UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Quantifying urban forest structure with open-access remote sensing data sets

Baines, O; Wilkes, P; Disney, M; (2020) Quantifying urban forest structure with open-access remote sensing data sets. Urban Forestry and Urban Greening , 50 , Article 126653. 10.1016/j.ufug.2020.126653. Green open access

[thumbnail of A_framework_for_quantifying_urban_forest_structure_with_open_access_remote_sensing_data_sets_w_authors.pdf]
Preview
Text
A_framework_for_quantifying_urban_forest_structure_with_open_access_remote_sensing_data_sets_w_authors.pdf - Accepted Version

Download (11MB) | Preview

Abstract

Future cities are set to face ever increasing population and climate pressures, ecosystem services offered by urban forests have been recognised as providing significant mitigation for these pressures. Therefore, the ability to accurately quantify the extent and structure of urban forests, across large and highly dynamic cities, is vital for determining the value of services provided and to assess the effectiveness of policy to promote these important assets. Current inventory methods used in urban forestry are mostly reliant on plot networks measuring a range of structural and demographic metrics; however, limited sampling (spatially and temporally) cannot fully capture the dynamics and spatial heterogeneity of the urban matrix. The rapid increase in the availability of open-access remote sensing data and processing tools offers an opportunity for monitoring and assessment of urban forest structure that is synoptic and at high spatial and temporal resolutions. Here we present a framework to estimate urban forest structure that uses open-access data and software, is robust to differences in data sources, is reproducible and is transferable between cities. The workflow is demonstrated by estimating three metrics of 3D forest structure (canopy cover, canopy height and tree density) across the Greater London area (1577 km^{2}). Random Forest was trained with open-access airborne LiDAR or iTree Eco inventory data, with predictor variables derived from Sentinel 2, climatic and topography data sets. Output were maps of forest structure at 100 m and 20 m resolution. Results indicate that forest structure can be accurately estimated across large urban areas; Greater London has a mean canopy cover of ∼16.5% (RMSE 11-17%), mean canopy height of 8.1–15.0 m (RMSE 4.9–6.2 m) m and is home to ∼4.6 M large trees (projected crown area >10 m^{2}Urban forest structureOpen-accessRemote sensingAirborne LiDARiTree EcoSentinel 2). Transferability to other cities is demonstrated using the UK city of Southampton, where estimates were generated from local and Greater London training data sets indicating application beyond geographic domains is feasible. The methods presented here can augment existing inventory practices and give city planners, urban forest managers and greenspace advocates across the globe tools to generate consistent and timely information to help assess and value urban forests.

Type: Article
Title: Quantifying urban forest structure with open-access remote sensing data sets
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.ufug.2020.126653
Publisher version: https://doi.org/10.1016/j.ufug.2020.126653
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.
Keywords: Urban forest structure, Open-access, Remote sensing, Airborne LiDAR, iTree Eco, Sentinel 2
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL SLASH
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS > Dept of Geography
URI: https://discovery.ucl.ac.uk/id/eprint/10096101
Downloads since deposit
144Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item