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Abstract

Objective: To design, develop and evaluatesatomated multatlas method for segmentation

and volume quantification of gluteus maximus from Dixon andvEighted images.

Materials and Methods: The multiatlas segmentation method uses an atlas library
constructed froml5 Dixon MRI scans ohealthy subjectsA nonrigid registration between
each atlas and the targtdllowed by majority votindabelfusion, is used in the segmentation
We propose a region of interest (ROI) to standardize the measurement of musclhbulk.
method was evaluateasing the dice similarity coefficient (DSC) and the relative volume

difference (RVD)as metricsfor Dixon and T1weighted target images

Results: The mean(xSD) DSC wa3.94t0.01 for Dixon images, whiled.93t0.02 for Tt
weighted. The RVD between the automated and manual segmentation had a mean(xSD) value
of 1.5+4.3% for Dixon andlL.5+4.8% for T1-weighted images. In thauscle bulkROI the DSC

was0.95+0.01 and the RVDwas0.6+3.8%.

Conclusion: The method allows an accurate fully automated segmentation of gluteus maximus
for Dixon andT1-weighted images and provides a reldinaccurate volume measurement in
shorter time¢~20 min)than thecurrentgold-standard manual segmentati¢@$ours. Visual

inspection of the segmentation would be required when higher accuracy is.needed



Introduction

The duteal musclesplay an importantrole in daily living activities,including walking,
running,stairclimbingand lifting activitieq1, 2]. Gluteus maximus is the largest of the gluteal
musclesand has many different functionsch as providing sacroiliac joint stability, strength

for lifting and, in the runningait cycle, flexeshe trunk on the stanegde and decelerate the
swing leg[3, 4]. The assessment of gluteus maximus is of intarest wide number of
applicationdor example, in patients with osteoarthritis (OA) differences of ibéte gluteus
maximus voluméetween affected and unaffected limbs have been red6rtéfl in the same
context, an increase of up to 40% in gluteus maximus volume was observed in a longitudinal
study looking at patients that went through hip arthroplpgtyGluteus maximus volume is

alsoof interest in sports scien{®, 9], rehabilitation10] and plastic surgerfy.1].

Magnetic resonance imaging (MRI) is the best imaging modality to quantitatively assess
muscles sincdt provides better softtissue contrast than other imaging techniques and
additionallyit doesnot require to expose the patient to radiation as in CT s¢ahsme is one

of the most importarjuantitative metricso assess muscles since it determines muscle power
[12, 13] which is associated with functional ability to perform daily activitiels 15]and also

with performance in sports practifs]. Another important metciin muscle assessment is the
fat-muscle ratio that, in MRI imaging, can be quantified uswagerfat separatiotechniques

such aschemicalshift basedacquisition methosl also known as Dixosequence§l7i 20].

These type of sequenceave beersuccessfully used to ass@ssamusculafat ormuscle fat

infiltration [211 24].

Despitethe importance of measuring volupsbapeand fatmuscle ratiof individualmuscles,
3D segmentation and labelling of muscles is hardly performed in clinical stuetasise of

the limited availability of robustutomated musculoskeletal segmentation toblanual



segmentation is the gold standard method for labelling muysehéshis a tedious, extremely
time-demanding and not cesffective task. For this reasorgsearchers usually estimate
volume from crossectionalareas (CSA)25i 28], where only a very small number of slices
are labelled and surrogate volume metrics are used. Howeviah&ling of muscleprovides
not only volume, bualsoshape and the possibility of extractiotper quantitativenetrics(i.e.
intramusclar fat) Therefore, automated methods segmentgluteus maximusare an

important unsatisfied need

Automatedsegmentation of skeletal musdimm MR images is a challengingask since
individual muscles share similar intensitgontrastvalues[29]. Intensity based methods have
been proposed for the thigh muscles thanks to its simpler anatomy, although with limited
accuracy{30i 32]. Multi-atlassegmentation, originally proposed tmrain segmentatiof83],

have the ability to overcomthe limitations of intensitpased methods by using a set of
manually segmented images (atlases) to encode the relationship between the segmentation
labels and the voxel intensitig84]. A number of multi-atlas methodshave proved to
successfully segmetite thigh musclef23, 35 38], where the anatomyetween individuals

is more homogeneouBue to thehigh anatomical variability of the hip among the population
andits complex anatomy, only a small numbemadrks based omulti-atlas approaagshave

been investigateéor the hip musclesincluding gluteus maximug2, 39, 40]. The main
challenge in multatlas segmentation is building a library with higiality atlases that are

representative of the population.

In this work, we presentnaautomatedmulti-atlas segmentation method that uses an atlas
library constructed fromi5 high resolutionDixon MRI scans acquired with a standardized
protocol exclusively designed for this purpoddée methodautomaticallylabels gluteus
maximus from an MRI scan of the pelvis, which allows the measurement of muscle volume

and the generation of 3D models of the muscles. In addition, we propose a region of interest



(ROI) to standardize the measurement of muscle bulk. The séagine quality was evaluated
with a leaveoneout strategy usinghe dice similarity coefficient (DSC) and relative volume

difference (RVD)between autoated and manual segmentatiofa, both Dixon and T1-

weighted images.



Materials and Methods

A Multi-Atlas segmentatiomethodis proposed for a fully automated segmentation of gluteus
maximus from MR images. In this approach, a library with multiple atlasesnployed. Bch

atlas isanMR image of the pelvis with left and right gluteus maximalselled manually bg

trained operatorThe method was evaluated using each atlas of the library with adeave

out cross validation scheme. In the following subsections we describe the acquisition of the
MRI scans used in this work, the generation ef étlas library, the mukatlas segmentation

method and implementation, and the segmentation evaluation.
Study Subjectsand Data Acquisition

MRI scans from a group dif5 healthy subjectgecruited for a study looking at the effects of
marathon runningn the hip jointswere used in this workche demographic characteristic of
the group is available ihable 1 The locallnstitutional Review Boardpproved the study and

all subjectggaveinformed consent.

TheMR images were acquired on a 3T scanB@riendMagneton Vda, ErlangenGermany
using abody coil. The scanning protocol consistedsténdard knical sequences for the hips;
axial Dixon (slice thicknesgap 1.5mm/0.45 mmjrepetition time (TR}570mseg echo time
(TE) 45 msec;number ofexcitations 1, number of echoes; T#p angle 120°) and xial T 1
weightedturbo spin echqg(slice thicknesgap 3.0 mm0.3 mm;TR/TE, 895 msef3.9 msec)
sequenceof the pelvis Dixon and T1-weightedsequences were specially designed to assess
glutealmuscles antiad a field of view (FOV) that covered axially fr@em below the lesser
trochanter to the top of the iliac credthe voxel sizes were 0.47x0.47x1.95 #namd
1.09x1.09x3.3 mAiThe total scanning protoctbok in average30 minutes.Figure 1shows
anexample otheacquired Dixon and Tveighted imagesvherethe landmarks used to define
the FOV are highlighted with arrowEor the Dixon image, the iphase and outf-phase

images are shown, from which water and fat imagegenerated.



Atlas Library Construction

The 15 Dixon scans were used to build the atlas libfarthe multiatlas segmentatiofcach

atlas was generated by manually segmenting right and left gluteus maximus muscles-in the in
phase Dixon image. The-phase imagasusedas its contrast is closer to the contrast in T1
weighted images, giving the option to use the libfarnthe segmentation of both Dixon and

T1-weighted imagesEach atlasA« in the library consists of an intensity image (&axin-

phase) 0 ) and a lhels image { ) =g o 8

The manual segmentation wasrried outin Si mpl ewar eE Scanl P (Ver
Synopsys, Inc., Mountain View, USAgn FDA and CE marked 3D image processing software

for medical scan data.o accelerate theegmentation procesevery other axial slice was

manually segmentedsing the magnetic lasso toahd thenit was completed using the
interpolation todbox available in the softwareA different label was used for right and left
musclesintramuscular fatvas includedas part of the muscle lahethile intermuscular was

excluded.
Automated Multi -Atlas Segmentation of Gluteus Maximus

In multi-atlas segmentation, a selection of atlases or every atlas in the library is registered to
the image to be segment@drget image). The labels of the atlases are then propagated to the
target image coordinates by applying the transform obtained in the image registration process.
Finally, the propagated atlas labels are combined to generate the output of thatlasulti
segmentation procegkabel fusionstage) Different strategies can be used in each of these
steps.We described our proposed method and the implementation of each of these stages

whichwe alsosummarized ifFigure 2

This fully automated segmentationethod was implemented in a plugin f&i mp| ewar e E

ScanlP (Version 2018.12; Synopsys, Inc., Mountain View, JJ&Avas developed in C# and



uses SimplelTK and SimpleElastix for image processingimagderegistration respectively.
The plugin requirea full pelvis MRI scanas target image. The segmentation process consists

of a preprocessing step, the actual niudtbel segmentation and a final pgsbcessing step.

Pre-Processing of the Target Image

Theimage preprocessing stageonsists ofa bias fieldinhomogeneitycorrection filter[41]
followed byan Otsu multthresholdalgorithm Theformeris used to correct fdow frequency
intensity noruniformities present in the images, which can affect the Otsu methddhe
image registration in the muléitlas segmentation. The Otsu algoritisrapplied tagenerate a
softtissue mask that restricts the voxels where labels can be transferred during talasulti
segmentation, excluding the background and fat tissue. Ideally, the Otsu algorithm would be
used to segmetihe image intdour classes: background, stifsue, cancellous bone and fat.
However, there is a good amount of crtak between the classes even after correcting for
bias field inhomogeneities. In order to avoid excluding anytsstie voxel with the sctissue
mask, the Otsu algorithm was used witre intensity classesackground, softissue, soft
tissue/bone, borat and fat; andhenthe two classes including sdfssue voxels wereused

to generate the final maslkinally, a morphological closing operator was used to avoid

excluding intramuscular fat as we want to include it as part of the muscle labels.

AtlasRegistration inViulti-Atlas Segmentation

We used an image registratiorheme that consists afrigid registrationio achieve an initial
rough alignment followed bg B-splinenonrigid image registratiofd2]. It was implemented
using SimpleElasti¥43], a Python and C# interface for the open source and validated image
registration software Elasti¥44]. The image registration problem is formulated as an

optimization poblem where a cost function C is minimized:
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whereT, is a parametrized spatial transform with parametelsis the fixed image anl is
the moving imagdn our implementation of the muléitlas segmentatiofy, is the target image

(I7) and thdw is the intensity image of each atlkaO ).

In both rigid and nomigid registration, the normalized correlation coefficient (NCC) was used
asthe similarity measuréo maximize which it is weltsuited for intramodality images and it

has proved to be a reliable metric in att@sed method84, 45] The rigid registration was
initialized using the geometrical centre of the images as all the images have similar FOV and
are centred in the pelvish& B-spline norrigid registrationwas nitialized with the output of

the rigid registration anthe optimization problem was solved with the adaptive stochastic
gradient descent algorithd6] with 2048 spatial samples ad€@00 iterations These hyper
parameters were empirically selected to achiepéimal segmentationperformance A
pyramidal scheme of 4 layers with dovaampling factors of 8, 4, 2 and 1 was employed to

improve the registration.
Label Propagatiorand Fusionn Multi-Atlas Segmentation

Only the labels of th& most similar atlases (after image registration) are propagated. This
reduced number of atlases was selected due to the large heterogeneity of the population
anatomy in the pelvianatomy The similarity values between the target and each registered
atlas,obtained by computing the global NCC, were sorted in descending order before doing

the atlas selection

[ i ¢iidi 8H

i 0 6 Y Noho
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wheresc is the similarity value between the target im&gand the intensity image of atl&s
after applying the spatial transforfif . o is a vector with the atlas indices sorted by their

similarity values in descending order.

A majority voting schemg47, 48] was used to fuse the labels of atlagess into the
segmented imag8, wherethe label of each pixel or voxel is selectsdthe label that most of

the selected atlased\d.s) agree onThe labels involved in the voting were left gluteus
maximus, right gluteus maximus and backgroundour implementation, the voxels where
there was not a winning label were excluded. However, we did not find such cases since we
are using an odd number of selected atlases and left and right gluteus maximues ¢adwe|s

close enough to have voxels wiotes from the three labdleft/right gluteus maximus and

background)

PostProcessing

A postprocessing chain was appliedorder to add spatial consistency by removing poorly
connected regions and filling holes. To achieve thispp@eningmorphologcal filter was
applied to the output of the mulitlas segmentatiof and then théargest connected object
was obtainal using a threglimensional sixconnected neighbourhoo#inally, a flood fill

operator was used to fill holes in the segmented mask.

Segmentation Evaluation

The performance of the muscle segmentation of gluteus maximus was evalitiateach of
thel5atlasesn the libraryusing a leav@®neout cross validation, wheraehatlas isemoved
from the librarybefore execting the automad segmentatiohe inphase Dixon image was
used as input to the automated segmentation me#tsoleéft and right gluteus maximus were
labelled independently, two labgdsr atlasand a total 08B0 muscles were evaluatetiheDice

Similarity Coefficient(DSC)wasusedasthe mainsegmentatioperformance metric
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whereDSQG is the dice score for label TP, FP andFN arethe number of true positiyéalse
positive and false negativexelsrespectivelyfor the label between the segmented imag (

and the manually segmented imalyts).

In addition, the relative volume differend@\(D) was used as a task specific metric as we are

particularly interested in measng muscle volume

YOO ———pnmnb
()

whereRVD is the relative volume difference for labeldh, the gluteus maximus volume
obtainedfrom the automated segmentation akd the muscle volumérom the manually

segmented imagder labell. Mean, median, standard deviation amigrquartile rang€élQR)

valueswere computed for DSC and RVD

The same evaluation test was performed using thesdighted images available for every
subject. The manually segmented labels from the Dixon image were used as a reference in the
comparisonBecause T4veighted and Dixon imagesgere acquired durinthe samecanning
protocol, the images were already aligned in the same image space. Hdhareawvere some

small differences in thie FOV and in some cases a small misalignment was fobadths

reason, the T-Weighted imagewere rigidly registeredto the Dixonimage using NCC as
similarity metricbeforeperformng the segmentation evaluationhe image registration was
successful in all the cases, correcting for small misalignments when ragetieokt introducing

any change in those cases already aligned.
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Muscle Bulk Evaluation

We propose aegionof interest (ROIXo quantify musclebulk with the goal of standardizing
the muscle volume comparisandto focuson the main functional part of gluteus maximus
Our definition of themusclebulk for gluteus maximus covers the region from the axial slice
where the lesser trochantigp is foundto the slice that corresponds to the anterior superior
iliac spine (ASIS) This definition of the muscle bulwas doneto avoidregions where the
uncertainty and variabilitin muscle volumes higher as ireithertop and bottonextremes of
gluteus maximuswhere the muscle shrinks wheretendinous tissués found(i.e. inferior

attachment to the femur

The ROIs were defined by manually obtaining the slice indices for top and bottom landmarks
(Figure 3. The top(superior)landmark is defined by the ASIS, which can be identibgd
scrollingslicesin the coronal viewuntil the iliac spine disappear Figure 3a, the selected
coronal slicas shownin blue and the axial slioghere the ASIS is found taghlighted in red.

The bottom(inferior) landmark is defined by the most medial point of the lesser trochanter
which canbe seen in the axial slice with a red boiddfigure 3a). In Figure 3b), thedefined
musclebulk for gluteus maximus is painted in red and the top and bottom slices are shown with

red lines.

The DSC and RVDQverecomputed fothe muscle bulk ROIAn assessment of the landmark
selection process and its impact on the volume measurement was performed by comparing the

outcomes for two different independent operators.

Results

Gluteus Maximus Segmentation

Figure 4shows boxplots of the DSC and RVD values for both Dixon anddigjhted target

imagesIn Figure 4a), a boxplot of th®SCfor the30 gluteus maximus assessé® §ubjects)
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is shown. Themean (xSD) DSC was @ + 0.01 (median=094; IQR 0.94-0.95; min=0.92,
max=0.96) when using ifphase Dixon images as input, the same type of image as in the.library
All of the 30 segmentation®iad aDSC higher than 0.93D modes$ from the manual and
automated segmentatidor a singlecaseare shown irFigure 5from posterioranterior and
anteriorposterior views The models are also shown superimposed to illustrate their
differencesThe manual segmentation was labelled in red, the automated segmentation in cyan
and the regions where both segmentations ovezthpgp yellow (true positives for the

automated segmentation).

The mean (+SD) volume for ti89 assessedluteus maximus was@&1® + 1.0x10° mm?in
the manually segmented library, while we obtaifietk1° + 9.2x10* mm? with the proposed

automated method. The error foe population mean volume was2%.

When using Tiweighted images as target images, the mean (xSD) DSC @&s @.02
(median=093; IQR 092-0.%4; min=0.8, max=0.%). These resultshowthat using the in
phase Dixon image is flexible enough to use the segmentation method for both Dixor and T1

weighted images, althoughsenallpenalty in performance is observed for the latter.

The RVDbetween the automated and manual segmentats@u tcassess volume errdrad
amean (xSDyalue of1.5+ 4.3% (median%.8%; IQR-1.2- 3.4%; min=8.2%, max=10.6%).
When using Taweighted images, instead of theghase Dixon image, a mean (xSD) value of
1.5+ 4.8% (median%.7%0; IQR-1.9-3.8%; min=8.9%, max=10.4%) was achieved boxplot

for the RVDfor both Dixon and Tdveighted imagess presented ifrigure 4b). In addition,
we performed anodified Bland-Altman analysis to assess volume efmirthe Dixon images
where the RVD is plééd against the mnual segmentation voluniEigure §. In this figure,

we can see thaihe RVD values distribute equally for positive and negative errors, although in
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larger muscles (higher volume values) a negative bias was obs@rgaxhly foundwo cass

out ofthe 95% confidence intervgll.96 SD).

In Figure 7 we show segmentation results éocase with low RVD (& images) anthecase
with highest RVD (bd images).The true positives (intersection between manual and
automated segmentation) are shown in yelkhw false negativggnanual segmentatiamly)

in red and the false positivéautomated segmentatiamly) in cyan It can be seen that
overallthe segmentation was accuratédoth casesvith a thin layer of false negatives in the
edge of the musclel the case with higRVD, the main source of errors were false positives
in the lower par{b) and in a set of slices of the medial section (c) of gluteus maxidaib

regionshave high variability across the atlases.
Muscle Bulk Evaluation

When usinghe proposed ROI to evaluate muscle bulk, the mean (£SD) DSC vias Q.@
(median=0.9; IQR 0.940.9%6; min=0.92 max=0.96 30/30 with DSC>0.9 and the RVD
between the automated and mansegmentationkiada mean (£SD) value d.6 = 3.8%
(median®.6%; IQR -1.6-2.6%; min=7.7%, max®$.7%). The mean (xSD) muscle bulk
volume for the30 gluteus maximus assessed wa@x&( + 9.8x10* mn? in the manually
segmentd library, while we obtained 5d0° + 8.9x10* mm? with the proposed automated

method.

The muscle bulk volume depends on gedection of bottom and top slices for the ROI. Two
independat operators obtained the slice numbershe proposed landmarks and there was a
mean (xSD) difference ofL..0 + 15 and 06 + 1.3 slices for the lesser troahter and ASIS
landmarks respectively, which translatethiROls larger in 16 = 1.8 slices for operator TLhe

mean (xSD) volume difference between the two operators B8asil07%.
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Discussion

A multi-atlas segmentation method that provides accurate and automated segmentation of
gluteus maximus from a pelvis MRI is presented in this whhle. segmentation accuracy was
evaluated using two metrics: DSC and RVD. A good mean DSC 48 achievedWhen
quantifying muscle volume, we obtained a mean (xSD) errdr.®f 4.34 for the whole

muscle. These results show that the method can be used to assess both shape (related to the
Dice score) and volume, especially for cases where the change in voluneasure is large

(i.e. patients with OA).

The measurement of the muscle volume did neotal a particular bias and errors were
distributed both negative and positiveBased on visual inspection of the imagesinor but

general source of error was thia¢ automated segmentation does not extend to the same edge
as the manual segmentatiorhis mismatchwas due to the limited accuracy of the image
registration aghe intensity masldid extend to the same edger (outer) as the manual
segmentationThe main source of error was the anatomical differences between the selected
atlases and the target image that the image registration was not able to completely compensate
for it (Figure #b and d shows an exampl&).the case of larger muscles, negative errors were
obtainedthat could be related to the fact that there were not enough atlases in the library with

larger muscles

We found that the regions with poorer segmentation were the gluteus maximus anterior border
with the gluteus medius fascia, and the inferior and superior extremes of the muscle. The
segmentation in the gluteus maximus / medius border is challenging because in that region the

intermuscular fat is not thick enough to guide the image registratmess.
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Muscle Bulk Evaluation

In order to standardize the volume measurement of gluteus maximus, we propose a ROI
delimited by the lesser trochanter and the ASIS that focuth@muscle bulk of gluteus
maximus. The ROI looks also to avoid differences in the image &@¥5ssscans for either
inter-subject or intresubject (longitudinal) studies. In the muscle bulk ROI, the segmentation
was marginally more accurdtetwhen testedvith two different operators, we found that their
landmarks were slightly different, addingseall volume error to the volume segmentation
error. A better set of instructions to find the landmarks could reduce this larsarmmary

the use of the propodeROI should be considerad the analysis of gluteus maximas it

avoids some of the regions with lower segmentation accuracy; restricts the muscle evaluation
to a region delimited by two anatomical landmarks insteadhe variable FOV; and
concentrateghe analysis in the muscle bullkkhere the gluteus maximus is larger and free of

tendons.

Applications

Tools that can measumdlume, shape and are able to label muscles from MR images are
increasingly important thanks the wideravailability of MRI scanners. Manual delineation

and labelling of muscles is considered the egithdard method for muscle segmentation
howeverit is extremely time consuming; while surrogates metrics for volume such as cross
sectional ared®5i 28], provide limited accuracy and information.i¥method provides good
segmentation accuracy although introducing a mean er¥ér36 when compared to the geld
standard manual segmentation. In terms of time and resources, our method does not need user
interaction except for loadirthe target image and it takes a computatime of approximately

20 minutes; while for the manual segmentation an average of 100 slices needs to be delineated
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(half of themif interpolation is used) that represents approximately a 2 hours user intensive

task.

Measurement of volume changes in libanginal studies and detection of asymmetirethe
context of clinical researcis one ofthe main applicabns for the segmentation method
presented in this work. For examptguteus maximus wasting and atrophy is observed in
patients with osteoarthritis (OAXacharias et aJ5] assessed abductors muscles, including
gluteus maximus, in patients with osteoarth(@\) by labelling MRimages in only a small

set d slices. They repoed a difference in gluteus maximus volume between the affected and
unaffected limb in the range 0f¥%6% depending on the grade of @Ad greater differences

in OA-control groups compariso8imilar results were observed[#]. The volume of gluteus
maximus is also of interest in sports science, where volume differences wei®dound
between groups of footballers with and without hamstring injuries, although not statically

significant[8].

Tools like the one presented inghwork allows the execution efjuivalentstudies but using

fully 3D volume segmentation, where the muscle volume is not extrapolated from cross
sectional areasadding the possibility ofyenerating3D models of the muscleand the
estimationof shape metricsHowever,given the accuracy of the presented method and the
requiremerg of some of the applications, a visual inspection and correction stage could be
necessary in some casés.this regard an automated atlas segmentation combined with a
manual correction procedur@ve been previously uséol measurehe volume of the dwer

limb muscleq49].

Dixon sequence

We decidedipon aDixon sequenca our atlas library because wafat separation techniques

have proved to be an excellent tool to assess muddlkessegmentatioof Dixon image
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allows not only the estimation of muscle volume and shape, but also the estimatieriad
fraction in each muscl@1i 24] whichis associated with muscle hedlfi®]. We are aware that
these scanning sequences are not widely available or not frequently chosen due to their long
acquisition time and this would limit the number of studies whete segmentatiomethod
could be appliedTo address this problem, we used tftphase image of the Dixon sequence
in the atlas library to extelthe method to T4veighted images as they have relatively similar
contrast. When segmenting -Weighted images, we observea averall good segmentation
performance withjust a marginaldecrease in performan@®mpared to the Dixon iphase
imagesdue to a éss accurate image registratide aimed to maximize the segmentation
performance for the Dixon images, howeaeuccessful segmentationTdf-weighted images

is still importantas ths sequence is widely included in clinical protocols and useful to obtain

muscle volume and shape (lmait quantitative analysis of fat infiltration

Limitations

The method presented in this paper has two main limitations: the number of atlases in the
library and the labdlusionmethod.Using scans o& group of heterogeneous healthy subjects
and being able to design the acquisition protocol prior to the constructthe library allowed

us to build ahigh-quality library with homogeneous scan parametéfee group was
heterogeneous as we included subjects of different gender, height and alghghghpeople

with overweightare underrepresented since orlyo subjecs had a BMI higher than 29n
addition, patients with larger muscles are also underrepresented as it can be seen & Figure
and he moderateaumber of atlased 5) includedin the librarynot necessarilgccouns for the

wide populationheterogeaity of the pelvic region. These problems canabldressedh the

future by adding new atlases to the library focusinginderrepresented grougsdowever,

only datacolleciedwith the same sequence gratameters would be suitable in orteensure

that the similarity metrics are equivalent across the atlas members.
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Regarding the label fusion method, we have selected a singpeity voting approach as we
prioritized speed and robustness over complexity. Statistical iterative labelrfusiloods such

as STAPLH51] or STEPY52] could marginally increase accuracy as Dice scorealagady

high. In relation with the label fusion and propagation stage, a minor limitation of the proposed
method is the siple approach used to generate the inteitgiged muscle mask used to restrict
the voxels were the labels from the atlases can be propagdiae. sophisticated methods to
classify the tissue type of each voxelld improve the segmentation in soregions of the
image. In this sensehe use of machine learning have been proposed to improve tissue type
classifiers for the hip and the thigHowever, their implementation is challenging as they

require custom MRI sequendés3] or avery large training data sgi4].

Approaches based on deep learning (i.e. convolutional neural ne(@dkg) have potential

to overcome some of the limitations of mdtlas methods. They hateeen very successful in

the segmentation of tumours or other relatively small struct[58s 56] however its
application in the musculoskeletal field has bkes popularlt has shown promising results

in specific applications where the area of interest is small, suichtlassegmentation of the
knee[57, 58] However,in the segmentation of gluteus maximus this approacimise
challengingdue tothe large numbepnf manually segmnted imagesnd memoryneededo

train a CNNandaddress the variability of the hip anatorfgr this reason, we consider that
currently a multiatlas segmentation method is the best practical solution to build a gluteus

maximus segmentation tool to beedsn clinical research.

Conclusion

We presented multi-atlasmethod for automated segmentation of gluteus maximaged on
an atlas library wittDixon imagesas we aimed to develop a tool fguantitative evaluation

of theglutealmuscles. The method allows an accurate fully automated segmentation of gluteus



20

maximus for either Dixon or Fiveighted images and provides a relative accurate volume
measurement in shorter times than the current accuratesiggmidard manual segmentations.
We alsoproposed a ROI tassessnuscle bulkthat aims to standardize inter and irgtebject
comparison of gluteus maximus volunie.this region, we obtained similar accuracy to the

full muscle.
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Tables
Demographics of the Scanned Subjects
Volunteers N Age Height Weight BMI
Female 8 29.8(20-43) 1692(155183) 69.4(53.079.0) 24.1(22.1-27.1)
Male 7 30.3(22-43) 177.9(172185) 74.6 (62.582.0) 23.6(21.027.4)
Total 15 30.0 173.2 71.8 23.9

Tablel. Demographics of th&5 volunteers that were scanned under the MRI protocol. The

age, height and BMI correspond to mean @max)values.



Figures

Dixon Images

R -,
) ¥ | . -
4 (e~ L ‘ N AT WP

Gluteus

Maximusss 2

Oﬁt-bf-P hase

Lesser
Trochanter

v\Top I)iac Crest
3 I

|
| I
|
y

\ Gluteus ,\

Maximus @

31

T1-weighted

Figure 1. Dixon and Tiweighted full pelvis images acquired to build the atlas library. Axial,

coronal and sagittal views are shown in the top, middle and bottom rows respectively. The top

iliac crest and lesser trochanter used to define the FOV are highlightedmwows.
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Figure 2. Schematic description of the automated segmentation. The target image is pre
processed with a bias correction filter before being used in the -atlds segmentation
process, where each atlas in the atlas library is registereédedarget image, the labels of the

5 most similar atlases are propagated to the target image space and, finally, the labels are

fused using label voting and a muscle intensity mask.
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a) Bulk Gluteus Maximus Muscle Landm b) Bulk Gluteus Maximus

',.'?! 3

Top Landmark

Bottom Landmark

Figure 3. a) Top and bottom landmarks that define the slices delgtite proposed region to

assess the muscle bulk of gluteus maximus. The top landmark is defined by the ASIS, which can
be identified in the coronal view. The bottom landmark is defined by the highest and most
medial point of the lesser trochanter whicindze seen in the axial slice with a red border. b)

ROI used for the muscle bulk is shown in red.
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a) DSC between Automated and Manual Segmentation b) RVD between Automated and Manual Segmentation
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Figure 4. Boxplot of Dice similarity coefficient (a) and relative volume difference (b) between

automated and manual segmentationloteys maximus for sample of 8 (15 subjects).
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Figure 5.Posterioranterior (top) and antericposterior (bottom) views of tf#D models of
the segmented gluteus maximus for manual segmentation (left, red), autsagatezhtation
(middle, cyan) and automatedanual superimposed masks (right). In the superimposed

images, the regions were both segmentations matched are shown in yellow.
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Volume Error vs Manual Segmentation
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Figure 6. Relative volume difference as metric of volume error plot as a function of the gluteus

maximus volume of the manually segted images.
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Figure 7. Set of images showing segmentation accuracy in a sagittal and axial slice for a case
good case (&) and a. The intersection between the automated and manual segmentation is
shown in yellow (true positives), in red the manual segmentation @ibnee(false negatives)

and in cyan the automated segmentation only regions (false positives).



