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Abstract 

Objective: To design, develop and evaluate an automated multi-atlas method for segmentation 

and volume quantification of gluteus maximus from Dixon and T1-weighted images. 

Materials and Methods: The multi-atlas segmentation method uses an atlas library 

constructed from 15 Dixon MRI scans of healthy subjects. A non-rigid registration between 

each atlas and the target, followed by majority voting label fusion, is used in the segmentation. 

We propose a region of interest (ROI) to standardize the measurement of muscle bulk. The 

method was evaluated using the dice similarity coefficient (DSC) and the relative volume 

difference (RVD) as metrics, for Dixon and T1-weighted target images. 

Results: The mean(±SD) DSC was 0.94±0.01 for Dixon images, while 0.93±0.02 for T1-

weighted. The RVD between the automated and manual segmentation had a mean(±SD) value 

of 1.5±4.3% for Dixon and 1.5±4.8% for T1-weighted images. In the muscle bulk ROI the DSC 

was 0.95±0.01 and the RVD was 0.6±3.8%. 

Conclusion: The method allows an accurate fully automated segmentation of gluteus maximus 

for Dixon and T1-weighted images and provides a relatively accurate volume measurement in 

shorter times (~20 min) than the current gold-standard manual segmentations (2 hours). Visual 

inspection of the segmentation would be required when higher accuracy is needed. 
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Introduction  

The gluteal muscles play an important role in daily living activities, including walking, 

running, stair climbing and lifting activities [1, 2]. Gluteus maximus is the largest of the gluteal 

muscles and has many different functions such as providing sacroiliac joint stability, strength 

for lifting and, in the running gait cycle, flexes the trunk on the stance-side and decelerate the 

swing leg [3, 4]. The assessment of gluteus maximus is of interest in a wide number of 

applications for example, in patients with osteoarthritis (OA) differences of 15% in the gluteus 

maximus volume between affected and unaffected limbs have been reported [5, 6]; in the same 

context, an increase of up to 40% in gluteus maximus volume was observed in a longitudinal 

study looking at patients that went through hip arthroplasty [7]. Gluteus maximus volume is 

also of interest in sports science [8, 9], rehabilitation [10] and plastic surgery [11]. 

Magnetic resonance imaging (MRI) is the best imaging modality to quantitatively assess 

muscles since it provides better soft-tissue contrast than other imaging techniques and 

additionally it does not require to expose the patient to radiation as in CT scans. Volume is one 

of the most important quantitative metrics to assess muscles since it determines muscle power 

[12, 13], which is associated with functional ability to perform daily activities [14, 15] and also 

with performance in sports practice [16]. Another important metric in muscle assessment is the 

fat-muscle ratio that, in MRI imaging, can be quantified using water-fat separation techniques 

such as chemical-shift based acquisition methods, also known as Dixon sequences [17ï20].  

These type of sequences have been successfully used to assess intramuscular fat or muscle fat 

infiltration [21ï24].  

Despite the importance of measuring volume, shape and fat-muscle ratio of individual muscles, 

3D segmentation and labelling of muscles is hardly performed in clinical studies because of 

the limited availability of robust automated musculoskeletal segmentation tools. Manual 
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segmentation is the gold standard method for labelling muscles, which is a tedious, extremely 

time-demanding and not cost-effective task. For this reason, researchers usually estimate 

volume from cross-sectional areas (CSA) [25ï28], where only a very small number of slices 

are labelled and surrogate volume metrics are used. However, 3D labelling of muscles provides 

not only volume, but also shape and the possibility of extracting other quantitative metrics (i.e. 

intramuscular fat). Therefore, automated methods to segment gluteus maximus are an 

important unsatisfied need.  

Automated segmentation of skeletal muscle from MR images is a challenging task since 

individual muscles share similar intensity/contrast values [29]. Intensity based methods have 

been proposed for the thigh muscles thanks to its simpler anatomy, although with limited 

accuracy [30ï32]. Multi-atlas segmentation, originally proposed for brain segmentation [33], 

have the ability to overcome the limitations of intensity-based methods by using a set of 

manually segmented images (atlases) to encode the relationship between the segmentation 

labels and the voxel intensities [34]. A number of multi-atlas methods have proved to 

successfully segment the thigh muscles [23, 35ï38], where the anatomy between individuals 

is more homogeneous. Due to the high anatomical variability of the hip among the population 

and its complex anatomy, only a small number of works based on multi-atlas approaches have 

been investigated for the hip muscles, including gluteus maximus [22, 39, 40] . The main 

challenge in multi-atlas segmentation is building a library with high-quality atlases that are 

representative of the population.  

In this work, we present an automated multi-atlas segmentation method that uses an atlas 

library constructed from 15 high resolution Dixon MRI scans, acquired with a standardized 

protocol exclusively designed for this purpose. The method automatically labels gluteus 

maximus from an MRI scan of the pelvis, which allows the measurement of muscle volume 

and the generation of 3D models of the muscles. In addition, we propose a region of interest 
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(ROI) to standardize the measurement of muscle bulk. The segmentation quality was evaluated 

with a leave-one-out strategy using the dice similarity coefficient (DSC) and relative volume 

difference (RVD) between automated and manual segmentations, for both Dixon and T1-

weighted images. 
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Materials and Methods 

A Multi -Atlas segmentation method is proposed for a fully automated segmentation of gluteus 

maximus from MR images. In this approach, a library with multiple atlases is employed. Each 

atlas is an MR image of the pelvis with left and right gluteus maximus labelled manually by a 

trained operator. The method was evaluated using each atlas of the library with a leave-one-

out cross validation scheme. In the following subsections we describe the acquisition of the 

MRI scans used in this work, the generation of the atlas library, the multi-atlas segmentation 

method and implementation, and the segmentation evaluation. 

Study Subjects and Data Acquisition 

 MRI scans from a group of 15 healthy subjects, recruited for a study looking at the effects of 

marathon running in the hip joints, were used in this work. The demographic characteristic of 

the group is available in Table 1. The local Institutional Review Board approved the study and 

all subjects gave informed consent.  

The MR images were acquired on a 3T scanner (Siemens Magneton Vida, Erlangen, Germany) 

using a body coil. The scanning protocol consisted of standard clinical sequences for the hips; 

axial Dixon (slice thickness/gap, 1.5 mm/0.45 mm; repetition time (TR) 4570 msec, echo time 

(TE) 45 msec; number of excitations 1, number of echoes 14; flip angle 120°) and axial T1

weighted turbo spin echo (slice thickness/gap, 3.0 mm/0.3 mm; TR/TE, 895 msec/8.9 msec) 

sequences of the pelvis. Dixon and T1-weighted sequences were specially designed to assess 

gluteal muscles and had a field of view (FOV) that covered axially from 3 cm below the lesser 

trochanter to the top of the iliac crest. The voxel sizes were 0.47×0.47×1.95 mm3 and 

1.09×1.09×3.3 mm3.The total scanning protocol took in average 30 minutes. Figure 1 shows 

an example of the acquired Dixon and T1-weighted images, where the landmarks used to define 

the FOV are highlighted with arrows. For the Dixon image, the in-phase and out-of-phase 

images are shown, from which water and fat images are generated. 
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Atlas Library Construction  

The 15 Dixon scans were used to build the atlas library for the multi-atlas segmentation. Each 

atlas was generated by manually segmenting right and left gluteus maximus muscles in the in-

phase Dixon image. The in-phase image was used as its contrast is closer to the contrast in T1-

weighted images, giving the option to use the library for the segmentation of both Dixon and 

T1-weighted images. Each atlas Ak in the library consists of an intensity image (Dixon in-

phase) (Ὅ ) and a labels image (ὒ ): ═▓ Ὅȟὒ Ȣ 

The manual segmentation was carried out in SimplewareÊ ScanIP (Version 2018.12; 

Synopsys, Inc., Mountain View, USA), an FDA and CE marked 3D image processing software 

for medical scan data. To accelerate the segmentation process, every other axial slice was 

manually segmented using the magnetic lasso tool and then it was completed using the 

interpolation toolbox available in the software. A different label was used for right and left 

muscles. Intramuscular fat was included as part of the muscle label, while intermuscular was 

excluded. 

Automated Multi -Atlas Segmentation of Gluteus Maximus 

In multi-atlas segmentation, a selection of atlases or every atlas in the library is registered to 

the image to be segmented (target image). The labels of the atlases are then propagated to the 

target image coordinates by applying the transform obtained in the image registration process. 

Finally, the propagated atlas labels are combined to generate the output of the multi-atlas 

segmentation process (label fusion stage). Different strategies can be used in each of these 

steps. We described our proposed method and the implementation of each of these stages, 

which we also summarized in Figure 2. 

This fully automated segmentation method  was implemented in a plugin for SimplewareÊ 

ScanIP (Version 2018.12; Synopsys, Inc., Mountain View, USA). It was developed in C# and 
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uses SimpleITK and SimpleElastix for image processing and image registration respectively. 

The plugin requires a full pelvis MRI scan as target image. The segmentation process consists 

of a pre-processing step, the actual multi-label segmentation and a final post-processing step. 

Pre-Processing of the Target Image 

The image pre-processing stage consists of a bias field inhomogeneity correction filter [41] 

followed by an Otsu multi-threshold algorithm. The former is used to correct for low frequency 

intensity non-uniformities present in the images, which can affect the Otsu method and the 

image registration in the multi-atlas segmentation. The Otsu algorithm is applied to generate a 

soft-tissue mask that restricts the voxels where labels can be transferred during the multi-atlas 

segmentation, excluding the background and fat tissue. Ideally, the Otsu algorithm would be 

used to segment the image into four classes: background, soft-tissue, cancellous bone and fat. 

However, there is a good amount of cross-talk between the classes even after correcting for 

bias field inhomogeneities. In order to avoid excluding any soft-tissue voxel with the soft-tissue 

mask, the Otsu algorithm was used with five intensity classes: background, soft-tissue, soft-

tissue/bone, bone/fat and fat; and then the two classes including soft-tissue voxels were fused 

to generate the final mask. Finally, a morphological closing operator was used to avoid 

excluding intramuscular fat as we want to include it as part of the muscle labels. 

Atlas Registration in Multi-Atlas Segmentation 

We used an image registration scheme that consists of a rigid registration to achieve an initial 

rough alignment followed by a B-spline non-rigid image registration [42]. It was implemented 

using SimpleElastix [43], a Python and C# interface for the open source and validated image 

registration software Elastix [44]. The image registration problem is formulated as an 

optimization problem where a cost function C is minimized: 
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Ὕ ÁÒÇÍÉÎὅὝȠὍȟὍ    

where Tµ is a parametrized spatial transform with parameters µ, IF is the fixed image and IM is 

the moving image. In our implementation of the multi-atlas segmentation, IF is the target image 

(IT) and the IM is the intensity image of each atlas k (Ὅ ).  

In both rigid and non-rigid registration, the normalized correlation coefficient (NCC) was used 

as the similarity measure to maximize, which it is well-suited for intra-modality images and it 

has proved to be a reliable metric in atlas-based methods [34, 45]. The rigid registration was 

initialized using the geometrical centre of the images as all the images have similar FOV and 

are centred in the pelvis. The B-spline non-rigid registration was initialized with the output of 

the rigid registration and the optimization problem was solved with the adaptive stochastic 

gradient descent algorithm [46] with 2048 spatial samples and 1000 iterations. These hyper-

parameters were empirically selected to achieve optimal segmentation performance. A 

pyramidal scheme of 4 layers with down-sampling factors of 8, 4, 2 and 1 was employed to 

improve the registration. 

Label Propagation and Fusion in Multi-Atlas Segmentation 

Only the labels of the 5 most similar atlases (after image registration) are propagated. This 

reduced number of atlases was selected due to the large heterogeneity of the population 

anatomy in the pelvis anatomy. The similarity values between the target and each registered 

atlas, obtained by computing the global NCC, were sorted in descending order before doing 

the atlas selection: 

ἷ ίέὶὸίȟίȣȟί   

ί ὔὅὅὝ ȠὍȟὍ    
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where sk is the similarity value between the target image IT and the intensity image of atlas k 

after applying the spatial transform Ὕ . o is a vector with the atlas indices sorted by their 

similarity values in descending order.  

A majority voting scheme [47, 48] was used to fuse the labels of atlases Ao1-5 into the 

segmented image S, where the label of each pixel or voxel is selected as the label that most of 

the selected atlases (Ao1-5)  agree on. The labels involved in the voting were left gluteus 

maximus, right gluteus maximus and background. In our implementation, the voxels where 

there was not a winning label were excluded. However, we did not find such cases since we 

are using an odd number of selected atlases and left and right gluteus maximus labels are not 

close enough to have voxels with votes from the three labels (left/right gluteus maximus and 

background). 

Post-Processing 

A post-processing chain was applied in order to add spatial consistency by removing poorly 

connected regions and filling holes. To achieve this, an opening morphological filter was 

applied to the output of the multi-atlas segmentation S and then the largest connected object 

was obtained using a three-dimensional six-connected neighbourhood. Finally, a flood fill 

operator was used to fill holes in the segmented mask. 

Segmentation Evaluation 

The performance of the muscle segmentation of gluteus maximus was evaluated with each of 

the 15 atlases in the library using a leave-one-out cross validation, where each atlas is removed 

from the library before executing the automated segmentation. The in-phase Dixon image was 

used as input to the automated segmentation method. As left and right gluteus maximus were 

labelled independently, two labels per atlas and a total of 30 muscles were evaluated. The Dice 

Similarity Coefficient (DSC) was used as the main segmentation performance metric: 
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where DSCl is the dice score for label l; TP, FP and FN are the number of true positive, false 

positive and false negative voxels respectively for the label l between the segmented image (S) 

and the manually segmented image (MS). 

In addition, the relative volume difference (RVD) was used as a task specific metric as we are 

particularly interested in measuring muscle volume: 

ὙὠὈ
ὠ ὠ

ὠ
ρππϷ 

where RVDl is the relative volume difference for label l, ὠ  the gluteus maximus volume 

obtained from the automated segmentation and ὠ  the muscle volume from the manually 

segmented images for label l. Mean, median, standard deviation and interquartile range (IQR) 

values were computed for DSC and RVD. 

The same evaluation test was performed using the T1-weighted images available for every 

subject. The manually segmented labels from the Dixon image were used as a reference in the 

comparison. Because T1-weighted and Dixon images were acquired during the same scanning 

protocol, the images were already aligned in the same image space. However, there were some 

small differences in their FOV and in some cases a small misalignment was found. For this 

reason, the T1-weighted image were rigidly registered to the Dixon image using NCC as 

similarity metric before performing the segmentation evaluation. The image registration was 

successful in all the cases, correcting for small misalignments when needed and not introducing 

any change in those cases already aligned. 
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Muscle Bulk Evaluation 

We propose a region of interest (ROI) to quantify muscle bulk with the goal of standardizing 

the muscle volume comparison and to focus on the main functional part of gluteus maximus. 

Our definition of the muscle bulk for gluteus maximus covers the region from the axial slice 

where the lesser trochanter tip is found to the slice that corresponds to the anterior superior 

iliac spine (ASIS). This definition of the muscle bulk was done to avoid regions where the 

uncertainty and variability in muscle volume is higher as in either top and bottom extremes of 

gluteus maximus, where the muscle shrinks or where tendinous tissue is found (i.e. inferior 

attachment to the femur). 

The ROIs were defined by manually obtaining the slice indices for top and bottom landmarks 

(Figure 3). The top (superior) landmark is defined by the ASIS, which can be identified by 

scrolling slices in the coronal view until the iliac spine disappears. In Figure 3-a, the selected 

coronal slice is shown in blue and the axial slice where the ASIS is found is highlighted in red. 

The bottom (inferior) landmark is defined by the most medial point of the lesser trochanter 

which can be seen in the axial slice with a red border in Figure 3-a). In Figure 3-b), the defined 

muscle bulk for gluteus maximus is painted in red and the top and bottom slices are shown with 

red lines.  

The DSC and RVD were computed for the muscle bulk ROI. An assessment of the landmark 

selection process and its impact on the volume measurement was performed by comparing the 

outcomes for two different independent operators. 

Results 

Gluteus Maximus Segmentation 

Figure 4 shows boxplots of the DSC and RVD values for both Dixon and T1-weighted target 

images. In Figure 4-a), a boxplot of the DSC for the 30 gluteus maximus assessed (15 subjects) 
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is shown. The mean (±SD) DSC was 0.94 ± 0.01 (median=0.94; IQR 0.94-0.95; min=0.92, 

max=0.96) when using in-phase Dixon images as input, the same type of image as in the library. 

All  of the 30 segmentations had a DSC higher than 0.9. 3D models from the manual and 

automated segmentation for a single case are shown in Figure 5 from posterior-anterior and 

anterior-posterior views. The models are also shown superimposed to illustrate their 

differences. The manual segmentation was labelled in red, the automated segmentation in cyan 

and the regions where both segmentations overlapped in yellow (true positives for the 

automated segmentation). 

The mean (±SD) volume for the 30 assessed gluteus maximus was 7.6×105 ± 1.0×105 mm3 in 

the manually segmented library, while we obtained 7.7×105 ± 9.2×104 mm3 with the proposed 

automated method. The error for the population mean volume was 1.2%.  

When using T1-weighted images as target images, the mean (±SD) DSC was 0.93 ± 0.02 

(median=0.93; IQR 0.92-0.94; min=0.88, max=0.95). These results show that using the in-

phase Dixon image is flexible enough to use the segmentation method for both Dixon and T1-

weighted images, although a small penalty in performance is observed for the latter. 

The RVD between the automated and manual segmentation, used to assess volume error, had 

a mean (±SD) value of 1.5 ± 4.3% (median=1.8%; IQR -1.2- 3.4%; min=-8.2%, max=10.6%). 

When using T1-weighted images, instead of the in-phase Dixon image, a mean (±SD) value of 

1.5 ± 4.8% (median=1.7%; IQR -1.9-3.8%; min=-8.9%, max=10.4%) was achieved. A boxplot 

for the RVD for both Dixon and T1-weighted images is presented in Figure 4-b). In addition, 

we performed a modified Bland-Altman analysis to assess volume error for the Dixon images, 

where the RVD is plotted against the manual segmentation volume (Figure 6). In this figure, 

we can see that the RVD values distribute equally for positive and negative errors, although in 
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larger muscles (higher volume values) a negative bias was observed. We only found two cases 

out of the 95% confidence interval (1.96 SD). 

In Figure 7, we show segmentation results for a case with low RVD (a-c images) and the case 

with highest RVD (b-d images). The true positives (intersection between manual and 

automated segmentation) are shown in yellow, the false negatives (manual segmentation only) 

in red and the false positives (automated segmentation only) in cyan. It can be seen that in 

overall the segmentation was accurate in both cases with a thin layer of false negatives in the 

edge of the muscles. In the case with high RVD, the main source of errors were false positives 

in the lower part (b) and in a set of slices of the medial section (c) of gluteus maximus. Both 

regions have high variability across the atlases.  

Muscle Bulk Evaluation 

When using the proposed ROI to evaluate muscle bulk, the mean (±SD) DSC was 0.95 ± 0.01 

(median=0.95; IQR 0.94-0.96; min=0.92, max=0.96; 30/30 with DSC>0.9) and the RVD 

between the automated and manual segmentations had a mean (±SD) value of 0.6 ± 3.8% 

(median=0.6%; IQR -1.6-2.6%; min=-7.7%, max=9.7%). The mean (±SD) muscle bulk 

volume for the 30 gluteus maximus assessed was 5.9×105 ± 9.8×104 mm3 in the manually 

segmented library, while we obtained 5.9×105 ± 8.9×104 mm3 with the proposed automated 

method. 

The muscle bulk volume depends on the selection of bottom and top slices for the ROI. Two 

independent operators obtained the slice numbers for the proposed landmarks and there was a 

mean (±SD) difference of -1.0 ± 1.5 and 0.6 ± 1.3 slices for the lesser trochanter and ASIS 

landmarks respectively, which translated into ROIs larger in 1.6 ± 1.8 slices for operator 1. The 

mean (±SD) volume difference between the two operators was 0.8 ± 1.7%.  
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Discussion 

A multi-atlas segmentation method that provides accurate and automated segmentation of 

gluteus maximus from a pelvis MRI is presented in this work. The segmentation accuracy was 

evaluated using two metrics: DSC and RVD. A good mean DSC of 0.94 was achieved. When 

quantifying muscle volume, we obtained a mean (±SD) error of 1.5 ± 4.3% for the whole 

muscle. These results show that the method can be used to assess both shape (related to the 

Dice score) and volume, especially for cases where the change in volume to measure is large 

(i.e. patients with OA). 

The measurement of the muscle volume did not reveal a particular bias and errors were 

distributed both negative and positively. Based on visual inspection of the images, a minor but 

general source of error was that the automated segmentation does not extend to the same edge 

as the manual segmentation. This mismatch was due to the limited accuracy of the image 

registration as the intensity mask did extend to the same edge (or outer) as the manual 

segmentation. The main source of error was the anatomical differences between the selected 

atlases and the target image that the image registration was not able to completely compensate 

for it (Figure 7-b and d shows an example). In the case of larger muscles, negative errors were 

obtained that could be related to the fact that there were not enough atlases in the library with 

larger muscles. 

We found that the regions with poorer segmentation were the gluteus maximus anterior border 

with the gluteus medius fascia, and the inferior and superior extremes of the muscle. The 

segmentation in the gluteus maximus / medius border is challenging because in that region the 

intermuscular fat is not thick enough to guide the image registration process.  
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Muscle Bulk Evaluation 

In order to standardize the volume measurement of gluteus maximus, we propose a ROI 

delimited by the lesser trochanter and the ASIS that focus on the muscle bulk of gluteus 

maximus. The ROI looks also to avoid differences in the image FOV across scans for either 

inter-subject or intra-subject (longitudinal) studies. In the muscle bulk ROI, the segmentation 

was marginally more accurate but when tested with two different operators, we found that their 

landmarks were slightly different, adding a small volume error to the volume segmentation 

error. A better set of instructions to find the landmarks could reduce this error. In summary, 

the use of the proposed ROI should be considered in the analysis of gluteus maximus as it 

avoids some of the regions with lower segmentation accuracy; restricts the muscle evaluation 

to a region delimited by two anatomical landmarks instead of the variable FOV; and 

concentrates the analysis in the muscle bulk, where the gluteus maximus is larger and free of 

tendons. 

Applications 

Tools that can measure volume, shape and are able to label muscles from MR images are 

increasingly important thanks to the wider availability of MRI scanners. Manual delineation 

and labelling of muscles is considered the gold-standard method for muscle segmentation 

however it is extremely time consuming; while surrogates metrics for volume such as cross-

sectional areas [25ï28], provide limited accuracy and information. This method provides  good 

segmentation accuracy although introducing a mean error of -4.3% when compared to the gold-

standard manual segmentation. In terms of time and resources, our method does not need user 

interaction except for loading the target image and it takes a computation time of approximately 

20 minutes; while for the manual segmentation an average of 100 slices needs to be delineated 
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(half of them if interpolation is used) that represents approximately a 2 hours user intensive 

task. 

Measurement of volume changes in longitudinal studies and detection of asymmetries in the 

context of clinical research is one of the main applications for the segmentation method 

presented in this work. For example, gluteus maximus wasting and atrophy is observed in 

patients with osteoarthritis (OA). Zacharias et al [5] assessed abductors muscles, including 

gluteus maximus, in patients with osteoarthritis (OA) by labelling MR images in only a small 

set of slices. They reported a difference in gluteus maximus volume between the affected and 

unaffected limb in the range of 4-15% depending on the grade of OA and greater differences 

in OA-control groups comparison. Similar results were observed in [6]. The volume of gluteus 

maximus is also of interest in sports science, where volume differences of 7% were found 

between groups of footballers with and without hamstring injuries, although not statically 

significant [8]. 

Tools like the one presented in this work allows the execution of equivalent studies but using 

fully 3D volume segmentation, where the muscle volume is not extrapolated from cross-

sectional areas, adding the possibility of generating 3D models of the muscles and the 

estimation of shape metrics. However, given the accuracy of the presented method and the 

requirements of some of the applications, a visual inspection and correction stage could be 

necessary in some cases. In this regard, an automated atlas segmentation combined with a 

manual correction procedure have been previously used to measure the volume of the lower 

limb muscles [49].  

Dixon sequence  

We decided upon  a Dixon sequence in our atlas library because water-fat separation techniques 

have proved to be an excellent tool to assess muscles. The segmentation of Dixon images 
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allows not only the estimation of muscle volume and shape, but also the estimation of the fat 

fraction in each muscle [21ï24] which is associated with muscle health [50]. We are aware that 

these scanning sequences are not widely available or not frequently chosen due to their long 

acquisition time, and this would limit the number of studies where our segmentation method 

could be applied. To address this problem, we used the in-phase image of the Dixon sequence 

in the atlas library to extend the method to T1-weighted images as they have relatively similar 

contrast. When segmenting T1-weighted images, we observed an overall good segmentation 

performance with just a marginal decrease in performance compared to the Dixon in-phase 

images due to a less accurate image registration. We aimed to maximize the segmentation 

performance for the Dixon images, however a successful segmentation of T1-weighted images 

is still important as this sequence is widely included in clinical protocols and useful to obtain 

muscle volume and shape (but not quantitative analysis of fat infiltration).  

Limitations 

The method presented in this paper has two main limitations: the number of atlases in the 

library and the label fusion method. Using scans of a group of heterogeneous healthy subjects 

and being able to design the acquisition protocol prior to the construction of the library allowed 

us to build a high-quality library with homogeneous scan parameters. The group was 

heterogeneous as we included subjects of different gender, height and weight, although people 

with overweight are underrepresented since only two subjects had a BMI higher than 25. In 

addition, patients with larger muscles are also underrepresented as it can be seen in Figure 6 

and the moderate number of atlases (15) included in the library not necessarily accounts for the 

wide population heterogeneity of the pelvic region. These problems can be addressed in the 

future by adding new atlases to the library focusing on underrepresented groups. However, 

only data collected with the same sequence and parameters would be suitable in order to ensure 

that the similarity metrics are equivalent across the atlas members. 
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Regarding the label fusion method, we have selected a simple majority voting approach as we 

prioritized speed and robustness over complexity. Statistical iterative label fusion methods such 

as STAPLE [51]  or STEPS [52] could marginally increase accuracy as Dice scores are already 

high. In relation with the label fusion and propagation stage, a minor limitation of the proposed 

method is the simple approach used to generate the intensity-based muscle mask used to restrict 

the voxels where the labels from the atlases can be propagated. More sophisticated methods to 

classify the tissue type of each voxel could improve the segmentation in some regions of the 

image. In this sense, the use of machine learning have been proposed to improve tissue type 

classifiers for the hip and the thigh. However, their implementation is challenging as they 

require custom MRI sequences [53] or a very large training data set [54]. 

Approaches based on deep learning (i.e. convolutional neural networks (CNN)) have potential 

to overcome some of the limitations of multi-atlas methods. They have been very successful in 

the segmentation of tumours or other relatively small structures [55, 56], however its 

application in the musculoskeletal field has been less popular. It has shown promising results 

in specific applications where the area of interest is small, such as in the segmentation of the 

knee [57, 58]. However, in the segmentation of gluteus maximus this approach is more 

challenging due to the large number of manually segmented images and memory needed to 

train a CNN and address the variability of the hip anatomy. For this reason, we consider that 

currently a multi-atlas segmentation method is the best practical solution to build a gluteus 

maximus segmentation tool to be used in clinical research.  

Conclusion 

We presented a multi-atlas method for automated segmentation of gluteus maximus based on 

an atlas library with Dixon images, as we aimed to develop a tool for quantitative evaluation 

of the gluteal muscles. The method allows an accurate fully automated segmentation of gluteus 
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maximus for either Dixon or T1-weighted images and provides a relative accurate volume 

measurement in shorter times than the current accurate gold-standard manual segmentations. 

We also proposed a ROI to assess muscle bulk that aims to standardize inter and intra-subject 

comparison of gluteus maximus volume. In this region, we obtained similar accuracy to the 

full muscle. 
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Tables 

Demographics of the Scanned Subjects 

Volunteers N Age Height Weight BMI 

Female 8 29.8 (20-43) 169.2 (155-183) 69.4 (53.0-79.0) 24.1 (22.1-27.1) 

Male 7 30.3 (22-43) 177.9 (172-185) 74.6 (62.5-82.0) 23.6 (21.0-27.4) 

Total 15 30.0 173.2 71.8 23.9 

Table 1. Demographics of the 15 volunteers that were scanned under the MRI protocol. The 

age, height and BMI correspond to mean (min-max) values. 
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Figures 

 

Figure 1. Dixon and T1-weighted full pelvis images acquired to build the atlas library. Axial, 

coronal and sagittal views are shown in the top, middle and bottom rows respectively. The top 

iliac crest and lesser trochanter used to define the FOV are highlighted with arrows.   
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Figure 2. Schematic description of the automated segmentation. The target image is pre-

processed with a bias correction filter before being used in the multi-atlas segmentation 

process, where each atlas in the atlas library is registered to the target image, the labels of the 

5 most similar atlases are propagated to the target image space and, finally, the labels are 

fused using label voting and a muscle intensity mask. 
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Figure 3. a) Top and bottom landmarks that define the slices delimiting the proposed region to 

assess the muscle bulk of gluteus maximus. The top landmark is defined by the ASIS, which can 

be identified in the coronal view. The bottom landmark is defined by the highest and most 

medial point of the lesser trochanter which can be seen in the axial slice with a red border. b) 

ROI used for the muscle bulk is shown in red. 
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Figure 4. Boxplot of Dice similarity coefficient (a) and relative volume difference (b) between 

automated and manual segmentation of gluteus maximus for a sample of 30 (15 subjects). 
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Figure 5. Posterior-anterior (top) and anterior-posterior (bottom) views of the 3D models of 

the segmented gluteus maximus for manual segmentation (left, red), automated segmentation 

(middle, cyan) and automated-manual superimposed masks (right). In the superimposed 

images, the regions were both segmentations matched are shown in yellow. 
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Figure 6. Relative volume difference as metric of volume error plot as a function of the gluteus 

maximus volume of the manually segmented images. 
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Figure 7. Set of images showing segmentation accuracy in a sagittal and axial slice for a case 

good case (a-c) and a. The intersection between the automated and manual segmentation is 

shown in yellow (true positives), in red the manual segmentation only regions (false negatives) 

and in cyan the automated segmentation only regions (false positives). 


