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Synopsis

Univariate geochemical data cannot usually be treated as
normally distributed because of their asymmetrical
distributions, which result in high skewness coefficients, A
method for reducing skewness in large data sets by use of
a power transform is described. The technique is quite
general in its application, and its use is illustrated with a
regional geochemical data set based on the analyses of

ca 50 000 stream-sediment samples from England and
Wales.

Both major and trace-element geochemical frequency
distributions are often so positively skewed (with the usual
exception of Si in major-element data) that they do not
conform to the normal (Gaussian) distribution, Many
transforms have been proposed for reducing this departure

Table 1 Determination of A based on subsets of 2000
values*

Element Subset 1 Subset 2 Average
Al 0.39 0.42 0.41
Ca -0.27 -0.27 -0.27
Fe 0.22 0.18 0.20
K 0.46 0.31 0.38
Si 2.68 2,88 2,78
As —0.11 ~0.11 ~0.11
Ba -0.31 —0.33 —0.32
Ccd —0.34 —0.32 -0.33
Co 0.32 0.34 0.33
Cr 0.20 0.27 0.23
Cu 0,02 0,02 0.02
Ga 0.35 0.32 0.33
Li 0.45 0.41 043
Mn ~0.15 -0.19 —0.17
Mo 0.00 0.02 0.01
Ni 0.45 0.49 0.47
Pb —0.22 -0.21 -0.22
Sc 0.59 0.58 0.58
Sn -0.24 -0.27 —-0.25
Sr —0.10 -0.11 —0.11
v 0.52 0.48 0.50
Zn ~0.17 -0.18 -0.17

*Data from the England and Wales geochemical survey.”

from normality in order to make subsequent use of
parametric statistics more reliable. The log transform has
been widely used for this purpose with geochemical data
since Ahrens,! but it does not necessarily ensure that a
more normal distribution will result. Indeed, the log-
transformed data will often be little better than the original
because a large original positive skewness may be replaced

Manuscript first received by the Institution of Mining and
Metallurgy on 1 June, 1979; revised manuscript received on
2 January, 1980. Paper published in May, 1980.
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by a negative but generally smaller skewness.

Box and Cox? suggested a specific power transform to
improve normality that would ensure an optimum result
for a particular set of data in that it would be transformed
to zero skewness. This process is referred to here as
‘deskewing’, since the aim is to make the transformed
distribution symmetrical — this is usually accompanied by
a closer approximation to a Gaussian distribution. Draper
and Cox® showed that transformation can still help to make
the data more tractable, even if normality is not achieved.

To avoid impossibly large data-transfer overheads
because of the iterative nature of the calculations, all the
observations need to be stored in the computer central
memory. The available storage, therefore, limits the size of
the data set that can be processed (for example, 10 000
samples for a large computer).

A method for deskewing large data sets, using a subset
of the total data, is demonstrated by the transformation of
22 000 values derived from a large regional geochemical data
set. The methodology is quite general and the technique
discussed would be useful with any data.

Box—Cox power transform

Box and Cox? described a generalized power transform for
improvement of the normality of univariate distributions,
of the form

M= 1D AE0
Z= { x>0

In x, A=0

where Z is the set of transformed observations, x the set of
original observarions and A the power coefficient. The
back-transform is easily obtained if required by use of
(In(1+AZ)/A) or antilog (InZ) as appropriate.

An initial value of A is chosen and successively modified
to reduce the asymmetry of the transformed distribution
and, thus, improve its approach to a normal distribution,
The criteria for the achievement of symmetry are either the
attempted reduction of skewness to zero or the joint
reduction of skewness to zero and kurtosis to three, by a
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Fig. 1  Effect of data transformation on skewness (§) and
kurtosis (K) of 22 elements in regional stream-sediment geochemical
survey of England and Wales, based on ~ 22 000 values (see text
and Table 2)



Table 2  Effect of transformation on skewness and kurtosis of England and Wales regional stream-sediment data*

Element Skewness Kurtosis
Untransformed log Box—Coxt Untransformed log Box—Coxt
Al 0.68 —0.60 0.03 3.3 4.6 3.1
Ca 3.40 0.48 -0.01 19.1 2.4 21
Fe 0.77 ~0.63 =0.09 3.6 9.9 39
K 0.97 —0.72 —0.01 5.4 5.2 3.6
Si —0.88 —1.85 0.07 4.4 25 3.0
As 27.13 0.49 0.05 1009.0 5.2 4.1
Ba 12.16 1.13 -0.03 261.4 8.4 5.4
cd 10.60 0.50 0.01 268.0 2.5 1.8
Co 6.73 —-1.92 —0.04 96.4 7.7 4.6
Cr 27.89 —0.70 0.29 1135.0 5.6 10.3
Cu 24.40 ~0.03 0.05 863.2 5.1 5.4
Ga 1.24 —0.82 0.07 4.8 4.4 3.0
Li 2.61 —1.84 —0.16 21.5 7.0 3.6
Mn 4.76 0.65 —0.05 32.3 4.7 55
Mo 3385 —0.03 -0.60 35.3 3.8 3.8
Ni 5.88 -1.58 0.09 126.9 5.8 4.5
Eb 11.40 0.71 —0.04 266.3 4.9 4.2
Sc 1.00 -1.92 0.01 4.8 7.2 2.8
Sn 14.97 1.87 0.06 258.7 9.5 2.7
Sr 4.54 0.21 -0.12 46.2 4.2 4.5
v 0.76 -0.96 0.02 3.5 4.3 2.6
Zn 11.07 0.46 0.05 291.7 4.4 3.8
*Based on ™ 22 000 values for each element.
tData transformed by use of average A -values from Table 1.
variety of optimization techniques (implemented in the Power transformation of large data sets
computer program of Howarth and Earle*), of which that As each iteration requires the transformation of all the
of Dunlap and Duffy,” which optimizes on skewness alone, observations and the calculation of one of the skewness/
is the fastest. The iterative calculation is repeated until no kurtosis criteria, the total computation time increased
improvement in the chosen criterion results; as with all linearly as the data set became larger (e.g. 10 sec CDC
transformations the method is sensitive to the presence of Cyber 174 central processor time per 6500 samples) to the
outliers in the data.® A is generally® in the range —1 — +1. limit of the available storage for the observations. If the data
The aim is to produce not a Gaussian distribution but an had to be read sequentially for each iteration, an
optimally deskewed distribution. Draper and Cox” showed exponential increase in computational overheads could be
that, even if transformation to normality is not achieved, expected, and the calculation would become impractical
the A-transform could regularize the data, and that such a for very large data sets. A solution to this problem is to use
transformation has been found to be beneficial for a wide a subset of the data (held in central memory) for the
variety of data.>®* computation of A — an estimation of the true value of A —
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Fig. 4  Effect of data transformation on frequency distribution shape: untransformed data, ppm

that could be used to transform the complete data set in
one pass through the data file. The appropriate selection of
a representative subset would be necessary and the normal
rules for the choice of subsample size would apply; it had
been found that a 10% sample size would be generally
satisfactory.

For data in which there are reasonable spatial
correlations, a suitable subset would be one that covers the
sampled geographical area evenly. If the data are stored in
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the computer in a sequential manner, a regular sample can
be obtained by extracting every nth value, where » is
chosen to give a subset of manageable size. The alternative
would be to select the subsample from the total data file
at random, but this would often be more complicated to
implement, and would be more likely to result in uneven
spatial representation of the geographical units. Several
subsets could be taken and the values compared to check
the reliability of A..
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Fig.5  Spatial distribution of two Ca populations and their overlap region (separated by
decomposition of the Box—Cox transformed values): 0 — 1.34, 1.35 — 2,99, = 3.00%. Regional

stream-sediment geochemistry of England and Wales

Example

Regional geochemical data from England and Wales
The data set used to illustrate this method is the result of
the analysis of ~ 50 000 stream-sediment samples for
22 elements. The samples were collected for a regional
geochemical survey of England and Wales” at an average
sample density of 1/2.6 km?. All the elements were
determined by direct-reading emission spectrometer,
except for zinc (atomic absorption) and arsenic, cadmium,
molybdenum and tin (colorimetric). Full details of the
survey were given by Webb et al.”

The values at individual sample sites were averaged into
square 6.25-km” map cells, resulting in a map grid of
254 rows and 209 columns. The small number of values
below the statistical detection limit were nonzero positive
numbers; it was preferred that they be retained for this
analysis rather than set to some arbitrary value — such as
half the detection limit, These data were then smoothed by
use of a local 3 X 3 cell moving-average filter and some
isolated blank cells were infilled, resulting in a final set of

~ 22 000 occupied map-cell element concentration values —
the remainder mainly corresponded to grid points over sea
areas, To facilitate further statistical treatment it was
decided to transform the occupied map-cell data rather
than the original point-source values so that the results
would be directly comparable with the earlier published
moving-average maps.’ This does not affect the
comparisons made here, since the original distribution is the
same in all cases. Emphasis throughout the atlas study of
England and Wales is on broad-scale regional patterns of
variation.

Selection of subsets

The grid of map-cell values for each element was sampled
by taking every 10th occupied cell; this was repeated with
a second grid, offset from the first by five cells, giving two
sets of data with ~ 2000 values in each. Howarth and Earle
(Fig. 7)* and other workers in the Applied Geochemistry
Research Group have shown that performance is quite
stable down to small sample sizes; a 10% subsample has
been used for convenience.
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Fig. 6  Effect of data transformation on frequency distribution shape: untransformed values, ppm

\ was calculated for each variable in each subset by use
of the Dunlap and Duffy® algorithm (modified to allow for
data with an original negative skewness). The values for A
obtained from the two subsets were typically within 0.05
of each other (Table 1) and the mean value of A for each
element was used to transform the entire data set. The
transformed data were subsequently standardized, to make
the values comparable, by subtracting the mean value for
each element and dividing the result by the corresponding
standard deviation,

Results
The optimum A values for each element are given in Table 1.
The effectiveness of the power transform for production
of a more symmetrical distribution than either the original
or log-transformed data is demonstrated by the plot
(Fig. 1) of skewness against kurtosis for all 22 elements
(a detailed comparison is given in Table 2). Similar
improvements in a smaller data set were illustrated by
Howarth and Earle *

Potassium and iron (Fig. 2) and also aluminium have
moderately positively skewed distributions; of the other
major elements, silicon (Fig. 2) is negatively skewed and

calcium (Fig. 3) was bimodally distributed (discussed below).

The effect of the log transform on silicon was to increase its
negative skewness (from —0.88 to —1.85), but for the other
elements skewness is reduced, although less effectively
than with the power transform. Fig. 4 shows the
distributions of three typical trace elements, manganese,
zinc and copper. Barium, chromium, lead, strontium and
vanadium (not shown) are broadly similar with unimodal
positively skewed distributions in the untransformed data.
The effect of recording data as integer ppm is apparent in
the discontinuous nature of values below the mean in both
the log- and A-transformed copper frequency distributions;
this effect is also shown by chromium, lead, strontium and
vanadium.

Some distributions exhibit bimodality and still have a
high overall skewness — for example, gallium and
scandium (Fig. 3). Cobalt and lithium are similarly
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distributed. (The apparent bimodality of scandium may be
an artefact caused by instrumental effects close to the
detection limit.) In these cases the log-transform appears

as a negatively skewed unimodal distribution and the
A-transform is very much more symmetrical, but still does
not attain a normal distribution (although the skewness
and kurtosis values may lie close to those expected, that

is 0 and 3, respectively). The cutoff, caused by values that
fall below the detection limit, is also apparent in these
transformed frequency distributions. Calcium has a
particularly interesting distribution since the untransformed
data are suggestive of a unimodal lognormal distribution
(Fig. 4). Both the log- and A-transformed data show
strongly bimodal distributions, the latter being more
symmetrical. By the usual graphical technique for
decomposition of a multimodal frequency distribution®
based on dissection of the cumulative distribution, two
overlapping populations were obtained. A map of these,
together with their overlap region, clearly corresponds to
spatially distinct groups of samples related to areas of
broadly calcareous or non-calcareous rocks (Fig. 5). Blank
areas in the map (plotted as computer-generated microfilm)
correspond to sampling gaps, caused by major conurbations
or areas with no tributary drainage.

Fig. 6 (molybdenum, arsenic and tin) illustrates the
effect of finite recording intervals on the transformation
of unimodal positively skewed distributions. The
distribution of cadmium (not shown) is similar to that of
tin, and these two are the only unimodal distributions
that cannot be made symmetrical either by the log- or by
the A-transformations.

It may be noted that these results also demonstrate
that values of skewness and kurtosis near 0 and 3,
respectively, do not necessarily imply that the distribution
is normal (but it may well be symmetrical), although this
assumption has been used on occasion to justify the
assumption of a normal distribution.’ For example, the
clearly non-normal A-transformed distribution of tin has a
skewness of 0.06 and kurtosis of 2.7, It is not the aim here
to obtain distributions that are necessarily Gaussian but



optimally symmetrical distributions (generally prior to
further data analysis). Log-transformation has traditionally
been used to normalize data in much geochemical work, but
we have shown that the results may often be as deleterious
for some elements as they are beneficial for others if it is
indiscriminately applied. In contrast, the power transform
(of which the log-transform is a special case) is always an
improvement. The problem of the effect of wild values on
the statistical analysis of a data set always applies
irrespective of the nature of the transform, and such values
should preferably be identified and removed from the data
prior to serious data analysis.®

Conclusion

The Box—Cox power transform would appear to be a more
powerful tool than the traditional log-transform for
deskewing data prior to further statistical treatment. The
method described here would allow its application to be
extended to large data sets that would otherwise be
untreatable.

Deskewing data is, naturally, only one of the first steps
in its statistical analysis. Analysis of principal components
based on the A-transformed data for England and Wales has
already proved to be extremely useful.”
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