
A New Approach to Distribute MOEA Pareto Front Computation
Federica Sarro, Alessio Petrozziello, Dan-Qi He

{f.sarro,danqi.he.17,a.petrozziello}@ucl.ac.uk
University College London

Shin Yoo
shin.yoo@kaist.ac.kr

Korea Advanced Institute of Science and Technology

ABSTRACT
Multi-Objective EvolutionaryAlgorithms (MOEAs) offer compelling
solutions tomany real world problems, including software engineer-
ing ones. However, their efficiency decreases with the growing size
of the problems at hand, hindering their applicability in practice.

In this paper we propose a novel master-worker approach to
distribute the computation of the Pareto Front (PF) for MOEAs
(dubbed MOEA-DPF) and empirically evaluate it on a real-world
software project management problem. With respect to previous
work, our proposal can be used with any MOEA to tackle multi-
objective problems regardless of their formulation/representation.

Our results show that MOEA-DPF runs significantly faster (up to
3.1x speed-up using two workers) than its sequential counterpart
while maintaining (and even improving) the quality of the PF. We
conclude that MOEA-DPF provides an effective and simple solu-
tion to speed-up the execution of MOEAs by distributing the PF
computation, making them effective for real-world problems.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering; • Computing methodologies → Distributed algo-
rithms;

KEYWORDS
Distributed Pareto Front, Multi-Objective Evolutionary Algorithms,
Search Based Software Engineering, Software Project Management.
ACM Reference Format:
Federica Sarro, Alessio Petrozziello, Dan-Qi He and Shin Yoo. 2020. A New
Approach to Distribute MOEA Pareto Front Computation. In Proceedings of
Genetic and Evolutionary Computation Conference Companion (GECCO ’20
Companion). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Multi-Objective Evolutionary Algorithms (MOEAs) have been suc-
cessfully applied to the optimisation of real-world problems [15]
and not least to Search-Based Software Engineering (SBSE).

The success of MOEAs for SBSE is mainly due to their ability to
provide high quality solutions to the problems at hand, at the same
time providing the engineers with interesting trade-offs among
competing conflicting goals. MOEAs’ attractiveness to software en-
gineers is testified by the fact that they have recently started gaining

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

industrial uptake based on very compelling and human-competitive
solutions compared to more traditional Software Engineering ap-
proaches [1, 2, 11, 14]. In order to be practicable, these solutions
need to be deployable and work at scale in continuos integration
environments. However, strong limitations to these approaches rise
with the growing size of the problem at hand and the time needed
towards the evaluation of the fitness function, which could make
the optimisation too slow and not adoptable in practice [9].

In the last few years, emerging frameworks for distributed com-
puting have been used to mitigate this problem. For example, the
Map-Reduce paradigm adopted by Hadoop has been used for the
parallelisation of single objective Genetic Algorithms [5, 7, 8, 12],
where the main gain is in the distributed evaluation of a single
fitness function. When moving towards the need to optimize two
or more objectives, the fitness evaluation itself is no longer the only
expensive component [3]: The construction of the Pareto Front (PF)
becomes computationally demanding [4].

This paper aims to advance the state-of-the-art by proposing a
simple yet effective technique to distribute the computation of their
PF and by empirically assessing its effectiveness for a real-world
SBSE problem [6, 13] using Apache Spark. Our proposal, named
MOEA-DPF, has the main advantage of being independent from
specific multi-objective problem formulations as well as the MOEA
used. Moreover, MOEA-DPF does not require any modification
to the original multi-objective optimisation problem and can be
applied regardless of data types of the genotype representation, as
it instead was required by previous proposals [4, 10, 16]. The results
of our study reveal that MOEA-DPF (using two workers) is up to
3.1x times faster than its sequential version and maintains (and in
some cases significantly improves) the quality of the PF.

2 OUR PROPOSED MOEA-DPF
Our proposal, MOEA-DPF, is a master-worker approach that uses
worker nodes (a.k.a. islands) to run independent MOEAs on a sub-
set of the original population, and a master node to periodically
compute a global PF from the local PFs sent by the workers, and to
communicate back to each worker their own solutions which are
globally dominated. Thus, the key aspect and novelty of MOEA-DPF
is the interaction between the master and the workers: Exchanging
PFs, rather than individual chromosomes, allows to periodically
replace solutions that are optimal on a certain worker but globally
dominated by solutions residing on other workers. We explain the
approach in more detail below.

A master program generates a population of size p and assigns
a fixed set of p/n solutions to each of the n islands (i.e. workers).
Each worker locally executes an MOEA (independently from the
other nodes) on its p/n solutions and it sends its local Pareto Front
to the master at everym iterations (i.e. migration rate). Once the
master has received the local PFs from all workers, it computes a
global PF from their union and determines all those solutions which

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Sarro et al.

are locally optimal but globally dominated by solutions produced
by other workers. This allows us to compute a globally dominated
solution set for each worker node, which is then used along with a
replacement policy to remove globally dominated solutions from
each local MOEA population (i.e. running on a worker). An example
of a replacement policy is replacing globally dominated solutions
with random ones. Once the replacement policy is applied, each
worker continues the execution of its own MOEA until the next
migration occurs. The evolutionary process is terminated by the
master using a given termination criterion, for example, when a
maximum number of fitness evaluations is reached.

MOEA-DPF is highly customisable by choosing (i) the MOEA
executed by each worker; (ii) the number of workers; (ii) the re-
placement policy, which determines how many dominated solu-
tions should be replaced and how; (iv) the migration rate; (v) the
framework used for the distributed computation.

3 EMPIRICAL EVALUATION
We have empirically investigated the effectiveness of our proposed
MOEA-DPF on a real-world multi-objective software engineering
problem: the overtime planning problem [6, 13]. This problem
seeks for optimal overtime assignments, which are able to min-
imise project duration, average overrun risk and total amount of
overtime deployed. In particular, we ran MOEA-DPF on three differ-
ent software projects (i.e. Web, Price and Broker [13]) and assessed
whether the quality of its PFs is at least as good as the quality of
those produced by its sequential counterpart (i.e. MOEA-SPF), and
whether MOEA-DPF executes faster than MOEA-SPF. We measure
the PF’s quality with Hypervolume and Generational Distance, and
execution time as wall clock time. Due to the stochastic nature of
MOEAs, we run 20 independent runs per algorithm and check for
statistically significant differences using the Wilcoxon signed-rank
test (α < 0.05 with Bonferroni correction). To conduct the com-
putational search, we used NSGAIIa (as originally done by Sarro
et al. [13]) with 1,000 individuals and 250,000 fitness evaluations
for both MOEA-DPF and MOEA-SPF. For MOEA-DPF, we used the
Best Fitted Reproduction Replacement policy (which replaces the
globally dominated solutions with an equal number of solutions
generated via crossover between globally non-dominated solutions
randomly chosen from different workers), a migration rate equal to
100 generations, and two workers. NSGAIIa -SPF was implemented
using jMetal v. 5 [13], while its parallel version (NSGAIIa -DPF)
was implemented by extending the jMetal framework with Apache
Spark. We ran all the experiments on the Amazon AWS c5.2xlarge
instance (8vCPU and 16GB RAM). The results of the comparison
(see Table 1) show that NSGAIIa -DPF produces similar or even
significantly better PFs than NSGAIIa with a significantly lower
execution time (p-values < 0.001). The average speed-up achieved
by NSGAIIa -DPF using two workers is 2.3x for the Broker project,
2.4x for the Web project and 3.1x for the Price project.

4 CONCLUSION AND FUTUREWORK
In this paper, we have proposed MOEA-DPF, a simple yet effective
approach to distribute the computation of MOEA Pareto Front. Our
proposal is applicable to any MOEA and multi-objective optimi-
sation problem, regardless of its formulation and representation.

Table 1: Hypervolume, Generational Distance and Execu-
tion Time of NSGAIIa-SPF and NSGAIIa-DPF for each of the
three benchmark projects. Entry: mean/st. dev (p-value).

Project Algorithm Hypervolume Generational Distance Time (seconds)

Web NSGAIIa -SPF 0.51/0.07 0.01/0.01 1761.10/8.26
NSGAIIa -DPF 0.51/0.08 (0.46) 0.01/0.00 (0.17) 728.24 /4.44 (< 0.001)

Price NSGAIIa -SPF 0.52/0.07 0.01/0.00 748.86 /6.17
NSGAIIa -DPF 0.56/0.10 (0.07) 0.01/0.01 (0.10) 243.27 /1.10 (< 0.001)

Broker NSGAIIa -SPF 0.34/0.08 0.03/0.01 3518.37/17.48
NSGAIIa -DPF 0.43/0.08 (0.00) 0.01/0.01 (0.00) 1552.46/2.99 (< 0.001)

We empirically evaluated the effectiveness of MOEA-DPF by using
NSGAIIa to tackle a multi-objective problem from the software en-
gineering domain, namely the software project overtime problem
[6, 13]. Results show that MOEA-DPF runs significantly faster (up
to 3.1x speed-up using only two workers) than its sequential coun-
terpart and produces similar (or even better) Pareto Fronts. Future
work will investigate MOEA-DPF with different replacement poli-
cies, migration rates, number of workers, computing frameworks,
as well as its use for other MOEAs and optimisation problems.

ACKNOWLEDGMENTS
Work supported by Amazon AWS grant and ERC grant no. 741278.

REFERENCES
[1] N. Alshahwan, A. Ciancone, M. Harman, Y. Jia, k. Mao, A. Marginean, A. Mols, H.

Peleg, F. Sarro, and I. Zorin. 2019. Some challenges for software testing research
(invited talk paper). In Procs. of ISSTA. 1–3.

[2] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and I. Zorin.
2018. Deploying Search Based Software Engineering with Sapienz at Facebook.
In Procs. of SSBSE.

[3] C. A. Coello Coello. 2015. Multi-objective Evolutionary Algorithms in Real-World
Applications: Some Recent Results and Current Challenges. 3–18.

[4] K. Deb, P. Zope, and A. Jain. 2003. Distributed Computing of Pareto-Optimal
Solutions with Evolutionary Algorithms. In In Procs. of EMO. 534–549.

[5] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro. 2012. A Parallel Genetic
Algorithm Based on Hadoop MapReduce for the Automatic Generation of JUnit
Test Suites. In Procs. of ICST. 785–793.

[6] F. Ferrucci, M. Harman, J. Ren, and F. Sarro. 2013. Not Going to Take This
Anymore: Multi-objective Overtime Planning for Software Engineering Projects.
In Procs. of ICSE. 462–471.

[7] F. Ferrucci, P. Salza, MT. Kechadi, and F. Sarro. 2015. A Parallel Genetic Algorithms
Framework Based on Hadoop MapReduce. In Procs. of ACM SAC. 1664–1667.

[8] F. Ferrucci, P. Salza, and F. Sarro. 2017. Using Hadoop MapReduce for Paral-
lel Genetic Algorithms: A Comparison of the Global, Grid and Island Models.
Evolutionary Computation 25, 1 (2017), 1–54.

[9] M. Harman. 2007. The Current State and Future of Search Based Software
Engineering. In Proc. of FOSE 2007. 342–357.

[10] A L. Jaimes and CACoello Coello. 2005. MRMOGA: Parallel evolutionary multiob-
jective optimization using multiple resolutions. In Procs. of CEC. IEEE, 2294–2301.

[11] B. Marculescu, R. Feldt, R. Torkar, and S. Poulding. 2018. Transferring interactive
search-based software testing to industry. JSS 142 (2018), 156 – 170.

[12] P. Salza, F. Ferrucci, and F. Sarro. 2016. Elephant56: Design and Implementation
of a Parallel Genetic Algorithms Framework on Hadoop MapReduce. In Procs. of
GECCO Companion. 1315–1322.

[13] F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren. 2017. Adaptive Multi-
Objective Evolutionary Algorithms for Overtime Planning in Software Projects.
IEEE TSE 43, 10 (2017), 898–917.

[14] F. Sarro, A. Petrozziello, and M. Harman. 2016. Multi-objective software effort
estimation. In Procs. of ICSE. 619–630.

[15] T. Stewart, O. Bandte, H Braun, N. Chakraborti, M. Ehrgott, M. Göbelt, Y. Jin,
H. Nakayama, S. Poles, and D. Di Stefano. 2008. Real-world applications of
multiobjective optimization. In Procs. of EMO. 285–327.

[16] S. Yoo, M. Harman, and S. Ur. 2013. GPGPU test suite minimisation: Search Based
Software Engineering Performance Improvement using Graphics Cards. EMSE
18, 3 (2013), 550–593.


	Abstract
	1 Introduction
	2 Our proposed MOEA-DPF
	3 Empirical Evaluation
	4 Conclusion and Future Work
	Acknowledgments
	References

