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Abstract

We propose a new nonparametric test of stochastic monotonicity which adapts

to the unknown smoothness of the conditional distribution of interest, possesses

desirable asymptotic properties, is conceptually easy to implement, and computa-

tionally attractive. In particular, we show that the test asymptotically controls size

at a polynomial rate, is non-conservative, and detects certain smooth local alterna-

tives that converge to the null with the fastest possible rate. Our test is based on a

data-driven bandwidth value and the critical value for the test takes this random-

ness into account. Monte Carlo simulations indicate that the test performs well in

finite samples. In particular, the simulations show that the test controls size and,

under some alternatives, is significantly more powerful than existing procedures.
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1 Introduction

Monotone relationships play a significant role in economic models, and therefore devel-

oping tests of such relationships is an important task for econometric research. In this

paper, we propose a new nonparametric test of the hypothesis that two random variables

satisfy the stochastic monotonicity condition. Such a test is useful in many economic ap-

plications, for example for testing monotone IV assumptions (e.g. Kasy (2014), Hoderlein,

Holzmann, Kasy, and Meister (2016), Chetverikov and Wilhelm (2017), Wilhelm (2019))

and for testing identifying assumptions (e.g. Matzkin (1994), Lewbel and Linton (2007),

Banerjee, Mukherjee, and Mishra (2009)).1 More generally, stochastic monotonicity plays

an important role in industrial organization (e.g. Ellison and Ellison (2011)), in stochas-

tic dynamic programming (e.g. Stokey and Lucas Jr. (1989), Ericson and Pakes (1995),

Olley and Pakes (1996)), and in finance (e.g. Richardson, Richardson, and Smith (1992),

Boudoukh, Richardson, Smith, and Whitelaw (1999), Patton and Timmermann (2010)),

among many other fields of economics.

Consider two continuous random variables X and Y , both supported on [0, 1]. We are

interested in testing the null of stochastic monotonicity,

H0 : FY |X(y|x′) ≥ FY |X(y|x′′) for all y, x′, x′′ ∈ [0, 1] with x′ ≤ x′′, (1)

against the alternative

Ha : FY |X(y|x′) < FY |X(y|x′′) for some y, x′, x′′ ∈ [0, 1] with x′ ≤ x′′, (2)

where FY |X denotes the cdf of Y given X, i.e. FY |X(y|x) := P(Y ≤ y | X = x) for all

x, y ∈ [0, 1].

We propose a new nonparametric test of (1) against (2) with attractive properties.

First, our test controls asymptotic size and is non-conservative, i.e. its limiting rejection

probability does not exceed the nominal level uniformly over all data-generating processes

in the null (satisfying mild regularity conditions) and is equal to the nominal level for some

of them. In fact, we show that the probability of rejecting the null under the null can

1Chetverikov and Wilhelm (2017) have already applied our proposed procedure for testing whether

their monotone IV assumption holds in the context of estimating gasoline demand functions.
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exceed the nominal level at most by a term that converges to zero with a polynomial rate,

which we refer to as the polynomial size control. Second, our test is consistent against all

smooth fixed alternatives. Third, our test is rate-optimal against sequences of alternatives

in smoothness classes Mβ, where β ∈ (0, 1] denotes the smoothness parameter, and Mβ

is the set of all distributions of the pair (X, Y ) satisfying some mild regularity conditions

and such that∣∣∣∣ ∂∂xFY |X(y|x2)− ∂

∂x
FY |X(y|x1)

∣∣∣∣ ≤ CL|x2 − x1|β, for all x1, x2, y ∈ (0, 1),

for some given constant CL; see Section 3 for details on the definition of Mβ. Here,

rate-optimality against sequences of alternatives inMβ means that there exist a constant

κ ∈ (0, 1) and a sequence of positive constants {rn}n≥1 converging to zero such that our

test is uniformly consistent against all sequences of alternatives inMβ separated from the

null at least by rn (in a certain metric) and for any test whose asymptotic size does not

exceed its nominal level, there exists a sequence of alternatives inMβ separated from the

null at least by κrn such that the asymptotic power of the test against this sequence of

alternatives also does not exceed its nominal level. Fourth, our test is adaptive to the set

of classes {Mβ}β∈(0,1] meaning that the test is rate-optimal againstMβ for each β ∈ (0, 1]

and implementing the test does not require specifying the value of β.

For comparison, the implementation of non-adaptive tests often requires the user to

specify a value of some smoothing parameter, such as a bandwidth value, which is un-

desirable because the test results may be sensitive to the particular value that is chosen.

Moreover, non-adaptive tests may have low power if the smoothing parameter value pro-

vided by the user is not appropriate for a particular data-generating process, and, in

addition, if the user performs some search over different values, the resulting procedure

may not control size, even in large samples. To the best of our knowledge, our test is the

first test of stochastic monotonicity that is shown to be adaptive.

Our test is also very simple to implement and is computationally attractive. It only

requires a nonparametric estimator of the conditional distribution that is computed once

on the whole sample and does not need to be re-computed on the bootstrap samples. We

provide an R implementation of the test at https://github.com/dongwookim1984.
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There are several alternative approaches in the literature for testing (1) against (2).

Our test statistic is based on a locally-weighted version of Kendall’s tau and is thus

most closely related to the one proposed in Lee, Linton, and Whang (2009). In both

cases, the weights are determined by some kernel function K and a bandwidth value h

but an important difference is that we take the maximum over many different values of

h whereas they let the user specify a particular value. This gives us an advantage in

terms of power. In particular, like ours, their test is also rate-optimal against sequences

of alternatives in the smoothness classes Mβ but achieving rate-optimality using their

test requires providing a β-dependent bandwidth value h, and so their test can not be

adaptive. Thus, our test can be viewed as an adaptive version of theirs. Our critical value

is also different since it has to take into account the fact that we perform a search over

different bandwidth values.

Delgado and Escanciano (2012) and Seo (2018) construct a test statistic by comparing

the empirical copula of (X, Y ) with its partial least concave majorant. We show that these

tests are not rate-optimal against sequences of alternatives in the smoothness classesMβ.

A practical consequence of this is that the tests have low finite-sample power against

some smooth alternatives. The tests are, however, consistent against certain sequences of

n−1/2-alternatives, which we call “wide” alternatives because they deviate from the null

over an interval of conditioning values of X. Our test is not consistent against such wide

alternatives. Similar trade-offs have been noted in other contexts (e.g. Fan (1996), Fan

and Li (2000), Horowitz and Spokoiny (2001)).

Hsu, Liu, and Shi (2019) and Lee, Song, and Whang (2018) propose tests of functional

inequalities of which testing the null of stochastic monotonicity is a special case.

Also, stochastic monotonicity implies the weaker concept of regression monotonicity,

i.e. monotonicity of the function x 7→ E[Y | X = x], and there are several papers in

the literature that develop tests of regression monotonicity, e.g. Ghosal, Sen, and Vaart

(2000), Delgado and Escanciano (2013), Lee, Song, and Whang (2013), and Chetverikov

(2012). Our method for testing stochastic monotonicity is most closely related to the

method of testing regression monotonicity in Chetverikov (2012), but there are several

important differences between that and this paper. First, his method can be used to test
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the hypothesis that the function x 7→ E[1{Y ≤ y} | X = x] is decreasing for any given

y ∈ (0, 1) but we test a different, stronger hypothesis that x 7→ E[1{Y ≤ y} | X = x]

is decreasing simultaneously for all y ∈ (0, 1). Second, we use a different normalization

factor making our test substantially easier to implement. Third, we have to deal with

values of y that are close to the boundary of the support of Y , and doing so requires us

to develop some new results on distributional approximations for the maxima of sums of

high-dimensional random vectors. In particular, we extend the results in Chernozhukov,

Chetverikov, and Kato (2013, 2017) by relaxing their condition that the variance of each

component of the random vectors is bounded away from zero. Instead, we only require

that the variance of at least one component is bounded away from zero. This extension

may be of substantial independent interest.

Finally, we emphasize that our paper is not the first to take the maximum over many

different bandwidth values in the test statistic to improve power properties of a test. For

example, the same idea appeared in Horowitz and Spokoiny (2001), who were concerned

with testing parametric regression models against general nonparametric alternatives,

Dümbgen and Spokoiny (2001), who were concerned with testing regression function shape

restrictions, and Armstrong (2015), who was concerned with testing hypotheses about

a nonparametric regression function at a point. There are also many papers on testing

moment inequalities that use the same idea, including Andrews and Shi (2013), Armstrong

(2014), Armstrong and Chan (2016), and Chetverikov (2018).

The rest of the paper is organized as follows. In Section 2, we describe our new test.

In Section 3, we present our main results on the properties of the test. In Section 4,

we discuss new results on the distributional approximations for the maxima of sums of

high-dimensional random vectors, which are used to establish the results in Section 3. In

Section 5, we carry out a small simulation study to shed some light on the performance

of our test in finite samples and also to compare its power with that of other tests in the

literature. In the Appendix, we provide all the proofs.
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2 The Test

In this section, we introduce our new test of stochastic monotonicity based on an i.i.d.

sample (Xi, Yi), i = 1, . . . , n, from the distribution of the pair (X, Y ). Throughout the

paper, we assume that the random variables X and Y are normalized to have support

[0, 1].2

Let K : R → R be a continuous (kernel) function with support [−1, 1] such that

K(x) > 0 for all x ∈ (−1, 1). For all (bandwidth) values h > 0, define

Kh(x) := h−1K(x/h), for all x ∈ R.

Suppose H0 is satisfied. Then, by the law of iterated expectations,

E
[
(1{Yi ≤ y} − 1{Yj ≤ y})sign(Xi −Xj)Kh(Xi − x)Kh(Xj − x)

]
≤ 0 (3)

for all x, y ∈ [0, 1] and i, j = 1, . . . , n. Denoting

Kij,h(x) := sign(Xi −Xj)Kh(Xi − x)Kh(Xj − x), for all x ∈ R,

taking the sum of the left-hand side in (3) over i, j = 1, . . . , n, and rearranging gives

E

[
n∑
i=1

1{Yi ≤ y}
n∑
j=1

(Kij,h(x)−Kji,h(x))

]
≤ 0,

or, equivalently,

E

[
n∑
i=1

ki,h(x)1{Yi ≤ y}

]
≤ 0, (4)

where

ki,h(x) :=
n∑
j=1

(Kij,h(x)−Kji,h(x)) = 2
n∑
j=1

Kij,h(x), for all x ∈ R.

Our test is based on the observation that, under smoothness of FY |X(y|·) for all y ∈ [0, 1],

the null H0 is equivalent to (4) holding for all x, y ∈ [0, 1] and all h ∈ (0, 1). To define the

test statistic T , let hmax := 1, hmin := 1/
√
n and

H :=
{
h = hmaxu

l : h ≥ hmin and l = 0, 1, 2, . . .
}
, for some u ∈ (0, 1),

2Subsequently, it will become clear that our test is invariant to strictly increasing transformations of

Y , so assuming its support to be [0, 1] is a normalization. Also, the subsequent results can easily be

adapted to the case in which X has support [x, x] for some finite constants x < x. For simplicity of the

presentation, however, we keep the assumption of the support of both variables being [0, 1].
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be a collection of bandwidth values. Here, H forms a geometric grid on the interval

[hmin, hmax] with geometric step u and expands as n gets large. Also, let

X := {X1, . . . , Xn} and Y := {Y1, . . . , Yn}. (5)

We define our test statistic as

T := max
(x,y,h)∈X×Y×H

∑n
i=1 ki,h(x)1{Yi ≤ y}
(
∑n

i=1 ki,h(x)2)
1/2

. (6)

The statistic T is most closely related to that in Lee, Linton, and Whang (2009). The

main difference is that we take the maximum over bandwidth values h ∈ H to let the

data choose the best possible bandwidth value and to achieve adaptivity of the test.

We now discuss the construction of a critical value for the test. Suppose that we would

like to have a test with asymptotic level α ∈ (0, 1/2). As demonstrated by Lee, Linton, and

Whang (2009), the derivation of the asymptotic distribution of T is complicated even when

H is a singleton. Moreover, when H is not a singleton, it is generally unknown whether

T converges to some non-degenerate asymptotic distribution, even after an appropriate

normalization. We avoid these complications by employing a multiplier bootstrap critical

value. Specifically, for x, y ∈ [0, 1], let

F̂Y |X(y|x) :=

∑n
i=1 1{Yi ≤ y}Kb(Xi − x)∑n

i=1Kb(Xi − x)
(7)

be an estimator of FY |X(y|x), where we set b := n−2/3 (other specifications, for example,

b = n−1/2 are also possible). Also, let e1, . . . , en be an i.i.d. sequence of N(0, 1) random

variables that are independent of the data. We then define a bootstrap test statistic as

T b := max
(x,y,h)∈X×Y×H

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

and the critical value3 c(α) as

c(α) := (1− α) conditional quantile of T b given the data.

3In the terminology of the moment inequalities literature, c(α) can be considered a “one-step” or

“plug-in” critical value. Using similar ideas as those in Chetverikov (2012), we could also consider two-

step or even multi-step (stepdown) critical values. For brevity of the paper, however, we do not consider

these options here.
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We rejectH0 if and only if T > c(α). Since Yi enters the test statistic and the critical values

only through the indicators 1{Yi ≤ y} and through the set Y , and since the maximum is

taken over y ∈ Y , the test is invariant to strictly monotone transformations of Yi.

We emphasize how simple and computationally straightforward the implementation

of this test is. In particular, the bootstrap test statistic requires computing the nonpara-

metric estimator F̂Y |X but this has to be done only once, using the original sample, and

should not be repeated on each bootstrap sample. Also, when n is large, one can obtain

nearly identical results by using coarser grids instead of X and Y both in the test statistic

and in the bootstrap test statistic to decrease the number of elements over which the

maxima are taken in order to reduce the computational burden.

To conclude this section, we note that implementing our test requires the choice of only

two parameters: the kernel function K and the size of the geometric step u in the collection

of bandwidth values u. For our simulations in Section 5, we used the Epanechnikov kernel

function K and we set u = 2/3. This combination of parameters seems to work well in

practice. Also, our test is robust with respect to the choice of the bandwidth value b. In

particular, varying the bandwidth value b will affect the rejection probability of the test

only in the second order. Thus, although it is possible in principle to use a data-driven

method for selecting the bandwidth value b that would yield an estimator F̂Y |X with the

fastest possible rate of convergence (in some norm), there is no need to do so, and simply

setting b = n−2/3 gives similar results.4 Finally, we note that it may be possible to use

other estimators F̂Y |X of FY |X .

3 Large Sample Properties of the Test

In this section, we derive size and power properties of the test proposed in Section 2.

First, we show that the test controls asymptotic size and is non-conservative. We also

show that the probability of rejecting the null under the null can exceed the nominal level

4Of course, if the support of X is [x, x] for some constants x < x rather than [0, 1], an appropriate

bandwidth value would be b = (x − x)n−2/3. In this case, we would also have to use hmax = x − x and

hmin = (x− x)/
√
n.
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α at most by a term that converges to zero with a polynomial rate. Then we demonstrate

that the test is consistent against all fixed smooth alternatives and study the rate of

consistency against two types of local alternatives. In particular, we show that our test

is rate-optimal and adaptive against sequences of alternatives in the smoothness classes

Mβ, β ∈ (0, 1], to be formally defined below. The proofs for this section rely on new

results on the distributional approximations for the maxima of sums of high-dimensional

random vectors. Since these may be of independent interest, we present them in more

detail in Section 4.

We start our analysis by providing the list of required regularity conditions. Let

CX , CL ∈ [1,∞), ε ∈ (0, 1/2), and β ∈ (0, 1] be some constants.

Assumption 3.1 (Distribution of X). The distribution of X is absolutely continuous with

respect to the Lebesgue measure on [0, 1] with the pdf fX satisfying 1/CX ≤ fX(x) ≤ CX

for all x ∈ (0, 1).

This is a weak regularity condition. It requires the support of the random variable X

to be [0, 1] and the density of X to be bounded from above and away from zero on the

support. Conditions of this form are often used in the nonparametric analysis and the

theory can easily be adapted to the case in which the support of X is [x, x] for some finite

constants x < x.

Assumption 3.2 (Non-degeneracy). The conditional cdf FY |X satisfies ε ≤ FY |X(y|x) ≤

1− ε for some x, y ∈ (0, 1).

This is another weak regularity condition. It holds if there exists at least one x ∈ (0, 1)

such that the conditional distribution of Y given X = x has at least two points on its

support. We note that it is trivial to test (1) against (2) if this condition does not hold.

Assumption 3.3 (Smoothness). The conditional cdf FY |X is such that∣∣∣∣ ∂∂xFY |X(y|x2)− ∂

∂x
FY |X(y|x1)

∣∣∣∣ ≤ CL|x2 − x1|β, for all x1, x2, y ∈ (0, 1).

This is our key smoothness condition. It requires the derivative of x 7→ FY |X(y|x)

to be Hölder continuous in x with exponent β ∈ (0, 1] and constant CL ∈ [1,∞) for all
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y ∈ (0, 1). Note that here we implicitly assume that the derivate (∂/∂x)FY |X(y|x) exists

for all x, y ∈ (0, 1).

Let Mβ be the set of all distributions on [0, 1]2 such that if (X, Y ) has a distribution

from Mβ, then Assumptions 3.1, 3.2, and 3.3 are satisfied. Thus, Mβ is the smoothness

class appearing in the Introduction. Also, let Mβ,0 denote the set of all distributions in

Mβ such that if (X, Y ) has a distribution from Mβ,0, then X and Y are independent.

Thus, all distributions in Mβ,0 satisfy (1).

We are now able to state our formal results. The first theorem shows that our test

asymptotically controls size and is not conservative:

Theorem 3.1 (Polynomial Size Control). Let Assumptions 3.1, 3.2, and 3.3 be satisfied.

If H0 holds, then

P (T > c(α)) ≤ α + Cn−c. (8)

If the functions x 7→ FY |X(y|x) are constant for all y ∈ (0, 1), meaning that Y is indepen-

dent of X, then

|P (T > c(α))− α| ≤ Cn−c. (9)

In both (8) and (9), c, C ∈ (0,∞) are constants depending only on CX , CL, ε, β, u, and

the kernel function K.

The result (8) implies that our test controls asymptotic size. The result (9) in turn

strengthens this statement by showing that the rejection probability for some data-

generating processes5 in the null is asympotically equal to the nominal level α, so the

test is not conservative. Furthermore, the probability of rejecting H0 when H0 is satisfied

can exceed the nominal level α only by a term that is polynomially small in n. We refer to

this phenomenon as the polynomial size control. As explained in Lee, Linton, and Whang

(2009), when H is a singleton, convergence of T to the limit distribution is logarithmi-

cally slow. For this reason, Lee, Linton, and Whang (2009) used higher-order corrections

5Theorem 3.1 establishes (9) only for data-generating processes in which Y and X are independent.

This result is somewhat weaker than the corresponding result in Seo (2018), who shows that her test

possesses an asymptotic null rejection probability equal to nominal size for a larger set of data-generating

processes.
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derived in Piterbarg (1996) to obtain the polynomial size control. Theorem 3.1 shows

that the multiplier bootstrap also leads to the polynomial size control, without requiring

higher-order corrections.

The constants c and C in (8) and (9) depend on the data generating process only

via constants appearing in Assumptions 3.1, 3.2, and 3.3, as well as the constant u and

the kernel function K. Therefore, inequalities (8) and (9) hold uniformly over all data-

generating processes satisfying these assumptions with the same constants, and so our

test provides uniform control of the asymptotic size. In other words, we have

sup
M∈Mβ

PM(T > c(α)) ≤ α + Cn−c and sup
M∈Mβ,0

|PM(T > c(α))− α| ≤ Cn−c,

where PM denotes the probability when (Xi, Yi), i = 1, . . . , n, is a random sample from

the distribution M ∈Mβ.

To prove Theorem 3.1, we apply the high-dimensional CLT and bootstrap results

in Chernozhukov, Chetverikov, and Kato (2013, 2017). However, the application is not

straightforward because we would like to apply these results conditional on {Xi}ni=1, but

in this case, the variance of the random variables∑n
i=1 ki,h(x)1{Yi ≤ y}
(
∑n

i=1 ki,h(x)2)
1/2

appearing in the definition of the test statistic T in (6) gets arbitrarily close to zero for

values of y in Y that are close to the boundary of the support of Y , and the results

of Chernozhukov, Chetverikov, and Kato (2013, 2017) require all random variables, over

which the maximum is taken, to have variance bounded away from zero. One possible

way to deal with this issue would be to truncate the values in Y in the test statistic T

that are too close to either zero or one but that would require introducing additional

tuning parameters, which is undesirable. Instead, we extend the results of Chernozhukov,

Chetverikov, and Kato (2013, 2017) by relaxing the condition that all random variables,

over which the maximum is taken, should have variance bounded away from zero and

requiring that only one of these random variables has variance bounded away from zero.

We present the extension in Section 4 and use it to prove Theorem 3.1.

Next, we investigate power properties of our test. First, we show that our test is

consistent against all fixed smooth alternatives:
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Theorem 3.2 (Consistency against Fixed Alternatives). Let Assumption 3.1 be satisfied.

In addition, assume that the functions x 7→ FY |X(y|x) are continuously differentiable for

all y ∈ (0, 1). If Ha holds with

∂

∂x
FY |X(y|x) > 0, for some x, y ∈ (0, 1),

then

P (T > c(α))→ 1 as n→∞. (10)

Second, we derive the rate of consistency against sequences of alternatives of two types:

wide and smooth. We define the sequence of wide alternatives as any sequence {Mn}n≥1

of distributions of the pair (X, Y ), indexed by the sample size n, such that if (X, Y ) is

distributed according to Mn, then its conditional cdf satisfies

∂

∂x
FY |X(y|x) ≥ rn, for some y ∈ (0, 1) and all x ∈ (xn,l, xn,r), (11)

and, moreover, Assumption 3.1 holds, where {rn}n≥1 is a sequence of strictly positive

constants and {(xn,l, xn,r)}n≥1 is a sequence of intervals in [0, 1] with asymptotically non-

vanishing length, i.e. satisfying lim infn→∞(xn,r − xn,l) > 0. In turn, the sequence of

smooth alternatives is any sequence {Mn}n≥1 of distributions in Mβ such that if (X, Y )

is distributed according to Mn, then its conditional cdf FY |X(y|x) satisfies

∂

∂x
FY |X(y|x) ≥ rn, for some x, y ∈ (0, 1), (12)

where, again, {rn}n≥1 is a sequence of strictly positive constants.

Theorem 3.3 (Consistency against Wide Alternatives). Let Assumption 3.1 be satisfied

and let xl, xr ∈ (0, 1) be some constants such that xl < xr. There exist constants c, C ∈

(0,∞), not necessarily the same as those appearing in Theorem 3.1, depending only on

xr − xl, CX , u, and the kernel function K such that if

∂

∂x
FY |X(y|x) ≥

√
C log n

n
, for some y ∈ (0, 1) and all x ∈ (xl, xr), (13)

then

P(T > c(α)) ≥ 1− Cn−c. (14)
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This theorem implies that our test is consistent against any sequence of wide alter-

natives if rn in (11) satisfies rn
√
n/ log n → ∞ as n → ∞. This rate is not optimal.

Indeed, it can be shown that the tests in Delgado and Escanciano (2012) and Seo (2018),

for example, are consistent against any sequence of wide alternatives if rn in (11) satisfies

rn
√
n → ∞. However, since the optimal rate can not be faster than the parametric rate

1/
√
n, meaning that no test can be uniformly consistent against sequences of wide alter-

natives if rn in (11) satisfies rn
√
n→ 0 as n→∞, it follows that our test is rate-optimal

against sequences of wide alternatives up to the arguably small logarithmic factor
√

log n.

Theorem 3.4 (Consistency against Smooth Alternatives). Let Assumptions 3.1 and 3.3

be satisfied. There exist constants c, C ∈ (0,∞), not necessarily the same as those ap-

pearing in previous theorems, depending only on CX , CL, β, u, and the kernel function

K such that if

∂

∂x
FY |X(y|x) ≥

(
C log n

n

)β/(2β+3)

, for some x, y ∈ (0, 1), (15)

then

P(T > c(α)) ≥ 1− Cn−c. (16)

This theorem implies that our test is consistent against any sequence of smooth alter-

natives if rn in (12) is given by rn = C(log n/n)β/(2β+3) for a certain constant C. The rate

rn appearing here is optimal in the sense that there exists a universal constant c ∈ (0,∞)

such that for any test whose asymptotic size does not exceed its nominal level, there exists

a sequence of smooth alternatives satisfying (12) with rn = c(log n/n)β/(2β+3) such that

the asymptotic power of the test against this sequence of alternatives also does not exceed

its nominal level. In other words, our test is rate-optimal against sequences of alternatives

in the smoothness class Mβ.

To show rate-optimality, we will rely upon the arguments similar to those in Dümb-

gen and Spokoiny (2001). We will need the following additional notation. Let ϕ =

ϕ(X1, Y1, . . . , Xn, Yn) be a test, i.e. ϕ is a function of the data with values in {0, 1}. The

test ϕ rejects the null if and only if ϕ = 1. Also, let EM [ϕ] denote the rejection proba-

bility for the test ϕ when (Xi, Yi), i = 1, . . . , n, is a random sample from the distribution
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M ∈Mβ. Finally, for all x, y ∈ [0, 1] and M ∈Mβ, let FM
Y |X(y|x) := PM(Y ≤ y | X = x)

where (X, Y ) is distributed according to M .

Theorem 3.5 (Lower Bound). For any γ ∈ (0, 1) and any test ϕ satisfying

sup
M∈Mβ,0

EM [ϕ] ≤ γ,

there exists M ∈Mβ such that

∂

∂x
FM
Y |X(y|x) ≥ c

(
log n

n

)β/(2β+3)

, for some x, y ∈ (0, 1), (17)

and

EM [ϕ] ≤ γ + Cn−c, (18)

where c, C ∈ (0,∞) are universal constants, not necessarily the same as those appearing

in previous theorems.

Applying Theorem 3.5 for each n with γ = γn → α and using Theorem 3.4 implies that

our test is indeed rate-optimal against sequences of smooth alternatives, i.e. sequences of

alternatives in the smoothness classMβ. Moreover, since implementing our test does not

require specifying β, it follows that our test is adaptive to the set of smoothness classes

{Mβ}β∈(0,1].

Remark 3.1 (Comparison with Lee, Linton, and Whang (2009) and Lee, Song, and

Whang (2018)). As discussed in the introduction, our test can be regarded as an adaptive

version of the test of Lee, Linton, and Whang (2009), with the main difference being that

we maximize the test statistic over multiple bandwidth values h whereas they use only a

single bandwidth. As a consequence, their test is also rate-optimal against sequences of

alternatives in Mβ but achieving this rate-optimality requires specifying a β-dependent

bandwidth value h. In fact, if β is known, it is actually preferred to use their test because

their test does not have to blow up the critical value to account for the search over

multiple bandwidth values and so has better power. However, when β is unknown, which

is typically the case in practice, we recommend using our test since it automatically

provides a choice of the bandwidth value leading to good power. A similar comment

applies to Lee, Song, and Whang (2018) who also use a single bandwidth. �
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Remark 3.2 (Comparison with Delgado and Escanciano (2012) and Seo (2018)). The

advantages of the tests developed in Delgado and Escanciano (2012) and Seo (2018) are

that they have better power relative to our test against sequences of wide alternatives,

as discussed below Theorem 3.3, and that they are invariant to monotonic, continuous

transformations of X. In addition, Delgado and Escanciano (2012)’s test does not in-

volve tuning parameters. In turn, our test has better power against sequences of smooth

alternatives. In particular, one can show that, unlike ours, the tests by Delgado and

Escanciano (2012) and Seo (2018) are not rate-optimal against sequences of alternatives

in Mβ. To do so, suppose that X ∼ U [0, 1] and Z ∼ N(0, 1) are independent random

variables and that

Y = Φ

(
Z − h1+βg0

(
X − h
h

))
,

where g0 is the function defined in the proof of Theorem 3.5, h ∈ (0, 1) is some constant,

and Φ is the cdf of the N(0, 1) distribution. Then

FY |X(y|x) = Φ

(
Φ−1(y) + h1+βg0

(
x− h
h

))
, for all x, y ∈ (0, 1),

and, by the proof of Theorem 3.5, the distribution of the pair (X, Y ) belongs toMβ and

the conditional cdf FY |X satisfies (12) with

rn = (h/2)βφ(1), (19)

where φ is the pdf of the N(0, 1) distribution. Moreover, the copula of the distribution of

the pair (X, Y ),

C(u, v) :=

∫ v

0

FY |X(F−1
Y (u)|x)dx, for all u, v ∈ (0, 1),

where FY denotes the cdf of Y , satisfies

C(u, 2h) ≤ 2h
(
F−1
Y (u) + h1+β

)
, for all u ∈ (0, 1).

Hence, denoting by v 7→ C̃(u, v) the least concave majorant of the function v 7→ C(u, v),

for all u ∈ [0, 1], it follows, after some simple algebra, that

sup
(u,v)∈[0,1]2

|C̃(u, v)− C(u, v)| ≤ 4h2 · h1+β = 4h3+β. (20)
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On the other hand, Theorem 4.3 in Seo (2018) shows that the tests of Delgado and

Escanciano (2012) and Seo (2018) have trivial power against sequences of alternatives

with copulas C(n) satisfying

√
n sup

(u,v)∈[0,1]2
|C̃(n)(u, v)− C(n)(u, v)| → 0 as n→∞. (21)

Combining (19), (20), and (21) and using h = hn = (C log n/n)1/(2β+3), for any constant

C ∈ (0,∞), shows that the tests of Delgado and Escanciano (2012) and Seo (2018) are

not rate-optimal against sequences of alternatives in Mβ. �

Remark 3.3 (Comparison with Hsu, Liu, and Shi (2019)). On can show that the test by

Hsu, Liu, and Shi (2019) also has better power relative to our test against sequences of

wide alternatives, as discussed below Theorem 3.3. On the other hand, since it is based on

inference techniques by Andrews and Shi (2013), we conjecture that similar calculations

as those in Appendix K of Chernozhukov, Lee, and Rosen (2013) can be used to show

that Hsu, Liu, and Shi (2019)’s test is not rate-optimal against sequences of alternatives

in Mβ. A formal proof is out of scope for the present paper. �

Remark 3.4 (Multivariate X). A multivariate extension of our results to the case when

Xi is a vector is possible by following arguments in Section 6 of Lee, Linton, and Whang

(2009). �

Remark 3.5 (Higher-order stochastic monotonicity). It is straightforward to adapt our

test and subsequent formal results for testing the null of higher-order stochastic mono-

tonicity as in Example 2.5 of Hsu, Liu, and Shi (2019). �

Remark 3.6 (Time series data). It would be possible to extend our results to the case of

dependent data following similar arguments as in Section 7 of Chernozhukov, Chetverikov,

and Kato (2014). �
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4 Maxima of Sums of High-Dimensional Random Vec-

tors without Non-Vanishing Variance Assumption

In this section, we present new results on distributional approximations for the maxima

of sums of high-dimensional random vectors, which are central to the derivations of the

large sample properties in Section 3 and may be of independent interest.

To motivate the setup consider the following statistic:

T0 := max
(x,y,h)∈X×Yd×H

1√
n

n∑
i=1

√
nki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

l=1 kl,h(x)2)
1/2

,

where Yd ⊂ (0, 1) is a certain set independent of the data (see Lemma A.1). This statistic

is similar to our test statistic T in (6) except that Y is replaced by Yd and the sum has

been centered at mean zero. Now, index the elements over which we take the maximum by

j = 1, . . . , p, where p denotes the number of elements in X ×Yd×H, and j 7→ (xj, yj, hj)

is a one-to-one mapping from {1, . . . , p} to X × Yd ×H, so T0 can be written as

T0 = max
1≤j≤p

1√
n

n∑
i=1

√
nki,hj(xj)(1{Yi ≤ yj} − FY |X(yj|Xi))(∑n

l=1 kl,hj(xj)
2
)1/2

. (22)

It is fairly easy to see that, under the null, T ≤ T0 with probability at least 1 − n−1.

Therefore, for the approximation of quantiles of T , we are interested in approximating

the distribution of the statistic T0 when p is allowed to be large, potentially much larger

than the sample size n.

More generally, in this section, we will therefore consider maxima of sums of high-

dimensional random vectors of the form

Sn := max
1≤j≤p

1√
n

n∑
i=1

Zij,

where Z1, . . . , Zn are independent p-dimensional random vectors with mean zero, i.e.

E[Zij] = 0 for all i = 1, . . . , n and j = 1, . . . , p, where Zij denotes the jth component of

Zi. A number of previous papers considered Gaussian and bootstrap approximations of

the distribution of Sn under the condition that

1

n

n∑
i=1

E[Z2
ij] ≥ 1 for all j = 1, . . . , p; (23)
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see Belloni, Chernozhukov, Chetverikov, Hansen, and Kato (2018) for a review. However,

these results are not appropriate for the purposes of this paper since we necessarily have

1

n

n∑
i=1

E[Z2
ij] arbitrarily close to 0 for some j = 1, . . . , p

when Zij is the ith summand in (22). In this section, we therefore seek to relax (23)

and obtain Gaussian and bootstrap approximations of the distribution of Sn with (23)

replaced by
1

n

n∑
i=1

E[Z2
ij] ≥ 1 for some j = 1, . . . , p. (24)

Clearly, (24) is substantially weaker than (23), and so our results in this section may be

of independent interest.

Let {Bn}n≥1 be a sequence of positive constants, possibly growing to infinity as n gets

large. In addition to (24), we will impose the following conditions:

1

n

n∑
i=1

E[|Zij|2+k] ≤ Bk
n for all j = 1, . . . , p and k = 1, 2, (25)

E[exp(|Zij|/Bn)] ≤ 2 for all i = 1, . . . , n and j = 1, . . . , p. (26)

These two conditions are the same as those in the previous papers; see Belloni, Cher-

nozhukov, Chetverikov, Hansen, and Kato (2018) for details. Also, let Zg
1 , . . . , Z

g
n be

independent Gaussian p-dimensional random vectors with mean zero and covariance

E[(Zg
i )(Zg

i )′] = E[ZiZ
′
i] for all i = 1, . . . , n. Finally, let

Sgn := max
1≤j≤p

1√
n

n∑
i=1

Zg
ij

be a Gaussian analog of Sn. Our first theorem in this section gives a Gaussian approxi-

mation of the distribution of Sn:

Theorem 4.1 (Gaussian Approximation). Let (24), (25), and (26) be satisfied, and let

p ≥ 3. Then for any x0 > 0,

sup
x≥x0

∣∣∣P(Sn ≤ x)− P(Sgn ≤ x)
∣∣∣ ≤ (CB2

n log10(pn)

n

)1/6

,

where C is a constant depending only on x0.
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This theorem gives an approximation of the distribution of Sn by the distribution of

Sgn but this approximation is typically infeasible because implementing it would require

knowing the matrix
1

n

n∑
i=1

E[(Zg
i )(Zg

i )′] =
1

n

n∑
i=1

E[ZiZ
′
i],

which is unknown in most applications, including ours. We therefore consider a further

approximation by the multiplier bootstrap. Specifically, let e1, . . . , en be i.i.d. N(0, 1)

random variables that are independent of Z1, . . . , Zn, and let

Sen := max
1≤j≤p

1√
n

n∑
i=1

eiZij (27)

be a multiplier bootstrap analog of Sn. For example, in the context of our test of stochastic

monotonicity, Sen corresponds to the bootstrap statistic

T e0 := max
1≤j≤p

1√
n

n∑
i=1

ei

√
nki,hj(xj)(1{Yi ≤ yj} − FY |X(yj|Xi))(∑n

l=1 kl,hj(xj)
2
)1/2

.

Our second theorem in this section gives a bootstrap approximation of the distribution

of Sgn, and hence of Sn:

Theorem 4.2 (Bootstrap Approximation). Let (24), (25), and (26) be satisfied, and let

p ≥ 3. Then for any x0 > 0,

sup
x≥x0

∣∣∣P(Sgn ≤ x)− P(Sen ≤ x | (Zi)ni=1)
∣∣∣ ≤ (CB2

n log10(pn)

n

)1/6

, (28)

with probability at least 1− 4/(pn), where C is a constant depending only on x0.

Theorems 4.1 and 4.2 taken together give the bootstrap approximation of the distribu-

tion of Sn. However, these two theorems do not immediately provide conditions ensuring

that

|P(Sn > cen(α))− α| is close to 0,

where cen(α) is the (1 − α)th quantile of the conditional distribution of Sen given (Zi)
n
i=1.

The reason is that cen(α) is random and possibly correlated with Sn, but Theorems 4.1

and 4.2 only provide approximations of probabilities P(Sn > x) for non-random x ∈ R.

Theorem 4.3 below provides the additional step to go from a non-random value of x to
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cen(α). In addition, since FY |X is unknown and needs to be estimated, the bootstrap

statistic T e0 above is infeasible and we will construct a feasible bootstrap procedure with

vectors Zi replaced by corresponding estimators Ẑi, i = 1, . . . , n.

Let {κn}n≥1 and {ζn}n≥1 be sequences of positive constants converging to zero as n gets

large. Also, let Ẑ1, . . . , Ẑn be estimators of Z1, . . . , Zn such that the following condition

holds:

P

(
max
1≤j≤p

1

n

n∑
i=1

(Ẑij − Zij)2 > ζ2
n

)
< κn. (29)

Define

Ŝen := max
1≤j≤p

1√
n

n∑
i=1

eiẐij, (30)

where we assume that e1, . . . , en are independent of Ẑ1, . . . , Ẑn, and let cn(α) be the

(1 − α)th quantile of Ŝen given (Ẑi)
n
i=1. For example, in the context of the derivations of

the large sample results in Section 3, Ẑij is similar to the ith summand in (22) except

that FY |X is replaced by an estimator.

Our third, and final, result in this section provides conditions under which cn(α) can

be used to approximate the (1− α)th quantile of Sn:

Theorem 4.3 (Bootstrap Critical Values). Let (24), (25), (26), and (29) be satisfied,

and let p ≥ 3. Then for any α0 ∈ (0, 1/2),

sup
α∈(0,α0)

∣∣∣P(Sn > cn(α))− α
∣∣∣ ≤ C

((
B2
n log10(pn)

n

)1/6

+ ζn log3/2(pn)

)
+ κn, (31)

where C is a constant depending only on α0.

Remark 4.1 (Relation to the Literature). Theorem 4.3 is related to Theorem 3.2 in Cher-

nozhukov, Chetverikov, and Kato (2013) and Theorem 4.3 in Chernozhukov, Chetverikov,

and Kato (2015). The main improvement of our result is that we only impose (24), which

is substantially weaker than the condition (23) that the other two papers impose. On the

other hand, the cost of this improvement is that the bound in (31) contains

B2
n log10(pn)

n
instead of

B2
n log7(pn)

n
,

appearing in Chernozhukov, Chetverikov, and Kato (2015). �
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Remark 4.2 (Other Types of Bootstrap). Although we focus specifically on the multiplier

bootstrap in this paper, results similar to those in Theorems 4.2 and 4.3 can be obtained

for the nonparametric bootstrap as well, where we would replace the weights ei in (27)

and (30) by the weights gi − 1, with the vector g = (g1, . . . , gn)′ having a multinomial

distribution with parameter n and probabilities (1/n, . . . , 1/n) and being independent of

the vectors Z1, . . . , Zn, Ẑ1, . . . , Ẑn. These results would follow from arguments similar to

those used in the proofs of Theorems 4.2 and 4.3, with an application of Proposition

4.3 instead of Corollary 4.2 of Chernozhukov, Chetverikov, and Kato (2017) at the end

of the proof of Theorem 4.2. In turn, this would allow us to obtain results similar to

those in Section 3 for the version of our test in Section 2 that uses the nonparametric

bootstrap instead of the multiplier bootstrap. To the best of our knowledge, however,

there is no theory that would allow us to say which type of the bootstrap provides better

approximation of the test statistic T in Section 2. �

5 Simulations

In this section, we describe a simulation experiment which illustrates the finite sample

performance of our test and compare it to other tests. The design is based on Delgado

and Escanciano (2012). We simulate 1, 000 Monte Carlo samples of sizes 100, 200 and

300 from the following six data generating processes:

N1: Y = U

N2: Y = 0.1X + U

A1: Y = −0.1X + U

A2: Y = −0.1X2 + U

A3: Y = −0.1 exp(−250(X − 0.5)2) + U

A4: Y = 0.2X − β exp(−250(X − 0.5)2) + U

where β = 0.2, X is uniformly distributed over [0, 1], and U is drawn from the N(0, 0.12)

distribution, independently of X. Models N1 and N2 satisfy the null hypothesis, but
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models A1 − A4 do not. In model N1, the random variables Y and X are independent,

illustrating the case in which (1) is satisfied with equality for all x′, x′′, y. Model N2,

on the other hand, satisfies (1) with strict inequality for all x′, x′′, y. Models A1 and

A2 are models in the alternative hypothesis for which the null is violated at every pair

of conditioning values x′, x′′. Models A3 and A4, on the other hand, are alternatives

that deviate from the null only locally. Figure 1 shows the conditional mean functions

g(x) := E[Y | X = x] for models A3 and A4. The null hypothesis is equivalent to the

conditional mean function being nondecreasing.

For the implementation of our test, we choose the Epanechnikov kernel for K and

construct the set of bandwidth values H using u = 2/3. The number of elements in H

are 6, 7, and 7, for the three sample sizes n = 100, n = 200, and n = 300, respectively.

To estimate the conditional cdf of Y given X, we use the estimator defined in (7) with

b = n−2/3. The multiplier bootstrap critical values are computed based on 200 bootstrap

samples with Gaussian multipliers and nominal size of the test is chosen to be 0.05. Seo

(2018) tests are implemented with the refinement proposed in her Remark 4.1 and with

tuning parameters κn = cn−1/2 log log n, where c = 0.23, 0.155, 0.22 for her L1-, L2-, and

L∞-version, respectively. These parameters are chosen as suggested in footnote 12 of Seo

(2018).

Table 1 shows the empirical rejection frequencies of various tests in each of the six

models and each of the three sample sizes. “CWK” refers to our new test. The values in

parentheses are the optimal bandwidths that our test chooses (i.e. the bandwidth value

at which our test statistic achieves the maximum), averaged over the simulation samples.

“S-L1”, “S-L2”, and “S-L∞” refer to the L1-, L2-, and L∞-versions of Seo (2018)’s test,

“DE” to Delgado and Escanciano (2012)’s test, and “LLW0.5”, “LLW0.6”, and “LLW0.7”

to the test of Lee, Linton, and Whang (2009) using the bandwidth values 0.5, 0.6, and

0.7, respectively.

All tests control size well in the two models N1 and N2 and all sample sizes, except

that Seo’s test over-rejects when n = 300. For model N2, all tests except ours have

rejection frequencies close to zero rather than the nominal level.

All tests detect the alternatives A1 and A2 in the sense that their rejection frequencies
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are far above the nominal level of the test. CWK’s and LLW’s rejection frequencies

are around 0.5 for the smallest sample size, but increase with the sample size to 0.9

or higher. Seo’s tests are substantially more powerful against these alternatives with

rejection frequencies close to one even for the smallest sample size.

The alternative A3 is substantially more difficult for the tests to detect in the sense

that rejection frequencies are lower than for alternatives A1 and A2. LLW’s rejection

frequencies are only around 0.2 even for the largest sample size. CWK and Seo’s rejection

frequencies are fairly low for the small sample size, but increase to 0.6 and about 0.8 for

the large sample size. The relative performance of the tests differs most starkly in model

A4, in which CWK has high rejection frequencies from 0.4 to almost 1 depending on the

sample size, but Seo’s L2- and L2-tests and LLW have rejection frequencies close to zero

for all sample sizes. Only the L∞-test by Seo and DE have moderate power against A4

when the sample size is large.

To further investigate the power properties of our test, we generate 1,000 Monte Carlo

samples of size n = 100 from A4 with different values of β. The right panel of Figure 1

shows how the magnitude of deviation from the null increases with β. Figure 2 shows

the empirical rejection frequencies of our test, Seo’s L∞-test, and LLW with a range of

different bandwidths as a function β. As β increases all tests reject more frequently.

However, the power of the LLW test varies substantially as we vary the bandwidth from

0.1 to 0.6, with the power being largest for the bandwidth of 0.2, but it is significantly

less powerful than ours for the bandwidth values considered here and for all values of β.

Seo’s test is also significantly less powerful for all values of β.

The simulation results illustrate the theoretical findings in Section 3. First, our test

is less powerful than the other tests against alternatives for which the null is violated

over a wide range of conditioning values x′, x′′ like A1 and A2. Second, our test is more

powerful against smooth alternatives for which the deviations from the null occur only

over a small range of conditioning values x′, x′′ like A3 and A4. Third, one can see that

our test statistic is maximized at larger bandwidth values for alternatives A1 and A2,

but at smaller bandwidth values for alternatives A3 and A4. This is a consequence of the

adaptiveness of our test.
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6 Conclusion

Monotone relationships between two variables play an important role in economics. Non-

parametric tests of stochastic monotonicity are attractive because they allow the re-

searcher to test for such monotone relationships without functional form assumptions

on the joint distribution of the two variables. The disadvantage of nonparametric tests

is that they require choices of tuning parameters such as bandwidths and whether or not

the test rejects may be sensitive to the specific values that are chosen.

In this paper, we have proposed a new adaptive test that automatically chooses the

bandwidth parameter so as to adapt to the unknown smoothness level of the conditional

distribution of interest. The adaptiveness results in a test that is rate-optimal, simple to

implement, and computationally attractive.

Among others, one extension of our results seems particularly desirable. In applied

work, it is common to postulate stochastic monotonicity between two variables only after

conditioning on a number of other control variables. If the number of such controls is

moderately large, then the curse of dimensionality prohibits the use of fully nonparametric

estimators of the conditional distribution function as in (7). In this case, it might be

desirable to use machine learning techniques that remain flexible yet practically feasible.

Extending our results to allow for such estimators would therefore be useful.
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Model n CWK S-L1 S-L2 S-L∞ DE LLW0.5 LLW0.6 LLW0.7

N1 100 0.054 (0.227) 0.057 0.064 0.063 0.046 0.034 0.035 0.036

200 0.066 (0.171) 0.023 0.056 0.054 0.052 0.031 0.034 0.033

300 0.062 (0.114) 0.088 0.105 0.168 0.042 0.036 0.039 0.039

N2 100 0.015 (0.156) 0.000 0.000 0.001 0.001 0.000 0.000 0.000

200 0.018 (0.109) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

300 0.030 (0.076) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

A1 100 0.471 (0.619) 1.000 0.998 0.799 0.634 0.408 0.542 0.612

200 0.740 (0.758) 1.000 1.000 0.942 0.880 0.749 0.853 0.908

300 0.890 (0.861) 1.000 1.000 1.000 0.980 0.911 0.964 0.980

A2 100 0.508 (0.604) 1.000 0.998 0.844 0.599 0.469 0.587 0.651

200 0.770 (0.767) 1.000 1.000 0.983 0.906 0.805 0.892 0.925

300 0.922 (0.862) 1.000 1.000 1.000 0.981 0.938 0.972 0.983

A3 100 0.236 (0.235) 0.065 0.106 0.172 0.135 0.064 0.067 0.052

200 0.444 (0.208) 0.035 0.098 0.323 0.288 0.146 0.128 0.097

300 0.602 (0.202) 0.786 0.822 0.798 0.447 0.273 0.218 0.188

A4 100 0.426 (0.162) 0.000 0.000 0.031 0.032 0.012 0.013 0.022

200 0.791 (0.145) 0.000 0.001 0.087 0.157 0.014 0.009 0.014

300 0.958 (0.143) 0.000 0.001 0.527 0.382 0.012 0.009 0.009

Table 1: Rejection probabilities of our test (“CWK”) and the tests of Seo (2018, “S”),

Delgado and Escanciano (2012, “DE”), and Lee, Linton, and Whang (2009, “LLW”). The

values in parentheses are the optimal bandwidths chosen by our test, averaged over the

simulation samples.
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Figure 1: The conditional mean functions g(X) := E[Y | X] under A3 (left) and A4

(right).
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A Proofs for Section 3

Before proving the theorems from the main text, we prove three preliminary lemmas.

Lemma A.1. Let Assumption 3.2 be satisfied. Then there exists a set Yd ⊂ (0, 1), which

is independent of the data, such that (i) |Yd| ≤ n3 + 2, (ii) ε ≤ FY |X(y|x) ≤ 1 − ε for

some x ∈ (0, 1) and y ∈ Yd, and (iii) with probability at least 1 − n−1, both T and c(α)

can be calculated with the maximum over y ∈ Y replaced by the maximum over y ∈ Yd.

Proof. By Assumption 3.2, there exist x∗, y∗ ∈ (0, 1) such that ε ≤ FY |X(y∗|x∗) ≤ 1 − ε.

For N := n3 + 2, choose y1, . . . , yN ∈ [0, 1] such that (i) 0 = y1 < y2 < · · · < yN−1 <

yN = 1, (ii) y∗ = yj for some j = 2, . . . , N − 1, and (iii) P(yj−1 < Y < yj) ≤ n−3 for all

j = 2, . . . , N . Set Yd := {y1, . . . , yN}. Then the probability that there is at most one Yi,

i = 1, . . . , n, in each interval (yj−1, yj), j = 2, . . . , N , is bounded from below by(
1− n

n3

)n
=

(
1− 1

n2

)n
≥ 1− 1

n
.

In turn, when there is at most one Yi, i = 1, . . . , n, in each interval (yj−1, yj), j = 2, . . . , N ,

we have

T = max
(x,y,h)∈X×Y×H

∑n
i=1 ki,h(x)1{Yi ≤ y}
(
∑n

i=1 ki,h(x)2)
1/2

= max
(x,y,h)∈X×Yd×H

∑n
i=1 ki,h(x)1{Yi ≤ y}
(
∑n

i=1 ki,h(x)2)
1/2

and, similarly,

T b = max
(x,y,h)∈X×Yd×H

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

.

The asserted claim follows. Q.E.D.

Lemma A.2. Let Assumptions 3.1 and 3.3 be satisfied. Also, assume that the bandwidth

value b is such that log n ≤ nb. Further, let Yd be defined as in Lemma A.1. Then the

estimator F̂Y |X in (7) satisfies

P

(
max

(x,y)∈X×Yd
|F̂Y |X(y|x)− FY |X(y|x)| > C

(
b+

√
log n

nb

))
≤ 1

n
,

where C ∈ (0,∞) is a constant depending only on CX , CL, β, and the kernel function K.
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Proof. By Assumption 3.3, there exists a constant CP ∈ (0,∞) depending only on CL

and β such that

|FY |X(y|x2)− FY |X(y|x1)| ≤ CP |x2 − x1|, for all x1, x2, y ∈ (0, 1). (32)

Further, since K is a continuous function with support [−1,+1], there exists a constant

CK ∈ (0,∞) such that K(x) ≤ CK for all x ∈ R. Therefore, using the change of variables

formula, we obtain that for all x ∈ [0, 1],

E[Kb(X − x)2] =
1

b2

∫ +∞

−∞
K

(
s− x
b

)2

fX(s)ds =
1

b

∫ +1

−1

K(t)2fX(x+ tb)dt ≤ 2CXC
2
K

b

by Assumption 3.1. Hence, by Bernstein’s inequality,

P

(∣∣∣∣∣ 1n
n∑
i=1

Kb(Xi − x)− E[Kb(X − x)]

∣∣∣∣∣ > t

)
≤ 2 exp

(
−t2/2

E[Kb(X − x)2]/n+ CKt/(nb)

)
≤ 2 exp

(
−nbt2/2

2CXC2
K + CKt

)
.

Thus, given that log n ≤ nb, there exists a constant C1 ∈ (0,∞) depending only on CX

and CK such that

P

(∣∣∣∣∣ 1n
n∑
i=1

Kb(Xi − x)− E[Kb(X − x)]

∣∣∣∣∣ > C1

√
log n

nb

)
≤ 1

2n3
.

Further, observe that for all x, y ∈ [0, 1],

1{Y ≤ y}Kb(X − x) ≤ Kb(X − x) ≤ CK/b

almost surely, and so by the same argument,

P

(∣∣∣∣∣ 1n
n∑
i=1

1{Yi ≤ y}Kb(Xi − x)− E[1{Y ≤ y}Kb(X − x)]

∣∣∣∣∣ > C1

√
log n

nb

)
≤ 1

2n3
.

Next, for all x, y ∈ [0, 1],∣∣∣E[1{Y ≤ y}Kb(X − x)]− FY |X(y|x)E[Kb(X − x)]
∣∣∣

=
∣∣∣E[FY |X(y|X)Kb(X − x)]− FY |X(y|x)E[Kb(X − x)]

∣∣∣
≤
∣∣∣E[(FY |X(y|X)− FY |X(y|x))Kb(X − x)]

∣∣∣ ≤ 2CP bE[Kb(X − x)] ≤ 4CPCXCKb
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by the Lipschitz property of the functions x 7→ FY |X(y|x) in (44).

Now, given that |X ×Yd| ≤ n(n3 + 2), combining presented inequalities and using the

union bound shows that for all (x, y) ∈ X × Yd,

F̂Y |X(y|x) =
FY |X(y|x)E[Kb(X − x)] +Nx,y

E[Kb(X − x)] +Dx,y

,

where Nx,y and Dx,y are random variables such that

P

(
max

(x,y)∈X×Yd
|Nx,y| ∨ |Dx,y| > C2

(
b+

√
log n

nb

))
≤ 1

n
,

where C2 ∈ (0,∞) is a constant depending only CX , CP , and the kernel function K.

Thus, given that E[Kb(X−x)] ≥ c for all x ∈ X and some constant c ∈ (0,∞) depending

only on CX and the kernel function K, the asserted claim follows. Q.E.D.

Lemma A.3. Let Assumption 3.1 be satisfied. Then

|ki,h(x)| ≤ Cn/h, for all i = 1, . . . , n, x ∈ (0, 1), and h ∈ H, (33)

cn3/h ≤
n∑
i=1

ki,h(x)2 ≤ Cn3/h, for all x ∈ (0, 1) and h ∈ H, (34)

n∑
i,j=1

|Xi −Xj|Kh(Xi − x)Kh(Xj − x) ≥ cn2h, for all x ∈ (0, 1) and h ∈ H (35)

with probability at least 1 − Cn−c, where c, C ∈ (0,∞) are constants depending only on

CX and the kernel function K.

Proof of Lemma A.3. In this proof, c, C ∈ (0,∞) are constants whose values may change

at each appearance but can be chosen to depend only on CX and the kernel function K.

Fix x1 ∈ (0, 1) and x2 ∈ (x1, 1). Find x3 ∈ (x2, 1) such that

6CX(1− x3) sup
x∈[0,1]

K(x) ≤ x2 − x1

12CX
inf

x∈[x1,x2]
K(x). (36)

This is possible because the kernel function K satisfies

0 < inf
x∈[x1,x2]

K(x) ≤ sup
x∈[0,1]

K(x) <∞.
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Fix x4 ∈ (x3, 1). Further, let

K1 := inf
x∈[x1,x2]

K(x), K2 := inf
x∈[x3,x4]

K(x), K3 := sup
x∈[x3,1]

K(x), K4 := sup
x∈[−1,1]

K(x),

h̃ :=
(

(x2 − x1) ∧ (x4 − x3)
)
hmin/2, and h̄ := sup{h ≤ h̃ : [1/h] = 1/h},

so that L := 1/h̄ is an integer. Then, given that hmin = 1/
√
n, it follows from Assumption

3.1, Bernstein’s inequality, and the union bound that

nh̄

2CX
≤
∣∣∣{i = 1, . . . , n : h̄(l − 1) ≤ Xi ≤ h̄l}

∣∣∣ ≤ 2CXnh̄, for all l = 1, . . . , L, (37)

with probability at least 1− Cn−c.

Now, for all x ∈ (0, 1), let lx := min{l = 1, . . . , L : h̄l ≥ x}. Then on the event in (37),

for any (x, x̄) ∈ (0, 1)2 such that x̄− x ≥ 2h̄,∣∣∣{i = 1, . . . , n : x ≤ Xi ≤ x̄}
∣∣∣ ≤ ∣∣∣{i = 1, . . . , n : h̄(lx − 1) ≤ Xi ≤ h̄lx̄}

∣∣∣
≤ 2CXnh̄(lx̄ − lx + 1) ≤ 6CXn(x̄− x)

and ∣∣∣{i = 1, . . . , n : x ≤ Xi ≤ x̄}
∣∣∣ ≥ ∣∣∣{i = 1, . . . , n : h̄lx ≤ Xi ≤ h̄(lx̄ − 1)}

∣∣∣
≥
nh̄(lx̄ − 1− lx)

2CX
≥ n(x̄− x)

6CX
.

Hence, with probability at least 1− Cn−c,

n(x̄− x)

6CX
≤
∣∣∣{i = 1, . . . , n : x ≤ Xi ≤ x̄}

∣∣∣ ≤ 6CXn(x̄− x), for all (x, x̄) ∈ X̄ , (38)

where X̄ := {(x, x̄) ∈ (0, 1)2 : x̄ − x ≥ 2h̄}. We will prove that inequalities in (33), (34),

and (35), with x ∈ (0, 1) replaced by x ∈ (0, 1/2], hold on the event in (38). Since the

same inequalities with x ∈ (0, 1) replaced by x ∈ [1/2, 1) follow from the same arguments,

this will imply the asserted claim of the lemma.

So, for the rest of the proof, assume that the event in (38) holds. Fix x ∈ (0, 1/2] and

h ∈ H. To prove (33), we have for all i = 1, . . . , n that

h2|ki,h(x)| ≤ 2h2

n∑
j=1

Kh(Xi − x)Kh(Xj − x) ≤ 2K4h

n∑
j=1

Kh(Xj − x)

≤ 2K2
4

∣∣∣{j : x− h ≤ Xj ≤ x+ h}
∣∣∣ ≤ 24K2

4CXnh = Cnh,
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where the fourth inequality follows from (38) since h ≥ h̄.

To prove the right-hand side inequality in (34), we have

h4

4

n∑
i=1

ki,h(x)2 = h2

n∑
i=1

Kh(Xi − x)2
(
h

n∑
j=1

sign(Xi −Xj)Kh(Xj − x)
)2

≤ h2

n∑
i=1

Kh(Xi − x)2
(
h

n∑
j=1

Kh(Xj − x)
)2

≤ K4
4

∣∣∣{j : x− h ≤ Xj ≤ x+ h}
∣∣∣3 ≤ K4

4(12CXnh)3 = C(nh)3,

where the last inequality again follows from (38) since h ≥ h̄.

To prove the left-hand side inequality in (34), we have for all i = 1, . . . , n such that

x+ x3h ≤ Xi ≤ x+ x4h that

h
n∑
j=1

sign(Xi −Xj)Kh(Xj − x)

≥ h
∑

j : x+x1h≤Xj≤x+x2h

Kh(Xj − x)− h
∑

j : x+x3h≤Xj≤x+h

Kh(Xj − x)

≥ K1

∣∣∣{j : x+ x1h ≤ Xj ≤ x+ x2h}
∣∣∣−K3

∣∣∣{j : x+ x3h ≤ Xj ≤ x+ h}
∣∣∣

≥ K1n(x2 − x1)h

6CX
− 6K3CXn(1− x3)h ≥ K1n(x2 − x1)h

12CX
,

where the third inequality follows from (38) since ((x2 − x1) ∧ (1 − x3))h ≥ 2h̄ and the

fourth from (36). Hence,

h4

4

n∑
i=1

ki,h(x)2 = h2

n∑
i=1

Kh(Xi − x)2
(
h

n∑
j=1

sign(Xi −Xj)Kh(Xj − x)
)2

≥ h2
∑

i : x+x3h≤Xi≤x+x4h

Kh(Xi − x)2
(
h

n∑
j=1

sign(Xi −Xj)Kh(Xj − x)
)2

≥ K2
2

∣∣∣{x+ x3h ≤ Xi ≤ x+ x4h}
∣∣∣× (K1n(x2 − x1)h

12CX

)2

≥ K2
2n(x4 − x3)h

6CX
×
(K1n(x2 − x1)h

12CX

)2

= c(nh)3,

where the last inequality follows from (38) since (x4 − x3)h ≥ 2h̄.
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Finally, to prove (35), we have

h

n∑
i,j=1

|Xi −Xj|Kh(Xi − x)Kh(Xj − x)

≥ h
∑

i : x+x1h≤Xi≤x+x2h

∑
j : x+x3h≤Xj≤x+x4h

|Xi −Xj|Kh(Xi − x)Kh(Xj − x)

≥ (x3 − x2)h2
∑

i : x+x1h≤Xi≤x+x2h

∑
j : x+x3h≤Xj≤x+x4h

Kh(Xi − x)Kh(Xj − x)

≥ (x3 − x2)K1K2

∣∣∣{i : x+ x1h ≤ Xi ≤ x+ x2h}
∣∣∣× ∣∣∣{j : x+ x3h ≤ Xj ≤ x+ x4h}

∣∣∣
≥ (x2 − x1)(x4 − x3)(x3 − x2)K1K2n

2h2

36C2
X

= c(nh)2,

where the third inequality follows from (38) since ((x2 − x1) ∧ (x4 − x3))h ≥ 2h̄. This

completes the proof of the lemma. Q.E.D.

Proof of Theorem 3.1. In this proof, c, C ∈ (0,∞) are constants whose values may change

at each appearance but can be chosen to depend only on CX , CL, ε, β, u, and the kernel

function K. Also, let Yd be defined as in Lemma A.1.

Denote

T0 := max
(x,y,h)∈X×Yd×H

∑n
i=1 ki,h(x)(1{Yi ≤ y} − FY |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

,

T b0 := max
(x,y,h)∈X×Yd×H

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

,

and

c0(α) := (1− α) conditional quantile of T b0 given the data.

By Lemma A.1, under the null, T ≤ T0 and c(α) = c0(α) with probability at least 1−n−1,

and if Y is independent of X, then T = T0 and c(α) = c0(α) with probability at least

1 − n−1. Therefore, to prove the asserted claims, we apply Theorem 4.3, conditional on

(Xi)
n
i=1, with Sn = T0, cn(α) = c0(α),

Zij =

√
nki,hj(xj)(1{Yi ≤ yj} − FY |X(yj|Xi))(∑n

l=1 kl,hj(xj)
2
)1/2

, for all i = 1, . . . , n and j = 1, . . . , p,

and

Ẑij =

√
nki,hj(xj)(1{Yi ≤ yj} − F̂Y |X(yj|Xi))(∑n

l=1 kl,hj(xj)
2
)1/2

, for all i = 1, . . . , n and j = 1, . . . , p,
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where p = |X × Yd × H| and j 7→ (xj, yj, hj) is a one-to-one mapping from {1, . . . , p}

to X × Yd × H. In particular, it suffices to show that (24), (25), (26), and (29), with

expectation and probability signs replaced by conditional expectation and probability

signs given (Xi)
n
i=1, hold with probability at least 1−Cn−c for some Bn, ζn, and κn such

that (
B2
n log10(pn)

n

)1/6

+ ζn log3/2(pn) + κn ≤ Cn−c. (39)

Moreover, the constant 1 on the right-hand side of (24) can be replaced by c since then

Theorem 4.3 can be applied with rescaled Zij’s and Ẑij’s. To be explicit, the conditions

to be verified, in addition to (39), have the following form:

P

(
1

n

n∑
i=1

E[Z2
ij | (Xi)

n
i=1] ≥ c for some j = 1, . . . , p

)
≥ 1− Cn−c, (40)

P

(
1

n

n∑
i=1

E[|Zij|2+k | (Xi)
n
i=1] ≤ Bk

n for all j = 1, . . . , p and k = 1, 2

)
≥ 1− Cn−c, (41)

P

(
E[exp(|Zij|/Bn) | (Xi)

n
i=1] ≤ 2 for all i = 1, . . . , n and j = 1, . . . , p

)
≥ 1−Cn−c, (42)

P

(
P

(
max
1≤j≤p

1

n

n∑
i=1

(Ẑij − Zij)2 > ζ2
n | (Xi)

n
i=1

)
< κn

)
≥ 1− Cn−c. (43)

To verify these conditions, we proceed in 4 steps.

Step 1. Here, we verify (40). To do so, note that by construction of Yd in Lemma

A.1, there exist x∗ ∈ (0, 1) and y∗ ∈ Yd such that ε ≤ FY |X(y∗|x∗) ≤ 1 − ε. Further, by

Assumption 3.3, there exists a constant CP ∈ (0,∞) depending only on CL and β such

that

|FY |X(y|x2)− FY |X(y|x1)| ≤ CP |x2 − x1|, for all x1, x2, y ∈ (0, 1). (44)

Now, fix j = 1, . . . , p such that x∗ − ε/(2CP ) < xj < x∗ + ε/(2CP ), yj = y∗, and

hj ≤ ε/(4CP ), which exists with probability at least 1− Cn−c. For this j,

1

n

n∑
i=1

E[Z2
ij | (Xi)

n
i=1] =

∑n
i=1 ki,hj(xj)

2FY |X(yj|Xi)(1− FY |X(yj|Xi))∑n
l=1 kl,hj(xj)

2
≥ ε2

16
.

This gives (40) and completes the first step.

Step 2. Here, we verify (41) and (42). To do so, note that

max
1≤i≤n

max
(x,h)∈X×H

|
√
nki,h(x)|

(
∑n

l=1 kl,h(x)2)1/2
≤ 1√

chmin

≤
√
Cn1−δ =: B̃n
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with probability at least 1− Cn−c by Lemma A.3. Thus, with the same probability,

1

n

n∑
i=1

|Zij|3 ≤
8
√
n
∑n

i=1 |ki,hj(xj)|3(∑n
l=1 kl,hj(xj)

2
)3/2

≤
8
√
nmax1≤i≤n max1≤j≤p |ki,hj(xj)|(∑n

l=1 kl,hj(xj)
2
)1/2

≤ 8B̃n

and

1

n

n∑
i=1

|Zij|4 ≤
16n

∑n
i=1 |ki,hj(xj)|4(∑n

l=1 kl,hj(xj)
2
)2 ≤

16nmax1≤i≤n max1≤j≤p |ki,hj(xj)|2∑n
l=1 kl,hj(xj)

2
≤ 16B̃n,

for all j = 1, . . . , p and

|Zij| ≤
2
√
n|ki,hj(xj)|(∑n

l=1 kl,hj(xj)
2
)1/2
≤ 2B̃n

for all i = 1, . . . , n and j = 1, . . . , p. This shows that (41) and (42) hold with Bn := 8B̃n

and completes the second step.

Step 3. Here, we verify (43). To do so, note that

max
1≤j≤p

1

n

n∑
i=1

(Ẑij − Zij)2 ≤ max
1≤i≤n

max
1≤j≤p

|F̂Y |X(yj|Xi)− FY |X(yj|Xi)|2

= max
(x,y)∈X×Yd

|F̂Y |X(y|x)− FY |X(y|x)|2

and that there exist constants cF , CF ∈ (0,∞) depending only on CX , CL, β, and the

kernel function K such that

max
(x,y)∈X×Y

|F̂Y |X(y|x)− FY |X(y|x)| ≤ CFn
−cF

with probability at least 1− CFn−cF by Lemma A.2. Hence, by Markov’s inequality,

P
(

P
(

max
1≤j≤p

1

n

n∑
i=1

(Ẑij − Zij)2 > (CFn
−cF )2 | (Xi)

n
i=1

)
≥
√
CFn−cF

)

≤
P
(

max1≤j≤p
1
n

∑n
i=1(Ẑij − Zij)2 > (CFn

−cF )2
)

√
CFn−cF

≤
√
CFn−cF .

This shows that (43) holds with ζn := CFn
−cF and κn := (CFn

−cF )1/2 and completes the

third step.

Step 4. Here, we note that (39) holds with chosen Bn, ζn, and κn since log p ≤ C log n

by construction of the sets X , Yd, and H. Thus, we have verified conditions (39)–(43),

and the asserted claims of the theorem now follow by applying Theorem (4.3) conditional

on (Xi)
n
i=1. This completes the proof of the theorem. Q.E.D.
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Proof of Theorem 3.2. In this proof, c, C ∈ (0,∞) are constants whose values may change

at each appearance but can be chosen to depend only on CX , u, and the kernel function

K. Also, let Yd be defined as in Lemma A.1 and T b0 and c0(α) as in the proof of Theorem

3.1.

We proceed in 3 steps. In the first step, we bound c(α) from above. In the second

step, we bound T from below. In the third step, we combine the bounds on c(α) and T

to complete the proof.

Step 1. Here, we show that

P(c(α) > C
√

log n) ≤ n−1. (45)

To do so, note that by Lemma A.1, c(α) = c0(α) with probability at least 1− n−1. Also,

conditional on the data, the random variables

T bx,y,h :=

∑n
i=1 eiki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

(
∑n

i=1 ki,h(x)2)
1/2

, (x, y, h) ∈ X × Yd ×H,

are zero-mean Gaussian with variance bounded from above by∑n
i=1

(
ki,h(x)(1{Yi ≤ y} − F̂Y |X(y|Xi))

)2∑n
i=1 ki,h(x)2

≤ max
y∈Y

max
1≤i≤n

(
1{Yi ≤ y} − F̂Y |X(y|Xi)

)2

≤ 1

for all (x, y, h) ∈ X × Yd ×H since F̂Y |X(y|x) ∈ [0, 1] for all (x, y) ∈ X × Yd. Therefore,

(45) follows from Lemma A.3.1 in Talagrand (2011) since c0(α) is the (1−α) conditional

quantile of T b0 given the data, T b0 = max(x,y,h)∈X×Yd×H T
b
x,y,h, and p := |X × Yd ×H|, the

number of elements in the set X × Yd ×H, satisfies log p ≤ C log n.

Step 2. Here, we show that there exist n0 ∈ N, and h∗, `∗ ∈ (0, 1], all possibly

depending on FY |X , such that for all n ≥ n0,

P
(
T < ch∗`∗

√
nh∗

)
≤ exp

(
−c(h∗`∗)2nh∗

)
+ Cn−c. (46)

To do so, note that since the functions x 7→ FY |X(y|x) are continuously differentiable for

all y ∈ (0, 1) and
∂

∂x
FY |X(y|x) > 0, for some x, y ∈ (0, 1),
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it follows that there exist y∗ ∈ (0, 1), xl, xr ∈ (0, 1) satisfying xl < xr, and `∗ ∈ (0, 1] such

that
∂

∂x
FY |X(y∗|x) ≥ `∗, for all x ∈ (xl, xr).

Moreover, by the definition of H, there exist n0 ∈ N and h∗ ∈ (0, 1] such that for all

n ≥ n0, we have that h∗ ∈ H and h∗ ≤ (xr − xl)/3.

Next, define xn∗ using the following rule: if there exists at least one i = 1, . . . , n

such that Xi ∈ [2xl/3 + xr/3, xl/3 + 2xr/3], set xn∗ := Xi for any such i; otherwise set

xn∗ := (xl + xr)/2. Then xn∗ ∈ X with probability at least 1− Cn−c, and so

P(T < Txn∗,y∗,h∗) ≤ Cn−c,

where

Txn∗,y∗,h∗ :=

∑n
i=1 ki,h∗(xn∗)1{Yi ≤ y∗}
(
∑n

i=1 ki,h∗(xn∗)2)
1/2

,

since

T = max
(x,y,h)∈X×Y×H

∑n
i=1 ki,h(x)1{Yi ≤ y}
(
∑n

i=1 ki,h(x)2)
1/2

= max
(x,y,h)∈X×(0,1)×H

∑n
i=1 ki,h(x)1{Yi ≤ y}
(
∑n

i=1 ki,h(x)2)
1/2

To bound Txn∗,y∗,h∗ from below, we have

E
[ n∑
i=1

ki,h∗(xn∗)1{Yi ≤ y∗} | (Xi)
n
i=1

]
=

n∑
i=1

ki,h∗(xn∗)FY |X(y∗|Xi)

=
n∑

i,j=1

(FY |X(y∗|Xi)− FY |X(y∗|Xj)sign(Xi −Xj)Kh∗(Xi − xn∗)Kh∗(Xj − xn∗)

≥ `∗

n∑
i,j=1

(Xi −Xj)sign(Xi −Xj)Kh∗(Xi − xn∗)Kh∗(Xj − xn∗) ≥ cn2h∗`∗

with probability at least 1− Cn−c by Lemma A.3. Thus,

E [Txn∗,y∗,h∗ | (Xi)
n
i=1] = E

[∑n
i=1 ki,h∗(xn∗)1{Yi ≤ y∗}
(
∑n

l=1 ki,h∗(xn∗)2)
1/2

| (Xi)
n
i=1

]
≥ ch∗`

∗
√
nh∗

with probability at least 1− Cn−c, again by Lemma A.3. Also,

Var(Txn∗,y∗,h∗ | (Xi)
n
i=1) ≤ 1

and

max
1≤i≤n

|ki,h∗(xn∗)|
(
∑n

l=1 kl,h∗(xn∗)2)1/2
≤ 1√

cnh∗
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with probability at least 1−Cn−c, again by Lemma A.3. Hence, by Bernstein’s inequality,

Txn∗,y∗,h∗ ≥ ch∗`∗
√
nh∗

with probability at least

1− Cn−c − exp

(
−c(h∗`∗)

2nh∗
1 + h∗`∗

)
≥ 1− Cn−c − exp

(
−c(h∗`∗)2nh∗

)
,

since h∗, `∗ ≤ 1, which gives the asserted claim of this step.

Step 3. Here, we complete the proof of the theorem. To do so, note that by Steps 1

and 2,

P(T > c(α)) ≥ P(ch∗`∗
√
nh∗ > C

√
log n)− exp

(
−c(h∗`∗)

2nh∗
1 + h∗`∗

)
− Cn−c → 1

since h∗ and `∗ are independent of n. This gives the asserted claim and completes the

proof of the theorem. Q.E.D.

Proof of Theorem 3.3. In this proof, c, C ∈ (0,∞) are constants whose values may change

at each appearance but can be chosen to depend only on xr − xl, CX , u, and the kernel

function K. Also, let cI be the constant c on the left-hand side of (46) and let CI be the

constant C in (45). We will assume throughout the proof that (13) holds with C = C0,

where

C0 =
(CI/cI)

2

(u(xr − xl)/3)2
.

Next, let n0 be the largest n ∈ N such that

1√
n
>
u(xr − xl)

3
.

Throughout the proof, we will assume that n > n0 since the asserted claim for n ≤ n0

follows by choosing c, C ∈ (0,∞) in (14) such that Cn−1
0 ≥ 1.

Now, since n > n0, there exists h∗ ∈ H such that

u(xr − xl)
3

≤ h∗ <
xr − xl

3
.

Also, set

`∗ :=

√
C0 log n

n
.
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Then, since

∂

∂x
FY |X(y|x) ≥ `∗, for some y ∈ (0, 1) and all x ∈ (xl, xr),

by assumption, it follows from the same arguments as those in Step 2 of the proof of

Theorem 3.2 that (46) holds here with chosen h∗ and `∗. Thus,

P

(
T < cI

(
u(xr − xl)

3

)3/2√
C0 log n

)
≤ exp

(
−c
(
u(xr − xl)

3

)3

log n

)
+ Cn−c.

Also, by Step 1 in the proof of Theorem 3.2,

P(c(α) > CI
√

log n) ≤ n−1.

Combining these bounds and using the fact that

cI

(
u(xr − xl)

3

)3/2√
C0 log n = CI

√
log n,

by construction, gives the asserted claim. Q.E.D.

Proof of Theorem 3.4. In this proof, c, C ∈ (0,∞) are constants whose values may change

at each appearance but can be chosen to depend only on CX , CL, β, u, and the kernel

function K. Also, define cI and CI as in the proof of Theorem 3.3. We will assume that

(15) with C = C0, where

C0 =

(
2CI/cI

(u/3)3/2(2CL)−3/(2β)

)2+3/β

∨ 1.

Next, let n0 be the largest n ∈ N such that

1√
n
>
u

3

(
1

2CL

)1/β (
log n

n

)1/(2β+3)

.

Throughout the proof, we will assume that n > n0 since the asserted claim for n ≤ n0

follows by choosing c, C ∈ (0,∞) in (16) such that Cn−1
0 ≥ 1.

Now, since n > n0, there exists h∗ ∈ H such that

u

3

(
1

2CL

)1/β (
log n

n

)1/(2β+3)

≤ h∗ <
1

3

(
1

2CL

)1/β (
log n

n

)1/(2β+3)

.

Also, set

`∗ :=
1

2

(
C0 log n

n

)β/(2β+3)

.
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Then, since C0 ≥ 1 and

∂

∂x
FY |X(y|x) ≥ 2`∗, for some x, y ∈ (0, 1),

it follows from Assumption 3.3 that there exist xl, xr ∈ (0, 1) such that

xr − xl =

(
1

2CL

)1/β (
log n

n

)1/(2β+3)

and
∂

∂x
FY |X(y|x) ≥ `∗, for some y ∈ (0, 1) and all x ∈ (xl, xr).

Thus, it follows from the same arguments as those in Step 2 of the proof of Theorem 3.2

that (46) holds here with chosen h∗ and `∗. Hence,

P
(
T < CI

√
log n

)
≤ exp (−c log n) + Cn−c.

Also, by Step 1 in the proof of Theorem 3.2,

P(c(α) > CI
√

log n) ≤ n−1.

Combining these bounds gives the asserted claim. Q.E.D.

Proof of Theorem 3.5. Let g0 : R→ R be a function defined by g0(−1) := 0 and

g′0(x) :=



0, if x ≤ −1,

(1− |x|)β, if − 1 < x ≤ −1/2,

|x|β, if − 1/2 < x ≤ 0,

−xβ, if 0 < x ≤ 1/2,

−(1− x)β, if 1/2 < x ≤ 1,

0, if x > 1

and let g : R → R be a function defined by g(x) := c0g0(x) for all x ∈ R, where c0 =

1/(4
√

5). It is easy to check that the function g is such that

|g(x)| ≤ 1, for all x ∈ R, (47)
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and

g(x) = 0, for all x ∈ R \ (−1,+1). (48)

Also, let

J :=

[(
n

log n

)1/(2β+3)
]
, h :=

1

2J
, (49)

and

sj := 2jh− h, for all j = 1, . . . , J.

Note that

J ≥ n1/10 (50)

for all n ≥ n0 and some universal n0 ∈ N since β ≤ 1. Throughout this proof, we will

assume that n ≥ n0, so that (50) holds, since the asserted claim for n < n0 follows by

choosing constants c, C ∈ (0,∞) in (18) such that Cn−c0 ≥ 1. Also, by (50), J ≥ 1, and

so (
n

log n

)1/(2β+3)

≤ J + 1 ≤ 2J =
1

h
.

Hence,

h2β+3 ≤ log n

n
and h ≤ 1. (51)

Further, let X be a random variable distributed uniformly on [0, 1] and let Z be a N(0, 1)

random variable that is independent of X. Let (Xi, Zi)
n
i=1 be a random sample from the

distribution of the pair (X,Z). Moreover, let Φ and φ denote the cdf and the pdf of the

N(0, 1) distribution, respectively.

Next, let M0 be the distribution of (X,Φ(Z)) and for all j = 1, . . . , J , let Mj be the

distribution of (
X,Φ

(
Z + h1+βg

(
X − sj
h

)))
.

Then for all x, y ∈ (0, 1),

FM0

Y |X(y|x) = y and fM0

Y |X(y|x) :=
∂

∂y
FM0

Y |X(y|x) = 1.

Moreover, for all x, y ∈ (0, 1) and j = 1, . . . , J ,

F
Mj

Y |X(y|x) = Φ

(
Φ−1(y)− h1+βg

(
x− sj
h

))
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and

f
Mj

Y |X(y|x) :=
∂

∂y
F
Mj

Y |X(y|x) =
φ
(
Φ−1(y)− h1+βg

(x−sj
h

))
φ(Φ−1(y))

.

Using (47), (49), and (51), this choice of the distributions Mj ensures that for all j =

1, . . . , J ,

sup
x∈(0,1)

∂

∂x
F
Mj

Y |X(1/2|x) ≥ ∂

∂x
F
Mj

Y |X(1/2|x)
∣∣∣
x=sj−h/2

≥ c0(h/2)βφ(h1+β) ≥ c0φ(1)

4

(
log n

n

)β/(2β+3)

,

so that (17) holds with c = c0φ(1)/4 and M = Mj for any j = 1, . . . , J .

Now, fix any γ ∈ (0, 1) and any test ϕ such that supM∈Mβ,0
EM [ϕ] ≤ γ. Since M0 ∈

Mβ,0 by construction, it follows that EM0 [ϕ] ≤ γ. Thus,

min
1≤j≤J

EMj
[ϕ]− γ ≤ 1

J

J∑
j=1

EMj
[ϕ]− EM0 [ϕ] ≤ E

[∣∣∣∣∣ 1J
J∑
j=1

ρj − 1

∣∣∣∣∣
]
,

where

ρj :=
n∏
i=1

f
Mj

Y |X(Φ(Zi)|Xi)

fM0

Y |X(Φ(Zi)|Xi)
=

n∏
i=1

f
Mj

Y |X(Φ(Zi)|Xi)

= exp
( n∑
i=1

Zih
1+βg

(Xi − sj
h

)
− 1

2

n∑
i=1

h2(1+β)g
(Xi − sj

h

)2)
for all j = 1, . . . , J . Here, given that (Zi)

n
i=1 are i.i.d. N(0, 1) and are independent of

(Xi)
n
i=1, we have that E[ρj | (Xi)

n
i=1] = 1 for all j = 1, . . . , J and that conditional on

(Xi)
n
i=1, random variables ρ1, . . . , ρJ are independent. Hence,(

E

[∣∣∣∣∣ 1J
J∑
j=1

ρj − 1

∣∣∣∣∣
])2

≤ E

∣∣∣∣∣ 1J
J∑
j=1

ρj − 1

∣∣∣∣∣
2
 ≤ 1

J2

J∑
j=1

E[ρ2
j ].

Also, for all j = 1, . . . , J ,

E[ρ2
j ] = E

[
exp

( n∑
i=1

h2(1+β)g
(Xi − sj

h

)2)]
=

n∏
i=1

E
[

exp
(
h2(1+β)g

(Xi − sj
h

)2)]
≤

n∏
i=1

E
[
1 + 2h2(1+β)g

(Xi − sj
h

)2]
≤
(

1 + 4c2
0h

3+2β
)n
,
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where the second line follows from (47), (48), (51), and the fact that ex ≤ 1 + 2x for all

x ∈ [0, 1]. Thus,

1

J2

J∑
j=1

E[ρ2
j ] ≤ exp

(
− log J + n log(1 + 4c2

0h
3+2β)

)
≤ exp

(
− log J + 4c2

0nh
3+2β

)
≤ exp

(
− 1

10
log n+ 4c2

0 log n
)
≤ n−1/20

since 4c2
0 = 1/20 by the choice of c0, where the second inequality follows from the fact

that log(1 + x) ≤ x for all x > 0, and the third from (50) and (51). Hence, (18) holds

with C = 1, c = 1/40, and M = Mj for at least one j = 1, . . . , J .

Thus, it remains to show that Mj ∈ Mβ for all j = 1, . . . , J , which means that if

(X, Y ) is distributed according to Mj for any j = 1, . . . , J , then Assumptions 3.1, 3.2,

and 3.3 are satisfied. So, fix j = 1, . . . , J and assume that (X, Y ) is distributed according

to Mj. Then Assumption 3.1 holds trivially since X is distributed uniformly on [0, 1] and

CX ≥ 1. Since ε ∈ (0, 1/2), Assumption 3.2 also holds trivially with y = 1/2 and any x

such that |x− sj| > h because these values of x and y give FY |X(y|x) = 1/2.

To verify Assumption 3.3, note that for all x ∈ R, φ(x) ≤ 1 and φ′(x) ≤ 1. Also, for

all x, y ∈ (0, 1),

∂

∂x
F
Mj

Y |X(y|x) = −hβg′
(
x− sj
h

)
φ

(
Φ−1(y)− h1+βg

(
x− sj
h

))
.

Thus, for all x1, x2, y ∈ (0, 1),∣∣∣ ∂
∂x
F
Mj

Y |X(y|x2)− ∂

∂x
F
Mj

Y |X(y|x1)
∣∣∣

≤ hβ
∣∣∣g′(x2 − sj

h

)
− g′

(x1 − sj
h

)∣∣∣+ h1+β
∣∣∣g(x2 − sj

h

)
− g
(x1 − sj

h

)∣∣∣
≤ c0

(
|x2 − x1|β + hβ|x2 − x1|

)
≤ 2c0|x2 − x1|β ≤ |x2 − x1|β

since c0 ≤ 1/2. Hence, given that CL ≥ 1, Assumption 3.3 is satisfied. This completes

the proof of the theorem. Q.E.D.
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B Proofs for Section 4

In this section, we will use L2 and ψ1 norms of random variables. For any random

variable Y , these norms are defined by ‖Y ‖L2 = (E[Y 2])1/2 and ‖Y ‖ψ1 = inf{C >

0: E[exp(|Y |/C)] ≤ 2}, respectively.

Proof of Therorem 4.1. Fix x0 > 0. Throughout the proof, we assume that

B2
n log10(pn)

n
≤ (cx0)2, (52)

where c is a sufficiently small universal constant (whose value will be clear from the proof),

since otherwise the asserted claim follows trivially. Also, let K1 and K2 be universal

constants from Lemma C.1. We assume that K2 ≥ 1 since otherwise we can replace K2

by K2 ∨ 1.

Observe that∥∥∥ max
1≤i≤n

max
1≤j≤p

|Zij|
∥∥∥
L2

≤ 2
∥∥∥ max

1≤i≤n
max
1≤j≤p

|Zij|
∥∥∥
ψ1

≤ 8 log(1 + pn) max
1≤i≤n

max
1≤j≤p

‖Zij‖ψ1

≤ 8Bn log(1 + pn) ≤ 16Bn log(pn), (53)

where the first and the second inequalities follow from the discussion on page 95 and from

Lemma 2.2.2 in van der Vaart and Wellner (1996), respectively, the third from (26), and

the fourth from p ≥ 3.

Next, let

J :=

{
j = 1, . . . , p :

1

n

n∑
i=1

E[Z2
ij] ≥

x2
0

(8K2)2 log(pn)

}
and J c := {1, . . . , p}\J . Then, by Lemma C.1 and (53),

E
[

max
j∈Jc

∣∣∣ 1√
n

n∑
i=1

Zij

∣∣∣] ≤ K2

( x0

√
log p

8K2

√
log(pn)

+
log p√
n

∥∥∥ max
1≤i≤n

max
1≤j≤p

|Zij|
∥∥∥
L2

)
≤ x0/8 +

16K2Bn log2(pn)√
n

≤ x0/4, (54)
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where the last inequality follows from (52) if c there is chosen small enough. Also, again

by Lemma C.1 and (53), for any t > 0,

P
(

max
j∈Jc

∣∣∣ 1√
n

n∑
i=1

Zij

∣∣∣ > 2E
[

max
j∈Jc

∣∣∣ 1√
n

n∑
i=1

Zij

∣∣∣]+ t
)

≤ exp
(
− t2(8K2)2 log(pn)

3x2
0

)
+ 3 exp

(
− t

√
n

8K1Bn log(pn)

)
.

Combining this inequality applied with t = x0/2 with (54), using K2 ≥ 1 and (52), and

assuming that c in (52) is small enough gives

P

(
max
j∈Jc

∣∣∣ 1√
n

n∑
i=1

Zij

∣∣∣ > x0

)
≤ 4 exp(− log(pn)) ≤

(
4B2

n log10(pn)

n

)1/6

(55)

since p ≥ 3 by assumption and Bn ≥ 1 by (24) and (25).

Further, for all i = 1, . . . , n and j = 1, . . . , p,

‖Zg
ij‖ψ1 ≤

√
log 2‖Zg

ij‖ψ2 ≤
√

8/3
√

log 2‖Zg
ij‖L2 ≤

√
8/3
√

log 2‖Zij‖L2

≤ 2
√

8/3
√

log 2‖Zij‖ψ1 ≤ 2
√

8/3
√

log 2Bn,

where the first and the fourth inequalities follow from the discussion on page 95 of van der

Vaart and Wellner (1996), the second from Exercise 1 on page 105 of van der Vaart and

Wellner (1996), the third from the construction of Zg
ij, and the fifth from (26). Hence,

using the same argument as above shows that

P

(
max
j∈Jc

∣∣∣ 1√
n

n∑
i=1

Zg
ij

∣∣∣ > x0

)
≤
(

128B2
n log10(pn)

n

)1/6

. (56)

Now, combining (55) and (56), we conclude that the asserted claim will follow if we

show that

sup
x≥x0

∣∣∣∣∣P
(

max
j∈J

1√
n

n∑
i=1

Zij ≤ x

)
− P

(
max
j∈J

1√
n

n∑
i=1

Zg
ij ≤ x

)∣∣∣∣∣ ≤
(
CB2

n log10(pn)

n

)1/6

,

where C is a constant depending only on x0. In turn, this inequality follows by applying

Proposition 2.1 in Chernozhukov, Chetverikov, and Kato (2017) with

Xi =
8K2Zi

√
log(pn)

x0

, i = 1, . . . , n, (57)
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and Bn there replaced by

Bn

(
1 ∨

8K2

√
log(pn)

x0

)3

(58)

here. This completes the proof of the theorem. Q.E.D.

Proof of Therorem 4.2. Fix x0 > 0. As in the proof of Theorem 4.1, we assume here that

(52) holds with a sufficiently small universal constant c. Also, let K3 and K4 be universal

constants from Lemma C.2. We assume that K4 ≥ K2 ∨ 1, where K2 is a universal

constant from Lemma C.1, since otherwise we can replace K4 by K4 ∨K2 ∨ 1. Moreover,

let

J :=

{
j = 1, . . . , p :

1

n

n∑
i=1

E[Z2
ij] ≥

x2
0

(8K4)2 log(pn)

}
and J c := {1, . . . , p}\J .

Now, observe that

1√
n

n∑
i=1

eiZij | (Zi)ni=1 ∼ N

(
0,

1

n

n∑
i=1

Z2
ij

)
, j = 1, . . . , p.

Therefore, by Lemma A.3.1 in Talagrand (2011),

E

[
max
j∈Jc

1√
n

n∑
i=1

eiZij | (Zi)ni=1

]
≤
√

2 log p

(
max
j∈Jc

1

n

n∑
i=1

Z2
ij

)1/2

, (59)

and by Theorem 2.1.1 in Adler and Taylor (2007), for any t > 0,

P
(

max
j∈Jc

1√
n

n∑
i=1

eiZij > E
[

max
j∈Jc

1√
n

n∑
i=1

eiZij | (Zi)ni=1

]
+ t | (Zi)ni=1

)
≤ exp

(
− t2

2 maxj∈Jc
1
n

∑n
i=1 Z

2
ij

)
. (60)

Applying (60) with

t =
√

2 log n

(
max
j∈Jc

1

n

n∑
i=1

Z2
ij

)1/2

and using (59) gives

P
(

max
j∈Jc

1√
n

n∑
i=1

eiZij > 2
√

2 log(pn)
(

max
j∈Jc

1

n

n∑
i=1

Z2
ij

)1/2

| (Zi)ni=1

)
≤ 1

n
≤
(B2

n log10(pn)

n

)1/6

(61)
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since p ≥ 3 by assumption and Bn ≥ 1 by (24) and (25). Next, by Lemma C.2,

E
[

max
j∈Jc

1

n

n∑
i=1

Z2
ij

]
≤ K4

( x2
0

(8K4)2 log(pn)
+

log p

n

∥∥∥ max
1≤i≤n

max
1≤j≤p

|Zij|
∥∥∥2

L2

)
≤ x2

0

64 log(pn)
+

256K4B
2
n log3(pn)

n
≤ x2

0

32 log(pn)
, (62)

where the second inequality follows from (53) in the proof of Theorem 4.1 and K4 ≥ 1,

and the third from (52) with c being chosen small enough. Also, again by Lemma C.2,

for any t > 0,

P
(

max
j∈Jc

1

n

n∑
i=1

Z2
ij > 2E

[
max
j∈Jc

1

n

n∑
i=1

Z2
ij

]
+ t
)

≤ 3 exp
(
−

√
nt

K3‖max1≤i≤n max1≤j≤p |Zij|‖ψ1

)
≤ 3 exp

(
−

√
nt

8K3Bn log(pn)

)
,

where the second inequality follows from (53) in the proof of Theorem 4.1. Applying this

inequality with

t =
x2

0

16 log(pn)

and using (62) shows that

P

(
max
j∈Jc

1

n

n∑
i=1

Z2
ij >

x2
0

8 log(pn)

)
≤ 3 exp(− log(pn)) ≤ 3/(pn) (63)

since (52) holds with a sufficiently small constant c. Now, combining (61) and (63) gives

P

(
P

(
max
j∈Jc

1√
n

n∑
i=1

eiZij > x0 | (Zi)ni=1

)
≤
(
B2
n log10(pn)

n

)1/6
)
≥ 1− 3

pn
. (64)

Further, applying Corollary 4.2 in Chernozhukov, Chetverikov, and Kato (2017) with Xi’s

defined in (57) and Bn there replaced by the expression in (58), with K4 instead of K2,

here yields

P
(

sup
x∈R

∣∣∣P(max
j∈J

1√
n

n∑
i=1

Zg
ij ≤ x

)
− P

(
max
j∈J

1√
n

n∑
i=1

eiZij ≤ x | (Zi)ni=1

)∣∣∣
≤
(CB2

n log10(pn)

n

)1/6)
≥ 1− 1

pn
, (65)

where C is a constant depending only on x0. Combining (64) and (65) with (56) in the

proof of Theorem 4.1 gives the asserted claim and completes the proof of the theorem.

Q.E.D.
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Proof of Theorem 4.3. For α ∈ (0, 1), let cgn(α) denote the (1 − α)th quantile of Sgn and

cen(α) denote the (1 − α)th quantile of the conditional distribution of Sen given (Zi)
n
i=1.

Also, for α ≤ 0, define cgn(α) := ∞ and cen(α) := ∞. Fix α0 ∈ (0, 1/2) and denote

x0 := cgn(α0) > 0. Throughout the proof, we will use C to denote a constant that depends

only on α0 but whose value can change from place to place. Finally, we will assume,

without loss of generality, that (ei)
n
i=1 is independent of (Zi, Ẑi)

n
i=1.

The asserted claim can be equivalently written as the following two inequalities:

P(Sn > cn(α)) ≥ α− C

((
B2
n log10(pn)

n

)1/6

+ ζn log3/2(pn)

)
− κn, α ∈ (0, α0), (66)

P(Sn > cn(α)) ≤ α + C

((
B2
n log10(pn)

n

)1/6

+ ζn log3/2(pn)

)
+ κn, α ∈ (0, α0). (67)

Both inequalities follow from the same arguments. Therefore, we only prove (66). We

proceed in four steps.

Step 1. Here, we prove that for all α ∈ (0, α0) and ε > 0,

cgn(α) + ε ≤ cgn

(
α−

(
CB2

n log10(pn)

n

)1/6

− Cε log(pn)

)
.

To do so, define J and J c as in the proof of Theorem 4.1. Then for any x ≥ x0,

P(Sgn ≤ x+ ε)− P(Sgn ≤ x) = P(x < Sgn ≤ x+ ε)

≤ P
(

max
j∈Jc

1√
n

n∑
i=1

Zg
ij > x0

)
+ P

(
x < max

j∈J

1√
n

n∑
i=1

Zg
ij ≤ x+ ε

)
≤
(CB2

n log10(pn)

n

)1/6

+ Cε log(pn),

where the second line follows from the union bound, and the third from (56) in the proof of

Theorem 4.1 and Lemma C.3. Applying this inequality with x = cgn(α) gives the asserted

claim of this step.

Step 2. Here, we prove that with probability at least 1− 4/(pn), for all α ∈ (0, α0),

cen(α) ≤ cgn

(
α−

(
CB2

n log10(pn)

n

)1/6
)
.
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To do so, note that by Theorem 4.2, the event in (28) holds with probability at least

1− 4/(pn). On this event, for any φ > 0,

P(Sen ≤ cgn(α− φ) | (Zi)ni=1) ≥ P(Sgn ≤ cgn(α− φ))−
(CB2

n log10(pn)

n

)1/6

= 1− α + φ−
(CB2

n log10(pn)

n

)1/6

.

Applying this inequality with

φ =
(CB2

n log10(pn)

n

)1/6

gives the asserted claim of this step.

Step 3. Here, we prove that with probability at least 1− κn, for all α ∈ (0, α0),

cn(α) ≤ cen(α− 2/n) + 2ζn
√

2 log(pn).

To do so, note that by (29),

max
1≤j≤p

1

n

n∑
i=1

(Ẑij − Zij)2 ≤ ζ2
n (68)

with probability at least 1− κn. Also,

1√
n

n∑
i=1

ei(Ẑij − Zij) | (Zi, Ẑi)ni=1 ∼ N

(
0,

1

n

n∑
i=1

(Ẑij − Zij)2

)
, j = 1, . . . , p.

Therefore, on the event in (68), by the same arguments as those used in the proof of

Theorem 4.2,

P

(
max
1≤j≤p

1√
n

n∑
i=1

ei(Ẑij − Zij) > 2ζn
√

2 log(pn) | (Zi, Ẑi)ni=1

)
≤ 1

n

and, similarly,

P

(
max
1≤j≤p

1√
n

n∑
i=1

ei(Zij − Ẑij) > 2ζn
√

2 log(pn) | (Zi, Ẑi)ni=1

)
≤ 1

n
.

Thus, by the union bound, with probability at least 1− κn,

P

(
max
1≤j≤p

∣∣∣ 1√
n

n∑
i=1

ei(Ẑij − Zij)
∣∣∣ > 2ζn

√
2 log(pn) | (Zi, Ẑi)ni=1

)
≤ 2

n
.
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Combining this bound with the inequality

|Ŝen − Sen| ≤ max
1≤j≤p

∣∣∣∣∣ 1√
n

n∑
i=1

ei(Ẑij − Zij)

∣∣∣∣∣ ,
gives the asserted claim of this step.

Step 4. Here, we complete the proof of the theorem. To do so, fix α ∈ (0, α0) and

note that as in (61) of the proof of Theorem 4.2, we have 1/n ≤ (B2
n log10(pn)/n)1/6.

Therefore, by Steps 1, 2, and 3, with probability at least 1− κn,

cn(α) ≤ cgn

(
α−

(
CB2

n log10(pn)

n

)1/6

− Cζn log3/2(pn)

)
.

Hence,

P(Sn > cn(α)) ≥ P

(
Sn > cgn

(
α−

(
CB2

n log10(pn)

n

)1/6

− Cζn log3/2(pn)

))
− κn.

In turn, by Theorem 4.1, the probability on the right-hand side of this inequality is

bounded from below by

P

(
Sgn > cgn

(
α−

(
CB2

n log10(pn)

n

)1/6

− Cζn log3/2(pn)

))
−
(
CB2

n log10(pn)

n

)1/6

= α−
(
CB2

n log10(pn)

n

)1/6

− Cζn log3/2(pn).

Combining the last two inequalities gives (66) and completes the proof of the theorem.

Q.E.D.

C Technical Lemmas

Lemma C.1. Let X1, . . . , Xn be independent random vectors in Rp with p ≥ 2 such that

E[Xij] = 0 for all i = 1, . . . , n and j = 1, . . . , p. Define M := max1≤i≤n max1≤j≤p |Xij|

and σ2 := max1≤j≤p
∑n

i=1 E[Z2
ij]. Then for any t > 0,

P

(
max
1≤j≤p

∣∣∣∣∣
n∑
i=1

Xij

∣∣∣∣∣ ≥ 2E

[
max
1≤j≤p

∣∣∣∣∣
n∑
i=1

Xij

∣∣∣∣∣
]

+ t

)
(69)

≤ exp

(
− t2

3σ2

)
+ 3 exp

(
− t

K1‖M‖ψ1

)
, (70)
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where K1 is a universal constant and ‖M‖ψ1 := inf{C > 0: E[exp(M/C)] ≤ 2}. In

addition,

E

[
max
1≤j≤p

∣∣∣∣∣
n∑
i=1

Xij

∣∣∣∣∣
]
≤ K2

(
σ
√

log p+
√

E[M2] log p
)
, (71)

where K2 is a universal constant.

Proof of Lemma C.1. See Lemmas E.1 and E.2 in Chernozhukov, Chetverikov, and Kato

(2017). Q.E.D.

Lemma C.2. Let X1, . . . , Xn be independent random vectors in Rp with p ≥ 2 such that

Xij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , p. Define M := max1≤i≤n max1≤j≤pXij. Then

for any t > 0,

P

(
max
1≤j≤p

n∑
i=1

Xij ≥ 2E
[

max
1≤j≤p

n∑
i=1

Xij

]
+ t

)
≤ 3 exp

(
−

√
t

K3‖
√
M‖ψ1

)
(72)

where K3 is a universal constant and ‖
√
M‖ψ1 := inf{C > 0: E[exp(

√
M/C)] ≤ 2}. In

addition,

E

[
max
1≤j≤p

n∑
i=1

Xij

]
≤ K4

(
max
1≤j≤p

E

[
n∑
i=1

Xij

]
+ E[M ] log p

)
, (73)

where K4 is a universal constant.

Proof of Lemma C.2. See Lemma E.4 in Chernozhukov, Chetverikov, and Kato (2017)

and Lemma 9 in Chernozhukov, Chetverikov, and Kato (2015) for the proof of (72) and

(73), respectively. Q.E.D.

Lemma C.3. Let Z = (Z1, . . . , Zp)
′ be a zero-mean Gaussian random vector in Rp with

σ2
j := E[Z2

j ] > 0 for all j = 1, . . . , p. Denote σ := min1≤j≤p σj. Then for all ε > 0 and

x = (x1, . . . , xp)
′ ∈ Rp, we have

P(Z ≤ x+ ε)− P(Z ≤ x) ≤ ε

σ
(
√

2 log p+ 2), (74)

where x+ ε = (x1 + ε, . . . , xp + ε)′.

Proof of Lemma C.3. See Lemma A.1 in Chernozhukov, Chetverikov, and Kato (2017).

Q.E.D.
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