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Abstract

We introduce a framework for the reconstructionfand representation of functions
in a setting where these objects cannot be directly ‘observed, but only indirect and
noisy measurements are available, namely an inverse problem setting. The proposed
methodology can be applied either to the analysis ofiindirectly observed functional
images or to the associated covariance operators{ representing second-order infor-
mation, and thus lying on a non-Euclidean space. To deal with the ill-posedness of
the inverse problem, we exploit the ‘spatial structure of the sample data by intro-
ducing a flexible regularizing term embeddedyin the model. Thanks to its efficiency,
the proposed model is applied to MEG data, leading to a novel approach to the
investigation of functional connectivity.

1 Introduction

An inverse problem is the process of recovering missing information from indirect and
noisy observations. Not surprisingly, inverse problems play a central role in numerous
fields such as, to name a fews, geophysics (Zhdanov, 2002), computer vision (Hartley
and Zisserman, 2004), medigal imaging (Arridge, 1999; Lustig et al., 2008) and machine
learning (De Vito, et al.; 2005).

Solving a linear inverse problem means finding an unknown «, for instance a function
or a surface, from-a noisy. observation y, which is a solution to the model

y=Kzx+e, (1)

where y and ¢ belong to an either finite or infinite dimensional Banach space. The map K
is called forward operatorand is generally assumed to be known, although its uncertainty
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has also been taken into account in the literature (Arridge et al., 2006; Golub and van
Loan, 1980; Gutta et al., 2019; Kluth and Maass, 2017; Lehikoinen et al., 2007; Nissinen
et al., 2009; Zhu et al., 2011). The term e represents observational error.

Problem 1 is a well-studied problem within applied mathematics (for early works in
the field, see Calderén (1980); Geman (1990); Adorf (1995)). Its main difficulties arise
from the fact that, in practical situations, an inverse of the forward opérator doesmot
exist, or if it does, it amplifies the noise term. For this reason such a problemnis called
ill-posed. Consequently, the estimation of the function x in (1) is generally tackled by
minimizing a functional which is the sum of a data (fidelity) term and aregularizing
term encoding prior information on the function to be recovered (See, among, others,
Tenorio, 2001; Mathé and Pereverzev, 2006; Cavalier, 2008; Lefkimmiatis ét al., 2012;
Hu and Jacob, 2012). For convex optimization functionals, modern'efficient optimization
methods can be applied (Boyd et al., 2010; Beck and Teboulle, 2009; Chambolle and
Pock, 2011, 2016; Burger et al., 2016). Alternatively, when it is‘important to assess the
uncertainty associated with the estimates, a Bayesian approach eould bé adopted (Kaipio
and Somersalo, 2005; Calvetti and Somersalo, 2007; Stuart, 2010; Repetti et al., 2019).
The deep convolutional neural network approach has also been applied to this setting
(Jin et al., 2017; McCann et al., 2017).

In imaging sciences, it is sometimes of interest to,find an optimal representation and
perform statistics on the second order informatienmrassoeiated with the functional sam-
ples, i.e. the covariance operators describing the variabilitywof the underlying functional
images. This is, for instance, the case in a number of areas of neuroimaging, particularly
those investigating functional connectivitys In this werk, we establish a framework for
reconstructing and optimally representing,indirectly observed samples Cy,...,C,, that
are covariance operators, expressing the second order properties of the underlying un-
observed functions. The indirect observations are covariance operators generated by the
model

SZ'ZICiOCiOIC;k—l-gi, 1=1,...,n, (2)

where KF denotes the adjoint operator and the term & models observational error. The
term KC; o C; o K represents(the covariance operator of ;X @) with X@ an underlying
random function whose covariance operator is C;.

As opposed to more Aassicalllinéar inverse problems formulations, Problem 2 intro-
duces the following additional difficulties:

e We are in a setting where each sample is a high-dimensional object that is a co-
variance operator; it issimportant to take advantage of the information from all the
samples to reconstruct and represent each of them.

e The elements {C;} and {S;} live on non-Euclidean spaces, as they belong to the
positive semidefinite cone, and it is important to account for this manifold structure
in the formulation of the associated estimators.

o In an inverse problem setting it is fundamental to be able to introduce spatial
regularization, however it is not obvious how to feasibly construct a regularizing
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term for covariance operators reflecting, for instance, smoothness assumptions on
the underlying functional images.

More general non-Euclidean settings could also be accommodated. Specifically, the
error term could be defined on a tangent space and mapped to the original space,through
the exponential mapping. Another setting of interest is the case of error terms that push
the observables out of the original space. In our applications this is not an issue, as the
contaminated observations are themselves empirical covariance matrices/ which belong
to the non-Euclidean space of positive semidefinite matrices.

We tackle Problem 2 by generalizing the concept of Principal Component, Analysis
(PCA) to optimally represent and understand the variation associated with samples that
are indirectly observed covariance operators. The proposed modelyisialso able to deal
with the simpler case of samples that are indirectly observed fun¢tional-images belonging
to a linear functional space.

1.1 Motivating application - functional connectivity

In recent years, statistical analysis of covariance matrieesshas gainéd a predominant role
in medical imaging and in particular in functional meuroimaging. In fact, covariance
matrices are the natural objects to represent the brain’s functional connectivity, which
can be defined as a measure of covariation, in time, of.the.cerebral activity among brain
regions. While many techniques have been proposed to destribe functional connectivity,
almost all can be described in terms of a, function of a covariance or related matrix.

Covariance matrices representing funetional connectivity can be computed from the
signals arising from functional imaging modalities. The choice of a specific functional
imaging modality is generally driven by the preference to have high spatial resolution
signals, and thus high spatial resolution eovariance matrices, versus high temporal resolu-
tion, and thus the possibility to study the temporal dynamic of the covariance matrices.
Functional Magnetic Resonance falls in thefirst category, while Electroencephalogram
(EEG) and Magnetoencephalography (MEG) in the second. However, high temporal
resolution does generally come at the, price of indirect measurements and, as shown in
Figure 1 in the case of MEG data, the signals are in practice detected on the sensors
space. Tt is however of intérest $oproduce results on the associated signals on the cerebral
cortex, which we will refer t@ as brain space. The signals on the brain space are functional
images whose domain is the geometric representation of the brain and are associated with
the neuronal activityron the cerebral cortex. We borrow here the notion of brain space
and sensors space from Johsistone and Silverman (1990) and we use it throughout the
paper for convenience, however it is important to highlight that the formulation of the
problem is much.more general than the setting of this specific application.

The signals on the brain space are related to the signals on the sensors space by a
forward operator, @derived from the physical modeling of the electrical/magnetic prop-
agation, from the/cerebral cortex to the sensors. This is generally referred to as the
forward problem. For soft-field methods like EEG, MEG and Functional Near-Infrared
Spectroscopy (Mosher et al., 1999; Eggebrecht et al., 2014; Ferrari and Quaresima, 2012;
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Figure 1: On the top left, head model of a subject and superimposition of the 248 MEG
sensors positioned around the head, called ‘sensors Space’. On the top right, brain model
of the same subject represented by a triangular meshhof 8K nodes, which represents the
‘brain space’. On the bottom left, an example of a syntheti3 signal detected by the MEG
sensors. The dots represent the sensors, the color map represents the signal detected by
the sensors. On the bottom right, intensity of the reconstructed signal on the triangular
mesh of the cerebral cortex.

Figure 2: Covariance matrices of the signal detected by the MEG sensors from three
different subjects of the Human Connectome Project. The size of the matrices is 248 x
248. The dark bluesbands,represent missing data, which are due to the exclusion of some
channels after a quality,check of the signal.

Singh et al., 2014; Yeet al., 2009), the forward operator is defined through the solution
to a partial differential equation of diffusion type. Such a mapping induces a strong
degree’of smoothing and consequently the corresponding inverse problem, i.e. the re-
constructiondef a signal on the brain space from observations in the sensors space, is
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strongly ill-posed. In fact, signals with fairly different intensities on the brain space, due
to the diffusion effect, result in signals with similar intensities in the sensors space. In
Figure 1, we show an example of a signal on the brain space and the associated signal
on the sensors space.

From a practical perspective, it is crucial to understand how the different{parts of
the brain interact, which is sometimes known as functional connectivity. A possible way.
to understand these interactions is by analyzing the covariance function associated with
the signals describing the cerebral activity of an individual on the brain space (Fransson
et al., 2011; Lee et al., 2013; Li et al., 2009). More recently, the interest, has shifted
from this static approach to a dynamic approach. In particular, for & single individual,
it is of interest to understand how these covariance functions vary in time. \ This is a
particularly active field, known as dynamic functional connectivity (Hutchison et al.,
2013). Another element of interest is understanding how these dovarianee functions vary
among individuals. In Figure 2, we show the covariance matrices; on the sensors space,
computed from the MEG signals of three different subjects.

The remainder of this paper is organized as follows.aln Section 2 we give a formal
description of the problem. We then introduce a model for indirectly observed smooth
functional images in Section 3 and present the more general model associated with Prob-
lem 2 in Section 4. In Section 5, we perform simulations to assess the validity of the
estimation framework. In Section 6 we apply theproposed models to MEG data and we
finally give some concluding remarks in Section 7. &

2 Mathematical description of the problem

We now introduce the problem using our driving application as an example. To this
purpose, let M a be a closed smooth two=dimensional manifold embedded in R?, which
in our application represents the geometry of the cerebral cortex. An example of such
a surface is shown on the t0p. right of Figiwe 1. We denote with L?(M) the space of
square integrable functions on M. Define X to be a random function with values in
a Hilbert functional space F < L%(@M) with mean p = E[X], finite second moment,
and assume the continuity and square integrability of its covariance function Cx (v,v") =
E[(X (v) — p()) (X (v") 2 "] The associated covariance operator Cx is defined as
Cxg = § Cx (v,v")g(v)dv, dor all g € L?(M). Mercer’s Lemma (Riesz and Szokefalvi-
Nagy, 1955) guarantees the existence of a non-increasing sequence {7, } of eigenvalues of
Cx and an orthongrmal sequence of corresponding eigenfunctions {1, }, such that

Cx(v,0) = Z Vertbr (V) (V) Yo, v € M. (3)
r=1

As a direct congequence, X can be expanded! as X = u + Z:O:l ¢, where the ran-
dom variablés {C, } are uncorrelated and are given by ¢, = § \ {X (v) — pu(v)}¢,(v)dv. The

"More preciSely, we have that limp_.o sup,ecp E{X (v) — p(v) — 35, ¢0r(v)}? = 0, ie. the series
converges uniformly in mean-square.
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collection {1,} defines the modes of variation of the random function X, in descending
order of strength, and these are called Principal Component (PC) functions. The asso-
ciated random variables {(,} are called PC scores. Moreover, the defined PC functions
are the best finite basis approximation in the L?-sense, therefore for any fixed R € N,
the first R PC functions of X minimize the reconstruction error, i.e.

R 2
{rhty = arg min Ef {X(v) — pn(v) = Y (X - u,¢r>¢r(v)} duy,  (4)
({¢r}§:11<¢m¢w>:5rﬂ) M r=1

where (-, -) denotes the L?(M) inner product and §,,+ is the Kronecket delta; i.en6,,» = 1
for r = v’ and 0 otherwise.

2.1 The case of indirectly observed functions

In the case of indirect observations, the signal is detectable only through's sensors on the
sensors space. Let {K;:1=1,...,m} be a collection of s.x p real matrices, representing
the potentially sample-specific forward operators relating the signal at p pre-defined
points {v; : j = 1,...,p} on the cortical surface M avith the signal captured by the s
sensors. The matrices {K;} are discrete versions of the forward operator K introduced
in Section 1. Moreover, define the evaluation operator W.: F — RP to be a vector-valued
functional that evaluates a function f € F at the pipresspecified points {v;} = M,

returning the p dimensional vector (f(v1), ..., f(up))?. The operators ¥ and {K;} are
known. However, in the described problém.the random/function X can be observed only
through indirect measurements {y; € R®:{ =1,...,m} generated from the model

{xl = R Gt -

y: = KUz + ¢, l=1,...,m

where {z;} are m independentyrealizations of X, and thus expandible in terms of the
PC functions {¢,} and the coefficients {¢;,} given by ¢, = §, {zi(v) — p(v)}r(v)dv.
The terms {e;} represent observational, errors and are independent realizations of a s-
dimensional normal random,vector, with mean the zero vector and variance O'2Ip, where
I,, denotes the p-dimensionaliidentity matrix.

We consider the problem of estimating the PC functions {¢,} in (5), and associated
scores {(;r}, fromythe observations {y;}. In Figure 3 we give an illustration of the
introduced setting. Note that it would not be necessary to define the evaluation operator
if the forward operators were defined to be functionals {I; : F — RP}, relating directly
the functional objects on the brain space to the real vectors on the sensors space. It is
however the.case that the operators {K;} are computed in a matrix form by third party
software (See Section 6 for details) for a pre-specified set of points {v;} < M and it is
thus convenient to take this into account in the model through the introduction of an
evaluation operator W.

In the case of single subject studies, the surface M is the subject’s reconstructed
cortical surface, an example of which is shown on the right panel of Figure 1. In this
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Sensors space Brain space

Latent objects

Figure 3: Illustration of the setting introduced with model (5).

case, it is natural to assume that there is one commonforward operator K for all the
detected signals. In the more general case of multi-subject studies, M is assumed to be a
template cortical surface. We are thus assuming that the individual cortical surfaces have
been registered to the template M, whichhmeans that there is a smooth and one-to-one
correspondence between the points on each individual brain surface and the template
surface M, where the PC functions are defined.

However, notice that when it ¢omes.to the computation of the forward operators, we
are not assuming the brain geometriesiof the single subjects to be all equal to a geometric
template, as in fact the model in (5) allows for sample-specific forward operators {K;}.
The individual cortical surfacesicould also have different number of mesh points, in that
case the subject-specific ‘resampling’ operator could be absorbed into the definition of
sample-specific evaluation operators {U;}.

The estimation of thePCfunctions in (5) has been classically dealt with by recon-
structing each observation x;dndependently and subsequently performing PCA. However,
such an approach can be sub-optimal in particular in a low signal-to-noise setting, as
when estimating one signaljthie information from all the other sampled signals is sys-
tematically ignored. The statistical analysis of data samples that are random functions
or surfaces, i.e./functional data, has also been explored in the Functional Data Analysis
(FDA) literature (Ramsay and Silverman, 2005), however, most of those works focus on
the setting.ofrfully. observed functions. An exception to this is the sparse FDA litera-
ture (see @.g. Yao et al., 2005), where instead the functional samples are assumed to be
observable only through irregular and noisy evaluations.

Incthe caserof direct but noisy observations of a signal, previous works on statistical
estimation of the covariance function, and associated eigenfunctions, have been made,
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for instance, in Bunea and Xiao (2015) for regularly sampled functions and in Yao et al.
(2005) and Huang et al. (2008) for sparsely sampled functions. A generalization to fune-
tions whose domain is a manifold is proposed in Lila et al. (2016) and appropriate spatial
coherence is introduced by penalizing directly the eigenfunctions of the covariance oper-
ator to be estimated, i.e. the PC functions. In the indirect observations settifig, Tian
et al. (2012) propose a separable model in time and space for source lo¢alization.” The
estimation of PC functions of functional data in a linear space and on linear domains,
from indirect and noisy samples, has been previously covered in Amini and Wainwzight
(2012). They propose a regularized M-estimator in a Reproducing Kernel' Hilbert Space
(RKHS) framework. Due to the fact that in practice the introduction of a RKHS relies
on the definition of a kernel, i.e. a covariance function on the domain, this approach
cannot be easily extended to non-linear domains. In Katsevich et al. (2015), driven by
an application to cryo-electron microscopy, the authors propogse andinregularized esti-
mator for the covariance matrix of indirectly observed functions. However, a regularized
approach is crucial in our setting, due to the strong ill-posednessiof the inverse problem
considered. In the discrete setting, also other forms of regularization have been adopted,
e.g. sparsity on the inverse covariance matrix (Friedman etral., 2008; Liu and Zhang,
2019).

2.2 The case of indirectly observed covariance operators

A natural generalization of the setting introduced in the p?evious section is considering
observations that have group specific covariance operators. In detail, suppose now we
are given a set of n covariance functions {C5 ai = 1,..., n}, representing the underlying
covariance operators {C; : ¢ = 1,...,n} on the brain space. In our driving application,
each covariance function C; : M M. — R describes the functional connectivity of the
tth individual or the functional conneetivity of the same individual at the ith time-point.

We consider the problem of defininghand estimating a set of covariance functions,
that we call PC covariance functions, which enable the description of {C;} through the
‘linear combinations’ of few components. Such a reduced order description is of interest,
for example, in understanding how functional connectivity varies among individuals or
over time.

We define a model for the}C covariance functions of {C;} from the set of indirectly
observed covariance matricés, computed from the signals on the sensors space, and thus
given by {S; € R%4 =1, .. 0} with

5 = KZ(CzKZT + EiTEi, 1=1,....n, (6)

where C; = (Cj(vj,v;))j, and {vj : j = 1,...,p} are the sampling points associated
with the operator WeThe forward operators {K;} act on both sides of the covariance
functions {C; }; due to the linear transformation K;¥ applied to the signals on the brain
space before being detected on the sensors space. The term EZT FE; is an error term,
where E; is a_s X s matrix such that each entry is an independent sample of a Gaussian
distribution with mean zero and standard deviation o. Model (6) could be regarded as
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Sensors space Brain space

S, = Kl(ClKI‘F + EfEl

S, =K,C,K' + E'E, kﬁﬁ_/

Latent objects

Figure 4: Illustration of the setting introduced with model (6).

an implementation of the idealized Problem 2, where the .cevariance operators are repre-
sented by the associated covariance functions. ‘Anfillustration of the setting introduced
can be found in Figure 4.

The problem introduced in this section has,not been extensively covered in the lit-
erature. In the discrete case, Dryden et al: (2009)yintroduce a tangent PCA model for
directly observed covariance matrices:mAn. extension to directly observed covariance op-
erators has been proposed in Pigoli etial. (2014). Also related to our work is the setting
considered in Petersen and Miiller (2019); where the authors propose a regression frame-
work for responses that are random objects (e.g. covariance matrices) with Euclidean
predictors. The proposed regressiomnmodel is applied to study associations between age
and low-dimensional correlation matrices, representing functional connectivity, which
have been computed fromaparcellation of the brain. In Section 4, we propose a novel
PCA approach for indirectly‘observed high-dimensional covariance matrices.

3 Principal components of indirectly observed functions

The aim of thi$ sectionis to define a model for the estimation of the PC functions {t}
from the obsérvations {y;}, defined in (5). Although the model proposed in this section
is not the anain contribution of this work, it allows us to introduce some of the concepts
necessary to the definition of the more general model for indirectly observed covariance
functions, in‘Section 4.
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3.1 Model

Let now z = (21,...,2m)? be a m-dimensional real column vector and H?(M) be‘the
Sobolev space of functions in L?(M) with first and second distributional derivatives'in
L*(M). From now on F is instantiated with H%(M). We propose to estimate fe
H?(M), the first PC function of X, and the associated PC scores vector z, by solving
the equation

m
(z,f) = argmin Z ly; — 2 KU f|* + )\ZTZJ A% S (7)
zeR™, feH2(M) |2 M

where ||- | is the Euclidean norm and A is the Laplace-Beltrami operator, which enables a
smoothing regularizing effect on the PC function f . The data fit tezmyencourages K;V f
to capture the strongest mode of variation of {y;}. The parameter A controlsthe trade-off
between the data fit term of the objective function and the regularizing term. The second
PC function can be estimated by classical deflation methods;ie. by applying model (7)
on the residuals {y; — 2, K;¥ f }, and so on for the subsequent PCs."The proposed model
can be interpreted as a regularized least square estimation of the first PC function 11 in
(5), with the terms {2} playing the role of estimates of the variables {(;1}.

In the simplified case of a single forward operator K := Ky = ... = K,,, the mini-
mization problem (7) can be reformulated in a more ¢lassical form. In fact, fixing f in
(7) and minimizing over z gives

_ y KO f

|KF? + A dR f
which can then be used to show that the minimization problem (7) is equivalent to
maximizing

- 4
l=1,...,m, (8)

2l

(W) "RENTYK (V1) )
[KVFRS A A%

with Y a m X s real matrix, where the [th row of Y is the observation y;f. This reformu-

lation gives further insights onthe interpretation of f in (7). In fact, f is such that KW f
maximizes (K\IJf)T{%YTY}(K\IJf) subject to a norm constraint. The term {1Y7Y}
is the empirical covarianecemmatrix in the sensors space. The term z’z in (7) places
the regularization term/X § MAE\A f in the denominator of the equivalent formulation (9).
Thus, f is regularized by/the choice of norm in the denominator of (9), in a similar
fashion to the classie functional principal component formulation of Silverman (1996).
Ignoring the spatial regularization, the point-wise evaluation of the PC function ¥ f in
(9) can be interpreted as the first PC vector computed from the dataset of backprojected
data [K{y1, 43 KL y,]t, similarly to what is proposed in Dobriban et al. (2017) in the
context of optimal prediction.

3.2 Algorithm

Heré we propose a minimization approach for the objective function in (7), which we
approach by jalternating the minimization of z and f in an iterative algorithm. In (7),

10
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1
2
3
4
5
6 a normalization constraint must be considered to make the representation unique, as in
7 fact multiplying z by a constant and dividing f by the same constant does not change
8 the objective function. We optimize in z under the constraint |z| = 1, which leads.to a
?O normalized version of the estimator (8)

T
1; 2 = }::LKlff , I=1,...,m. (10)
13 A/ 2y Kivf
14 For a given z, solving (7) with respect to f will turn out to be equivalent to solving
12 an inverse problem, which we discretize adopting a Mixed Finite Elementshapproach
17 (Azzimonti et al., 2014). Specifically, consider now a triangulated [surface M7, union
18 of the finite set of triangles T, giving an approximated representation of the manifold
19 M. We then consider the linear finite element space V consisting of a.set of globally
20 continuous functions over M that are affine where restricted to any triangle 7 in 7, i.e.
;; V = {ve C°%(M7) : v|, is affine for each 7 € F}.
;i This spiace is spanned by the nodal ba'sis o1, - - ¢, associated with the no@es &1, ..., 6k,
25 corresponding to the vertices of the triangulation M. »Suchrbasis functions are La-
2% grangian, meaning that ¢;(§;) = 1 if i = j and ¢i(§;) = 0yotherwise. Setting ¢ =
27 (f(&1),..., f(&)T and ¢ = (¢1,...,0x)T, every function f € V has the form
28 “ L 4
29 @) = ) F(E)on) A ) (11)
30 k=1
g; for all v e M. To ease the notation, we assume that the p points {v;} associated with
33 the evaluation operator ¥ coincide with the nodesiof the triangular mesh &1, ..., &, and
34 thus we have that the coeflicients/c are,such that ¢ = U f for any f € V. Consequently,
35 we are assuming the forward operators { K;} to be s x x matrices, relating the x points
36 on the cortical surface of the ith sample,in one-to-one correspondence to &1, ...,&, to
37 the s-dimensional signal deteeted on the sensors for the ith sample.
38 Let now M and A be the"mass and stiffness k x x matrices defined as (M);; =
Zg SMT ¢j¢; and (A);; = SMT V My @j =NV mp @), where Vg is the gradient operator on
M the manifold M. Practicallyy, V1, @5 is a constant function on each triangle of M,
42 and can take an arbitrary value on the edges?.
43 Let h = max,e7(diam(r)) denote the maximum diameter of the triangles forming
44 Mo, then the sélution fjof (7), in the discrete space V, is given by the following
45 proposition.
2? Proposition 1. The Surface Finite Element solution fh e V of model (7), for a given
48 unitary nornt vector z, is fh = &T¢ where ¢& is the solution of
49 m m
50 &= (O KK+ MAM T A7 Y K]y (12)
51 =1 =1
52 2Formally, these are weak derivatives, hence uniquely defined almost everywhere (i.e. up to a set
53 of measure zer6) and are always evaluated in an integral form (see Dziuk and Elliott, 2013, for further
54 details):
55
56
57 1
58
59
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Equation (12) has the form of a penalized regression, where the discretized version
of the penalty term is AM~1A.

Algorithm 1 Inverse Problems - PCA Algorithm
1: Initialization:

(a) Computation of M and A

(b) Initialize z, the scores vector associated with the first PC function

2: PC function’s estimation:
Compute c such that

m m
<Z KK + AAM—1A>C =Y uaKy W

=1 =1
fo—c'e
3: Scores estimation:
yi KV f
2] , l=1,"aym
N 2 YLK fy
- 4

4: Repeat Steps 2-3 until convergence

The sparsity of the linear system (12);namely the number of zeros, depends on the
sparsity of its components. The matrices Miand A.are very sparse, however M ! is not,
in general. To overcome this probléms.in the numerical analysis of Partial Differential
Equations literature, the matrix M ~%is generally replaced with the sparse matrix M1,
where M is the diagonal matrix such that ij = Zj, M;jr (Fried and Malkus, 1975;

Zienkiewicz et al., 2013). Thespenalty operator AM~'A approximates very well the
behavior of AM~1A.

Moreover, in the case of longitudinal studies that involve only one subject, we have
a single forward operatoraKii=K; = ... = K,, common to all the observed signals, and
consequently equation (12) ¢an be rewritten as the sparse overdetermined system

fsrona =107 -

to be interpreted in a least-square sense. A sparse QR solver can be finally applied to
efficiently solve the linear system (13).

In Algorithm 1 we summarize the main algorithmic steps to compute the PC functions
and associated PC scores for indirectly observed functions. The initializing scores z can
be chosen either at random or, when there is a correspondence between the detectors of
different samples (e.g. K1 = ... = K,;,), with the scores obtained by performing PCA
on the observations in the sensors space.

12
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3.3 Eigenfunctions of indirectly observed covariance operators

Suppose now we are in the case of a single forward operator K. Combining Steps 23 of
Algorithm 1, and moving the normalization step from (z;) to f, we obtain the iterations

(KTK + MAM~'A)c Z viyD) KU fi,

T

The obtained algorithm depends on the data only through > ;" yly;f that up to a con-
stant is the covariance matrix computed on the sensors space. The.proposed algorithm
can thus be applied to situations where the observations {y;} are not-awvailable, but we
are given only the associated s x s covariance matrix on the sensors space, computed
from {y;}. This could be of interest in situations where the temporal résolution is very
high and the spatial resolution is low, therefore it is convenient tonstore the covariance
matrix rather than the entire set of observations.

4 Reconstruction and representation of indirectly observed

covariance operators
>

Consider now n sample covariance matrices Si;. ./, S, each of size s x s, representing
n different connectivity maps on the sensors space. Three of such covariance matrices,
associated with three different individuals, are shown in Figure 2. Recall moreover that
we denote with M the brain surface template and 'with {K; € R**P} the set of subject-
specific forward operators, relating the'signal at the p pre-specified points {v;} on the
cortical surface M with the signal detected on the s sensors.

The aim of this section i8.to introduce aymodel for the reconstruction and represen-
tation of the covariance functions,{C;}, on the brain space, associated with the actually
observed covariance matrices {S;}, on the sensors space. The matrices {S;} are related
to the covariance functions {C;} through formula (6) that we recall here being

N
SZ‘ZKZ'(CZ‘KZT-I—E?EZ', 1=1,...,n,

with C; = (Cj(vj,m));i, andfwj} the sampling points associated with the operator W.

First, in Section 4:l, we see how the PC model introduced in Section 3 could be
applied to individually reconstruct the covariance functions {C;}. In Section 4.2, we
introduce a pepulation‘model that achieves both reconstruction and joint representation
of the underlying covariance functions {C;}.

4.1 A 'subject-specific model

Let Sl-l/ * be assquare-root decomposition of S;, which is a decomposition such that S; =
(S;/Q)TS;/Q, forall i = 1,...,n. This could be given, for instance, by S;/Q = D;/QVZ-T where

13
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S; = VZ-DiViT is the spectral decomposition of S; and Dil/ ? denotes the diagonal matrix
whose entries are the square-root of the (non-negative) entries of D;. Each square-root

ol 1/2 . . .. . .
decomposition Si/ can be interpreted as a data-matrix whose empirical covarianee,is

Si. Another possible choice for the square-root decompositions is Sil/ = VZ-D;/ ZX/iT. The
output of the proposed algorithms will not depend on the specific choice. of the square-
root decompositions.

In the most general setting, each covariance matrix S; is an indirect ebservation of
an underlying covariance function C;, which can be expressed in terms,of its spectral
decomposition as

o0
Ci(”? U/) = Z /yirwir(v)wi'l‘(v/)a V'U, ’U/ € M7
r=1 ~
where, for each ¢, v;1 = ;2 = -+ = 0 is a sequence of non-inereasing variances and
{1ir}r a set of orthonormal eigenfunctions. Introduce now {f; €H?(M)} and {2; € R*},
obtained by applying model (7) to each sample independently, i.e.

{@fo} = argmin IS [ o1,
? {z;}cRs {fi}cH2(M) M
(14)

with | - | p denoting the Frobenius matrix norm /Each estlmate fi, from model (14), can
be interpreted as a regularized estimate of the leading PC functlon of S, /2 and thus of the
eigenfunction ;1. The subsequent eigenfunctions can be estimated by deﬂatlon methods,
i.e. by removing the estimated components Z( ;¥ ﬁ)T from Sil/ * and reapplying model
(14). This leads to a set of estimates {f;, } and {Z}.

The unregularized version of model (14) is.equivalent to a Singular Value Decompo-
sition applied to each matrix SZ-I/ * independently; which would lead to a set of orthogonal
estimates {Z;, }, € R®, for each i = 1,... ms In the regularized model orthogonality is not
enforced, however the estimated, PC components can be orthogonalized post-estimation
by means of a QR decomposition.

Define now the empirical variances'to be ;. = Hfl-TH%Q(M) and consider the L?(M)-
normalized version of {fi¥." Ambapproximate representation of S; = (Sil/ 2)TSZ-1/ ?
given by

is thus
S, =&, 3 {3ir (W fir) (Wfin) T} KT (15)
T
and the associatéd approximate representation of Cj, in terms of {%;.} and { fiT}, is

C; = Z’%rfz’r ® fir,

where %r is an estimate of the variance ;. and flr is an estimate of ;.. The tensor
product f“n ® fz,« is such that (fw ® fZT)(v V') = fw( )fw( ") for all v,v" € M. The
regularizing terms in (14) introduce spatial coherence on the estimated {f;} and thus
on_theestimated eigenfunctions of {C;}, fundamental in an inverse problems setting.

14
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The reconstructed covariance functions {C;} could be discretized on a dense grid,
leading to a collection of covariance matrices (C;j(vj,v;))j. Following the approach in
Dryden et al. (2009), a Riemannian metric could be defined on the space of covariance
matrices, followed by projection of (C;(vj,v;)); on the tangent space centered/at the
sample Fréchet mean. PCA could then be carried out on vectorizations of theltangent
space representations. A related approach, for covariance functions, has been adopted
in Pigoli et al. (2014).

However, the aforementioned approaches could be prohibitive in our settings In
fact, performing PCA on tangent space projections produces modes of variation that
are geodesics passing through the mean, and whose interpretation in& high-dimensional
setting is often challenging. Therefore, in the next section, we propose an‘alternative
model that enables joint reconstruction, and representation onfa ‘common basis’, of
indirectly observed covariance functions. -

4.2 A population model
Let {#;}7_, < R® and f € H*(M) be given by the followingimodel;

({zi},f) = argmin ZHS —2zi(KVf T||F+A21Zzl2f ASuf- (16)

{z:}cRs, feH2(M

The newly defined model, as opposed to madel /(14), has now a subject-specific s-
dimensional vector z; and a term f thatyis common to all samples. As in the previous
model, the subsequent components can be estimated by deflation methods, leading to a
set of estimates fr and Z;,.

Define now the empirical variances to be i = |22 frH T2 (M) and consider the

L2?(M)-normalized version of {f,}. The empirical term in model (16) suggests an ap-
proximate representation of ,S; that is

Cz‘ :Z:Yirfv"@fra (17)

where each underlying covariance function C; is approxunated by the sum of the product
between a subject-specific ¢onstant 4;- and a component fr ® fr common to all the
observations. The regularizing term in (16) introduces spatial coherence on the estimated
functions {f,}.

The covariance.operators, {C;} are said to be commuting if C;C; = CyC; for all 4,i" =
1,...,n. This property.can be equivalently characterized as

©
Z ")/zrwr r ’Ul), V’U, v e Ma (18)

with {%;,}, subjeet-specific variances and {t,} a set of common orthonormal functions.
Thus, a colle¢tion of commuting covariance operators is such that its covariance operators

15
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can be simultaneously diagonalized by a basis {¢,}. In this case, the functions { fr} can
be regarded as estimates of {t,} and {9;.} estimates of {~;,}.

On the one hand, model (16) constrains the estimated covariances to be of the form
Ci = >, Yir f,« ® f,« and not of the more general form C; = Y, i, fir ® fir. On thé other
hand, such a model takes advantage of all the n samples to estimate the componeints { fr®
fr}. Moreover, the associated variables {9;.} give a convenient approximate, description
of the ith covariance, as they are comparable across samples, as opposed tonthe one
computed from model (14). In fact, the ith covariance function can be, represented by
the variance vector (¥i1,...,4:r)", for a suitable truncation level R, where each entry
is associated with the rank-one component fr ® fr. For each r, asscatter plot of the
variances {7;}i, as the one in Figure 14, helps understand what the average contribution
of the rth components is and what its variability across samples'is. Model (17) could
also be interpreted as a common PCA model (Flury, 1984; Benko et at 2009), as { fr}
are the estimated regularized eigenfunctions of the pooled covariance C /= %Z?zl C;.

Potentially, PCA could be performed on the descriptors (i1, s, %#)" to find rank-R
components that maximize the variance of linear combinations of {45} (i.e. the variance
of the variances). However, results would be more difficult to interpret, as they would in-
volve variations that are rank- R covariance functions around'the rank- R mean covariance
function.

4.3 Algorithm v

The minimization in (14), for each fixédyi, is a partieular case of the one in (7) (see
Section 3.2), so we focus on the minimizatiomyproblem in (16) which is also approached
in an iterative fashion. We set ;7" ; |2;|* =1 inthe estimation procedure. This leads to
the estimates of {z;}, given f, thatrare

_ Z; 1
Zi= ————— t=1,...,n,

\/ i1 1]
with
y 1/2 .
Zi:Si Ki\Ilfh, ZZl,...,Tl,.
The estimate of f given {}z}, in the discrete space V introduced in Section 3.2, is
given by the following propoésition.

Proposition 2. The Surface"Finite Element solution fn €V of model (16), given the
vectors {z;}, is fp= CLéwhere & is the solution of

n n
<2 |z||> KT K; + )\AM_lA)é = Y K] (872, (19)
i=1 i=1

Algorithm 2 containg a summary of the estimation procedure. From a practical
pointof wiews. thé choice to define the representation basis to be a collection of rank
one [(i.e. separable) covariance functions, of the type F, = fr ® fr, is mainly driven
by the, following reasons. Firstly, rank-one covariance functions are easier to interpret

16
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Algorithm 2 Inverse Problems - Covariance PCA Algorithm

1: Square-root decompositions

(a) Compute the representations Sih, ce 5111/2 from S1,...,S5, as
1/2 1/2 T
S =DV,

with S; = VZ-D,-VZ»T the spectral decomposition of S;.
2: Initialization:
(a) Computation of M and A
(b) Initialize {z;}] ;, the scores of the first PC

3: PC function’s estimation from model (14): ~
Compute c such that

n B n 0

<Z |z > KT K; + NAM 1A)c = KT (S ks,

i=1 i=1
fn—cle

4: Scores estimation from model (14):

Z; < S;/QKZ\I/fh, 1= 1,...,77,

Z;

Z; <— ﬁ, 1= 17 e
& 2aicy |74

: Repeat Step 3-4 until convergence

ot

due to their limited degrees of freedom. Secondly, on a rank one covariance function
F,. = fr® fr spatial coherence can be imposed by regularizing fr, as in fact done for model
(14), and this is fundamental in the setting of indirectly observed covariance functions.
Finally, due to their size, it might not be possible to store the full reconstructions of
the covariance functions {€;} on the brain space, instead, the representation model in
(17) allows for anefficient joint representation of such covariance functions in terms of
rank-one components.

5 Simulations

In this se¢tions we perform simulations to assess the performances of the proposed algo-
rithms. Toréproduce as closely as possible the application setting, the cortical surfaces
and the forwardroperators are taken from the MEG application described in Section 6.
The details onithe extraction and computation of such objects are left to the same section.

17
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For the same reason, the signals on the brain space considered here are vector-valued
functions, specifically functions from the brain space M to R3, as is the case in the
application. The proposed methodology can be trivially extended to successfull
with this case, as shown in the following simulations.

5.1 Indirectly observed functions 4

We consider M to be a triangular mesh, with 8K nodes, representing the
geometry of a subject, as shown on the left panel of Figure 1. Each
will represent a location v; associated with the sampling operator
the nodes {v;} on the brain space, the location of the 241 detectors
and a model of the subject’s head, enable the computation o

0.05

. These represent the PC functions to be estimated. In Figure 5 we show

18
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Figure 6: From left to right, the energy map of a generated function x;, the associated
signal y; on the sensors space with respectively no additional error, Gaussian error of
standard deviation ¢ = 5 and Gaussian error of standard deviation g = 10.

the four components of {1/} and the associated energy maps {|,(v)|Z+0'€ M}, with
|- | denoting the Euclidean norm in R3. We then generate m =508mooth vector-valued
functions {x;} on M7 by

X = 2nP1 + 2122 + 21313 + 2144 F=1,....m,

where {z;,} are i.i.d realizations of the four independent random variables {z, ~ N(0,;) :
r=1,...,4}, with vy = 3%, v0 = 2.52, 43 = 22 and 94 = 1.

The functions {x;} are sampled at the 8K nodes, and the forward operator is applied
to the sampled values, producing a collection of vectors {y7} each of dimension 241, the
number of active sensors. Moreover, on each entry of the vectors {y;}, we add Gaussian
noise with mean zero and standard deviation o, for different choices of o, to reproduce
different signal-to-noise ratio regimes.

In the following, we compare the PC model (7) to an alternative approach that we
call the naive approach. In fact, the individual functions {x;} could be estimated from
{y:} by use of classical inverse problemnestimators. Here, we adopt the estimates {X;}
defined as

m
%, = argmin Z|Yl—K\IJf||2+)\J IAME?, 1=1,...,m, (20)
f=(f1,f2,f3): =1 M

f1.f2,f3€H? (M) N

where each X; is defined in such a way that it balances the fitting term and the reg-
ularization term 4n/(20). Duedto the fact that f is vector-valued, |Anf|? is defined
as

A2 = A% f1 + AL fo + AL, f5,

with {f; : ¢ £11,2, 3} denoting the components of f. The same penalty operator is also
adopted tosgeneralizeto vector-valued functions the PC models introduced in Sections
3-4. In this approach; the constant A is chosen independently for each of the m functions
by partitioning the 241 detectors in roughly equally sized K = 2 groups and applying
K-fold cross-validation. The criterion for the optimal X is the average reconstruction
error, on thé sensors space, computed on the validation groups. Once we obtain the
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estimates {X;} we can compute the estimated PC functions {1} by applying classical
multivariate PC analysis on the reconstructed objects X;.

The estimates are compared to those of the proposed PC function model, as described
in Algorithm 1, with 15 iterations. Note that, instead, a tolerance could be fixed to test if
the algorithm has converged. However, 15 iterations give satisfactory convergenee levels
in our simulations and application studies. We partition the m observations in equally.
sized K = 2 groups and perform K-fold cross-validation for the choice of the,penalty.
Specifically, we choose the coefficient A that minimizes the sensors space reconstruetion
error, on the validation groups.

To evaluate the performances of the two approaches, we generate 100 datasets as
previously detailed. The quality of the estimated rth PC function is/then measured with
E(tp, 1) = 22:1 IV (g — ¥rg)|?. The results are summariged innthe boxplots in
Figure 7, for two different signal-to-noise ratios, where the Gaussiandioise has standard
deviation ¢ = 5 and ¢ = 10. In Figure 6 we show an example of a signal on the brain
space corrupted with the specified noise levels.

The boxplots highlight the fact that the proposed approach provides better estimates
of the PC functions (i.e. lower estimation errors E(,, T,ZAJT)), when ¢ompared to the naive
approach. Differences in the estimation error are higher in a low signal-to-noise regime,
as it is for the estimation of the fourth PC functiony where intuitively, the low variance
associated to the PC function makes it more difficult tondistinguish this structured sig-
nal from the noise component. Also surprising is the stability of the estimates of the
proposed algorithm across the generated datasets/as opposed to the naive approach of
reconstructing the functional observations independently, which instead returns multiple
particularly unsatisfactory reconstructions., Amexample of such reconstructions is shown
in Figure 8.

5.2 Indirectly observed covariance functions

In this section, we consider M7 to be a 8K nodes triangular mesh, this time representing
a template geometry of the cortical surface, which is shown in Figure 10. This contains
only the geometric features/common te all subjects. Moreover, each subject’s cortical
surface is also represented by ax8K nodes triangular surface, which is used, together with
the locations of the 241/detectors on the sensors space, and the head model, to compute
a forward operator K forhe ith subject. The 8K nodes of each subject’s triangular
mesh are in correspondence.with the 8K nodes of the template mesh M. This allows
the model to be défined on the template M.

As in the prévious,section, we construct four L?(M7) orthonormal functions {1, =
(Yr1,Yr2,¥r3): = L., 4}, The energy maps of {1} are shown in Figure 9. We
generate synthetie data from model (6) as follows:

4 4 wr,l ® wr,l wr,l ® 1/%’,2 w’r,l ® %,3
Ci K Z zi27"1'b7” ® 'lpr = Z Zi2r Q;Z)T,Q ® ¢r,1 7,[}7",2 ® ,(Z}T,Q wT,Z ® ?,Z)r;g, s

r=1 r=1 wr,i’) ® ¢r,1 Qbr,?) ® 1/}7’,2 wr,B ® wr,i’)
wherenz;1, ..., 24 are i.i.d realizations of the four independent random variables {z, ~
20
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trices C; € R?E>*24K  from which the correspondent covariance matrices on the sensors
space are defined as

SZ:KZCZK,LT—I—EZTEZ, 1=1,...,n.

The term EZT FE; is an error term, where FE; is a s x s matrix with each entry:that
(5 3 Py

Original

~
Inverse
Cova rlance " * s
Figure 9: On the top row, the energy maps of 11, . . ., 04.00On the bottom row the energy
maps of the estimates 11, ..., 14 obtained by applying Algorithm 2.

is an independent sample from a Gaussian distribution with mean zero and standard
deviation 5. We then apply Algorithm 2 with (15 iterationg, feeding in input {S;}. The
results are shown in Figure 9, in termssof energy maps of the reconstructed functions
{@@T} These are a close approximation of the underlying functions {t,.}. The fidelity
measure 22:1 IV pm(r g — Qﬁnq)HQ of such estimates is 6.8 x 1072, 6.1 x 107!, 6.8 x 10~*
and 7.4 x 1071, for 41,..., 14 respectively,swhich is comparable in term of order of
magnitude to the results obtained in the ease of PCs of indirectly observed functions.
Across the generation of multiple datasets, results are stable, with the exception of few
situations where the cross-validation approach suggests a penalization coefficient A that
under-smoothes the solution, due to very similar associated signals on the sensors space
of the under-smoothed solution and the real solution. However, the cross-validation is
only a possible approach to the choice of the penalization constant, and many other
options have been propgsed in"therinverse problems literature, (see, e.g., Vogel, 2002).
Some of these, however, inyolve visual inspection.

6 Application

In this section, we apply the developed models to the publicly available Human Con-
nectome Preject (HCP) Young Adult dataset (Van Essen et al., 2012). This dataset
comprises’ multi-modal neuroimaging data such as structural scans, resting-state and
task-based functional MRI scans, and resting-state and task-based MEG scans from a
large mumber of hiealthy volunteers. In the following, we briefly review the pre-processing
pipeline, applied to such data by the HCP, to ultimately facilitate their use.

22
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6.1 Pre-processing

For each individual a high-resolution 3D structural MRI scan has been acquired. This
returns a 3D image describing the structure of the gray and white matter in thebrain.
Gray matter is the source of large parts of our neuronal activity. White matter is
made of axons connecting the different parts of the gray matter. If we exclude the,sub-
cortical structures, gray matter is mostly distributed at the outer surface of ghe cerebral
hemispheres. This is also known as the cerebral cortex.

Figure 10: Top side and bottom side views of the template triangularmesh M+ composed
of 8K nodes.

By segmentation of the 3D structural MRI, it,is possiblesto separate gray matter
from white matter, in order to extract the cerebral cortex structure. Subsequently a mid-
thickness surface, interpolating the mid-points of the cerebral cortex, can be estimated,
resulting in a 2D surface embedded in a 3D spacethat represents the geometry of the
cerebral cortex. In practice, such a surface, sometimes referred to as cortical surface,
is a triangulated surface. Moreover, from, the 3D structural MRI, a surface describing
the individuals’ head can be extracted. The latter plays a role in the derivation of the
model for the electrical/magnetic/propagation of the signal from the cerebral cortex to
the sensors. An example of the cortical surface of a single subject, is shown on the right
panel in Figure 1, instead the associatedshead surface and MEG sensors positions are
shown on the left panel of the'same figure.

Moreover, a surface basedwregistration algorithm has been applied to register each of
the extracted cortical surfaces to a triangulated template cortical surface, which is shown
in Figure 10. Post registration*the triangulated template cortical surface is sub-sampled
to a 8K nodes surface/ Moreover, the nodes on the cortical surface of each subject
are also sub-sampled to.asset of 8K nodes in correspondence to the 8K nodes of the
template. For eachhsubjectpa 248 x 24 K matrix, representing the forward operator, has
been computed with FieldTrip (Oostenveld et al., 2011) from its head surface, cortical
surface and sengors position: Such a matrix relates the vector-valued signals in R?, on the
nodes of the triangulation of the cerebral cortex, to the one detected from the sensors,
consisting of,248 magnetometer channels.

With ghe aim of studying the functional connectivity of the brain, for each subject,
three 6 minutes resting state MEG scans have been performed, of which one session is
used imfour-analysis. During the 6 minutes, data are collected from the sensors at 600K
uniformly distributed time-points. Using FieldTrip, classical pre-processing is applied
to thendetected signals, such as low quality channels and low quality segments removal.
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Details of this procedure can be found in the HCP MEG Reference Manual. Moreover,
we apply a band pass filter, limiting the spectrum of the signal to the [12.5,29]Hz, also
known as the beta waves. For the signal of each channel we compute its amplitude
envelope (see Figure B.1) which describes the evolution of the signal amplitudé. The
measure of connectivity between channels that we adopt in this work is the covatiance of
the amplitude envelopes. Other connectivity metrics, such as phase-based metrics; have
been proposed in the literature (see, e.g. Colclough et al., 2016, and referencegitherein).

'72’1®¢1

A S

Figure 11: Top side and bottom §ide views of the estimated energy maps 1&1, 1&2 and 1&3
obtained by applying, Algerithm' 2 to the covariance matrices computed from the MEG
resting state data of a single'subject on n = 40 consecutive time intervals. On the right
panel, the covariamee functions associated with these energy maps. On the top right
panel we highlight withyred circles the areas with high average interconnectivity, which
correspond to the neighborhoods of the red crossed vertices in the plot of the energy map

of 'l,bl‘
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Figure 12: Plots of the segment-specific variances of the first "R "= 10/ PC covariance
functions. On the left, the estimated variances on the sensors spacejion the right, the
estimated variances on the brain space.

6.2 Analysis

Here we apply the population model introduceddn Section 4.2 to the HCP MEG data.
The first part of the analysis focuses on studying/dynamiic functional connectivity of
a specific subject. For this purpose, we subdivide the 6 minutes session in n = 40
consecutive intervals. Each of these segments is used'to compute a covariance matrix
in the sensors space, resulting in n covariancemmatrices Si,...,.5,. In this setting, we
have one forward operator K = K; = ...'= K,. The aim is understanding the main
modes of variation of the functional €onnectivity on the brain space of the subject.
Thus, Algorithm 2, with 20 iterations, is applied to Sy, ..., S, to find the PC covariance
functions.

A regularization parameter dicommon to all the PC components is chosen by inspect-
ing the plot of the regularity of the first R = 10 PC covariance functions (Zf;l S0 V%)
versus the residual norm, for different choices of the parameter. This is a version of the
L-curve plot (Hansen, 2000) andyis shown on the left panel of Figure B.2. Here we show
the results for A = 102} in the appendices we show the results for A = 10. The energy
maps of the estimated 1/)1, 1[)2 and ¢3 resulting from the analysis are shown in Figure 11.
These are associated, with the first three PC covariance functions '¢1 ® 1/11, 1,b2 ® 1/12
and 1[;3 ® 1[)3. High. intensity,areas, in yellow, indicate which areas present high average
interconnectivity, either, by means of positive or negative correlation in time.

In Figure{12, we show the plot of variances associated with each time segment, de-
scribing the variation<in time of the PC covariance functions, hence the variation in
interconnectivity. The wariance can be either defined on the sensors space, by normaliz-
ing the PC\¢ovariance functions {K 'J)r}, with K the forward operator, or on the brain
spacg, by normalizing the PC covariance functions on the brain space {1/37} Due to the
presence of invisible dipoles, which are dipoles that display zero magnetic field on the
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sensors space, the two norms can be quite different, leading to different average variances
for each PC covariance function. Due to the high sensitivity of the source space variances
on the choice of the regularization parameter, we focus on the estimated variances.on
the sensors space.

We have also applied our model to the covariances obtained by subdividing the MEG
session in n = 80 segments. As expected the PC covariance functionsf shown in Fig-
ure B.5 are very similar. However, the variances, in Figure B.4, show higher variability
in time, which can be partially explained by the fact that shorter time segmentslead to
covariance estimates that have higher variability.

A

Py ’951 X '951

\ .
A ~

Figure 13: Top side and bottom side views of the estimated energy maps 1[)1, 1&2 and
1,213 obtained by _.applying, Algorithm 2 to the covariance matrices computed from the
MEG resting state data,of n = 40 different subjects. On the right panel, the covariance
functions associated with these energy maps.

The second part of the analysis focuses on applying the proposed methodology to a
multi-subjeet setting. Specifically, n = 40 different subjects are considered. For each
subject, the 6 minutes scan is used to compute a covariance matrix, resulting in n
covariance matrices S, ...,S,. The template geometry in Figure 10 is used as a model
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Variance on sensors space «10-3 Variance on brain space

Mt tinpubi

PC Component Component

Figure 14: Plots of the subject-specific variances associated with'the first B = 10 PC
covariance functions. On the left, the estimated variances on the senSors space, on the
right, the estimated variances on the brain space.

of the brain space. Algorithm 2 is then applied to find thesPC coyariance functions on
the template brain, associated with Si,...,5,. We run the algorithm for 20 iterations,
and choose the regularizing parameter to be A = 102 by inspecting the L-curve plot in
the right panel of Figure B.2. The results for A = 10 are shown in the appendices. The
energy maps of the estimated functions ¢1, 1,[)2 and '¢3 and the associated first three
covariance functions 1,01 ® 1,01, ¢2 ® wg and 1,[;3 ® ¢3, are shown in Figure 13. High
intensity areas, in yellow, indicate which areas present high average connectivity. In
Figure 14, we show the subject-specific ‘associated variances, both in the sensors space
and the brain space.

The presented methodology opens up the possibility to understand population level
variation in functional connectivity, -and indeed, whether, just as we need different for-
ward operators for individuals (due to anatomical differences), we should also be consider-
ing both population and subjeet-specific connectivity maps when analyzing connectivity
networks. In fact, it is of interest'to note that in both the single and multi-subject set-
tings, the areas with high interconnectivity, displayed in yellow in Figure 11 and 13, seem
to be at least partially overlapping with the brain’s default network (Buckner et al., 2008;
Yeo et al., 2011). The brain’s default network consists of the brain regions known to have
highly correlated hemodynamic activity (i.e. highest functional connectivity levels), and
to be most activey when the subject is not performing any specific task. An image of
the spatial configuratien of the default network can be found, for instance, in Figure 2
of Buckner et al¢(2008). From the plots of the associated variances in the sensors space
(left panel of Figure 12 and Figure 14) we can see that these areas are also the ones that
show high variability in' connectivity across time or across subjects. This might suggest
that the brain’s default network is also the brain region that shows among the highest
levels of spontaneous variability in connectivity.

Theplots.of the variances on the brain space (right panel of Figure 14), when com-
pared to those on the sensors space (left panel of Figure 14), demonstrate that these
type of studies are highly sensitive to the choice of the regularization, not only in terms
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of spatial configuration of the results, but also in terms of estimated variances on the
brain space. With a naive ‘first reconstruct and then analyze’ approach, where the re-
constructed data on the brain space replace those observed on the sensors space,.this
issue could go unnoticed, as the variability that does not fit the chosen model is implic-
itly discarded in the reconstruction step and does not appear in the subsequenté@mnalysis.
Also, importantly, our analysis deals with statistical samples that are entire covariances,
overcoming the limitations of seed-based approaches, where prior spatial information is
required to choose the seed. Seed locations are usually informed by fMRI studies and.this
comes with the risk of biasing the analysis when comparing electrophysiological networks
(MEG) and hemodynamic networks (fMRI).

In general, care should be taken when drawing conclusions from MEG studies. Estab-
lishing static and dynamic functional connectivity from MEG data remains _challenging,
due to the strong ill-posedness of the inverse problem. It is kngwn thiat other variables,
such as the choice of the frequency band or the choice of the ‘eonnectivity metric can
influence the analysis. While the choice of the neural oscillatory, frequency band could
be seen as an additional parameter in MEG functional cennectivity studies, there is no
general agreement on the choice of the connectivity metriesn(Gross et al., 2013). It is
important to highlight that in this paper we focus on methodological contributions to
the specific problem of reconstructing and representing indirectly observed functional
images and covariance functions.

L

7 Discussion

In this work we introduce a general framework for the reconstruction and representation
of covariance operators in an inverse problem context. We first introduce a model for
indirectly observed functional images in ammunconstrained space, which outperforms the
naive approach of solving the inverse problem individually for each sample. This model
plays an important role in 4¢he case of samples that are indirectly observed covariance
functions, and thus constrained»to be positive semidefinite. We deal with the non-
linearity introduced by suchfconstraint by working with unconstrained representations,
yet incorporating spatial information in their estimation. The proposed methodology
is finally applied to the study efibrain connectivity from the signals arising from MEG
scans.

The models propesed here can be extended in many interesting directions. From an
applied prospective, it is of interest to apply them to different settings, not necessarily
involving neuroimaging, whére studying second order information has been so far pro-
hibitive. Direct examples are second order analysis of the dynamics of meteorological
observations, such as temperature. Another possible application is the study of the dy-
namics of Ocean currents, where the irregularity of the spatial domain, and its complex
boundaries, can be easily. accounted for thanks to the manifold representation approach
in our_iodels.

Erom a modeling point of view, it is of interest to take a step further towards the
integration of the inverse problems literature with the approach we adopt in this paper.
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For instance, penalization terms that have been shown to be successful in the inverse
problems literature, e.g. total variation penalization, could be introduced in our mo&
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Appendices

A Discrete solutions

Proof of Proposition 1. We want to find a minimizer f € H2(M), given z with |zf= 1,
of the objective function in (7):

Syt — AP + e zf A2, f
=1

c(UHTO A KKV =28 )T 2K yi) + A JMAM. (21)

=1 =1 ~

An equivalent formulation of a minimizer f € H? (M) of suclhwobjeetive function is given
by satisfying the equation

(Te)" Zzl KlTKz)‘Ifer)\J ApeAm fE@ )T Zzsz yi) (22)
=1

for every ¢ € H? (/\/l) (see Braess, 2007, Chapter 2)mMoreover, such minimizer is unique

if A(p, f) = ()T (Z ZKTK)UF+ A AmPAMS i potitive definite. Given that for
a closed manifold M S AL S = 0iff fdsia constant function (Dziuk and Elliott, 2013),

the positive definiteness condition is equivalent to assuming that ker( Z 2j KlTKl) the
=1

kernel of Z 2 2T ; K, does not contain thersubspace of p-dimensional constant vectors.

Moreover, we can reformulate equation, (22) in a form that involves only first-order
derivatives by integration by parts against a test function. We then look for a solution
in the discrete space V. < HYM), iwe. finding f,ge V

() (3 ARROLIA A [y Vs Vaag = W (S aKTy)

SMVMf-VMw—SMgw =0

for all p,w € V. Thewoperator V, is the gradient operator on the manifold M. The
gradient operator Vjy. is such that (Vaqw)(v), for w a smooth real function on M and
v € M, takes value on the tangent space at v. We denote with - the scalar product on
the tangent space.

We recall here the definition of the x x x matrices to be (M), = SMT ¢j¢j and
(A)jjr = SMT Vmpdj Va0 Note that requiring (23) to hold for all p,w € V is
equivalent torequiring that (23) holds for all ¢, w that are basis elements of V', thus
exploiting the basis expansion formula (11) we can characterize (23) with the solution of
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1
2
3
4
5
6 the linear system
m m
7 Skt a4 re] |8 anty
8 =1 [~] = |i=1 ) (24)
9 A —Mm |4 0
1(1) where € and § are the basis coefficients of f € V and g € V, respectively. Solving (24) in
12 ¢ leads to . .
12 O AK K+ MM A)e = ) 5Ky, (25)
15 =1 I=1
16 =
1; Proof of Proposition 2. We want to find a minimizer f € H*(M), given {z;} with >, |z;|*> =
19 1, of the objective function in (14): -
20 n n
21 D IS)" —m 3 Yl | A%
i=1 i=1

23 n n
2 c(f)T (Y Il K KW f — 200 )y RS,z (26)

i=1 i=1
26
27 Comparing (26) with (21) it is evident that by.following the same steps of the proof
28 of Proposition 1 we obtain the desired result, which is .
31 &= <Z |z > KT K; & AAM‘1A> K]S, "z,
32 i=1 i=1
33 0
34
35
g? B Application - additionalimaterial
38 Here we present further material complementing the analysis in Section 6. In Figure B.1
39 we show the amplitude envelope computed from a filtered version of a signal detected
2(1) by an MEG sensor. The covariance of the amplitude envelopes across different sensors
4 is the measure of conne¢tivity used in this work.
43 In Figure B.2 we showthe L-curve plots associated with the PC covariance models
44 applied to the dynamic andsmulti-subject functional connectivity studies.
45 In Figure B.3-B:4 we show respectively the plots of the estimated PC covariance
46 functions and a$sociated wvariances from the dynamic functional connectivity study on
47 n = 40 segments with regularization parameter A\ = 10.
48 In Figure B.5-B.6 we show the estimated PC covariance functions and associated
gg variances from the dynamic functional connectivity study on n = 80 time segments with
51 regularization parameter»\ = 10°.
52 In<Figure B.7-B.8 we show the estimated PC covariance functions and associated
53 variances from the multi-subject functional connectivity study on n = 40 subjects with
54 regularization parameter A = 10.
55
56
57 31
58
59
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Figure B.1: Amplitude envelope (in red) of the filter
MEG sensor.
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Figure B.2: Plo S arity of the first R = 10 PC covariance functions, measured
as Y10, S 192 s the residual norm in the data, for different choices of log(\).
On the lef 16 ot refers to the dynamic connectivity study, on the right panel

bject connectivity study.
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28 Figure B.3: Energy maps of the estimated P, '0,52 and 1&3 obtained by applying Algo-
29 rithm 2, with lower regularization (A = 10), to the covariance matrices computed from
the MEG resting state data of a single subject on n = 40 consecutive time intervals. On
the right panel, the covariance functions associated with these energy maps.
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51 Figure B.4: Plots /of the segment-specific variances of the first R = 10 PC covariance
52 functions in time when a smaller regularization parameter is chosen (A = 10).
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Figure B.5: Energy maps of the estimated 1/31, 1,52 and 1/3 obtained by applying Algo-
rithm 2, with A = 102, to the covariance matrices computed from the MEG resting state
data of a single subject on n = 80 congecutive time intervals. On the right panel, the
covariance functions associated with these energy maps.
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Figure B.6: Plotsfof the segment-specific variances of the first R = 10 PC covariance
functions in‘time,/with A = 102, when the MEG resting state data is split into n = 80
consecutive time intervals.
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20 Y3 ® P
21
22
23
24

28 Figure B.7: Energy maps of the estimated 1,51, 1/32 and @3 obtained by applying Al-
gorithm 2, with lower regularization (A = 10), t0 the covariance matrices computed
from the MEG resting state data of n & 40 different subjects. On the right panel, the
32 covariance functions associated with these\energy maps.
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50 Figure Bi&: Plots.of the subject-specific variances associated with the first R =
51 PC covariance functions computed from n = 40 subject, with regularization parameter
52 A= 10.
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