UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

SwSt 1: an O-rich planetary nebula around a C-rich central star

De Marco, O; Crowther, PA; Barlow, MJ; Clayton, GC; de Koter, A; (2001) SwSt 1: an O-rich planetary nebula around a C-rich central star. Monthly Notices of the Royal Astronomical Society , 328 (2) pp. 527-554. 10.1046/j.1365-8711.2001.04887.x. Green open access

[thumbnail of od_swst1_mn01.pdf]
Preview
Text
od_swst1_mn01.pdf - Published version

Download (3MB) | Preview

Abstract

The hydrogen-deficient [WCL] type central star HD 167362 and its planetary nebula (PN) SwSt 1 are investigated. The central star has a carbon-rich emission-line spectrum, and yet the nebula exhibits a 10-μm emission feature from warm silicate dust, perhaps indicating a recent origin for the carbon-rich stellar spectrum. Its stellar and nebular properties might therefore provide further understanding as to the origin of the [WCL] central star class. The central star optical and UV spectra are modelled with state-of-the art non-LTE codes for expanding atmospheres, from which the stellar parameters are determined. Using the Sobolev approximation code ISA-Wind, we find graphic, graphic, graphic (for a distance of 2.0 kpc), and graphic. The abundance mass fractions for helium, carbon and oxygen are determined to be 37, 51 and 12 per cent, respectively. From this we derive graphic (by mass), confirming that the star suffered efficient third dredge-up. The nitrogen abundance is close to zero, while an upper limit of <10 per cent by mass is established for H. The model uses a composite beta velocity law which allows us to reproduce the optical line profiles. The overall shape of the dereddened spectrum agrees with the V-scaled [graphic, graphic] model atmosphere, showing the nebular-derived reddening to be consistent with the reddening indicated by the stellar analysis. We confirm our model results by using the comoving frame code CMFGEN, although a few differences remain. The PN has a high electron density graphic and a small ionized radius (0.65 arcsec – measured from the HST-WF/PC Hβ images), indicating a young object. Its nebular abundances are not peculiar. The nebular C/O ratio is close to solar, confirming the PN as an O-rich nebula. The nebular N/O ratio of 0.08 is not indicative of a Type-I PN, although the high stellar luminosity points to a relatively high stellar mass. Near-IR spectroscopy is presented and fitted together with IRAS fluxes by using two blackbody curves with temperatures of 1200 and 230 K, indicating the presence of hot dust. We also report the first detection of H2 in this young and compact PN. All of the published spectroscopy since the discovery of SwSt 1 in 1895 has been re-examined, and it is concluded that no clear spectral variability is seen, in contrast to claims in some previously published studies. If an event occurred that has turned it into a hydrogen-deficient central star, it did not happen in the last 100 years.

Type: Article
Title: SwSt 1: an O-rich planetary nebula around a C-rich central star
Open access status: An open access version is available from UCL Discovery
DOI: 10.1046/j.1365-8711.2001.04887.x
Publisher version: https://doi.org/10.1046/j.1365-8711.2001.04887.x
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: stars: abundances, stars: AGB and post-AGB, stars: atmospheres, stars: evolution, stars: Wolf–Rayet, planetary nebulae: individual: SwSt 1
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery.ucl.ac.uk/id/eprint/10096039
Downloads since deposit
18Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item