higher accuracy than fMRI when used 

independently. Meanwhile, Groves and colleagues (2012) using linked independent 

component analysis to merge T1-weighted and diffusion-MRI in n=484 participants, finding 

that the resulting largest component could predict age with high accuracy (correlation 

between chronological age and brain age r = 0.95). Similarly, Richard and colleagues (2018) 

used T1-weighted and diffusion-MRI in their study of n=877 participants. Again, the 

combination of modalities achieved top performance (r = 0.86, MAE = 6.14 years), while T1-

derived values resulted in higher age-prediction accuracy than white-matter microstructure 

measures from diffusion-MRI. Cherubini and colleagues (2016) used three modalities; T1-

weighted, T2* relaxometry and diffusion-MRI data. This small study (n=140) achieved 

excellent performance (r = 0.96) with these three modalities, although accuracy was still 

generally high with single modalities. Most recently, Niu and colleagues (2019), combined 

T1-weighted structural MRI, diffusion-MRI and resting-state fMRI to predict age in n=839 

participants age 8-21 years, evaluating the performance of 36 different feature set and 

statistical model combinations. This comprehensive study found the lowest MAE with a deep 

neural network model combining all three modalities (MAE = 1.38 years), though other 

statistical models and combinations of two out of the three modalities reached similar 

performance levels (MAE range 1.38-1.55 years).  

Findings from these multi-modality brain age studies suggest that T1-weighted MRI is the 

best single predictor, but that adding other modalities results in higher accuracy than in any 



single modality, despite the noticeable levels of collinearity between modalities. These 

results are promising, but still limited to two or three modalities. This is largely due to data 

availability; the UK Biobank imaging study (Miller, et al., 2016) presents a new opportunity to 

overcome this limitation. With a planned total of n=100,000 individuals undergoing 

standardised neuroimaging, using four identical, dedicated MRI scanners, a wealth of multi-

modality MRI data are becoming available. The modalities include T1-weigthed MRI, T2-

FLAIR, susceptibility-weighted imaging (SWI), diffusion-MRI, task fMRI and resting-state 

fMRI. In addition to neuroimaging, participants provide detailed information on current 

health, lifestyle and medical history, as well as participating in cognitive testing and providing 

blood for biological assessments.  

Here, I tested whether brain-age prediction in healthy people can be improved by combining 

data from these six modalities, as well as evaluating their independent performance. I then 

applied the resulting multi-modality brain-age model to a held-out sample of UK Biobank 

participants to test the relationship between brain-prediction age and factors relating to 

health, lifestyle and cognitive function. I hypothesised that i) highest accuracy (i.e., lowest 

MAE, highest variance explained in age) would be achieved by combining data from all 

modalities; ii) that T1-weighted MRI would provide the highest independent accuracy; iii) that 

all modalities could be used to significantly predict chronological age independently; iv) that 

smoking, alcohol intake, major physiological health conditions and poorer cognition would be 

associated with having an older-appearing brain. 

2. Materials and Methods 

2.1. Participants 

Data from n=22,392 participants from UK Biobank were analysed. Of these, n=20,237 

completed the brain MRI assessment; which included n=2,776 participants who were 

missing one or more neuroimaging modality. This left n=17,461 participants (aged 45-80 

years, n=9,274 females, n=8,187 males) with complete neuroimaging data. Two subsets 

were then defined; one for training the statistical model (the training set), one for testing 



associations with other UK Biobank measures (the test set). Training data included only 

people who met criteria for being healthy at the time of scanning. Exclusion criteria were an 

ICD-10 diagnosis, a self-reported long-standing illness disability or infirmity (UK Biobank 

data field #2188), no self-reported diabetes (field #2443), no stroke history (field #4056), not 

having good or excellent self-reported health (field #2178). This gave n=2,725 (mean age = 

61.47 ± 7.2 years, 1,343 females and 1,382 males). The test set comprised the remaining 

n=14,701 participants (mean age = 62.64 ± 7.5, 7,914 females, 6,787 males). All UK 

Biobank data were downloaded and reformatted using the R package ukbtools (Hanscombe, 

et al., 2019). 

All participants provided informed consent. UK Biobank has ethical approval from the North 

West Multi-Centre Research Ethics Committee (MREC). Further details on the UK Biobank 

Ethics and Governance framework are here: https://www.ukbiobank.ac.uk/the-ethics-and-

governance-council/. The present analyses were conducted under data application number 

40933, Optimising neuroimaging biomarkers of brain ageing to identify genetic and 

environmental risk factors for poor brain health. 

Table 1. UK Biobank neuroimaging participant characteristics 

 Healthy training set Test set 

N 2725 14701 

Age, mean ± SD 61.47 ± 7.21 62.64 ± 7.45 

Female, % (n) 49.3% (1343) 53.8% (7914) 

Body mass index, median [IQR] 25.94 [23.58-28.68] 25.94 [23.56-28.88] 

Weight, kg, median [IQR] 75 [65.6-85.4] 74.6 [65.2-85] 

Hip circumference, cm, median [IQR] 100 [95.5-105] 100 [96-106] 

Diastolic blood pressure, median [IQR] 79 [72-87] 78 [71-85] 

Systolic blood pressure, median [IQR] 139 [126-151.75] 137 [125-150] 

ICD-10 diagnosis, % (n) 0% (0) 73% (12753) 

Diabetes, % (n) 0% (0) 5.72% (836) 

Stroke, % (n) 0% (0) 1.37% (201) 
 



2.2. Data acquisition 

Full details on the UK Biobank neuroimaging data are provided here: 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. In brief, T1-weighted MRI 

used an MPRAGE sequence with 1mm isotropic resolution. The T2 protocol uses a fluid-

attenuated inversion recovery (FLAIR) contrast with the 3D SPACE optimized readout, with 

a 1.05x1x1mm resolution. The SWI protocol used a dual-echo 3D gradient echo acquisition 

at 0.8x0.8x3mm resolution, (TEs = 9.4, 20ms). T2* values (i.e., signal decay times) were 

estimated from the magnitude images at the two echo times. Diffusion-MRI data were 

acquired with two b-values (b = 1,000, 2,000 s/mm2) at 2mm isotropic resolution, with a 

multiband acceleration factor of 3. For both diffusion-weighted shells, 50 diffusion-encoding 

directions were acquired (covering 100 distinct directions over the two b-values). Task and 

resting-state fMRI use the following acquisition parameters, with 2.4-mm spatial resolution 

and TR = 0.735s, with a multiband acceleration factor of 8. The total neuroimaging 

acquisition protocol lasted 32 minutes per participant. 

2.3. Data processing 

Data used in the current analysis were the imaging-derived phenotypes developed centrally 

by researchers involved in UK Biobank (Miller, et al., 2016) and distributed via the data 

showcase (http://biobank.ctsu.ox.ac.uk/crystal/index.cgi). These data were the available 

summary metrics for T1-weighted MRI, diffusion-MRI, T2-FLAIR, SWI (i.e., T2*) and task 

fMRI. Data from resting state fMRI was so-called bulk data, in this case the 25-dimension 

partial correlation matrices (data field #25752). These matrices had been converted into 

vectors of length 210, representing the pairwise correlations between the BOLD timeseries 

from 21 separate resting state networks (details on page 16 here: 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf).  Four for 25 networks were 

classified as noise by UK Biobank researchers and removed prior to being made available. 

The figure of 210 values is arrived at by 21 networks multiplied by 20 (i.e., excluding the 

identity correlation), then divided by 2 (i.e., as the matrix is diagonally symmetrical). The use 



of partial correlation aims to provide a better estimate of direct ‘connection’ strengths 

between networks than using full correlations. 

The final set of neuroimaging phenotypes numbered as follows: T1-weighted = 165, T2-

FLAIR = 1 (total volume of white-matter hyperintensities), T2* = 14, diffusion-MRI = 657, task 

fMRI = 14, resting-state fMRI = 210. This gave 1,079 phenotypes in total (see Table A1 in 

Appendix). 

2.4. Statistical analysis 

All statistical analyses were carried using R version 3.5.2 (R Core Team, 2015). The R 

Markdown notebook containing all statistical code can be found here: https://james-

cole.github.io/UKBiobank-Brain-Age/. 

To define a multi-modality healthy ageing model, the training data were randomly split into 

separate training (80%, n=2,205) and validation sets (20%, n=520), to ensure that model 

accuracy could be evaluated in an unbiased manner. All neuroimaging phenotypes were 

normalised (i.e., scaled by standard deviation and mean centred) to account for the different 

measurement scales used by the different modalities. 

To predict age from neuroimaging data, a least absolute shrinkage and selection operator 

(LASSO) regression was run, with age as the outcome variable and neuroimaging 

phenotypes as the predictors. LASSO regression imposes an L1-norm penalty, in which the 

goal is to minimise the absolute value of the beta coefficients in the model. Coefficients that 

shrink below a threshold (lambda) are automatically set to zero. This leads to a sparse 

solution, which reduces the variance in the model (i.e., regularisation); in effect working to 

select informative features and remove uninformative ones. To derive the optimal value 

lambda, ten-fold cross-validation was first run using a range of lambdas, and the highest 

value within one standard error of the minimum was used in subsequent analysis. 

Since LASSO can be susceptible to biased solutions caused by multicollinearity, 

bootstrapping (i.e., resampling with replacement) was used to generate a distribution of 



coefficients for each predictor variable. Here, 1000 bootstraps were run, and the mean 

coefficient and 95% confidence interval (calculated using the basic bootstrap method) were 

computed. Neuroimaging phenotypes with bootstrapped 95% confidence intervals that did 

not overlap zero were considered to be informative for the prediction of age. 

The LASSO regression procedure was then run per modality (T1-weighted, T2-FLAIR, 

diffusion-MRI, SWI, task fMRI, resting-state fMRI), where phenotypes from that modality 

alone were included. This time bootstrapping was not conducted, as the goal was to 

compare model-level performance across modalities, rather than identify important features 

within each model. Next, the LASSO was repeated using a leave-one-modality-out 

approach, the inverse of the single modality analysis, to test whether some modalities 

decreased model performance. 

To test for associations between brain-age and health-related variables in UK Biobank, the 

LASSO model was applied to predict age in people from the testing set. As recent research 

has highlighted a proportional bias in brain-age calculation, whereby the difference between 

chronological age and brain-predicted age is negatively correlated with chronological age 

(Le, et al., 2018, Liang, et al., 2019, Smith, et al., 2019), an age-bias correction procedure 

was employed. This entailed calculating the regression line between age and brain-predicted 

age in the training set, then using the slope (i.e., coefficient) and intercept of that line to 

adjust brain-predicted age values in the testing set (by subtracting the intercept and then 

dividing by the slope). After applying age-bias correction the brain-predicted age difference 

(brain-PAD) was calculated; chronological age subtracted from brain-predicted age. This 

gives a resulting value in unit years, with positive values representing an older-appearing 

brain and negative values a younger-appearing brain. 

Associations between brain-PAD values and demographic, biomedical, cognitive and 

lifestyle measures were then tested, using linear regression models. In the models, brain-

PAD was the outcome measure, the variable of interest was a predictor, alongside age, 

age2, sex, height, volumetric scaling from T1-weighted MRI to standard (data field #25000) 



and mean task fMRI head motion (averaged across space and time points; data field 

#25742) as covariates. These covariates were chosen due to face validity (i.e., theoretically 

likely to relate to brain structure) and statistical correlation with brain-PAD. 

Biomedical measures (from visit #2, the imaging visit) tested were systolic blood pressure, 

diastolic blood pressure, weight, body mass index [BMI], hip circumference, diabetes 

diagnosis; stroke diagnosis, and facial ageing. Lifestyle measures were smoking status 

alcohol intake frequency, duration of moderate activity or vigorous activity per day. Cognitive 

performance measures were fluid intelligence score, Trail making task: duration to complete 

numeric path trail 1, duration to complete alphanumeric path trail 2, Matrix pattern 

completion: number of puzzles correctly solved, duration spent answering each puzzle and 

Tower rearranging: number of puzzles correct. Full details on the coding for these variables 

are reported in the UK Biobank data showcase 

(http://biobank.ctsu.ox.ac.uk/crystal/search.cgi). Of particular note, the coding for alcohol 

intake frequency has lower values reflecting higher intake (1 = Daily or almost daily; 2 = 

Three or four times a week; 3 = Once or twice a week; 4 = One to three times a month; 5 = 

Special occasions only; 6 = Never; -3 = Prefer not to answer). Multiple testing correction for 

these 18 separate measures was conducted using false-discovery rate correction (Benjamini 

and Hochberg, 1995). 

3. Results 

3.1. Demographics of healthy participants in training and test set 

After subdividing UK Biobank into a healthy training set and separate test set, the two 

groups were broadly comparable (Table 1). Age was slightly higher in the test, which also 

had a higher proportion of females. The groups were equivocal in terms of blood pressure, 

BMI, weight and hip circumference. By design, rates of stroke history and a diagnosis of 

diabetes were higher in the test set (1.4% and 5.7% respectively), as these were exclusion 

criteria for the healthy training set. 



3.2. Multi-modality neuroimaging can predict chronological age in healthy 

people 

When applying the brain-model model to the validation dataset, the correlation between 

chronological age and brain-predicted age was r=0.786, R2=0.618, MAE=3.515, with an age-

bias of r=-0.65 (Figure 1). 

 
Figure 1. Brain-predicted age from multi-modality LASSO regression model 
Scatterplot depicting chronological age (x-axis) by brain-predicted age (y-axis) in UK Biobank 
validation set (n=520). Black line is the line of identity. Grey line is the regression line of age on brain-
predicted age with shaded errors representing the 95% confidence intervals. No age-bias correction 
had been applied at this stage. 

From the initial input of 1,079 neuroimaging phenotypes, 221 were set to non-zero in the 

LASSO regression model. After bootstrapping, 34 neuroimaging phenotypes had 95% 

confidence intervals that did not overlap zero (Table 2). This is despite 886 out of the 1,079 

neuroimaging phenotypes being significantly correlated with age at p < 0.05; even using 

Bonferroni correction 704 neuroimaging were significantly correlated with age (adjusted p = 

4.6*10-5). 

These 34 ‘informative’ neuroimaging phenotypes were predominantly from T1-weighted MRI 

or diffusion-MRI, although T2*, task fMRI and resting-fMRI variables were included. Given 

that the variables were scaled across modalities, the relative beta coefficients from the 

model can be considered. The variable with the largest absolute coefficient was the volume 

of grey matter (normalised for head size) beta = -1.466, 95% confidence intervals [-1.85, -

1.24], suggesting that lower grey matter volume is associated with higher brain-age 
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estimates. Lower weighted mean intra-cellular volume fraction (ICVF) in the forceps minor 

was also associated with higher brain-age estimates, suggesting that neurite density in the 

anterior corpus callosum and related regions is lower in older-appearing brains. Increasing 

volume of the fourth ventricle, equating to an enlargement of this CSF space, was also 

associated with higher brain-age estimates. Other notable associations include reductions in 

volume and changes in diffusion metrics in the cerebellum.  

Table 2. Informative neuroimaging phenotypes consistently for predicting age 

in a multi-modality LASSO regression 

Neuroimaging phenotype UK Biobank  
data field # Modality Coefficient  

[95% confidence intervals] 

Volume of grey matter normalised for head 
size 25005 T1-weighted -1.466 [-1.851, -1.242] 

Weighted mean ICVF in tract forceps minor 25661 Diffusion-MRI -1.029 [-1.789, -0.699] 

Volume of brain stem 4th ventricle 25025 T1-weighted 0.692 [0.484, 1.139] 

Volume of grey matter in ventral striatum left 25890 T1-weighted -0.666 [-1.022, -0.393] 

Weighted mean L1 in tract anterior thalamic 
radiation right 

25572 Diffusion-MRI 0.513 [0.218, 1.026] 

Mean ISOVF in fornix on FA skeleton 25445 Diffusion-MRI 0.501 [0.219, 1.003] 

Mean FA in middle cerebellar peduncle on 
FA skeleton 25056 Diffusion-MRI -0.477 [-0.91, -0.275] 

Volume of grey matter in putamen right 25883 T1-weighted 0.460 [0.262, 0.911] 

Volume of thalamus right 25012 T1-weighted -0.454 [-0.909, -0.116] 

Mean FA in cerebral peduncle on FA 
skeleton left 25071 Diffusion-MRI -0.453 [-0.906, -0.226] 

Mean FA in superior cerebellar peduncle on 
FA skeleton left 25069 Diffusion-MRI 0.429 [0.053, 0.859] 

Mean L1 in middle cerebellar peduncle on 
FA skeleton 25200 Diffusion-MRI -0.428 [-0.815, -0.162] 

Mean L3 in posterior thalamic radiation on 
FA skeleton right 25324 Diffusion-MRI 0.418 [0.129, 0.835] 

Mean L2 in fornix cres/stria terminalis on FA 
skeleton left 25287 Diffusion-MRI 0.393 [0.062, 0.787] 

Mean ICVF in body of corpus callosum on 
FA skeleton 25347 Diffusion-MRI 0.381 [0.031, 0.762] 

Mean L1 in anterior limb of internal capsule 
on FA skeleton left 25217 Diffusion-MRI 0.349 [0.095, 0.698] 

Mean MO in fornix cres/stria terminalis on 
FA skeleton left 25191 Diffusion-MRI -0.336 [-0.61, -0.061] 

Volume of grey matter in vi cerebellum right 25899 T1-weighted -0.330 [-0.661, -0.059] 

Volume of grey matter in frontal operculum 
cortex right 25863 T1-weighted -0.321 [-0.582, -0.146] 

Mean OD in superior longitudinal fasciculus 
on FA skeleton left 25433 Diffusion-MRI 0.316 [0.169, 0.633] 

Volume of grey matter in vermis crus ii 
cerebellum 25904 T1-weighted 0.306 [0.115, 0.532] 

Weighted mean L3 in tract uncinate 
fasciculus left 25648 Diffusion-MRI 0.302 [0.002, 0.603] 

Volume of putamen left 25015 T1-weighted -0.284 [-0.567, -0.011] 



Mean MD in cingulum hippocampus on FA 
skeleton right 25140 Diffusion-MRI -0.272 [-0.544, -0.109] 

Mean L2 in splenium of corpus callosum on 
FA skeleton 25252 Diffusion-MRI -0.271 [-0.542, -0.014] 

Weighted mean MO in tract anterior 
thalamic radiation left 25544 Diffusion-MRI 0.263 [0.065, 0.526] 

90th percentile of BOLD effect in group-
defined mask for shapes activation 25761 Task fMRI 0.229 [0.05, 0.425] 

Weighted mean MO in tract forceps minor 25553 Diffusion-MRI -0.226 [-0.452, -0.031] 

Median T2* in putamen left 25030 T2* -0.221 [-0.442, -0.016] 

Volume of grey matter in thalamus right 25879 T1-weighted 0.217 [0.005, 0.435] 

Median BOLD effect in group-defined mask 
for faces-shapes contrast 

25048 Task fMRI -0.212 [-0.423, -0.06] 

Weighted mean L1 in tract parahippocampal 
part of cingulum left 25575 Diffusion-MRI -0.174 [-0.348, -0.001] 

Resting-state partial correlation 25-
dimension IC v157 25752 Resting-state 

fMRI 0.165 [0.024, 0.329] 

Mean L2 in cingulum cingulate gyrus on FA 
skeleton right 25282 Diffusion-MRI -0.119 [-0.237, -0.009] 

ICVF = intracellular volume fraction; FA = fractional anisotropy; ISOVF = isotropic volume fraction; 
MO = mode of anisotropy; OD = orientation dispersion; v# = variable from resting-state fMRI partial 
correlation matrix, using 25-dimension independent component analysis. 

3.3. Single modality brain-age prediction 

Variables from each neuroimaging modality were used separately to train a model to predict 

age in the validation dataset (Table 3). The best performing modalities (i.e., highest 

correlation with age, lowest MAE) were T1-weighted MRI and diffusion-MRI. The other four 

modalities were only able to explain a limited amount of variance in age, particularly the task 

fMRI. The pattern of correlations across different “ages” predicted by each modality is shown 

in Figure 2. The highest correlation between two “ages” is between T1-weighted and 

diffusion-MRI (r = 0.73). 



 
Figure 2. Correlation matrix of age and brain-age predicted by six different 
modalities 
Bivariate correlations between chronological age and brain-age values derived from each of the six 
neuroimaging modalities, in the validation set (n=520). Values are Pearson’s r for each pairwise 
correlation. Darker blue colours indicate higher positive correlations. 

Table 3. Brain-age prediction performance from single modalities 

Modality Number of 
entered 
variables 

Correlation 
between age 
and brain-age 
(r) 

Variance in 
age 
explained 
(R2) 

Mean Absolute 
Error (years) 

Age bias 
(correlation 
between age and 
age-difference) 

T1-weighted 165 0.684 0.468 4.140 -0.721 
T2-FLAIR 1 0.308 0.095 5.653 -0.942 
T2* 14 0.329 0.108 5.780 -0.987 
Diffusion-MRI 675 0.730 0.533 3.897 -0.638 
Task fMRI 14 0.161 0.026 5.929 -0.986 
Resting-state fMRI 210 0.444 0.194 5.261 -0.921 
 

3.4. Leave-one-modality-out brain-age prediction 

To further explore the influence of different modalities on brain-age prediction, I conducted a 

leave-one-modality-out analysis, essentially the inverse of the single modality approach 

above. The motivation behind this analysis was to test whether the inclusion of some 

modalities actually decreased model performance. Here, each modality was omitted in turn, 

and the LASSO regression trained on the remaining five modalities and then tested on the 



validation dataset (Table 4). When compared to using all six modalities, removing the task 

fMRI or the resting-state fMRI had no appreciable impact on performance. The biggest 

decrease in performance occurred when excluding diffusion-MRI data, though excluding T1-

weighted phenotypes also decreased model accuracy. Notably, model performance was 

never improved when excluding a single modality. 

Table 4. Brain-age prediction performance, leaving out single modalities 

Excluded modality Number of 
entered 
variables 

Correlation 
between age 
and brain-age 
(r) 

Variance in 
age 
explained 
(R2) 

Mean Absolute 
Error (years) 

Age bias 
(correlation 
between age and 
age-difference) 

All included 1079 0.786 0.618 3.515 -0.650 
T1-weighted 914 0.751 0.565 3.752 -0.654 
T2-FLAIR 1078 0.778 0.605 3.572 -0.642 
T2* 1065 0.773 0.598 3.598 -0.641 
Diffusion-MRI 404 0.715 0.511 3.975 -0.692 
Task fMRI 1065 0.781 0.610 3.569 -0.634 
Resting-state fMRI 869 0.779 0.607 3.522 -0.615 
 

3.5. Brain predicted-age, health, lifestyle and cognitive performance 

When applied to the n=14,701 test dataset participants from UK Biobank, performance was 

similar to that in the validation set: r=0.803, R2=0.644, MAE=3.555 years (Figure 3A). A 

pronounced age bias was apparent (r=-0.640), which was adjusted for using the slope (0.59) 

and intercept (24.7) of the age on brain-predicted age relationship. After adjustment the age 

bias was minimal (Figure 3B). 
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Figure 3. Brain-predicted age by chronological age in the test set, with and 
without age-bias adjustment. 
Scatterplots depicting chronological age (x-axis) by brain-predicted age (y-axis) in UK Biobank test 
set (n=14,701). Black line is the line of identity. Grey line is the regression line of age on brain-
predicted age with shaded areas representing the 95% confidence intervals. A) Brain-predicted age 
values generated from application of previously trained LASSO regression model. The age bias is 
evident from the slope of the regression line. B) Brain-predicted age values have been adjusted by 
the slope and intercept of the age-bias line in the training set.  

Using the bias-adjusted brain-PAD values, the relationships with the selected outcome 

measures were assessed (Table 4). Each analysis used a linear regression model, adjusting 

for age, age2, sex, height, volumetric T1-weighted MRI scaling and head motion. Resulting 

p-values were false-discovery rate corrected (18 tests). After multiple comparison correction, 

increasing brain-PAD was associated with: higher blood pressure, a diagnosis of diabetes, a 

history of stroke, past or present smoking, greater frequency of alcohol intake, lower fluid 

intelligence, longer duration to complete the alphanumeric path trail 2, fewer correct matrix 

pattern puzzles complete and fewer correct Tower rearranging puzzles. There was no 

association with anthropometric measures, facial ageing, physical activity levels and some of 

the cognitive tasks. 



Table 5. Biomedical, lifestyle and cognitive measures in relation to brain-age 

Measure UK Biobank 
data field # 

Estimate Standard 
error 

T-value P FDR 
corrected-P 

ηp2 

Biomedical        

Diastolic blood pressure 4079 0.049 0.005 9.520 <0.001 <0.001 0.0074 

Systolic blood pressure 4080 0.028 0.003 9.433 <0.001 <0.001 0.0073 

Body mass index 21001 0.008 0.013 0.646 0.518 1.000 0 

Weight 21002 0.006 0.005 1.400 0.162 1.000 0.0001 

Hip circumference 49 -0.080 0.006 -1.381 0.167 1.000 0.0001 

Diabetes† 2443 2.115 0.207 10.208 <0.001 <0.001 0.0071 

Stroke† 4056 2.695 0.407 6.614 <0.001 <0.001 0.0030 

Facial ageing† 1757 -0.550 0.462 -1.201 0.230 1.000 0.0001 

Lifestyle        

Smoking status† 20116 0.879 0.102 8.636 <0.001 <0.001 0.0070 

Alcohol intake frequency† 1558 -0.997 0.147 -6.776 <0.001 <0.001 0.0090 

Duration of moderate activity 894 0.001 0.001 0. 279 0.780 1.000 0 

Duration of vigorous activity 914 -0.001 0.001 -0.461 0.645 1.000 0 

Cognitive performance        

Fluid intelligence 20016 -0.147 0.024 -5.998 <0.001 <0.001 0.0027 

Trail making task: duration to 
complete numeric path trail 1 

6348 0.003 0.001 2. 712 0.007 0.121 0.0012 

Trail making task: duration to 
complete alphanumeric path trail 2  

6350 0.002 0.001 5.667 <0.001 <0.001 0.0054 

Matrix pattern completion: number 
of puzzles correctly solved 

6373 -0.218 0.037 -5.882 <0.001 <0.001 0.0059 

Matrix pattern completion: duration 
spent answering each puzzle  

6333 0.010 0.007 1.452 0.147 1.000 0.0004 

Tower rearranging: number of 
puzzles correct  

6382 -0.117 0.021 -5.468 <0.001 <0.001 0.0050 

†Indicates categorical variable. All other variables are continuous. FDR = false discovery 
rate. ηp2 = partial eta-squared effect size. 

 
4. Discussion 

Using UK Biobank, chronological age can be accurately predicted in healthy people by 

combining data from six different neuroimaging modalities (T1-weighted MRI, T2-FLAIR, 

T2*, diffusion-MRI, task fMRI, resting-state fMRI). T1-weighted MRI and diffusion-MRI 

phenotypes were generally the most informative for age prediction in this combined model. 

Bootstrapping highlighted 34 variables as informative, and the multi-modality model 

outperformed prediction models from any modality independently, as hypothesised. This 

indicates that much of the age-related variation can be captured by these 34 phenotypes 

alone. Of the independent modality predictors, only T1-weighted MRI and diffusion-MRI 

achieved reasonable prediction accuracy. Performance was slightly higher for diffusion-MRI, 

contrary to the expectation that T1-weighted MRI would provide the most accurate separate 



model. When applying the multi-modality model to held-out test data, aberrant brain ageing 

(quantified by brain-PAD) was associated with higher blood pressure, a history of stroke, 

diabetes, smoking, frequent alcohol intake and poor cognitive performance.  

The majority of extant brain-age studies use T1-weighted MRI alone (Cole, et al., 2019b), 

though previous multi-modality studies have used two or three modalities (Brown, et al., 

2012, Cherubini, et al., 2016, Groves, et al., 2012, Liem, et al., 2017, Niu, et al., 2019, 

Richard, et al., 2018). Thanks to UK Biobank, I was able to combine and compared six 

different modalities. As anticipated, T1-weighted MRI proved important for brain-age 

prediction here, with normalised grey matter volume being the most informative 

neuroimaging phenotype. Diffusion-MRI phenotypes were also informative in the LASSO 

model, and T2* in the putamen, BOLD response during the faces and shapes tasks, and 

independent components derived from resting-state fMRI were also included. Volumes of 

white-matter hyperintensities (from T2-FLAIR) were not retained by the model. Several 

reasons may explain the importance placed on T1-weighted and diffusion-MRI phenotypes, 

from biological, technical and statistical perspectives. Firstly, the phenotypes reflect 

biological processes shown by neuropathology studies to change with age, specifically brain 

volume loss and myelin changes (Peters, 2002, Savva, et al., 2009), hence the ground-truth 

relationship is strong. Secondly, these modalities have relatively high signal-to-noise ratio, 

particularly T1-weighted MRI (Lu, et al., 2005, Perthen, et al., 2008, Polzehl and Tabelow, 

2016), meaning that the age-related signal is less likely to be obfuscated by factors linked to 

data acquisition. Thirdly, the T1-weighted and diffusion-MRI phenotypes were far more 

numerous in the dataset than the other modalities (e.g., n=675 diffusion-MRI phenotypes 

compared to n=1 for T2-FLAIR). This means that not only is there much greater anatomical 

specificity (as many of the phenotypes were local ROIs), but also by simple probability there 

is more chance of these phenotypes detecting the age-related signal in the data. 

The use of bootstraps (n=1000) to derive confidence intervals provides assurance of the 

robustness of the selected features, despite the relatively small contributory effects of each 



of the 34 informative phenotypes. Interestingly, the predictive performance of the multi-

modality model (r = 0.79) was lower than some previous reports using multiple modalities 

(e.g., Cherubini et al., r = 0.96), despite the much larger training sample size (n = 2,205 

versus n = 140). The current use of derived summary measures (or imaging-derived 

phenotypes) may negatively impact brain-age prediction performance since these summary 

measures collapse complex high-dimensional information into single values, potentially 

removing considerable amounts of age-related variance. In fact, brain-age prediction 

performance using voxelwise T1-weighted MRI data alone tends to be highly accurately 

(e.g., r = 0.96; Cole, et al., 2017a). Future work will utilise the raw neuroimaging data from 

each UK Biobank modality to fuse multi-modality data in a more high-dimensional manner.  

One important finding of the current study is that although many of the 1,079 neuroimaging 

phenotypes significantly correlated with age, with this large sample (n = 2,725) correlations 

with r > 0.05 will be significant at p < 0.05. Hence, many of these statistically significant 

effects are so small as to be negligible, and only 34 phenotypes were selected as being 

informative for age-prediction. This means that although multiple patterns of brain structure 

and function are statistically associated with age, only a few measures are potentially 

suitably for deriving individualised brain-age predictions with sufficient accuracy for clinical 

utility. For brain-age, as with other research, it is important to be mindful of the differences 

between statistical significance, effect size and predictive power in new data. 

Another noteworthy issue is the validity of the processing methods for deriving the 

neuroimaging phenotypes. For example, in the current study subcortical grey matters 

volume phenotypes were generated in two ways; using FSL FIRST (Patenaude, et al., 2011) 

and FSL FAST (Zhang, et al., 2001), the latter with a subcortical regional mask applied to 

the tissue-segmented image. Despite theoretically measuring the same underlying construct, 

the correlation between FIRST thalamus volume and FAST thalamus volume, for example, 

is only r = 0.44 and r = 0.41 for the left and right respectively. This lack of internal 

consistency highlights the need for researchers using ‘big data’ resources like UK Biobank to 



carefully consider the nuances of the data processing and to select phenotypes explicitly, as 

opposed to blindly analysing all available data. This is an important caveat when interpreting 

the current and other works using these data. Proper validation will come from not only using 

truly independent datasets but also different processing methods in order to converge 

towards the same constructs (i.e., brain region segmentation), thus overcoming the 

assumptions and errors of each separate method.  

By using healthy people only for training, a new individual’s deviation from this healthy brain 

ageing model can be indexed. This key point makes a distinct between models trained on 

broad inclusive population samples and models trained specifically on healthy people. With 

the latter, the goal is always to improve model prediction, while with the former, improved 

model prediction may mean that anyone’s age can be accurately predicted, but the concept 

of deviation loses value. Previous research has not always screened for healthy people 

model training, or at least has not reported that this was the case (Smith, et al., 2019, Sun, 

et al., 2019). This means that potentially the brain-age difference metrics (i.e., brain-age 

gap, brain-age delta) do not reflect actual deviations from healthy brain ageing and thus may 

be less sensitive to subsequent relationships with other measures or more prone to false 

positives. The current study has a large sample with detailed biomedical data, allowing 

thorough screening of the healthy training dataset. While it is true that even some of these 

healthy participants may have undetected or prodromal pathologies, this is the case for all 

case-control research and can only be properly assessed using long-term follow-up. This will 

also be possible in future thanks to the study design of UK Biobank. 

An older-appearing brain was associated with higher diastolic and systolic blood pressure, a 

history of stroke, a diagnosis of diabetes, smoking, alcohol intake and some facets of 

cognitive performance. BMI, weight, hip circumference, facial ageing and other aspects of 

cognitive performance were not associated with brain-PAD. These findings partially concur 

with previous reports. Franke and colleagues (2014) reported brainAGE (equivalent to brain-

PAD) associations with diastolic blood pressure and BMI; here only the former was 



replicated. Obesity has previously been linked with added brain-ageing (Kolenic, et al., 2018, 

Ronan, et al., 2016), and BMI has been shown to influence brain structure (Cole, et al., 

2013), though no BMI and brain-PAD association was found here. Exercise duration was not 

associated with brain-PAD, contrary to the findings of Steffener and colleagues (2016). 

Nevertheless, many different approaches to measuring physical activity are possible, with 

the current self-report measures not necessarily being the most valid.  

Regarding medical history, Franke and colleagues (2013) found that diabetes was 

associated with an increased brainAGE = 4.6 years, whereas here diabetes increased brain-

PAD by 2 years (after covariate adjustment). Stroke was also associated with an increased 

brain-PAD = 2.6 years; interestingly neither diabetes nor stroke were associated with brain-

PAD in the Lothian Birth Cohort 1936 (Cole, et al., 2018). Discrepancies between the current 

previous work may be due to sampling biases, such as cohort effects or recruitment 

strategies, though statistical power is certainly in favour of the current study thanks to UK 

Biobank’s large sample size. Another reason may be the analytic strategy used, particularly 

the use of covariates. Here, multiple covariates were used to increase sensitivity to brain-

PAD relationships, most notably head motion (averaged across the task fMRI session), 

which accounted for 4.7% of the variance in brain-PAD. While several biomedical, lifestyle 

and cognitive factors relate to brain-PAD, effect sizes are generally small. For instance, the 

effects of diabetes, stroke, current smoking (+2.1 years brain-PAD) and daily alcohol intake 

(+0.97 years) are substantially smaller than previously reported effects of Alzheimer’s (+10 

years) or multiple sclerosis (+11 years) on apparent brain-age (Cole, et al., 2019a, Franke, 

et al., 2010). While it makes intuitive sense that such factors are associated with poorer 

ageing-related brain health, the magnitude of the effects should not be overstated. Future 

work will investigate gene-environment interactions to better understand individual 

differences in the impact of medical history and lifestyle on brain health during ageing. 

Fluid intelligence has previously been linked to brain-PAD (Cole, et al., 2018), as has 

performance on the trail-making task (Cole, et al., 2015, Cole, et al., 2017b), and other 



studies report moderate significant relationships between brain-ageing and cognitive 

performance (Liem, et al., 2017, Richard, et al., 2018). Here I was able to replicate that 

relationship, though more detailed analysis of how brain-ageing relates to cognitive ageing 

will require more comprehensive cognitive testing. The presence of data on facial ageing 

presented an interesting opportunity to test the relationship between brain-PAD and self-

report of whether participants felt people said they looked “younger than you are”, “older 

than you are” or “about the same age”. There was no relationship detected, although 

interesting related work has reported a relationship between subjective “age” and brain-age 

(Kwak, et al., 2018). In the current study, only 1% of respondents reported that people think 

they look older, potentially questioning the validity of this subjective measure. 

The current study benefits from the extremely large sample size and in-depth biomedical 

data of UK Biobank. This enabled detailed screening of healthy individuals to include in the 

training dataset, to minimise the impact of disease-related effects on the brain that may 

potentially confound models of healthy brain ageing. Despite 84% of the neuroimaging 

sample from UK Biobank used herein having at least one ICD-10 diagnosis, a self-reported 

longstanding illness, poor self-rated health status or medical history of stroke or diabetes, 

the remaining 16% still left greater than 2,500 participants for training and validation. 

Another benefit here is the use of LASSO regression with bootstrapping, combining the 

strength of LASSO for identifying important features for prediction (by shrinking 

uninformative variables to zero) with the robustness of bootstrapping, which overcomes the 

limitation of using LASSO with highly correlated predictor variables. A weakness of the study 

is the use of summary-level neuroimaging phenotypes. As noted, model accuracy is 

substantially below that commonly achieved with voxelwise data. Another potential limitation 

is the current limited use of biomedical, lifestyle and cognitive variables. Potentially many 

more associations with biological, psychological and behavioural parameters could have 

been assessed, however adding further tests adds to the multiple-testing burden and 

decreases sensitivity to real effects. Hence the decision was taken to test only variables with 



previous research evidence and strong face validity. Another weakness is that the current 

study is cross-sectional, hence the long-term consequences of having an older-appearing 

brain cannot be tested and no causal inference made. The planned long-term medical 

follow-up of UK Biobank participants makes this an obvious avenue for future research. 

5. Conclusions 

In summary, brain-age can be predicted by combining six different MRI modalities, with the 

strongest predictors being T1-weighted and diffusion-MRI phenotypes. Deviations from 

healthy brain ageing are related to medical history, smoking and alcohol intake. Poorer 

cognitive performance was also related to having an older-appearing brain, suggesting that 

biomedical and lifestyle factors can negatively impact brain ageing and cognitive ageing. 

The brain-age paradigm presents a potential screening tool to detect the negative impact of 

medical and lifestyle factors on brain health in asymptomatic people, and the planned 

longitudinal nature of UK Biobank offers the opportunity to validate this potential. 
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Highlights 

• Brain-age was predicted from six different neuroimaging modalities 

• Combined multi-modality brain-age was more accurate than any single modality 

• Thirty-four neuroimaging measures were informative for brain-age prediction 

• Informative measures generally reflect brain volume and white-matter microstructure 

• Brain-age was associated with stroke, diabetes, smoking, alcohol and cognition 
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