
University College London

Faculty of Engineering

Department of Computer Science

A Bayesian Approach for Software
Release Planning under Uncertainty

Olawole Stephen Oni

First Supervisor : Second Supervisor :
Dr. Emmanuel Letier Dr. Earl Barr

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computer Science of University College London

April, 2020

Declaration

I, Olawole Stephen Oni , declare that this thesis titled “A Bayesian Approach for

Software Release Planning under Uncertainty” and the works presented in it are

my own. I confirm that:

• This work was done mainly while in candidature for a research degree at

this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signature: Date:

i

Abstract

Release planning — deciding what features to implement in upcoming releases

of a software system— is a critical activity in iterative software development.

Many release planning methods exist but most ignore the inevitable uncertainty

of future development effort and business value. The thesis investigates how to

analyse uncertainty during release planning and whether analysing uncertainty

leads to better decisions than if uncertainty is ignored.

The thesis’s first contribution is a novel release planning method designed to

analyse uncertainty in the context of the Incremental Funding Method, an in-

cremental cost-value based approach to software development. Our method uses

triangular distributions, Monte-Carlo simulation and multi-objective optimisation

to shortlist release plans that maximise expected net present value and minimise

investment cost and risk.

The second contribution is a new release planning method, called BEARS,

designed to analyse uncertainty in the context of fixed-date release processes.

Fixed-date release processes are more common in industry than fixed-scope release

processes. BEARS models uncertainty about feature development time and

economic value using lognormal distributions. It then uses Monte-Carlo simulation

and search-based multi-objective optimisation to shortlist release plans that

maximise expected net present value and expected punctuality. The method helps

release planners explore possible tradeoffs between these two objectives.

The thesis’ third contribution is an experiment to study whether analysing uncer-

tainty using BEARS leads to shortlisting better release plans than if uncertainty

is ignored, or if uncertainty is analysed assuming fixed-scope releases. The experi-

ment compares 5 different release planning models on 32 release planning problems.

The results show that analysing uncertainty using BEARS leads to shortlisting

release plans with higher expected net present value and higher expected punctu-

ality than methods that ignore uncertainty or that assume fixed-scope releases.

Our experiment therefore shows that analysing uncertainty can lead to better

ii

release planning decisions than if uncertainty is ignored.

iii

Impact Statement

Software systems are most often delivered over multiple releases. Each release

improves the previous ones by changing or adding features based on lessons from

earlier releases. In this context, release planning is the activity of planning the

order in which new features will be developed for future releases. Release planning

is critical to manage stakeholders’ expectations, maximise business value and

organise the software development process. Most release planning methods used in

industry ignore the inevitable uncertainty about the time it takes to develop each

candidate feature. They also ignore the uncertainty about the future business

value of candidate features. As a result, release planning decisions are often

based on inaccurate evaluation of candidate features. The objectives of this thesis

was to study how to analyse uncertainty during release planning and whether

analysing uncertainty leads to better release planning decisions than if uncertainty

is ignored.

We have developed a new release planning method under uncertainty, called

BEARS, and showed that analysing uncertainty using BEARS leads to shortlist-

ing better release plans than if uncertainty is ignored. Release plans shortlisted

using BEARS have higher expected net present value (a common metric to

evaluate value flow) and higher expected punctuality (i.e. features are more

likely to be delivered on time) than release plans shortlisted by methods that

ignore uncertainty. Our new release planning method is supported by a prototype

tool that includes all core functionalities for analysing uncertainty during release

planning. This prototype provides the basis for developing a novel commercial

tool for release planning under uncertainty or to extend existing release planning

tools with new features to analyse uncertainty. All software engineering projects

that have uncertainty about development time and value would benefit from

the techniques developed in the thesis. This includes most software engineering

projects but is most relevant to highly innovative projects where uncertainty

about development time and business value is higher than for routine projects.

The techniques developed in the thesis will help software development teams

iv

have better conversations with their clients and managers about the inherent

uncertainty of software development. The techniques allow them to evaluate and

communicate the consequences of such uncertainty. The thesis exposes the need

for release planners to consider compromises between defining release plans that

are over-ambitious (potentially high value but unlikely to be delivered on time)

and over-conservative (lower value but easy to deliver on time). Our method helps

release planners visualize all optimal tradeoffs between these two extremes and to

select a release plans best suited to their preferences.

v

Acknowledgements

I give thanks and glory to the Almighty God for seeing me through this PhD

programme, May his name be praise forever more.

I specially thank my supervisor, Dr. Emmanuel Letier, for his support, guidance,

patience and constructive feedback throughout this programme. This research

work would not have been successful without his remarkable experience and

tutelage. I thank Dr. Earl Barr and Dr. Jens Krinke, my examiners in my first

and second year vivas. Your experience, knowledge and critical evaluations have

been valuable to this work.

My sincere appreciation goes to my sponsors in Nigeria: The Federal Scholarship

Board (FSB), Tertiary Trust Fund (TETFUND) and Presidential Special Scholar-

ship Scheme for Innovation and Development (PRESSID). In addition, I thank

the Department of Computer Science for the travel grants awarded to enable me

present my research at the 22nd International Working Conference on Require-

ments Engineering: Foundation for Software Quality (REFSQ) in Gothenburg,

Sweden and the 25th International Requirements Engineering Conference (RE) in

Lisbon, Portugal.

Finally, I thank my lovely and beautiful wife, Oyedunni Oni, for her immense sup-

porting throughout my research. I also appreciate my lovely daughter, Hadassah

Oni for cooperating with me when I needed to work at home. Special thanks to

my parents, Mr & Mrs Oni, for their support from when I started my life journey.

Special thanks to my mother in-law Mrs Kofoworola Oyefi for her support and

word of encouragement during difficult times in my research. To my siblings,

Gbenga Oni, Opeyemi Oni and Titilayo Oni, my parent in-laws, brother-in-laws,

sister-in-laws, my spiritual father (Pastor Akintayo Aiyegbusi). Special thanks to

my friends Dr. Saheed Busari, Tolulope Agbebi, Olusegun Folarin and Tolulope

Adeyelu for their support financially, morally and academically. I thank you all

for your support and prayers.

vi

List of Publications

The work presented in this thesis is the original work undertaken between November

2015 and November 2019 at the Department of Computer Science, University

College London, United Kingdom. Part of the work presented in this thesis has

previously been published in the following venues:

• Oni O, Letier E. Optimizing the incremental delivery of software features

under uncertainty. In International Working Conference on Requirements

Engineering: Foundation for Software Quality 2016 Mar 14 (pp. 36-41).

Springer, Cham.

• Oni O. Towards a Bayesian Decision Model for Release Planning in In-

cremental Development. In 2017 IEEE 25th International Requirements

Engineering Conference (RE) 2017 Sep 4 (pp. 520-525). IEEE.

The first publication describes an approach to extend an existing release planning

method with uncertainty and multi-objective optimization and forms the basis

for the work reported in Chapter 3. The second publication presents early initial

work in the development of the release planning method described in Chapter

4. Materials from Chapters 4 and 5 are included in the following manuscript

currently under submission:

• Oni O, Letier E. Bayesian Economic Analysis for Software Release Plan-

ning under Uncertainty. IEEE Transactions on Software Engineering. (In

Review)

vii

Contents

Declaration i

Abstract i

Impact Statement v

Acknowledgements vi

List of Publications vii

1 Introduction 1

1.1 Motivating Example . 2

1.2 State of the Art and Limitations 4

1.3 Research Questions . 6

1.4 Thesis Contributions . 7

1.5 Thesis Structure . 8

viii

CONTENTS ix

2 Background on Release Planning 9

2.1 Release Planning Concepts . 9

2.1.1 Product Backlog . 10

2.1.2 Release Plan . 11

2.1.3 Managing Capacity Constraints 12

2.1.4 Value . 16

2.2 Optimizing Value Points . 16

2.2.1 Ad Hoc Release Planning 17

2.2.2 Greedy Approaches . 18

2.2.3 EVOLVE Release Planning Approaches 20

2.2.4 Multi-objective Release Planning Approach 25

2.2.5 Optimizing Value Points with Uncertainty 28

2.2.6 Other Variants of EVOLVE-II methods 31

2.2.7 Limitations of Value Point Optimization in Release Planning 34

2.3 Optimizing Economic Value in Release Planning 36

2.3.1 The Incremental Funding Methodology (IFM) 36

2.3.2 Criticisms of Traditional IFM Approach 41

2.4 Summary and Conclusion . 47

3 Cost-Value Based Release Planning with Uncertainty 50

3.1 Extending IFM with Uncertainty 51

CONTENTS x

3.1.1 Eliciting Uncertainty as Triangular Distribution 51

3.1.2 Adding Uncertainty to Point-Based Estimates 52

3.1.3 Simulation Cash Flow Projections 55

3.2 Multi-objective Optimization Extension 56

3.2.1 Expected Net Present Value 56

3.2.2 Expected Investment Cost 57

3.2.3 Investment Risk . 57

3.3 Optimizing Release Plans . 58

3.4 Summary, Conclusion and Limitations 60

4 Release Planning with BEARS 62

4.1 BEARS: Overview . 63

4.2 Estimating Effort and Value Distributions 66

4.2.1 Pre-elicitation Tasks . 67

4.2.2 Quartile Elicitation Method 68

4.3 Simulating BEARS Release Plans 71

4.3.1 Evaluating Expected Net Present Value 75

4.3.2 Evaluating Expected Punctuality 76

4.4 Shortlisting Release Plans . 77

4.5 Information Value Analysis . 80

4.6 BEARS JAVA Tool . 82

CONTENTS xi

4.7 BEARS Limitations . 83

4.8 Chapter Summary . 84

5 Evaluation 85

5.1 Experiment I: BEARS vs. EVOLVE-II 86

5.1.1 Experiment Design . 87

5.1.2 Results . 89

5.1.3 Threats to Validity . 91

5.2 Experiment II: Comparing BEARS to Other Release Planning

Methods . 93

5.2.1 Experiment Design . 93

5.2.2 Results . 99

5.2.3 Threats to Validity . 106

5.3 Evaluating BEARS Optimisation Algorithms 107

5.3.1 Experiment Design . 108

5.3.2 Results . 109

5.3.3 Threats to Validity . 113

6 Conclusion and Future Work 114

6.1 Future Work . 116

6.1.1 Extend BEARS to analyse fairness and multiple value

dimensions from multiple perspectives 117

6.1.2 Managing technical debt during release planning 117

6.1.3 Feedback mechanism for updating value and effort uncertainty118

6.1.4 Tool Evaluation of BEARS in Industrial Context 118

Bibliography 118

xii

List of Tables

2.1 Example effort estimation in person-days. 15

2.2 Ranking work items by value-effort ratio 20

2.3 Eliciting value points in EVOLVE II. 23

2.4 Local Council Web Application revenue projections (in Thousand

Pounds £). 39

2.5 Time adjusted value of work items depending on development start

period with 2% discount rate (values in Thousand Pounds £). . . 42

2.6 Summary of Release planning models and factors treated by the

models . 49

3.1 Deriving triangular distributions from point estimate. 56

4.1 Full Product backlog for the Local council project 65

4.2 Elicitation of Value Distributions for the Local Council running

example. 73

4.3 Elicitation of Effort Distribution. 74

5.1 Release Planning Methods in Our Empirical Evaluation 94

xiii

5.2 Release Planning Problems in Our Empirical Evaluation 95

5.3 Proportion of runs where the BEARS shortlists strictly dominates

the shortlist of other methods. 100

5.4 Hypervolume Improvement Ratios of BEARS with respect to other

release planning methods. 101

5.5 Statistical Significance (p-value) of the observed difference in hy-

pervolume between BEARS and other methods over 30 runs using

Mann-Whitney U test. 103

5.6 Release planning methods’ run-times in seconds 106

5.7 Mean Hypervolume Performance of a random search and the 3

Multi-Objective Optimisation Algorithms used in BEARS. 110

5.8 Mean IGD+ Performance of a random search and the 3 Multi-

Objective Optimisation Algorithms used in BEARS. 111

5.9 Statistical Significance (p-value) of the differences between MOEAs

on BEARS release planning problems using Mann-Whitney U test.

Highlighted cells are those where the differences are not statistically

significant (p>.05) . 112

xiv

List of Figures

2.1 Part of the product backlog for the local council project. 11

2.2 Work items value quadrant. 18

2.3 Release plan generated by ReleasePlanner web tool [1] 24

2.4 Incremental Funding Method Ideal Project [2] 38

2.5 Optimal solution produced by IFM heuristics for serial development. 43

2.6 Optimal solution produced by IFM heuristics for concurrent devel-

opment. 44

3.1 Triangular Distribution. 52

3.2 Deriving cost distribution from point estimate cash flows 54

3.3 Deriving value distribution from point estimate cash flows. 55

3.4 Shortlisted release plans for Local Government Project. 59

4.1 BEARS Framework . 63

4.2 Elicitation of lower and upper bound 68

4.3 Elicitation of Median . 69

xv

4.4 Elicitation of lower quartile. 70

4.5 Elicitation of upper quartile. 70

4.6 Eliciting effort uncertainty for feature “A: view council tax bills”

with the MATCH tool [3]. 72

4.7 Algorithm for generating release scenario from a work sequence. . 75

4.8 Expected NPV and punctuality of shortlisted release plans for

flexible-scope release . 79

5.1 Release plans shortlisted by BEARS(green crosses), ReleasePlanner

(red triangle) and EVOLVE-max (blue diamonds) for the local

government project. 90

5.2 Examples of shortlists generated by BEARS (green crosses), EVOLVE-

max (blue diamonds) and BEARS-deterministic (yellow triangles).

These examples correspond to the first runs out of 30. 104

5.3 Examples of shortlists generated by BEARS (green crosses), EVOLVE-

with-uncertainty (red diamonds) and BEARS-fixed-scope (black

triangles). These examples correspond to the first runs out of 30. 105

xvi

Chapter 1

Introduction

Iterative software development is a widely recommended approach to build software

when requirements are uncertain and the project is subject to significant risks

[4, 5]. Instead of delivering all software features at once, the software is delivered

over multiple releases where each release adds or modifies features based on

stakeholders’ feedback and lessons learnt from previous releases. By feature,

here, we mean both functional features and quality improvements (e.g. better

performance). Since not all features are delivered at once, an essential activity of

iterative development consists in prioritizing what features to deliver in upcoming

releases. This activity, known as release planning, is critical to deliver business

value, manage stakeholders’ expectation, control risks, and organise the software

development activities [6]. Release planning spans the traditional boundaries

of requirements engineering, project management and software evolution; it is

concerned with deciding what features to build, prioritizing features delivery

under time and resource constraints, and incrementally improving the software by

adding, modifying or removing features.

Release planning is concerned with decision related to selecting and assigning

features to produce a sequence of product releases that satisfies important technical,

1

1.1. Motivating Example 2

resource, budget and risk constraints [6, 7]. A software release is an improved

version of an evolving software system characterized by a collection of new or

modified features that is valuable to customers [8]. Release planning decisions

address the questions of what features to develop in upcoming releases, when to

release features and what quality must be satisfied by a software release [7]. For

example, in iterative development, the software system is decomposed into features

that are valuable to stakeholders. Release planning then involves prioritizing these

features using stakeholders perceived value and assigning the features to various

releases. The assignment is done in such a way that the most important features

are developed first before the less important ones. A bad release planning decision

can prove to be costly for a software intensive organization. It can result in loss

of valuable customers, waste of organization resources, unsatisfied stakeholders,

revenue loss, and loss of market share [6].

Release planning is a complex decisions making problem but crucial to the

satisfaction of various stakeholders goals [6, 9]. These decisions largely depends on

availability of relevant information about the software system under development,

requires good understanding of the software features, business value, dependency

relationships, effort, stakeholders’ preferences and organisation high level business

objectives. Unfortunately, this information are rarely available or complete

due to uncertainties. These decisions are further complicated by the complex

relationships that exists between the multiple stakeholders viewpoints, competing

business objectives, budget constraints and dependencies between features.

1.1 Motivating Example

Throughout the thesis, we illustrate and compare alternative release planning

methods using an example based on a real local government project. The project

1.1. Motivating Example 3

aims to develop online services allowing local residents and businesses to perform

various tasks such as paying local taxes, reporting missed rubbish collection,

managing parking permits, submitting and responding to planning applications

online instead of over the phone or by visiting offices in person. Many residents

and businesses have expressed preferences for performing such transactions online

rather than over the phone or in person when possible. Each online interaction is

much cheaper for the local government than the equivalent interaction over the

phone or in person. The local government has identified over 20 individual services

that could be delivered online, but the local government’s Information System

group has limited resources and is only able to develop a few features supporting

these services every quarter. Different stakeholders disagree about which features

should be developed first. The project manager and software development team

need to prepare a release plan that will manage stakeholders’ expectations and

organise the development work so that it provides the most value to the local

government and its residents. The candidate services to be offered online cover

the following areas:

• Council Tax: view council tax bills, pay council tax online, set up council

tax direct debit, apply for council tax reduction, view council tax reduction

claim;

• Parking: apply for parking permit, buy visitor parking permit, pay parking

fines, contest parking fines;

• Rubbish Collection: look up rubbish collection day, report missed collec-

tion, order recycling bin;

• Housing application: submit a housing application, view housing appli-

cation status, notify of housing application status change;

• Planning Application: submit planning application, view planning ap-

1.2. State of the Art and Limitations 4

plications, comment on planning applications, create planning application

alerts

If the system were to be developed using a non-incremental delivery method, the

system will be delivered to the council after all the services have been developed.

The danger of this approach is that the council will not get any return on their

investment until all the services has been delivered and developers will have no

feedback on the effectiveness of the on-line system until it is fully developed and

deployed. However, incremental delivery will allow the services to be developed

and released in phases thereby ensuring that the council generate early value

from the project. Consequently, project managers must decide on the optimal

sequence of releasing these services in order to quickly achieve council’s cost-saving

objective at lowest investment cost and risk.

1.2 State of the Art and Limitations

The scientific and professional literature describes numerous methods to support

release planning decisions (see [9, 10] for surveys). These methods involve evaluat-

ing candidate features against a set of criteria relevant to the release stakeholders’

objectives. Commonly used criteria include development effort measured in person-

days or story points, business value measured in abstract value points (e.g. from 0

to 9) or monetary units ($, e, £, U, etc.), and stakeholders’ satisfaction measured

as abstract scores or using problem-specific metrics (e.g. the percentage of user

queries responded within a certain time). Different methods propose different sets

of criteria, different ways to elicit scores from stakeholders, and different ways

to combine the elicited scores into some overall quantity that ultimately informs

release planning decisions.

Empirical studies in industrial contexts have shown the many benefits of systematic

1.2. State of the Art and Limitations 5

release planning methods over ad-hoc release planning methods [11, 12, 13]. By

introducing structure to the decision process, release planning methods mitigate

problems encountered with ad-hoc planning methods such as the lack of clarity

about decision objectives and candidate features, the late identification of feature

dependencies, the difficulty of engaging key stakeholders in the decision process,

and the uncontrolled interference of power, politics and self-serving interests.

Furthermore, the studies show that introducing structure also reduced time and

effort involved in making decisions.

Most release planning methods ignore the inevitable uncertainty of software

development effort and value [14]. They evaluate candidate release plans as if all

features will be delivered on time according to plan. In reality, some features will

take longer to develop than predicted and, once released, may deliver more or less

business value than anticipated. Ignoring such uncertainty can lead to inaccurate,

overoptimistic, and inconsistent evaluation of release plans, which in turn can

lead to misinformed and possibly inadequate release planning decisions.

A few methods have been proposed to analyse uncertainty during release planning

[15, 16, 17, 18] but they suffer the following limitations:

1. They provide no support for reasoning about uncertainty associated with

economic value. Existing release planning approaches that provide uncer-

tainty support only consider effort uncertainty or value point uncertainty.

Uncertainty associated with financial business value has largely been ignored.

2. No evidence exists that the added complexity of analysing uncertainty leads

to better decisions than simpler methods that ignore uncertainty. Without

such evidence, the added complexity cannot be justified and release planning

methods under uncertainty are unlikely to be adopted.

3. They rely on assumptions that are incompatible with common current

1.3. Research Questions 6

industrial practices. Surveys of industrial practices indicate that most

organisations follow a release process where the release dates are fixed (e.g.

every 3 months) but the content of each release is flexible, i.e. the release

content may differ from what was planned [13]. The scope of a release is the

set of features delivered in the release. Under a fixed-date release process, if

development takes longer than anticipated, the release scope will be reduced

but the release date will not be changed. However, existing release planning

methods under uncertainty assume fixed-scope releases. Under fixed-scope

release processes, if development takes longer than anticipated, the release

scope will not be changed and the release date will be postponed until

all planned features are completed. As a result, existing release planning

methods under uncertainty can analyse uncertainty about release dates but

not about the release scopes.

1.3 Research Questions

Based on the limitations outlined above, we formulate the following research

questions:

1. How can we extend cost-value based release planning methods to analyse

uncertainty?

2. How can we analyse uncertainty during release planning in the context of

fixed-date release processes?

3. Does analysing uncertainty during release planning lead to better release

planning decisions than if uncertainty is ignored? Would different release

planning methods applied in the same context recommend the same release

plans? If not, do some methods make better recommendations than others?

1.4. Thesis Contributions 7

1.4 Thesis Contributions

The thesis contributions are:

1. Formalization and critical review of existing requirements prioritization and

release planning models. We provide a critical review of existing release

planning methods identifying the assumptions of these models and discuss

the validity of such assumptions (Chapter 2)

2. A novel cost-value based release planning method, called MOIFM, that

allows release planners to analyse uncertainty about the development cost

and economic value of candidate features in the context of the Incremental

Funding Method — an incremental cost-value based approach to software

development (Chapter 3).

3. A novel release planning method under uncertainty, called BEARS, that

allows release planners to analyse uncertainty about the development time

and economic value of candidate features in the context of fixed-date release

processes (Chapter 4).

4. Experiments on 32 release planning problems to study whether analysing

uncertainty during release planning using BEARS leads to selecting better

release plans than if uncertainty is ignored or if one assumes fixed-scope

releases. (Section 5).

The thesis will show that analysing uncertainty using BEARS leads to selecting

release plans that have higher expected net present value (a common financial

metric for comparing value flows) and higher expected punctuality (the percentage

of features delivered on time) than if uncertainty is ignored or if the release

planning model assumes fixed-scope releases.

1.5. Thesis Structure 8

1.5 Thesis Structure

The remainder of the thesis is organized as follows:

• Chapter 2 introduces key concepts of release planning and presents a critical

review of existing release planning methods.

• Chapter 3 presents a novel release planning method that extends an existing

financial method to deal with uncertainty and multiple objectives.

• Chapter 4 presents an overview of a novel release planning framework for

release planning under uncertainty when release dates are fixed and work

scope is flexible.

• Chapter 5 present empirical studies comparing BEARS with existing release

planning methods that ignores uncertainty and methods that reason about

uncertainty but uses fixed scope release.

• Chapter 6 presents summary of thesis report and future directions.

Chapter 2

Background on Release Planning

Release planning typically involves planning several months ahead and is per-

formed on coarse-grained work items such as features and epics rather than

fine-grained work items such as user stories and specific development tasks [6, 19].

In agile development, release planning is followed by more frequent sprint planning

activities [19]. A sprint is a smaller development period (e.g. 2 weeks) within a

longer release period (e.g. 3 months). Sprint planning focuses on the next sprint

only. Release planning in contrast usually involves planning multiple releases.

In this chapter, we will define basic release planning concepts, explain release

planning activities, and state of the art release planning approaches.

2.1 Release Planning Concepts

We start by defining the concepts of product backlog, release plans, effort, value,

and planning criteria. We also discuss existing approaches to estimate effort in

person hours or days and value measured either as abstract value points or in

monetary units.

9

2.1. Release Planning Concepts 10

2.1.1 Product Backlog

Release planning takes as input a backlog of work items to be scheduled for future

releases and generates as output a release plan specifying what items are scheduled

for what future releases.

Definition (Product Backlog): A product backlog is

• a set WI of work items that are candidates for future releases; and

• a relation ← ⊆ WI × WI that defines a precedence relation between work

items, i.e. wi ← wj means that work item wi must be delivered before or at

the same time as work item wj.

In some release planning methods, backlog items are called requirements [20, 21],

in others they are called features [6, 2, 19]. In this thesis, we will follow the termi-

nology of the Incremental Funding Method where work items are either features

or architectural elements [2]. Features are functional or quality improvement that

deliver value to stakeholders, while architectural elements are software elements

that do not in themselves deliver value to stakeholders but are prerequisites for

the development of valuable features.

Features in the product backlog are primarily identified through analysis of the

problem domain, analysis of stakeholders’ needs and business wide objectives [6, 21].

Early stages of software development are characterized by diverse uncertainties

about system goals and stakeholders’ needs. Stakeholders do not often know

what they need or how to communicate those needs due to lack of adequate

information at the early stage of the project. The process of eliciting these

features from stakeholders is a non-trivial requirements engineering process [22].

Precedence relations among features in the product backlog are also identified

and communicated during the early phase of requirements gathering.

2.1. Release Planning Concepts 11

C:#pay#council# tax
A:#view#council# tax#

bills

E:#report# house#
move3:#Payment# Processor

2:#Interface# to#
Residents# Repository

1:#Sign#up# and#login

B:#apply#for# council#
tax#reduction

D:#view#council# tax#
reduction# claim

Architectural#
Element Feature

requires#
(precedence# dependency)

Legend

Figure 2.1: Part of the product backlog for the local council project.

Precedence relations between features determine the relative ordering of delivering

the features to the market [23]. In addition to precedence relation, the product

backlog may also include other types of dependencies between work items such as

coupling, exclusion, and weak precedence [6, 24]. We will not use these additional

dependencies in this thesis but all techniques described in the thesis can be

extended to handle additional dependency types.

As an example, Figure 2.1 shows a small fragment of the product backlog for

our local government project described in Section 1.1. The product backlog is

composed of 19 features, 6 architectural elements, and 28 dependency links.

2.1.2 Release Plan

The main output of release planning is a release plan.

Definition (Release Plan): Given a product backlog < WI,←>, a release plan

is a partial function p : WI→ [1..H] that maps work items to future release periods.

The number of release periods H ∈ N+ in the release plan is called the planning

horizon. For a work item wi, p(wi) = h means that w is planned to be delivered at

2.1. Release Planning Concepts 12

the end of the hth release period. A release plan is a partial function because not

all work items in the backlog need to be planned for some future period. Release

plans must satisfy the precedence constraints: if wi ← wj then p(wi) ≤ p(wj).

Each release also has a planned release date, releaseDate : [1..H]→ Date. Many

organizations use a fixed release cycle where successive release dates are separated

by a constant time interval (e.g. 3 months) [9, 10, 13].

A particular case of release planning is one where the planning horizon H = 1.

Release planning in this case is a requirements prioritization problem called “Next

Release Problem (NRP)” [20, 25, 26, 27, 28, 29, 30].

2.1.3 Managing Capacity Constraints

Release planning methods must ensure that the effort required to develop the

work items planned during each release period does not exceed the development

team’s capacity. To model this constraint, the product backlog is extended with

the following information:

• effort(w) ∈ N+ denoting the estimated effort required to deliver each w ∈

WI;

• capacity(h) ∈ N+ denoting the estimated team capacity in each release

period h ∈ [1..H].

Release plans must satisfy the constraint that the effort to develop all work items

in a release period does not exceed the team capacity for that period, i.e. for all

h ∈ [1..H]: ∑
{w∈WI | p(w)=h}

effort(w) ≤ capacity(h)

2.1. Release Planning Concepts 13

Effort and capacity estimates are provided by the development team and release

planners. Effort and capacity must be expressed in the same unit, for example in

person-days or story points. Story points are popular in lean and agile software

development. They denote abstract scores on a ratio scale (e.g. a score between

0 and 100) that represent the relative effort needed to deliver a work item in

comparison to other work items (e.g. an item worth 50 story points is expected

to require 5 times the effort of an item worth 10 story points). Effort estimation

in person-days denote, as the name implies, the estimated number of person-days

required to deliver an item. Popular effort estimation techniques include planning

poker [31], planning game [32], and formal estimation models [33] are described in

the section below.

Estimating Development Effort

A recent review of effort estimation techniques [34] described existing approaches

for effort estimation in software development. One such approach is Barry Boehm’s

constructive cost model (COCOMO) [35]. COCOMO [35] requires developers

to estimate the size of features either in lines of code or function points. Effort

estimates are subsequently computed through application of series of formulas on

project related data. In an agile environment, team estimation game [31], planning

poker [36, 23], and planning game [32] are commonly used effort estimation

approaches [31, 36].

Team estimation game is a two-staged approach that allows development teams to

build estimates while learning about the work before them. Team estimation game

recognizes that developers find it easier to compare the complexity of features

with one another even without complete information about the features. After

sorting the features into various level of complexity, the team can then assign

effort estimate to the features [31, 23].

2.1. Release Planning Concepts 14

In planning game, stakeholders spend a day or two-day sessions writing story

cards to describe what features they want while developers assign effort estimates

to those features. Planning game is based on the underlying assumption that

the main stakeholders are physically available for the meeting and are able to

communicate their needs and priority accurately. Stakeholders select the most

promising story cards for the next release based on perceived value of the story and

add it to the board until the estimated total effort matches the release capacity.

Release planners use these estimates to develop an iteration plan for the release

[32].

Planning poker is a consensus-based agile estimation technique [23, 36] used for

estimating effort and value of software work items. In a planning poker session,

each developer has a deck of planning poker cards labeled with a number from

the Fibonacci sequence between 0 and 100 i.e. 0, 1, 2, 3, 5, 8, 13, ... , 100. The

product owner describes a work item to the developers and initiates discussion

in order to get clarity about the work item [37, 36]. After discussion, all the

developers reveal their effort estimate for the work item by choosing card. If all

developers assigned the same number, that becomes the estimate of the effort for

that work item. However, if the number assigned are different, the developers

discuss their estimates with justifications for their choice. After the discussion,

the developers select another card to re-estimate the work item based on the new

information. The planning poker process is repeated until the developers reach a

consensus estimate about the work item or else estimation of the work item is

postponed until more information become available.

For example, Table 2.1 shows effort estimates in person-days for work items in

the product backlog of our motivating example in Section 1.1. The effort required

to develop work item C is estimated as 9 person-days. If the team capacity for

each release is 30 person-days, then sum effort of all work items assigned to each

2.1. Release Planning Concepts 15

Work Items Effort
A: View council tax bills 4
B: Apply for council tax reduction 9
C: Pay council tax 9
D: View council tax reduction claim 3
E: Report house move 3
F: Apply for parking permit 3
G: Buy visitor parking permit 3
H: Pay parking and traffic fine 5
I: Look up rubbish collection day 6
J: Report missed rubbish collection 9
K: Order recycling bin 7
L: Submit housing application 7
M: Report accommodation problem 5
N: Submit planning application 5
O: Comment on planning application 8
P: Create application alert 6
Q: View planning applications 7
R: Contest parking fines 3
S: Set up council tax direct debit 4

Table 2.1: Example effort estimation in person-days.

release must not exceed 30 person-days.

Constraints on other resources such as personnel, equipment, and capital can be

modelled in the same way by specifying the resource requirements for each work

item and the resource capacity during each period.

A well-known problem in managing capacity constraints is the difficulty of pre-

dicting development effort: effort estimates are often optimistic and ignore the

inevitable uncertainty of software development tasks [38]. Ignoring such uncer-

tainty, or at least not describing it explicitly, prevents release planners from

analysing the likelihood and impacts of late deliveries. We introduce a Bayesian

approach for eliciting effort uncertainty in Chapter 4.

2.2. Optimizing Value Points 16

2.1.4 Value

Software systems are built to deliver value to their stakeholders [39]. Value is

defined as a measure of how much a work item w is worth to a stakeholder or

group of stakeholders. The value of items in the product backlog, often derived

from organization business objectives is one of the crucial factors that informs

release planning decisions [40, 41]. Every work item has a value and this value

is perceived differently by each stakeholder. The value of software work items

can be expressed in financial terms [2, 42] or using value points [8, 25]. Release

planning approaches optimizing value points are explained in Section 2.2 while

approaches optimizing financial value are explained in Section 2.3.

2.2 Optimizing Value Points

To help release planners identify which release plans are likely to deliver most

value, many release planning methods rely on assigning value points to work items.

Value points are elicited by asking business stakeholders or product owners to

provide an estimate of their perceived value of each work item. Value points

estimation is often carried out using an ordinal scale e.g. a rating from 0 to 9. For

example, a stakeholder might assign value point 0 to work item w if perceived to

have no value and 9 if perceived to have high value relative to other work items.

In a case where the project has only one stakeholder, the value point of each

work item is the value assigned to the work item by that stakeholder. However,

when multiple stakeholders are involved in the project, each stakeholder group is

assigned a weight that denotes his/her level of importance to the business and

the value point of a work item is computed as the weighted sum of the value

points assigned by the different stakeholders [6, 7, 25, 27, 43]. Like story points,

value points are abstract scores to compare the relative values of candidate release

2.2. Optimizing Value Points 17

plans but they do not provide concrete value measures that can be observed in

the world (e.g. financial gains, number of users of online services).

The simplest approach in optimizing value points consists in extending the product

backlog such that each work item w has a value point score, noted valuePoint(w),

denoting the relative value of w in comparison to other work items. The ‘Business

Value’ attribute used in project management systems such as JIRA and Visual

Studio Team Services are typical examples of such value points. In the next

section, we briefly describe software release planning approaches that rely on value

points optimization to make release planning decisions.

2.2.1 Ad Hoc Release Planning

Release planning based on ad hoc methods focuses on human intuition, capabilities

and communication to decide which set of work items to be included in the next

release [21]. Comparative analysis of existing release planning methods has shown

that most organizations select work items informally using ad hoc methods [44, 45].

Priority Quadrant is one of the popular ad hoc release planning approach that

allows release planners to identify high valued work items. Priority quadrant is a

lean feature prioritization approach where the value points and effort estimates

are used to plot a 2-dimensional graph. Figure 2.2 shows a value quadrant for

classifying work items into its value category. The work items in the upper left

quadrant are the most valuable items because they have high value points and

require relatively low effort to develop. Items in the lower right quadrant are the

least valuable because they have low value and require relatively high effort to

implement. Items in the upper right quadrant are very valuable but require high

effort to implement them. Finally, items in the lower left quadrant have low value

and implementation effort. Release planners use the information obtained from

2.2. Optimizing Value Points 18

Figure 2.2: Work items value quadrant.

the priority quadrant to support decisions about what work items to include in

the next release.

Ad hoc release planning methods suffer the following limitations: (i) they are not

based on sound models and methodologies [8, 46, 47], (ii) they do not follow a

systematic process to elicit work items dependencies and have no explicit constraint

and optimization criteria [21], and (iii) they are limited to planning for just the

next release [46].

2.2.2 Greedy Approaches

Greedy release planning approaches rank work items in the backlog using value

point and/or effort estimates of the work items. Basic greedy approach involves

ranking work items in the product backlog using their value points such that work

items with more value points are ranked before those with fewer value points.

Release plan is then generated by selecting items from the prioritised backlog and

2.2. Optimizing Value Points 19

assigning them to the release until capacity for the release is reached [6].

Value-effort is a greedy lean prioritization approach that helps planners in or-

ganizing and prioritizing the product backlog using story point and value point

estimates. Given that valuePoint(w) is the value point of work item w and

effort(w) is the effort required to develop w, then the value-effort ratio of w,

denoted valueRatio(w) is defined as:

valueRatio(w) =
valuePoint(w)

effort(w)
(2.1)

Release planners can simply rank work items in the product backlog based on the

value-ratio score of the items using Eq 2.1. Work items at the top of the ranked

backlog can then be selected by developers for next release. For example, Table

2.2 shows the ranking of work items in the product backlog of our motivating

example (see Section 1.1) based on value-effort ranking. Applying this strategy in

a release means that the highest ranked work items are developed first before the

lower ones until the release capacity is reached. In Table 2.2, if the team capacity

for the next release is 20 person-days, then F,D,G,N and R will be included in

the next release where F is developed first, then D and so on.

Greedy method is short-sighted because it makes decisions based on short-term

value that might not be optimal in the long run while ignoring other important

factors such as precedence relationship between work items, uncertainty of esti-

mates etc. For example given three work items A, B, and C with value points 6,

7, 8 and effort estimate of 50, 30 and 100 hours respectively. Assume the capacity

for the next release is 100 hours. A greedy heuristic will assign C to the next

release because it has the highest value. However, an optimal solution for the next

release would have been assignment of A and B with total value of 13 to the next

release. We conclude that greedy release planning is not suitable for planning

2.2. Optimizing Value Points 20

Work Item Effort Value Point value-effort ratio
F 3 9 3.0
D 3 7 2.33
G 3 6 2.0
N 5 9 1.8
R 3 5 1.67
E 3 5 1.67
M 5 8 1.6
H 5 7 1.4
A 4 5 1.25
I 6 7 1.16
Q 7 8 1.14
C 9 9 1.0
J 9 8 0.89
O 8 7 0.88
P 6 5 0.83
K 7 5 0.71
L 7 5 0.71
B 9 6 0.67

Table 2.2: Ranking work items by value-effort ratio

where optimality is a major criteria.

In the next few sections, we present a review of systematic release planning

approaches with more sophisticated optimization techniques.

2.2.3 EVOLVE Release Planning Approaches

A number of release planning approaches using value points have been proposed

over the years. Recent literature survey of release planning methods showed that

16 out of 24 reviewed approaches belong to EVOLVE family models [9]. In this

section, we describe recent EVOLVE family models, variants of the model and

discuss limitations of using value points in planning software releases. EVOLVE-II

[6] is an improvement of the EVOLVE [21] proposed to combine capabilities of

human experts and specialized optimization algorithms. EVOLVE-II models the

release planning process as consisting of multiple stakeholders, multiple planning

2.2. Optimizing Value Points 21

criteria, multiple resources and different constraints. The parameters in EVOLVE-

II are defined below:

• < WI ,←> is the product backlog, where each work item w ∈ WI is a

candidate for the next release;

• S is the set of stakeholders whose work items are to be satisfied in the next

release;

• H is the number of releases also called release horizon;

• C is the set of planning criteria

• weight(c) is the weight of criterion c ∈ C

• weight(s) is the weight of stakeholder s ∈ S;

• weight(h) is the weight of release h ≤ H;

• valuePoint(w) is the value point of work item w ∈WI;

• effort(i) is the effort required to implement work item w ∈WI ;

• capacity(h) is the available effort for release h ∈ H;

• score(w, s, c) denotes the score assigned by stakeholder s to work item w

for criterion c

Where all the weighting factors and score are defined using value points.

The value point of a work item w is the weighted sum of the stakeholders assigned

scores. The formula is given by:

valuePoint(w) =
∑
c∈C

weight(c)×

(
∑
s∈S

weight(s)× score(w, s, c))
(2.2)

2.2. Optimizing Value Points 22

In a release plan p, the value points of release h is the sum of the value points of

all work items planned for that release:

valuePoints(p, h) =
∑

{w∈WI | p(w)=h}

valuePoint(w) (2.3)

The value points of release plan p is the weighted sum of the value points in each

release:

valuePoints(p) =
H∑
h=1

weight(h)× valuePoints(p, h) (2.4)

where weight(h) denotes the weight given to value points in release h. The release

weights, to be specified by the release planners, denote the relative importance

of value points delivered in earlier releases over those delivered in later releases.

Formally, the weights define marginal rates of substitution between value points

in different releases. For example, specifying weights 5, 3, 1 for the first three

releases mean that 1 value point in the first release is equivalent to 5/3 value

points in the second release and 5 points in the third release.

The objective of EVOLVE-II method is to maximize valuePoints(p) subject:

∑
{w∈WI | p(w)=h}

effort(w) ≤ capacity(h) (2.5)

The effort constraint guarantees that the sum effort of work items assigned to

a release will not exceed the available capacity for the release. In addition to

effort constraint, EVOLVE-II considers technical and precedence relationships

as well. EVOLVE-II then uses an optimisation algorithm to shortlist the top 5

release plans that maximize value points (Eq. 2.4) while satisfying the capacity

constraints (Eq. 2.5). Release planners can then inspect that shortlist to select

their preferred release plan.

2.2. Optimizing Value Points 23

Work Item Savings Frequency of Use ValuePoint
Residents Staff Residents Staff

A 6 3 5 9 5
B 4 8 7 5 6
C 9 8 6 7 7
D 7 8 8 5 7
E 3 7 3 4 4
F 9 9 9 7 8
G 4 8 2 3 3
H 6 8 6 8 7
I 7 8 8 2 6
J 8 7 2 8 5
K 3 9 5 5 5
L 2 9 8 9 7
M 8 8 3 6 5
N 9 9 6 4 6
O 6 8 3 3 4
P 5 6 7 5 6
Q 8 7 8 6 7
R 7 3 2 5 4

Stakeholders Weights: Residents = 0.6, Staff = 0.4
Criteria Weights: Frequency = 0.3, Savings = 0.7

Table 2.3: Eliciting value points in EVOLVE II.

For example, Table 2.3 illustrates how EVOLVE-II would elicit value points for the

work items in our motivating example. The two criteria of interests are ’Frequency

of Use’ denoting how often a service is used and ’Savings’ denoting how much

savings would be made by delivering this feature. The two stakeholders’ groups

are the local council residents and staff. Each stakeholder group is asked to score

each work item against each criteria on a scale from 0 to 9. The work items’ value

points are then computed according to Equation 2.2. Figure 2.3 shows screenshot

of release plans shortlisted by EVOLVE-II approach on our motivating example.

The figure was generated using ReleasePlanner tool developed by the author of

the EVOLVE-II approach [1].

2.2. Optimizing Value Points 24

Figure 2.3: Release plan generated by ReleasePlanner web tool [1]

EVOLVE-II also supports optional post-optimization analysis such as stakeholder

excitement analysis and what-if analysis [6]. Stakeholder excitement analysis

consist in predicting the excitement or disappointment of individual stakeholder

for a proposed plan. What-if analysis is one way of studying the impact of

future scenarios on the proposed plan. What-if analysis involves measuring the

impact of each input parameter on the proposed plan by changing each parameter

while keeping the others constant. EVOLVE-II is supported by a web tool called

ReleasePlanner [1]. EVOLVE-II has reportedly been used in industrial context

for planning software releases [6].

EVOLVE-II model suffers few limitations; (i) it optimizes single objective only

(ii) it lacks support for reasoning about uncertainty associated with effort and

value estimates. Optimizing release plans using single objective is not sufficient

because stakeholders’ needs are usually conflicting with each other [25]. The

conflict in stakeholders’ objectives makes it difficult to combine these conflicting

objectives into one single objective function because each objective measures

different properties of the plan. Even though these objectives are weighted in the

objective function, it is difficult to determine the weight of each objective without

biasing the search to certain region of the solution space.

2.2. Optimizing Value Points 25

Ignoring uncertainty in estimation of work items effort and value can have huge

consequences on the success of the project. Underestimating work items effort

might result in effort overrun and missed deadline while overestimating value

might result in releasing work items of low value before more valuable work items

[48]. Variants of EVOLVE-II method that provide little support for reasoning

about uncertainty are described in Section 2.2.5.

The following sections describe extensions of EVOLVE-II that deal with multiple

objectives and with uncertainty respectively.

2.2.4 Multi-objective Release Planning Approach

Release planning decisions often involves having to take into account multiple

stakeholders with conflicting objectives. Methods have been proposed to extend

EVOLVE with multi-objective optimization.

Zhang et al [25] formulated next release planning as a multi-objective optimization

problem called MONRP (multi-objective next release planning). MONRP is a

variant of EVOLVE-II where planning horizon H = 1, only one planning criteria

is considered and work item effort is called cost and represented using value point.

Given a product backlog, set of stakeholders, and release capacity as defined in

Section 2.2.3, MONRP extends EVOLVE-II by optimizing multiple objectives and

define the following parameters:

• weight(s) ∈ [0, 1] is the importance of stakeholder s ∈ S to the organization,

such that
∑

s∈S weight(s) = 1;

• score(w, s) ∈ N+ is the value point assigned to work item w by stakeholder

s, such that score(w, s) > 0 if stakeholder s desires the delivery of work

item w in the next release and zero otherwise;

2.2. Optimizing Value Points 26

The value point of a work item denoted valuePoint(w) is defined as the weighted

sum of the values assigned to w by the stakeholders:

valuePoint(w) =
∑
s∈S

weight(s)× score(w, s)

Let ~x = {x1, x2, · · · , xn} ∈ [0, 1] be the decision vector representing a release plan

p, where decision variable xi = 1 if work item w is selected in the next release and

0 otherwise [25]. The objectives of the optimization problem is to maximize value

and minimize cost. The objective functions are defined as:

Maximize valuePoints(p) =

|WI|∑
i=1

valuePoint(wi)× xi

Minimize cost =

|WI|∑
i=1

costi × xi

Subject to
|WI|∑
i=1

costi.xi ≤ capacity

MONRP uses multi-objective meta-heuristics such as NSGA II [49], SPEA [50],

and Pareto GA [51] to generate a Pareto front of solutions that optimizes the

objective functions. The authors reported that NSGA II [49] algorithm perform

best in term of performance and quality of solutions. Unlike EVOLVE-II, where

a single release plan can dominate other plans, MONRP returns a set of Pareto

optimal solutions that optimizes the conflicting objectives.

Zhang et al [26] extended MONRP to find an optimal set of work items that

balances initial set of requirements to be selected against future needs. In this work,

each work item is assigned an importance value called today value by stakeholders.

This is based on the assumption that this value would change to a certain future

value. The model therefore seeks to balance the organization’s today and future

2.2. Optimizing Value Points 27

needs using multi-objective optimization. Zhang et al [52] further improves the

model by proposing an approach that tackles interactions and dependencies among

work items. This extension considers work items dependencies and reported the

effect of the relationships on performance of various search based algorithms.

Saliu and Ruhe [53] also proposed a multi-objective decision support model called

BORPES that represents release planning as a bi-objective problem that seeks to

(i) maximize the business value and (ii) maximize the synergy between work items

from effort saving perspectives. BORPES performs impact analysis in order to

identify the elements of the existing system that will be affected by a change and

assigns work items to releases based on feature coupling in the solution domain

(SD-coupling) and work item business value.

Argawal et al [54] proposed a theme based release planning approach as an

extension to BORPES [53]. The motivation behind theme based approach is

that certain work items would have higher value if they are released along with

set of inter-dependent work items. Release planning decisions in theme-based

approach is made by considering trade-off between value of individual work items

and synergy effects among semantically related work items. Karim et al [55]

proposed further improvements by formulating theme based release planning as a

bi-objective optimization problem.

The multi-objective release planning approaches discussed in this section solved

the concern of single objective optimization in EVOLVE-II method. But they still

lack support for reasoning about uncertainty associated with work items, delivery

date, effort and value estimates. In the next section, we explain model variants

that extends EVOLVE-II with uncertainty.

2.2. Optimizing Value Points 28

2.2.5 Optimizing Value Points with Uncertainty

Estimation techniques used in EVOLVE-II and variants discussed so far may

result in inaccurate estimates of effort or value. Few release planning methods

address this problem by estimating effort as probability distributions that express

such uncertainty [15, 16, 17]. For example, some methods assume triangular

probability distributions inferred from eliciting optimistic, pessimistic, and most

likely efforts for each work item [15, 17]; another method assumes lognormal

probability distributions [16]. Other methods evaluate release plans by computing

the probability that the next release is delivered by a certain date [16, 17]. In the

remaining part of this section, we briefly discuss release planning approaches that

reason about uncertainty.

Ruhe et al [15] proposed EVOLVE+ to extend EVOLVE with uncertainty and

risk analysis. EVOLVE+ incorporates feedback from the use of EVOLVE in the

industry by modelling effort as a probability distribution and assigning risk value

for each work item. EVOLVE+ uses triangular distribution to represent effort

uncertainty associated with each work item. Additionally, a risk value is assigned

to each work item and a risk threshold is defined to ensure that the accumulation

of risk by work items assigned to a release does not exceed the threshold. Given

work items’ effort probability distributions, EVOLVE+ therefore evaluates release

plans by optimizing weighted benefit and probability that the plan delivers all

features on time [15]:

P (∀h ∈ [1..H] :
∑

{w∈WI | p(w)=h}

effort(w) ≤ capacity(h)) (2.6)

EVOLVE+ handles only effort uncertainty but still ignores value uncertainty

which is of more importance to business stakeholders.

S-EVOLVE* [56] extends EVOLVE [21] by the(i) proactive analysis of risk involved

2.2. Optimizing Value Points 29

in adding new work items to the existing system and (ii) identifying the importance

of estimating integration effort for each work items based on system characteristics.

S-EVOLVE* [56] focuses on using historical defect data about work items in the

existing system to estimate the risk of adding new work items. In addition to the

stakeholders’ satisfaction objective, this approach considered risk as an objective

during the optimization. In addition to the EVOLVE-II model, S-EVOLVE*

defines the following parameters:

• Let C = {C1, C2, · · · , Cv} be the set of interacting components in the

existing system. Each work item wi consist of one or more components.

Hence Let φ(i) ⊆ C be the set of components in work item wi.

• Let the health of component Ct during specific period p denoted as Hp(Ct) be

defined as the ratio of the number of defects affecting Ct and the total defects

during the period. Period is defined here as the time between successive

releases. Hp(Ct) is a probability value, such that 0 < Hp(Ct) < 1;

• Let H(Ct) be the weighted average of health of component Ct over all

periods.

Hence, the objective to minimize total risk likelihood of developing work item wi

in the new release was added as a new objective,

Minimise R(wi) = 1−
m∏
t=1

(1−H(Ct))

However, the risk evaluation method used in this approach is solely dependent on

the availability of historical defect and change data.

Risk Driven Method for eXtreme Programming (RDMXP RP) [57] is a release

planning method that allows developers to create a set of feasible release plan

from the project profiles, analyze risk associated with each of the plan and allow

2.2. Optimizing Value Points 30

stakeholders to choose the best plan based on the result of the risk analysis.

RDMXP RP considers factors such as cost and value of work items, and work

items dependencies.

REPSIM-1 [58] is a simulation model that can be used to perform risk analysis

on existing release plans. REPSIM-1 uses Monte-Carlo simulation to perform

sensitivity analysis on existing release plans to detect possible planning errors.

REPSIM-1 was aimed to help decision makers prepare for potential risk and allow

manual re-adjustment of plan for unexpected changes in requirements or decision

parameters. REPSIM-2 [59] combines the risk analysis capability of REPSIM-1

with dynamic re-planning of release plans based on the outcome of the sensitivity

analysis.

Fuzzy Model for Dependence constraints in Release planning (FMDCRP) [60,

61] approach builds on existing release planning methods [21, 62] by handling

uncertainty using fuzzy logic. This approach models the uncertainty associated

with structural dependency constraints between requirements using fuzzy logic.

The satisfaction of dependency constraints in a solution plan was measured by

the distance between the solution and an ideal plan. However, FMDCRP focuses

only on structural uncertainty and ignores effort and value uncertainty.

Lingbo et al. [28] and Paixao et al. [29] introduced uncertainty reasoning and risk

quantification to MONRP by proposing a robust optimization model that uses

search based optimization and Monte Carlo simulation to find trade-off solutions

with respect to risk, cost and revenue. The authors reported that the robust

models are able to generate solutions that are robust and resilient under different

scenarios.

Lingbo et al. [43] proposed a decision analysis framework called METRO incor-

porating multi-objective simulation optimization techniques, exact optimization,

and uncertainty analysis to systematically aid decision support and analysis in

2.2. Optimizing Value Points 31

the presence of uncertainty. METRO framework focuses on reducing algorith-

mic uncertainty that originates from simulation of uncertain parameters during

optimization. METRO uses the same value metric as MONRP but represents

cost in financial unit unlike MONRP that uses abstract score to represent cost.

Using financial metric to estimate cost can be argued to be better than abstract

score but development teams in practice measure cost in term of effort required to

develop a work item while financial budgets are used more as a project constraint.

2.2.6 Other Variants of EVOLVE-II methods

F-EVOLVE* [63] is a financial value-based software release planning method that

extends EVOLVE [62] to accommodate financial valuation in the form of net

present value. This method differs from the basic EVOLVE model in that it uses

both stakeholder perceived value and actual financial value of the work items

as value measures unlike EVOLVE that uses only stakeholders’ perceived value.

However the values of the work items are modeled as a single cash value rather

than a stream of value over a specified period of time.

Albourae et al. [64] proposed a re-planning process that compares old work items

to newly added work items in order to re-prioritize the work items and select the

most promising ones that accommodates changes in market demands.

Post-release Analysis of Requirements Selection Quality (PARSEQ) [65] aims at

finding improvement suggestions for release planning activity in a market driven

software development. PARSEQ performs requirements sampling, re-estimation of

cost and value, root cause analysis, elicitation of improvements and prioritization

of improvements.

Regnell et al. [66] proposed an approach to extend EVOLVE using constraint solver

for the optimization phase rather than evolutionary method used in EVOLVE.

2.2. Optimizing Value Points 32

Regnell et al. formulated the release planning problem as a constrained satisfaction

problem and argued that using a constrained satisfaction problem (CSP) provides

a more powerful, generic and flexible way of expressing prioritization with problem-

specific understanding rather than focusing on algorithms. Experiments were

conducted to compare the CSP approach with EVOLVE and the authors claimed

that CSP is computationally stable, problem focused and more generic compared

with EVOLVE. The major limitation of the CSP approach is that it requires

planners to have knowledge of constrained solving and its not scalable.

Finkelstein et al [30, 67] introduced the concept of fairness in requirement analysis

and optimization for analysis of trade-offs between different stakeholders’ notion

of fairness in requirements assignment where there are multiple stakeholders with

potentially conflicting requirements preference and different views about the notion

of fairness. In addition to the optimization of customer satisfaction and cost,

fairness is added as an objective. The notion of fairness was represented by the

number of work items fulfilled for each customer, the value and cost of the work

items fulfilled for each customer. Given product backlog, value, cost and capacity

as defined previously, the notions of fairness are defined as follows;

1. Fairness on absolute number of fulfilled work items: Let NA =

{NA1,NA2, · · · ,NAm} denote the number of fulfilled work items for each

stakeholder, where NAj = |WIj|. Hence, fairness is defined as the maxi-

mization of the average number of fulfilled work items for all stakeholders

and minimization of the standard deviation of the fulfilled work items for

each stakeholder.

Maximize NA

Minimize σ(NA)

2. Fairness on absolute value: Let VA = {VA1,VA2, · · · ,VAm} denote the

2.2. Optimizing Value Points 33

fulfilled value for each stakeholder, where VAj =
∑n

i=1 value(j, i)× xi. The

fairness on absolute value of fulfilled work items is defined as:

Maximize VA

Minimize σ(VA)

3. Fairness on the percentage of value and cost: Let Cost C =

{Cost C1, · · · ,Cost Cm} denote the cost of fulfilled work items for each

stakeholder and VP = {VP1,VP2, · · · ,VPm} denote the percentage of ful-

filled work items value for each stakeholder, where

Cost Cj =
n∑
i=1

costi × xi, if ri ∈ Rj

VPj =
VAj∑

i:ri∈Rj
value(j,i)

× 100%

Fairness on percentage of value and cost of fulfilled work items is obtained

by optimization of these functions:

Minimize σ(Cost C)

Minimize σ(VP)

Maximize VP

Pitangueira et al [27] extended MONRP [25] by proposing a risk-aware approach

called (RA-MONRP) to address problem faced by risk-aware stakeholders when

making release planning decisions. In addition to optimizing cost and average

stakeholders’ satisfaction objectives, RA-MONRP optimizes the dissatisfaction

risk of the stakeholders. The dissatisfaction risk in RA-MONRP is a measure of

the variance in the values assigned by different stakeholders to each requirement.

2.2. Optimizing Value Points 34

RA-MONRP is similar to fairness approach proposed by Finklestein et al [30] but

different in the optimization approach adopted. The first phase of RA-MONRP

uses MONRP to obtain the Pareto front and then allow stakeholders to select

some point in the Pareto front called region of interest (ROI). These ROIs are

encoded as boolean satisfiability problem and satisfiability modulo theory (SMT)

solver is executed to obtain solutions around the region of interests. RA-MONRP

suffers important limitation in that the approach is not scalable i.e. as the number

of requirements increases, SMT solver become inapplicable.

2.2.7 Limitations of Value Point Optimization in Release

Planning

Optimizing value points in software release planning is a simple and convenient

way for stakeholders to prioritize work items to be included in software releases.

However, release planning approaches adopting value point prioritization scheme

have limitations. The following are the limitations of using value points for

optimizing release plans:

1. The validity of the elicited scores and the resulting evaluation of

release plans’ values should be treated with caution. Value points

are abstract scores used to compare the relative values of candidate release

plans but they do not provide concrete value measures that can be observed

in the world (e.g. financial gains, number of users of online services).

Eliciting numerical inputs for the various weights and scores is a major

difficulty and limitation of these methods. In Equation 2.2, the weights and

scores correspond to marginal rates of substitutions. Eliciting such rates of

substitutions is far from trivial and one can question whether the elicited

numbers (such as those in Table 2.1.4) accurately reflect the stakeholders’

2.2. Optimizing Value Points 35

and release planners true preferences. With inaccurate inputs, the evaluation

and ranking of release plans may also be inaccurate.

Value points cannot be directly mapped with business objectives [40, 68].

For example, we see from the Figure 2.3 in Section 2.2.3 that the quality

of release plans are compared based on the value points of the plan. But

the relationship between the value points and the actual objectives of the

project as described in Section 1.1 is not clear. The main objective of the

local council is to reduce operational cost through the usage of the web

platform. How much operational cost will be saved by the council if plan

with value points of 297 is selected? There is no relationship between the

value points and the actual objective of the project. Planning software

releases using economic objective looks more accurate than stakeholders score

on a nine-point scale but economic value are hard to get and uncertain in

their nature [6]. F-EVOLVE* [63] is the only EVOLVE model that uses

financial metric but this value is treated as a one-time income rather than

a stream of revenue. We introduce release planning approaches optimizing

economic value in Section 2.3.

2. They have little support for dealing with uncertainty. The EVOLVE-

II method and some of its variants assumed that business stakeholders and

developers can provide accurate estimate about their perceived value and

development cost of the feature respectively. However, these estimates cannot

be made accurately, especially at the early stage of the project when little

information is known about the project goals. Few extensions of EVOLVE-II

method [15, 57, 17, 16] provide support for analysing uncertainty but most of

these methods focused on effort uncertainty while ignoring value uncertainty.

The difficulty for these methods to model value uncertainty originated from

the fact that value point metric used is not derived from real observable

project goals, therefore communicating uncertainty about these value points

2.3. Optimizing Economic Value in Release Planning 36

is not justifiable. Few approaches that models uncertainty focuses on some

type of uncertainty while ignoring others. Lingbo’s [43] exact optimization

method focuses on algorithmic uncertainty that originated for MC simulation

and Paixao [29] method focuses more on robustness of solutions. We propose

release planning approaches that uses Bayesian methods to reason about

uncertainty of experts in Chapter 4.

In the next section, we’ll explain release planning methods that use economic

value rather than value points for optimizing software release plan.

2.3 Optimizing Economic Value in Release Plan-

ning

Even though value points allow planners to compare relative value of work items,

they do not provide concrete value measures that can be observed by business

stakeholders in the real world. An alternative to estimating value is to measure

the value in monetary units using standard financial analysis of cost, benefits

and return on investment [69, 2, 70]. Denne at al [2] presented the first release

planning method that uses economic metrics for evaluating releases plans [2]. In

this section, we will explain release planning methods that use economic value for

value estimation and outline popular concerns resulting into low adoption of these

methods.

2.3.1 The Incremental Funding Methodology (IFM)

Incremental funding method (IFM) [22, 2] is an economic approach to release

planning in which release planning decisions are economically driven. IFM de-

2.3. Optimizing Economic Value in Release Planning 37

composes the software system into units of customer valued work items known as

Minimum Marketable Feature (MMF) and Architectural Elements (AE) which

are to be developed, released and evaluated over a specific period of time. IFM

advocates that a software development project can be optimized for financial

performance by defining it in terms of MMF s and prioritizing the release schedule

of the MMF s. The effect of prioritized release schedule can be observed in a

project where the investment fund for financing the project is limited. A carefully

prioritized release schedule can enhance the project cash flow so that revenue can

be generated early in the project to offset the development costs of subsequent

software features.

Figure 2.4 described various states of a software project according to IFM. The

software project begins with periods of cash investment by the stakeholders.

After initial periods of investment, the initial set of work items in the early

release should start generating revenues and these revenues can be used to further

support development of the remaining features. The project is said to achieve

a self funding status when revenues from previously released work items are

sufficient in supporting development of new features without additional funding

from the stakeholders. Subsequently, as more valuable work items are developed

and released, the project enter a repayment period during which stakeholders

are refunded their initial investment capital. After the repayment period, the

project should attain a break-even point. Break-even point is achieved when the

investment cost is equal to total revenue generated i.e. net present value is zero.

The stakeholders can then enjoy a period of profit generation by the software

project afterwards.

Unlike methods described in Section 2.2, IFM does not make any consideration of

resource constraints. Instead, it assumes the development team can only work

on a bounded number of work items per period (e.g at most 2 work items per

2.3. Optimizing Economic Value in Release Planning 38

Figure 2.4: Incremental Funding Method Ideal Project [2]

period). IFM defined the following parameters,

• Let WI = {w1, w2, · · · , wn} be the set of work items in the product backlog

to be assigned to H subsequent releases;

• Let cashFlow(wi) be the projected cash flow of work item wi, then cashFlow(wi)

is a function cashFlow(wi) : [1..L]→ R such that L is the investment horizon

(L ≥ H), i.e. the period over which the total value of the release plans will

be measured, and cashFlow(wi, l) denotes the projected cost or revenue of

wi during the lth period after the start of its development. For example,

cashFlow(wi) = [−2000, 1000, 1000, 1000, 1000, 1000] means that developing

wi will take one period at cost of £2,000 and that once released w is projected

to bring £1,000 per period for the next five periods.

In IFM, the economic value of a particular work item wi is dependent on when it

is developed. Therefore, let value(wi, h) denote the value of wi if its development

starts in release period h. value(wi, h) is defined as:

2.3. Optimizing Economic Value in Release Planning 39

Period

Work Item 1 2 3 4 5 6 7 8 9 10 11 12

A -80 10 10 12 13 14 15 15 15 15 15 15
B -100 -50 20 20 35 40 40 40 45 50 50 50
C -100 10 15 20 25 30 30 30 30 30 30 30
D -150 -100 40 45 50 50 50 50 50 50 50 50
E -100 -100 30 34 35 40 45 45 47 50 50 50
F -100 -100 25 35 40 45 50 50 50 50 50 50
G -120 20 24 30 36 40 45 45 45 45 45 45
H -150 20 25 30 30 35 35 40 40 40 40 40
I -120 20 20 25 25 30 35 35 35 35 35 35
J -120 -100 20 30 45 50 50 55 55 60 60 60
K -150 -150 40 50 55 60 70 75 80 80 80 80
L -180 25 35 35 40 40 45 50 65 65 65 65
M -200 -150 50 55 55 55 57 60 65 70 70 70
N -100 18 20 25 25 25 25 25 25 25 25 25
O -140 25 25 30 32 35 40 40 40 40 40 40
P -200 15 15 18 25 35 35 35 35 35 35 35
Q -200 -150 25 25 30 33 35 40 40 40 40 40
R -300 30 35 35 38 40 45 45 45 45 45 45
1 -100 0 0 0 0 0 0 0 0 0 0 0
2 -150 0 0 0 0 0 0 0 0 0 0 0
3 -120 0 0 0 0 0 0 0 0 0 0 0

Table 2.4: Local Council Web Application revenue projections (in Thousand
Pounds £).

value(wi, h) =
L∑
l=h

cashFlow(wi, l − h+ 1)

(1 + r
100

)l
(2.7)

where r is the discount rate and L is the investment horizon.

Net present value (NPV) is a standard economic metric for comparing the value

of project investment taking into account the time value of money given by the

discount rate (this allows one to take into account that £100 today are worth

more than £100 in a year). Note that the discount rate plays a similar role to

the release weights in the previous sections in allowing one to compare values

delivered at different times. But unlike release weights, there’s no need to elicit

for discount rate because discount rate of an economy is publicly available. For

2.3. Optimizing Economic Value in Release Planning 40

example, assume the discount rate per period is 2% and the development of B

starts in the second period, The time value of B is computed as,

value(B,2) =
12∑
l=2

cashF low(B, l + l)(
1 + 2

100

)l = 143.42

In the IFM method, value is more easily defined over development plans than

over release plans. A development plan is a partial function p : WI→ [1..H] that

maps work items to the period in which their development starts. A development

plan’s cash flow is a function planCashFlow(p) : [1..L] → R computed from the

work items’ projected cash flow such that planCashF low(p, h) is the sum of all

work items’ costs and revenues whose development started in period h. The main

objective of the IFM method is to maximize the net present value. The Net

Present Value (NPV) of a development plan p is then defined as:

NPV(p) =
H∑
h=1

planCashFlow(p, h), (2.8)

where we have that:

planCashFlow(p, h) =
∑

wi→h:wi∈p

value(wi, h) (2.9)

IFM uses greedy heuristics with look-ahead to search for development plans that

optimize NPV. The output of the IFM is rank of best development plans with

highest NPV. Further analysis can be performed on these shortlisted plans to

compute break-even period, investment cost, and self-funding status. Break-even

period is the period in the analysis where net present value is zero. Investment

cost of a plan is the maximum amount needed to fund the project. A project

attains self-funding status when revenue from previously delivered features are

enough to cover the cost of the remaining features to be developed. An illustration

2.3. Optimizing Economic Value in Release Planning 41

of applying IFM to real software project is described next.

For example, to apply IFM to our local council example in Section 1.1. Assume

that experts in the business domain estimated development cost and amount of

money to be saved per period from the development of each work item as shown in

Table 2.4. In the cash flow table, we assumed that each release period is 2 months

and the discount rate is 12% per year. Work items B, D, E, F, J, K, M require

two periods of development before they can be released. Table 2.5 presents the

time adjusted value of work items if released in a certain period, e.g. we depict

from the table that work item A will generate a value of £50.5K if released at the

end of the first period, £38.7K if released in the second and so on.

Using a JAVA tool implementation of IFM 1, we generate release plans for serial

and concurrent development release context. In a serial development context

where work in progress (WIP) per period is set to one, IFM Heuristic produces an

11-period sequence 1LK.ICNAHO2 as shown in Figure 2.5. Using equation 2.9

and 2.8, the net present value and development cost of the solution evaluates to

£37.1K and £1264K respectively. For the case of concurrent development, Figure

2.6 shows the assignment of work items to releases using IFM heuristic with its

corresponding net present value of £30K and development cost of £1400K. The

sequence with the highest net present value is selected as the candidate release

plan for the project.

2.3.2 Criticisms of Traditional IFM Approach

Even though the IFM approach is able to generate release plans that maximize

the overall economic value of a software project, IFM faced a lot of criticisms

especially from community of researchers that proposed value point based release

1https://github.com/jodal/mmfplanner

2.3. Optimizing Economic Value in Release Planning 42

Period
Work Item 1 2 3 4 5 6 7 8 9 10 11 12
A 50.5 38.7 26.6 14.3 1.8 -11.0 -24.1 -36.5 -48.3 -59.4 -68.8 -78.4
B 185.7 146.3 106.1 65.1 27.4 -6.7 -41.6 -77.1 -108.8 -127.3 -146.1 -98.0
C 142.7 119.0 94.9 70.3 45.2 19.6 -6.5 -33.2 -55.8 -74.3 -88.4 -98.0
D 174.5 135.0 94.8 53.8 12.0 -30.7 -74.2 -118.6 -163.9 -205.5 -243.2 -147.1
E 170.3 130.9 90.7 49.7 10.3 -28.1 -67.3 -102.8 -134.5 -165.9 -194.2 -98.0
F 186.6 147.2 107.0 66.0 24.1 -18.5 -62.1 -102.0 -138.3 -170.6 -194.2 -98.0
G 243.9 208.4 172.2 135.3 97.6 59.2 20.0 -15.5 -48.1 -75.8 -98.4 -117.6
H 176.3 144.8 112.6 79.8 46.3 12.2 -18.3 -49.4 -76.6 -104.3 -127.8 -147.1
I 166.9 139.3 111.1 82.4 53.1 23.3 -7.2 -33.8 -56.5 -79.6 -98.4 -117.6
J 199.2 151.9 103.7 54.4 8.4 -38.5 -82.0 -126.4 -167.2 -194.9 -213.8 -117.6
K 280.7 217.6 153.3 87.6 20.7 -43.3 -104.3 -157.5 -207.3 -253.5 -291.2 -147.1
L 277.7 226.5 174.2 120.9 66.5 23.8 -15.4 -50.9 -87.1 -119.5 -152.4 -176.5
M 180.5 125.3 69.0 11.5 -42.8 -94.1 -143.7 -192.5 -242.3 -293.1 -340.3 -196.1
N 130.4 110.7 90.6 70.1 49.1 27.8 6.0 -16.2 -38.8 -61.9 -80.7 -98.0
O 197.1 165.5 133.4 100.5 67.1 32.9 -1.9 -33.0 -62.0 -89.7 -113.2 -137.3
P 77.2 48.1 20.5 -7.3 -34.4 -60.1 -86.8 -112.3 -129.0 -140.2 -149.5 -158.1
Q -43.5 -73.8 -102.6 -131.2 -159.4 -187.9 -211.0 -232.1 -251.5 -265.7 -279.2 -290.3
R 36.6 1.4 -34.7 -68.5 -102.2 -135.8 -167.2 -194.9 -220.3 -243.4 -265.0 -272.3
1 -98.0 -96.1 -94.2 -92.4 -90.6 -88.8 -87.1 -85.3 -83.7 -82.0 -80.4 -78.8
2 -147.1 -144.2 -141.3 -138.6 -135.9 -133.2 -130.6 -128.0 -125.5 -123.1 -120.6 -118.3
3 -117.6 -115.3 -113.1 -110.9 -108.7 -106.6 -104.5 -102.4 -100.4 -98.4 -96.5 -94.6

Table 2.5: Time adjusted value of work items depending on development start
period with 2% discount rate (values in Thousand Pounds £).

planning approaches. We explain the criticisms in this section and weigh-in on the

validity of those criticisms. IFM approach have been criticized in the following

ways:

• The proposal that IFM approach can accurately estimate future financial

projection of software artifacts is unrealistic [71]. IFM approach treats

software development process as a business investment and like most business

investment, it relies on the ability of business experts to accurately estimate

financial projection of software features. However, software development is

a more dynamic process compared to other economic investment and will be

unrealistic to accurately estimate the future values of software features with

certainty. There are many unknown factors that can cause variations in

estimated financial projection of software artifacts. This type of uncertainty

is usually referred to as epistemic uncertainty [72]. Epistemic uncertainty

arises when the value of a decision parameter is not accurately measured or

some effects affecting the parameter are deliberately ignored [72]. Ignoring

2.3. Optimizing Economic Value in Release Planning 43

Figure 2.5: Optimal solution produced by IFM heuristics for serial development.

epistemic uncertainty in the IFM approach can lead to over-estimation or

under-estimation of cost and value of software features. This criticism of

IFM approach is reasonable and completely valid.

• It is impossible to assign financial value to intangibles. Using value point

as a measure of value is common in release planning research community

because researchers believe that the value of some software features cannot

be financially quantified. These values are known as intangible values.

According to [68, 73], anything can be measured directly or indirectly if

there’s an understanding of what’s being measured and ways to measure

it. IFM measures intangibles through pair-wise comparison of intangible

features with tangible features. The theory adopted by IFM is that even if

an amount cannot be assigned to an intangible feature directly, an estimate

of such feature can be derived when the feature is pair-wisely compared to

other features with known financial value. For example, assume the value of

2.3. Optimizing Economic Value in Release Planning 44

Figure 2.6: Optimal solution produced by IFM heuristics for concurrent develop-
ment.

feature A is known to be £10K and feature B and C are intangible features.

If we know that B is twice as valuable as A and C is 1.25 times as valuable

as A. Then we can infer that the values of B and C are £20K and £12.5K

respectively. Sometimes, quantifying intangibles is not as straight forward

as the example given above but more often than not, intangibles can be

quantified if the value drivers for that intangible can be identified. Hubbard

[68, 73] argues that anything can be measured if enough information is

gathered to reduce uncertainty about the parameter of interest.

• Assumptions in IFM approach are unrealistic. IFM assumes that a fixed

number of features should be developed in each iteration and the development

of those features are completed in the iteration specified in the plan. This

assumption is rigid and not realistic in practice. In practice, it’s common

for software organizations to have a fixed date, flexible scope style of release

2.3. Optimizing Economic Value in Release Planning 45

where release cycles are defined and developers build as many features as

possible within the resource limit in-between releases.

• Economic value is not the only concern of stakeholders. IFM approach

only focuses on maximizing financial value of the software project. While

money is important, there are other objectives that are not directly related

to financial value such as minimizing investment cost, maximizing customer

satisfaction, maximizing utility etc. It would be better if the approach is

able to generate more release plans using more than one objective.

Extensions to the original IFM method include improved algorithms for identifying

optimal development sequences [71], analysis of cash flows uncertainty [18], and

analysis of competitors’ behaviours using game theory [74].

Barbosa et al [18] presents a method for identification of investment policy that

allows managers to make better decisions during execution of a software project

with managerial flexibility. The method permits project managers to device a

policy that maximizes the number of MMFs built during the life cycle of the

project. Such investment policy is derived from a time dependent classification tree

expressed as a decision tree and makes it easier to understand the decisions needed

to be made as the project progresses. In their work, they proposed that having

an investment policy brings about an increase in project value while maintaining

the risk of financial loss under an acceptable threshold [18].

Cantor [70] developed a method based on an assumption that determining the

value of a development program requires dealing with its future cash flow and

requires computing NPV of uncertain costs and benefits. The uncertain cash flow

was modelled using a triangular distribution. Unlike IFM, this method treats the

entire project as a single MMF and attempts to determine how soon the project

can deliver value to the business.

2.3. Optimizing Economic Value in Release Planning 46

A Statistical Approach [71] to IFM proposed an approximation method to solve a

problem with a large set of interconnected MMF s and AEs where it is infeasible

to consider all possible delivery sequences. This approach provides a statistical

approximation of solutions with an arbitrary degree of confidence. Alencar et al.

[71] suggested that using the statistical approach can make developers and project

managers feel more confident about the quality of the decisions they made. It was

an improvement to IFM because it yields a dependable estimate for approximation

error that might have occurred during the Monte Carlo simulation of uncertain

cash flows.

Eduardo et al [75] proposed an approach for the maximization of software projects

financial returns under duopolistic market situation based on the application of

Game Theory concept to IFM. Their work identified one of the weaknesses of IFM

that it ignores the effects of competition that exist in the business context. IFM

process was extended to handle competition by modelling IFM as a strategic game

between two players and obtain results using games solution technique known as

Nash Equilibrium.

Majority of the proposed extensions of the IFM approach has focused mainly

on introducing uncertainty to cash flow projections but they still rely on same

assumptions as the traditional approach and optimizes a single objective. The IFM

extensions for analyzing cash flow uncertainty assume a single work item can be

worked on at a time and flexible release dates. They are thus not suitable for the

more complex problem of analyzing uncertain cash flows with fixed release dates.

In Chapter 3, we investigate the feasibility of extending IFM with uncertainty

and multi-objective optimization.

2.4. Summary and Conclusion 47

2.4 Summary and Conclusion

This chapter reviewed state of the art release planning methods. We explained

basic concepts of software release planning and set of activities involved in release

planning. We classified release planning approaches into methods that optimize

value points and methods that optimizes financial value. Table 2.6 presents a sum-

mary of the different release planning methods covered in this chapter. The table

classifies existing release planning approaches based on eight different criteria. The

criteria are number of releases, architecture decision, value metrics, dependency

relationship, tool support, uncertainty, and multi-objective optimization.

Number of releases indicates the number of releases supported by the release

planning method. Architecture decision describes if architecture decisions are

considered in the approach during the generation of release plan solutions. Archi-

tecture decisions has great influence on the value, cost and quality attributes of

the system. IFM based approaches considers the impact of architecture decisions

on release plan solutions while the other approaches assumed that architecture

elements are composed within the features or requirements. Value metrics denotes

whether the release planning method uses value point or economic valuation. De-

pendency relationship signifies if the approach consider dependency relationships

between work items. Tool support signifies if the release planning method is

supported by a publicly available software tool. Uncertainty signifies whether

the release planning method considers any form of uncertainty modeling. Finally,

multi-objective criteria signifies whether single or multi-objective optimization is

adopted by the release planning methods.

Methods optimizing value points use information about stakeholders’ preferences

represented as value points, release weights, planning criteria, effort and depen-

dency to generate plans for upcoming releases of the software. We studied family

2.4. Summary and Conclusion 48

of EVOLVE models and their variants. Limitations identified with optimizing

release plans using value points are; (i) use of value points as value metric makes it

easy to prioritize work items but these value points does not translate to business

goals that can be observed in the real world (ii) they provide little or no support

for analysing uncertainty. Few variants of EVOLVE method that consider uncer-

tainty in their model formulation deals with either effort uncertainty, structural

uncertainty or algorithmic uncertainty but largely ignores value uncertainty. Incre-

mental funding methodology (IFM) introduced an economic approach to release

planning where release planning decisions are financially driven. We identified

popular criticisms of IFM approach in the release planning community and IFM

extensions proposed to respond to those criticisms. The following conclusions can

be made from the models reviewed in this chapter:

1. NRP, EVOLVE and IFM models have unique strengths and weaknesses

as explained earlier. There’s no approach that has been to combine the

strengths of these model families while eradicating most of their weaknesses.

2. Existing approaches lacks support for analysing value uncertainty

3. Existing models are not suitable for release planning where release dates are

fixed and release scope is flexible

4. There’s no empirical study to investigate the effect of reasoning about

uncertainty in release planning.

In Chapter 3, we propose an extension to IFM method to support uncertainty

and multi-objective optimization. In Chapter 4, we propose a Bayesian framework

for software release planning under different release scenarios that mitigated

limitations described above.

2.4. Summary and Conclusion 49

R
e
le
a
se

P
la
n
n
in
g
M

e
th

o
d

N
o
o
f

R
e
le
a
se
s

A
rc
h

D
e
c
is
io
n
?
V
a
lu
e

M
e
tr
ic

U
n
c
e
rt
a
in
ty

/
R
is
k

M
u
lt
i-

O
b
je
c
ti
v
e
?

T
o
o
l

S
u
p
p
o
rt
?

D
e
p
e
n
d
e
n
c
y

R
e
la
ti
o
n
sh

ip
?

E
V
O
L
V
E

[2
1
]

2
N
o

V
al
u
e
P
oi
n
t

N
o

N
o

Y
es

Y
es

E
V
O
L
V
E
*
[6
2]

2
N
o

V
al
u
e
P
oi
n
t

N
o

Y
es
,

w
ei
gh

te
d

Y
es

Y
es

E
V
O
L
V
E
+

[1
5
]

2
N
o

V
al
u
e
P
oi
n
t

Y
es

Y
es
,

w
ei
gh

te
d

Y
es

Y
es

S
-E

V
O
L
V
E
*
[5
6]

3
N
o

V
al
u
e
P
oi
n
t

Y
es

Y
es
,

w
ei
gh

te
d

Y
es

Y
es

F
-E

V
O
L
V
E
*
[6
3
]

1
N
o

V
al
u
e
P
oi
n
t

&
M
on

et
ar
y

Y
es

Y
es

Y
es

Y
es

L
ig
h
tw

ei
gh

t
re
p
la
n
n
in
g
[6
4]

1
N
o

V
al
u
e
P
oi
n
t

N
o

Y
es

N
o

Y
es

M
O
N
R
P

[2
5]

1
N
o

V
al
u
e
P
oi
n
t

N
o

Y
es

N
o

N
o

F
ai
rn
es
s
A
n
a
ly
si
s
[3
0]

1
N
o

V
al
u
e
P
oi
n
t

N
o

Y
es

N
o

N
o

R
A
-M

O
N
R
P

[2
7]

1
N
o

V
al
u
e
P
oi
n
t

Y
es

Y
es

N
o

N
o

R
E
P
S
IM

-1
[5
8]

1
N
o

V
al
u
e
P
oi
n
t

Y
es

N
o

Y
es

Y
es

R
E
P
S
IM

-2
[5
9]

1
N
o

V
al
u
e
P
oi
n
t

Y
es

N
o

Y
es

Y
es

R
D
M
X
P

R
P

[5
7]

1
N
o

V
al
u
e
P
oi
n
t

Y
es

Y
es

Y
es

Y
es

B
O
P
R
E
S
[5
3
]

1
N
o

V
al
u
e
P
oi
n
t

N
o

Y
es

N
o

Y
es

F
M
D
C
R
P

[6
0]

1
N
o

V
al
u
e
P
oi
n
t

N
o

N
o

N
o

Y
es

R
o
b
u
st

N
R
P

[2
8]

1
N
o

V
al
u
e
P
oi
n
t

Y
es

Y
es

N
o

Y
es

P
A
R
S
E
Q

[6
5
]

1
N
o

V
al
u
e
P
oi
n
t

N
o

N
o

Y
es

Y
es

IF
M

[2
]

M
u
lt
ip
le

P
ar
ti
al
ly

M
on

et
ar
y

N
o

N
o

Y
es

Y
es

In
ve
st
m
en
t
P
o
li
cy

[1
8
]

M
u
lt
ip
le

P
ar
ti
al
ly

M
on

et
ar
y

Y
es

N
o

N
o

Y
es

Im
p
ro
v
in
g
R
O
I
[7
0
]

1
N
o

M
on

et
ar
y

Y
es

N
o

N
o

N
o

S
ta
ti
st
ic
a
l
IF

M
a
p
p
ro
ac
h
[7
1]

M
u
lt
ip
le

P
ar
ti
al
ly

M
on

et
ar
y

Y
es

N
o

N
o

Y
es

G
am

e
T
h
eo
ry

IF
M

[7
5
]

M
u
lt
ip
le

P
ar
ti
al
ly

M
on

et
ar
y

N
o

N
o

N
o

N
o

T
ab

le
2.

6:
S
u
m

m
ar

y
of

R
el

ea
se

p
la

n
n
in

g
m

o
d
el

s
an

d
fa

ct
or

s
tr

ea
te

d
b
y

th
e

m
o
d
el

s

Chapter 3

Cost-Value Based Release

Planning with Uncertainty

We concluded from Chapter 2 that state of the art release planning methods

do not provide adequate support reasoning about uncertainties associated with

business value and effort. The objective of the work described in this chapter is to

propose an approach called MOIFM that extends standard IFM with reasoning

about uncertainty and multi-objective optimization.

The elicitation of work items and dependency constraints follow the same process

as the standard IFM. However, our approach differs from IFM in that business

cash flow values will be represented as stochastic values instead of deterministic

estimates and release plans are optimized using multiple stakeholders objectives

i.e. net present value, investment cost and investment risk. The method presented

here improves standard IFM but still has important limitations: it assumes that

single work item can be worked on at a time and it is not scalable due to its

use of an exhaustive search technique. Most importantly, the method is not able

to support the industrial practice of release cycles with fixed dates and flexible

scopes. All these limitations will be addressed in Chapter 4.

50

3.1. Extending IFM with Uncertainty 51

3.1 Extending IFM with Uncertainty

Estimating cash flow of work items is a non-trivial task that requires meeting

with several stakeholders and domain experts in the business context to get their

subjective opinion about business value and development cost. Technical experts

are skilled in estimating the cost of developing work items while business experts

are able to estimate revenue generating potential of work items. These estimates

are provided with some degree of uncertainty in the mind of the estimators due

to incomplete information at the time the estimate was given. Uncertainty arises

from the lack of perfect information about the software project, especially at

the early phases of development process when work items estimation is done.

Standard IFM approach lacks support for helping domain experts in analysing

uncertainty about cost and value of work items. To incorporate uncertainty into

IFM approach, we propose two ways of eliciting uncertainties for work items cash

flows.

3.1.1 Eliciting Uncertainty as Triangular Distribution

Eliciting triangular probability distribution requires that cost and value of work

items be elicited from stakeholders through a three-point estimation method.

Instead of eliciting for a deterministic point estimate for the value or cost of a

work item, the release planner elicits the plausible minimum (a), mode (c), and

maximum (b) values of the work item. The minimum value represents the lowest

possible value, maximum value represents the highest possible value while the

mode represents the most likely value of the quantity being estimated where

a ≤ c ≤ b. MOIFM interprets these three estimates as a triangular probability

distribution triangle(a, c, b) as represented in Figure 3.1 from which random

samples X can be drawn with associated probability Pr(X). We observe from the

3.1. Extending IFM with Uncertainty 52

Figure 3.1: Triangular Distribution.

figure that the mode represents the value with the highest likelihood of occurrence.

For example, instead of the point estimate in Table 2.4, suppose we want to

elicit the cost of developing work item A. An expert might think that the cost of

implementing work item A is at least 70K, at most 120K and most likely to be 90K.

MOFIM represents such estimate as a triangular distribution triangle(70, 90, 120).

Estimating probability distribution of cost and value for work items that have

not been developed is difficult. The estimation process requires domain experts

that possess wealth of knowledge and experience in the application domain and

business context. However, there are statistical methods that have been applied

in other engineering fields to train experts and facilitate such elicitation process

[72, 76].

3.1.2 Adding Uncertainty to Point-Based Estimates

Today, cost and value estimates are commonly given as point-based estimates. But

these point based estimates are sometimes too optimistic or pessimistic [48]. In

3.1. Extending IFM with Uncertainty 53

this section, we propose a simple method for transforming point-based estimates

into triangular distribution using past project data about deviations between

predicted and actual values.

Recent findings has shown that 90% of software projects tend to underestimate

cost and overestimate revenue [48, 77]. This is because project managers tend to

present a low cost estimates and high revenue generating proposal to financial

stakeholders in order to get project investment approval. Standish CHAOS report

[78, 79] also reported that 52.7% of software projects experienced cost overrun by

at least 80%. Based on these findings, we assume that there is a slim chance that

a work item will cost less than the projected amount but will likely cost about

80% more than the estimated amount. Similarly, a work item that is estimated to

generate a certain revenue over some period of time might not generate up to the

estimated amount, might generate more, or might not generate any value within

the period of time under evaluation.

To add uncertainty to the point-based cost estimate, we define actual cost as the

sum of the point-based estimate plus the uncertain cost overrun. Hence we have

that:

actualCost = pointCE + costUncert (3.1)

Where pointCE is the deterministic cost estimate assigned to a work item and

costUncert is a random variable:

costUncert = triangle(minCO,modeCO,maxCO) (3.2)

Where minCO, modeCO and maxCO are expected minimum, mode and maximum

cost overrun respectively.

Similarly, we define the actual value to be generated by each work item as a

random variable,

3.1. Extending IFM with Uncertainty 54

Figure 3.2: Deriving cost distribution from point estimate cash flows

actualValue = triangle(0, pointVE, (pointVE + valueError)) (3.3)

Where pointVE is the point-based estimate of value assigned to the work item in

a given period and valueError is a quantity denoting estimation error for work

item value, valueError is zero if value is perfectly estimated. Figure 3.2 and 3.3

showed the derivation of cost and value of work items from point estimates.

For example, to add uncertainty to the cash flow estimates in Table 2.4, if we

assume that the project will most likely incur a cost overrun of 20% of the

deterministic estimate and cost overrun cannot be more than 45% of the predicted

cost. Hence, we defined the cost distribution costUncert,

costUncert = triangle(0, 0.20 ∗ pointCE, 0.45 ∗ pointCE) (3.4)

Where the mode is 20% of pointCE, minimum and maximum cost overrun are

0% and 45% of pointCE respectively. Similarly, if we assume a 20% error margin

for the estimated value, then the distribution of the value generated by each work

3.1. Extending IFM with Uncertainty 55

Figure 3.3: Deriving value distribution from point estimate cash flows.

item is denoted as:

value = triangle(0, pointVE, 1.2 ∗ pointVE) (3.5)

Where pointVE is the mode, 0 and 1.2 ∗ pointVE are the minimum and maximum

value respectively. Table 3.1 shows the resulting probability distribution of the

cash flow elements after applying equations 3.4 and 3.5 for computing cost and

value distributions respectively.

3.1.3 Simulation Cash Flow Projections

We use Monte Carlo Simulation to generate N cash flow scenarios by randomly

sampling from the probability distributions of the work items cash flows. The

outcome of the simulation process is a N ×m× l three-dimensional array, where

N is the number of simulations, m is the number of work items and l is the

investment horizon. In this way, rather than having just one cash flow projection

3.2. Multi-objective Optimization Extension 56

Period
Work
Item

1 2 3 4 5 6 7 8 9 10 11 12

A -(80,96,116) (0,10,12) (0,10,12) (0,12,14) (0,13,15) (0,14,16) (0,15,18) (0,15,18) (0,15,18) (0,15,18) (0,15,18) (0,15,18)
B -(100,120,145) -(50,60,72) (0,20,24) (0,20,24) (0,35,42) (0,40,48) (0,40,48) (0,40,48) (0,45,54) (0,50,60) (0,50,60) (0,50,60)
C -(100,120,145) (0,10,12) (0,15,18) (0,20,24) (0,25,30) (0,30,36) (0,30,36) (0,30,36) (0,30,36) (0,30,36) (0,30,36) (0,30,36)
D -(150,180,217) -(100,120,145) (0,40,48) (0,45,54) (0,50,60) (0,50,60) (0,50,60) (0,50,60) (0,50,60) (0,50,60) (0,50,60) (0,50,60)
E -(100,120,145) -(100,120,145) (0,30,36) (0,34,41) (0,35,42) (0,40,48) (0,45,54) (0,45,54) (0,47,56) (0,50,60) (0,50,60) (0,50,60)
F -(100,120,145) -(100,120,145) (0,25,30) (0,35,42) (0,40,48) (0,45,54) (0,50,60) (0,50,60) (0,50,60) (0,50,60) (0,50,60) (0,50,60)
G -(120,144,174) (0,20,24) (0,24,30) (0,30,36) (0,36,43) (0,40,48) (0,45,54) (0,45,54) (0,45,54) (0,45,54) (0,45,54) (0,45,54)
H -(150,180,217) (0,20,24) (0,25,30) (0,30,36) (0,30,36) (0,35,42) (0,35,42) (0,40,48) (0,40,48) (0,40,48) (0,40,48) (0,40,48)
I -(120,144,174) (0,20,24) (0,20,24) (0,25,30) (0,25,30) (0,30,36) (0,35,42) (0,35,42) (0,35,42) (0,35,42) (0,35,42) (0,35,42)
J -(120,144,174) -(100,120,145) (0,20,24) (0,30,36) (0,45,54) (0,50,60) (0,50,60) (0,55,66) (0,55,66) (0,60,72) (0,60,72) (0,60,72)
K -(150,180,217) -(150,180,217) (0,40,48) (0,55,66) (0,55,66) (0,60,72) (0,70,84) (0,75,90) (0,80,96) (0,80,96) (0,80,96) (0,80,96)
L -(180,216,261) (0,25,30) (0,35,42) (0,35,42) (0,40,48) (0,40,48) (0,45,54) (0,50,60) (0,65,78) (0,65,78) (0,65,78) (0,65,78)
M -(200,240,290) -(150,180,217) (0,50,60) (0,55,66) (0,55,66) (0,55,66) (0,57,69) (0,60,72) (0,65,78) (0,70,84) (0,70,84) (0,70,84)
N -(100,120,145) (0,18,21) (0,20,24) (0,25,30) (0,25,30) (0,25,30) (0,25,30) (0,25,30) (0,25,30) (0,25,30) (0,25,30) (0,25,30)
O -(140,168,203) (0,25,30) (0,25,30) (0,30,36) (0,32,38) (0,35,42) (0,40,48) (0,40,48) (0,40,48) (0,40,48) (0,40,48) (0,40,48)
P -(200,240,290) (0,15,18) (0,15,18) (0,18,21) (0,25,30) (0,35,42) (0,35,42) (0,35,42) (0,35,42) (0,35,42) (0,35,42) (0,35,42)
Q -(200,240,290) -(150,180,217) (0,25,30) (0,25,30) (0,30,36) (0,33,39) (0,35,42) (0,40,48) (0,40,48) (0,40,48) (0,40,48) (0,40,48)
R -(300,360,435) (0,30,36) (0,35,42) (0,35,42) (0,38,45) (0,40,48) (0,45,54) (0,45,54) (0,45,54) (0,45,54) (0,45,54) (0,45,54)
1 -(100,120,145) 0 0 0 0 0 0 0 0 0 0 0
2 -(150,180,217) 0 0 0 0 0 0 0 0 0 0 0
3 -(120,144,174) 0 0 0 0 0 0 0 0 0 0 0

Table 3.1: Deriving triangular distributions from point estimate.

as in the case of the standard IFM, we have N different cash flow projections for

each work item.

3.2 Multi-objective Optimization Extension

In addition to the net present value objective used in the traditional IFM approach,

we introduced two objectives and optimize release plans using three objectives.

In our approach, release plans are optimized using Expected Net Present Value

(ENPV), Expected Investment Cost (EIC), and Investment Risk (IR). Given a

release plan p, the objectives are explained below:

3.2.1 Expected Net Present Value

Expected Net Present Value (ENPV) is the average net present value over all

cash flow scenarios. Rather than computing net present value of release plans

using point-based cash flow projections as in the case of traditional IFM approach,

MOIFM computes expected net present value over multiple scenarios of cash flow

projections. For each scenario of cash flow generated during simulation, MOIFM

3.2. Multi-objective Optimization Extension 57

uses equation 2.8 to compute the net present value of the plan for that scenario.

ENPV is defined as:

ENPV(p) = E[NPV(p)] (3.6)

3.2.2 Expected Investment Cost

Investment cost of a release plan p is the total discounted amount required to

fund the plan. We illustrated investment cost in Figure 2.4 as the point when no

additional investment is required from the stakeholders to complete the project.

Let ICh(w) be the cost of developing work item w given that its development

starts in period h, then the investment cost of plan p denoted IC (p) is defined as:

IC(p) =
∑

w→h:w∈p

ICh(w) (3.7)

The investment cost is computed for each cash flow scenario during the simulation.

The expected investment cost of a release plan denoted EIC (p) is therefore defined

as the mean investment cost over all scenarios of cash projections.

EIC(p) = E[IC(p)] (3.8)

3.2.3 Investment Risk

The investment risk of a release plan denoted IR(p) is defined as the coefficient of

variation of the net present value [70]. It is calculated as the ratio of the standard

deviation of the net present value and the expected net present value. Investment

risk of a plan measures the risk of the software project generating the expected

3.3. Optimizing Release Plans 58

net present value if the plan is implemented.

IR(p) =
σ[NPV(p)]

E[NPV(p)]
(3.9)

3.3 Optimizing Release Plans

We use exhaustive search to generate all release plans of the software project that

satisfies the precedence relationships. In the worst case scenario when work items

has no dependency, the number of release plans generated will be n! where n is the

number of work items in the project. For each valid release plans generated, We

compute the expected net present value, expected investment cost and investment

risk using equations 3.6, 3.8, and 3.9 respectively.

For example, if we were to generate all release plans in our motivating example,

we’ll need to generate 6.4E + 15 release and then filter the plans using precedence

rule to eliminate plans that violates precedence constraints. To simplify the

example, assume we only consider the first 10 work items in the motivation

example. We generate 3, 628, 800 release plans and after applying the precedence

rule, we have 432, 212 valid release plans.

MOIFM computes the shortlist as the set of pareto optimal release plans for the

objective values (ENPV, EIC and IR). Our shortlist approach is an extension

of the standard Pareto optimality method explained in Section 2.2.4. Due to

statistical error in the Monte Carlo Simulation, shortlisting candidate release plans

based on strict Pareto optimality can result in exclusion of valid release plans

due to a little difference in one of the objective values. We neutralized the error

by specifying resolution margins for decision criteria to ensure that shortlisted

release plans are clearly better than other alternatives by a significant margin. For

example, if the resolution margin for the ENPV is set to £5K, then comparing

3.3. Optimizing Release Plans 59

the ENPV of release plans will ignore differences between ENPVs less than £5K.

Figure 3.4 shows the Pareto front for the motivation example. Though the releases

were generated using three objectives, we use a 2D visualization for simplified

view. The cross points represent the shortlisted release plans while the circle

dots represent the dominated solutions. The figure shows the trade-off between

maximizing net present value and minimizing investment cost. We see from the

figure that release plans that generates high ENPV are likely to require high

investment cost and vice versa. Decision makers can then analyse the shortlisted

release plans before making decision on what plan to choose.

500 600 700 800 900 1000

0
10

0
20

0
30

0
40

0

Investment Cost

N
P

V

Figure 3.4: Shortlisted release plans for Local Government Project.

3.4. Summary, Conclusion and Limitations 60

3.4 Summary, Conclusion and Limitations

In this work, we propose an approach to test the feasibility of extending IFM to

deal with uncertainty and multiple objectives. To achieve this, we developed a

prototype tool (in R programming language) and applied it to the motivation

example introduced in Section 1.1. Our tool has the following capabilities:

1. Represents uncertainty about work items cash flows as triangular distri-

butions. A triangular distribution is characterized by three parameters

specifying the lowest, most likely, and highest value for a variable. We chose

this distribution because it is easily understood and used in IT portfolio

management tools [70]. We envision, however, extending our tool to addi-

tional probability distributions based on empirical research on software cost

and value estimations and methods to elicit uncertainty from experts [72].

2. Uses Monte Carlo simulation to compute the impact of work cash flow

uncertainty on the NPV of alternative release plans. For each release,

our tool computes expected NPV (the mean NPV over all simulations),

expected investment cost (the mean of the total cost to be invested in the

project before it has a positive cash flow), and its investment risk (the ratio

between its NPV standard deviation and its expected NPV [70]).

3. The statistics about the NPV simulations are then used to select the Pareto-

optimal set of release plans that maximize expected NPV, minimize expected

investment cost, and minimize investment risks. We have chosen these

objectives because they are used in IT project portfolio management tools

[70]. Decision makers can, however, select alternative set of optimization

objectives that suits their context.

The implementation of multi-objective IFM has the following limitations:

3.4. Summary, Conclusion and Limitations 61

1. Like the standard IFM algorithm, it assumes the number of work items

that can be developed during each release period is fixed and development

time for each work is one release period. This is not always the case in

real life project, some work items might be larger and require more time to

develop and will likely span more than one development period. There’s

also the likelihood that the development team fails to deliver a work item

at the appropriate time which will negatively impact the projected value

of the software project. In practice, software projects allows concurrent

development of work items in which different developers work on different

work items simultaneously.

2. It uses an exhaustive search to identify Pareto-optimal release plans which

limits its scalability to problems involving no more than a dozen work items.

The proposed approach in this chapter does not scale well. The run-time

increases exponentially as the number of work item increases.

In the next chapter, we propose an approach that deals with the limitations above

by combining the strengths of IFM and EVOLVE approaches.

Chapter 4

Release Planning with BEARS

In chapter 3, we investigated the feasibility of extending IFM with uncertainty

and multi-objective optimization. The proposed extension represented cash flow

uncertainty as a triangular distribution and introduced two new objectives to

the traditional IFM; but still suffers limitations inherited from the traditional

IFM. These limitations are outlined and explained in Section 3.4. The limitations

of release planning methods explained in Chapter 2 and Section 3.4 make them

unsuitable for supporting software release planning decisions in a release process

where release date is fixed, work scope is flexible, effort required to develop features

are uncertain and value of software features are uncertain. In this chapter, we

propose a Bayesian Economic Analysis of Release Scenarios (BEARS) framework

to support software release planning under uncertainty. BEARS framework

aims to help decision makers with making release decisions that are driven by

measurable business objectives rather than abstract objectives in the presence

of uncertainty. BEARS approach is suitable for release planning process where

release dates are fixed and work items scope are flexible.

62

4.1. BEARS: Overview 63

Figure 4.1: BEARS Framework

4.1 BEARS: Overview

BEARS supports release planning under uncertainty in the context of release

cycles with fixed date and flexible scope. BEARS is an acronym for “Bayesian

Economic Analysis of Release Scenarios”. The method’s name is a nod to the

seminal book, “Waltzing with Bears: Managing Risks on Software Projects”, one

of the first books to argue for embracing uncertainty in software projects [80].

BEARS is a Bayesian method in the sense that it uses Bayesian probability

to model release planners’ subjective uncertainty about development effort and

business value of candidate features. Like IFM, BEARS evaluates release plans

by performing an economic analysis of their value flows. BEARS is different

from IFM in that it estimates release plans with uncertain cash flows projections.

BEARS estimates effort similar to those described in Section 2.1.3, except that

BEARS work items’ effort is estimated with uncertainty.

4.1. BEARS: Overview 64

Figure 4.1 shows the sequence of activities in the BEARS framework. Each

activity of the framework will be discussed in detail over the next few sections.

The process of identifying product backlog items is as described in Section 2.1.1.

Various techniques [81, 82, 83] have been proposed in goal modeling to derive

work items from high level system goals. For example, the full product backlog

of the local council project described in Section 1.1 is shown in Table 4.1. The

next activity involves estimation of the effort and value of work items in the

product backlog as a probability distribution. The outputs of the elicitation

and estimation stages are the inputs required in the optimization stage. The

optimization stage accepts product backlog items and their estimated probabilities

and produce a shortlist of candidate release plans that optimizes organization

objectives. BEARS presents shortlisted release plans to decision makers using

different visualization tools such as scatter plot, road map view and bar chart.

BEARS also computes value of information to inform decision makers about the

value of gathering more information before making the final decision. To the best

of our knowledge, BEARS is the first approach to compute value of information

in software release planning.

The main input to BEARS is a product backlog. The product backlog in

Section 2.1.1 is extended by (i) effort and value estimates are now probability

distributions instead of point-based estimates, and (ii) the value of a work item is

the value brought about by that work item in each release instead of its total value

over some unspecified duration. The value of each item is estimated in monetary

unit e.g £, $ while effort is estimated in person-hours or person-days. Given the

set of work items WI and work dependencies in the product backlog where each

work item wi has the following attributes:

• effort(w): a real-valued probability distribution denoting the release planners’

subjective uncertainty about the number of person-days required to deliver

4.1. BEARS: Overview 65

Work Item Description Depends on
1 Sign up and login -
2 Interface to residents repository -
3 Payment processor -
4 Interface to rubbish collection system -
5 Interface to Council Housing Repository -
6 Interface to parking fine system -
A View council tax bills 1,2
B Apply for council tax reduction 1,2
C Pay council tax A,3
D View council tax reduction claim B
E Report house move 1,2
F Apply for parking permit 1,2,3
G Buy visitor parking permit 1,2,3
H Pay parking and traffic fine 3,6
I Look up rubbish collection day 4
J Report missed rubbish collection 2,4
K Order recycling bin 1,4
L Submit housing application 5
M Report accommodation problem 5
N Submit planning application 3
O Comment on planning application 1
P Create application alert N
Q View planning applications -
R Contest parking fines 6
S Set up council tax direct debit -

Table 4.1: Full Product backlog for the Local council project

w;

• value(w): a real-valued probability distribution denoting the business experts’

subjective uncertainty about the value in monetary units brought about by

w in each period after it is delivered.

BEARS also requires release planners to specify the following parameters:

• the planning horizon H ∈ N+

• the team capacity, noted capacity(h), in each period h ∈ [1..H];

• the investment horizon L ∈ N+

4.2. Estimating Effort and Value Distributions 66

• the discount rate r ∈ R used to compute net present values;

• and, optionally, the budget B allocated to development team for the next H

iterations. This is a fixed quantity to cover all costs for the fixed duration

of the next H releases.

Given these inputs and parameters, BEARS evaluates candidate release plans

against the following criteria:

• their Expected Net Present Value (ENPV) (described in 4.3.1), and

• their expected punctuality (EP) defined as the expected percentage of work

items delivered on time (described in 4.3.2);

In the next few sections, we explain how BEARS uses these parameters for

generating release plans. We explain our method for eliciting uncertainty in

Section 4.2 and BEARS simulation 4.3. BEARS optimization is presented in

Section 4.4 and computation of information value is explained in Section 4.5.

4.2 Estimating Effort and Value Distributions

The aim of uncertainty elicitation is to obtain real-valued distributions closely

representing the knowledge and beliefs of an expert or group of experts about the

effort and value of work items in the product backlog. Probability distribution

is perfect for representing uncertainty about stochastic variables but eliciting

probability distribution is a non-trivial elicitation process and imperfect [84].

Recent work in probabilistic elicitation have shown that experts are generally

capable of providing credible judgments about a stochastic variable in their domain

[72, 68].

4.2. Estimating Effort and Value Distributions 67

Ideally, in order to estimate the probability distribution of a quantity of interest

accurately, say Z, we need to obtain experts’ probability judgments for all possible

value of Z. These judgments can be infinitely large and impossible to obtain

in reality. Therefore, rather than eliciting for all possible expert’s probability

judgment for Z, we elicit a small number of quantitative judgments from experts

and then fit a convenient distribution on those judgments.

Eliciting effort and value uncertainty can be done through reliable, principled

elicitation techniques for eliciting subjective uncertainty from persons and groups

of persons [72]. These techniques assume that people have some real, tacit

knowledge about the quantities of interest (in our case work, the items’ effort

and value) that can be uncovered through targeted questions and modelled as

Bayesian probability distributions. The elicitation techniques are designed to

mitigate common estimation biases such as overconfidence and anchoring. In

BEARS we use the SHELF elicitation framework [72, 76] and the associated

MATCH tool [3] to perform such elicitation. SHELF elicitation framework [72]

proposed many methods to carry out this elicitation but we use the ’quartile

method’ in BEARS.

4.2.1 Pre-elicitation Tasks

In this phase, the elicitation facilitator, usually the product manager organizes a

workshop to be attended by business and technical experts. Business experts can

provide estimate of the value of work items while technical experts can provide

estimates of effort needed to develop the work items. Such session will be more

productive with 4-10 experts [76]. Too few number of experts might result in a

biased result while too many experts might unnecessarily prolong the session. The

choice of experts must be guided by the diversity of their experience in the problem

domain. The session should start with the facilitator clearly and unambiguously

4.2. Estimating Effort and Value Distributions 68

explaining the purpose of the session and providing necessary information about

the unknown quantities (effort and value).

4.2.2 Quartile Elicitation Method

In the quartile method, the facilitator will elicit for five quantitative judgments

from the experts. The facilitator elicit for the plausible lower and upper limit,

lower quartile, median and upper quartile of the quantity of interest Z. Let Z

represent a real-valued quantity of interest to elicit i.e. effort or value. We describe

the elicitation of these five quantities below:

1. Plausible lower L and upper limit U : The first step is to ask the experts to

estimate plausible lower and upper limit for Z with 95% confidence. This

means that there’s a small chance (5%) that the real value of Z will fall

outside the provided limits. Figure 4.2 illustrates elicitation of the lower

and upper limits.

Pr(L ≤ Z ≤ U) = 0.95

The purpose of getting these limits as a probability distribution from

Figure 4.2: Elicitation of lower and upper bound

experts is to prevent anchoring. Anchoring is a phenomenon whereby an

expert assumes too much credibility to the value they have in mind for Z

and therefore provide a narrow limit for the quantity of interest. When all

the experts has provided their plausible lower and upper limit for Z, The

facilitator will ask questions to help the experts adjust their estimates. For

example, the facilitator might randomly choose a lower limit L0 or upper

4.2. Estimating Effort and Value Distributions 69

limit U0 of one of the experts and announce it to the remaining experts. If

other experts are surprised about the value of L0, then it means L0 is not

the true lower limit and should be adjusted but if the experts agree with L0,

it probably means they might need to change their own limit. This process

is performed until an agreement is reached about these limits.

2. Elicit median M , lower quartile Q1, and upper quartile Q3: Figures 4.3,4.4,

4.5 illustrate elicitation of the lower quartile, median, and upper quartile

respectively. The facilitator elicit for the median of Z. The median M of

the quantity of interest Z is a value between L and U such that it is equally

likely that the true value of Z is below or above M . Median should not be

misinterpreted to be the midpoint of L and U but should rather be judged

on the equality of probability. M is the median of Z if:

Pr(Z < M) = Pr(Z > M), where L < M < U

The elicitation facilitator then elicits for the lower and upper quartile. The

Figure 4.3: Elicitation of Median

lower quartile Q1 of the quantity of interest Z is a value between L and M

such that it is equally likely that the true value of Z is below or above Q1.

Q1 is the lower quartile of Z if:

Pr(Z < Q1) = Pr(Z > Q1), where L < Q1 < M

The upper quartile Q3 of the quantity of interest Z is a value between M

and U such that it is equally likely that the true value of Z is below or

4.2. Estimating Effort and Value Distributions 70

above Q3. Q3 is the upper quartile of Z if:

Pr(Z < Q3) = Pr(Z > Q3), where M < Q3 < U

Figure 4.4: Elicitation of lower quartile.

The elicitation facilitator helps the experts to adjust their estimates for these

data points by testing their indifference to alternative bets. For example, to

test the stated median, the facilitator might tell the development team to

imagine they will win a large sum of money if they can now correctly guess

whether the real development time will be either below or above their stated

median, and ask them to chose one of the two. If they have a preference for

guessing either ‘below’ or ’above’, then their stated median is not the true

median of their subjective uncertainty and it should be adjusted accordingly.

A similar strategy can be used to adjust the values for the lower and upper

quartiles.

3. Obtaining the group judgments: It is not sufficient to just have individual

judgments of experts. Due to different knowledge, expertise and interest

of the experts; their opinions of the quantity of interest Z will be different

and hence different distribution. We need a single distribution, but it

should be one that represents a synthesis of the available knowledge and

Figure 4.5: Elicitation of upper quartile.

4.3. Simulating BEARS Release Plans 71

judgment. There is no single distribution that all experts would accept

as representing their true opinion. Hence, the consensus distribution will

be obtained through discussion of the individual distributions among the

experts while a rational impartial observer assign weights to each individual

distribution based on what he or she heard during the discussions.

4. Fitting judgments to a real distribution: In this step, the elicited group

judgments are fitted into a series of probability distributions matching as

closely as possible to the elicited judgments. Currently, the tool supporting

BEARS assumes effort and value have lognormal distributions, although we

intend to support a wider range of distributions in the future. Lognormal

distributions are appropriate to model uncertainty about quantities that are

always positive and where the distribution can be asymmetric and have a

long tail of possible high values. These characteristics fit well the typical

uncertainty about software development effort and value.

As an example, Figure 4.6 illustrates the elicitation of uncertainty about the effort

to develop feature A in the product backlog using the ’quartile method’. Using

the same approach, the efforts and values of work items in the backlog of local

council project are estimated in Table 4.3 and 4.2 respectively.

4.3 Simulating BEARS Release Plans

In order to simulate release plans, BEARS distinguishes release plans p : WI→

[1..K] that specify when work items are planned for release from release scenarios

s : WI → [1..K] that specify when work items are actually released. During

release planning, the future actual release scenario is unknown. To simulate

release scenarios, BEARS first generates N simulations of work items’ effort

and value drawn from the effort and value probability distributions. By default

4.3. Simulating BEARS Release Plans 72

Figure 4.6: Eliciting effort uncertainty for feature “A: view council tax bills” with
the MATCH tool [3].

BEARS uses N = 104. This creates N possible future worlds, each having specific

effort and value data for all work items. In each future worlds, BEARS creates

the release scenario that will happen in this world based on the work item’s effort

data. This is done by first mapping the release plan p to a work sequence ws that

specifies in what order work items in the plan will be worked on (note that release

plan does not specify any order between items to be delivered in the same release),

then generate the release scenarios from the work sequence.

To generate a work sequence ws from a release plan, we apply the following

priorities between work items. Let meanValue(wi) be the mean value and

meanEffort(wi) be the mean effort of work item wi over N simulated scenar-

ios of effort and value, then the ratio of mean value to mean effort of work item

4.3. Simulating BEARS Release Plans 73

Work Item Log-Normal Distribution lnN(µ, σ2)
A µ = 2.51, σ = 1.04
B µ = 2.97, σ = 0.75
C µ = 2.51, σ = 1.04
D µ = 2.97, σ = 0.75
E µ = 2.51, σ = 1.04
F µ = 3.42, σ = 0.65
G µ = 3.55, σ = 0.67
H µ = 3.02, σ = 1.05
I µ = 2.22, σ = 0.82
J µ = 2.09, σ = 0.82
K µ = 2.51, σ = 1.04
L µ = 3.13, σ = 1.03
M µ = 2.73, σ = 0.65
N µ = 3.09, σ = 1.02
O µ = 3.33, σ = 0.71
P µ = 1.66, σ = 0.90
Q µ = 3.42, σ = 0.65
R µ = 1.66, σ = 0.90
S µ = 2.05, σ = 1.59

Table 4.2: Elicitation of Value Distributions for the Local Council running example.

wi denoted VERatio(wi) is defined as,

VERatio(wi) =
meanValue(wi)

meanEffort(wi)

A work item wi takes precedence over another work item wj in the work sequence

if:

i wi is planned for an earlier release than wj (i.e. p(wi) < p(wj)), or

ii wj has a precedence dependency on wi (i.e. wi ← wj), or

iii both items are planned for the same release and have no precedence dependency

and VERatio(wi) > VERatio(wj)

From the work sequence, we assign work items to release periods such that the dth

item in the work sequence is delivered in release k if, and only if, the cumulative

4.3. Simulating BEARS Release Plans 74

Work Item Log-Normal Distribution lnN(µ, σ2)
1 µ = 2.05, σ = 0.59
2 µ = 2.61, σ = 0.42
3 µ = 2.45, σ = 0.50
4 µ = 2.61, σ = 0.42
5 µ = 2.61, σ = 0.42
6 µ = 2.61, σ = 0.42
A µ = 1.75, σ = 0.73
B µ = 2.61, σ = 0.65
C µ = 1.88, σ = 0.64
D µ = 1.75, σ = 0.73
E µ = 2.35, σ = 0.65
F µ = 2.61, σ = 0.65
G µ = 2.21, σ = 0.75
H µ = 2.32, σ = 0.88
I µ = 1.98, σ = 0.71
J µ = 1.98, σ = 0.71
K µ = 1.98, σ = 0.71
L µ = 2.61, σ = 0.65
M µ = 1.98, σ = 0.71
N µ = 2.98, σ = 0.38
O µ = 2.05, σ = 0.59
P µ = 1.37, σ = 0.38
Q µ = 1.37, σ = 0.38
R µ = 2.21, σ = 0.75
S µ = 1.30, σ = 0.69

Table 4.3: Elicitation of Effort Distribution.

effort to develop the work sequence up to item d is more than the cumulative

team capacity up to release period k− 1 and less or equal to the cumulative team

capacity up to release period k:

k−1∑
j=1

capacity(j) <
d∑
j=1

effort(ws(j)) ≤
k∑
j=1

capacity(j)

where ws(j) is the jth element in the work sequence ws. This condition ensures

that the total effort in each release period does not exceed the team capacity

for that period and that work items are released in order of the work sequence

derived from the release plan. Figure 4.7 shows the algorithm for generating a

4.3. Simulating BEARS Release Plans 75

release scenario from work sequence.

Given work sequence, ws
1. Let cumulativeEffort = 0
2. Let currentIteration = 1
3. cumulativeCapacity = capacity(currentIteration)
4. for i = 0 to length(ws)

5. cumulativeEffort+ = effort(ws(i))
6. while(cumulativeEffort is greater than cumulativeCapacity)

7. Increase currentIteration by 1
8. Increment cumulativeCapacity by capacity(currentIteration)
i.e. cumulativeCapacity += capacity(currentIteration)

9. actualReleasePeriod(ws(i)) = currentIteration

Figure 4.7: Algorithm for generating release scenario from a work sequence.

4.3.1 Evaluating Expected Net Present Value

BEARS computes the expected net present value of a release plan p as the mean

net present value of the N release scenarios that simulate p. In a release scenario

s, let WIk be the work items assigned to release k, then the total value delivered

during release period k is the sum of the value delivered by all the work items:

value(WI k) =
∑

wi∈WI k

value(wi, s, k)

, where value(wi, s, k) is the value delivered by a work item wi in period k for a

given scenario s and defined as:

value(wi, s, k) =
L∑
l=k

value(wi, s, l)

(1 + r
100

)l

The Net Present Value (NPV) of release scenario s is then defined as:

4.3. Simulating BEARS Release Plans 76

NPV(s) =
K∑
i=1

value(WI k)−B (4.1)

where B is the budget allocated to the team for the periods in the planning

horizon. If no budget is specified, BEARS uses B = 0.

The net present value of a release plan is a random variable whose distribution is

approximated by the net present value of all release scenarios simulated from the

release plan.

ExpectedNPV(p) =
∑
s∈N

NPV(s)

N
(4.2)

4.3.2 Evaluating Expected Punctuality

The punctuality of a release scenario s with respect to a release plan p is defined

as the percentage of planned work items delivered on or before their planned

release period:

Punctuality(s, p) =
#{w ∈WI | s(wi) ≤ p(wi)}

#dom(p)

where dom(p) is the domain of p, i.e. the set of work items in the release plan.

The expected punctuality of a release plan p is the mean punctuality of the N

release scenarios that simulate p:

ExpectedPunctuality(p) = E(Punctuality(s,p)) (4.3)

Our punctuality metric is motivated by the need for a simple way to communicate

uncertainty about the scope of future releases in a release plan. A release plan

with a 90% expected punctuality means that 90% of work items are expected to be

4.4. Shortlisting Release Plans 77

delivered in their planned release. This expected punctuality metric is motivated

by the need for a simple metric to help release planners and software development

teams communicate the uncertainty associated with different release plans to

clients and other stakeholders. The metric also allows release planners to compare

release plans with different expected punctuality and analyse tradeoffs between

expected punctuality and expected NPV, as explained in the next section.

4.4 Shortlisting Release Plans

BEARS requires release planners to specify additional parameters such as planning

horizon K, investment horizon L, discount rate r, efforts constraints and optionally

budget constraints for the next K planning horizons. For example, assume discount

rate r = 2% per release period, number of releases K = 3, investment horizon

L = 12, capacity = 40 person-days per release.

BEARS shortlists a set of Pareto-optimal solutions that maximize expected net

present value (ENPV) and expected punctuality (EP). In BEARS, a release

plan p is Pareto-optimal if there is no other release plan p′ that outperforms

p on one criteria and is at least as good for the other criteria i.e. such that

either ENPV(p) > ENPV(p’) and EP(p) ≥ EP(p’) or EP(p) > EP(p’) and

ENPV(p) ≥ ENPV(p’).

In general, the number of release plans will be too large to compute the exact set

of Pareto-optimal solutions. BEARS thus relies on multi-objective evolutionary

algorithms (MOEAs) to explore the space of candidate release plans and generate

a good approximation of the set of Pareto-optimal release plans.

Our implementation uses the following MOEAs: NSGA-II [49], MOCell [85], and

SPEA2 [50]. To apply such algorithms, BEARS encodes a release plan p as an

4.4. Shortlisting Release Plans 78

array of integers where each element represents the release number p(w) assigned

to a work item or zero if the work item is not scheduled in the plan. The size of

the array is equal to the number of the work items in the product backlog. The

MOEAs start by randomly generating an initial population of 100 release plans,

then iteratively evolve the population towards release plans with higher ENPV

and EP using genetic selection, crossover and mutation. Our implementation

uses integer simulated binary crossover with probability Pc = 0.9 and polynomial

mutation with probability Pm = 1
|WI| where |WI| is the number of work items. We

have set the MOEAs to terminate after having explored 25, 000 release plans. On

termination, they return the Pareto-optimal release plans in their final population.

During mutation and crossover, the MOEAs may generate new release plans that

violate the dependency constraints between work items. Following an approach

used in previous work, our implementation automatically detects and repairs such

violations so that the populations only contain valid release plans [86]. If in the

future, BEARS is extended to support more dependency relations between work

items, such as coupling, exclusion and weak precedence, the only required change

will be to extend the detection and repair of constraints violations during mutation

and crossover.

When the search terminates, BEARS displays the Pareto-front of the shortlisted

release plans. Visualizing such Pareto-front helps release planners analyze and

communicate trade-offs between expected value and punctuality.

BEARS generates different views of the solutions in order to support the decision

makers in making optimal release plan decisions. We generate visualizations of

the candidate release plans using table, scatter plot and bar chart to help decision

makers in deciding what plan to select. The scatter plot provides information

about the regions of the solution space containing the best solutions and how

much of the solution space was explored by the optimization algorithm. The table

4.4. Shortlisting Release Plans 79

Figure 4.8: Expected NPV and punctuality of shortlisted release plans for flexible-
scope release

view shows details of work item assignment to each release and corresponding

objective value for each plan. The bar chart view provides a summary of the

shortlisted plans by showing the frequency of each work item in each of the release.

The cash flow analysis view of the release plans gives possible financial projection

of each release plans if chosen. The analysis answers questions such as when

will the project the break-even if a certain release plan is chosen? When will

self-funding status be achieved? What will be the company financial position in

period t if a particular release plan is chosen? Finally, BEARS calculates the

expected value of perfect information on the generated shortlist so as to help

release planners determine whether or not to seek more information to reduce

their uncertainty before making release decisions. The computation of information

value are described in Section 4.5.

For example, Figure 4.8 shows the returned Pareto-front for our local government

problem. Visualising such Pareto-front helps release planners analyse trade-off

between expected value and punctuality. The figure shows that the release plan

4.5. Information Value Analysis 80

with the highest ENPV, on the top left, has an expected punctuality around 70%.

Release planners may hesitate selecting a release plan where 30% of work items

are likely to be delivered late. Late deliveries, even if forewarned, will disappoint

stakeholders and could put the project at risk of being cancelled. Developers’

morale and productivity could also be affected. To address these issues, release

planners could select a release plan with slightly lower ENPV but higher expected

punctuality up to 86%. Release plans with still higher expected punctuality are

possible but would require further sacrifice in ENPV. If the client requires a

punctuality of 95% or even insists on 100% punctuality (e.g. with penalties if

the targets are not met), release planners will prefer selecting release plans that

are easier to deliver on time. Selecting a plan with an expected punctuality of

95% requires reducing ENPV to around £1.5M and a plan with 100% expected

punctuality requires reducing ENPV to around £600K. BEARS output therefore

allow release planners to have informed discussions with clients and developers

about tradeoffs between ENPV and expected punctuality.

4.5 Information Value Analysis

Uncertainty arises due to lack of complete information about parameter of in-

terests before making decision. The presence of uncertainty in the process of

making business decisions making business decisions means that there’s likeli-

hood of making incorrect decisions [68]. By incorrect decision, we mean that

decision makers may have selected another alternative if some information was

available at the time decision was made. Therefore, additional information can (i)

reduce uncertainty about decisions that have economic consequences (ii) affect

the behavior of decision makers in choosing an alternative course of action. If

it is possible for decision makers to pay for additional information that reduces

uncertainty before making decisions, how much will that information be worth to

4.5. Information Value Analysis 81

them? However, additional information are worthwhile if and only if the cost of

the new information is lower than the value derived from the new information

[41, 68, 73]. The question can be answered through information value analysis.

Information value analysis computes the upper bounds of the financial value of

additional information in decision problems.

The expected value of information is defined as the expected gain in benefit

between selected alternatives with or without additional information [68, 87].

Expected value of information for the different uncertain variables (i.e. value

of a work item) guides decision makers to avoid wasting resources on reducing

uncertainty about work items of low value but rather focus on reducing uncertainty

about work items with high expected value [41]. The expected value of information

is defined with respect to an outcome to be maximised and assumes a default

decision strategy of maximising expected benefit. In BEARS, the outcome to be

maximised is the net present value (NPV) but the definition applies to any other

benefits. Expected value of total perfect information (EVTPI) is the expected

gain in net present value from using perfect information about value of all work

items.

EVTPI = E[max
a∈A

NPV(a, φ)]−max
a∈A

E[NPV(a, φ)],

where A is the set of alternative release plans, a is a single alternative in A,

NPV(a, φ) is the net present value of alternative a given the uncertain work items

values φ.

Similarly, the expected value of partial perfect information about the value

parameter of a single work item θ denoted EVPPI(θ), is the expected gain in net

present value from using perfect information about θ [88].

4.6. BEARS JAVA Tool 82

EVPPI(θ) = E[max
a∈A

f(a, δ)]−max
a∈A

E[NPV(a, φ)],

where Φ is a set of uncertain work items parameter, f(a, δ) = EΦ−θNPV(a, φ) is

the expected NPV of alternative a, give that the parameter θ is fixed at δ and

EΦ−θ is the expectation with respect to all model parameters Φ except θ.

The information value analyser in BEARS accepts the Pareto optimal solutions

and their corresponding NPV values as input and returns EVTPI and EVPPI.

Due to the large size of the solution space, it is not feasible to compute information

value for all solution alternatives. Therefore, we define A as the set of Pareto

release plans returned from BEARS optimization phase. This assumption is

reasonable because it will be a waste of time to perform further analysis on

non-shortlisted release plans.

4.6 BEARS JAVA Tool

BEARS is supported by a tool that automatically shortlists a set of Pareto-

optimal release plans that maximize ENPV and expected punctuality through

Monte-Carlo simulation and search-based multi-objective optimization. The tool

is implemented in JAVA. It uses JMetal [89] for multi-objective optimization and

our own implementation of a Monte-Carlo simulation of release plans. The tool

takes as input a CSV file defining the work items’ dependencies and effort and

value estimates. It generates a CSV file with the shortlisted Pareto-optimal release

plans and a figure of the Pareto front graph. It also computes and reports the

expected value of perfect information, a form of probabilistic sensitivity analysis

used to help release planners decide whether they should seek more information

about some item’s effort and value before making a decisions [41].

4.7. BEARS Limitations 83

4.7 BEARS Limitations

BEARS was developed to support our experiments. For practical use, the method

has a number of limitations.

Applicability and cost. As mentioned earlier, we have not yet evaluated the method

in an industrial context. As a result, the applicability and cost of BEARS in

industrial context are still unknown. Other release planning methods under

uncertainty suffer from the same limitation. In contrast, EVOLVE-II and some

other methods that ignore uncertainty have been applied in industry and their

benefits documented [11, 12, 13]. We hope the results of our experiments will be

used to justify future industry trials of release planning methods under uncertainty.

Modelling assumptions. The economic model used in BEARS (Eq. 4.1 to 4.3)

relies on simplifying assumptions that may affect the accuracy of their net present

value and punctuality estimations. Notably, the model assumes that work items

are independent. In practice, the values of two work items may depend on a third

variable making this assumption invalid (e.g. the values of online services related

to council tax payments all depend on the number of residents who pay council

taxes). This limitation can be addressed by developing more complex models

but this would make the release planning method more difficult to apply as the

models would need to be project-specific.

Tool limitations. The BEARS tool is a prototype developed primarily to support

our experiments. The tool supports the evaluation and shortlisting of release

plans (Sections 4.3 to 4.4) but does not support uncertainty elicitation (Section

4.2) and does not include features to help release planners explore the shortlist

and select their preferred plan. Such features are essential for future industrial

applications.

4.8. Chapter Summary 84

4.8 Chapter Summary

BEARS is the first release planning method that supports the industrial practice

of fixed-date, flexible-scope releases.

As future work, we plan on extending BEARS to analyse a wider range of criteria

and work items during release planning such as: analysing fairness and multiple

value dimensions from multiple perspectives [30]; managing technical debt during

release planing [90]; supporting decisions about what experiments to perform (e.g.

as A/B tests) and data to collect as part of the release planning process and to

support future release planning decisions; and analysing objective data (e.g. from

the software development process, software usage, and users’ feedback) to update

uncertainty about feature’s effort and value (using Bayes’ rule) so as to inform

future decisions [91].

Chapter 5

Evaluation

We conducted three experiments to evaluate and compare BEARS to existing

release planning methods. The first compare BEARS to EVOLVE-II on our local

government release planning problem. The second extends the first by comparing

BEARS to more release planning methods on a larger number of release planning

problems. The third evaluates the performance of the alternative MOEAs used in

BEARS (NSGA-II, SPEA2, and MOCell).

The first two experiments aim to address fundamental research questions we raised

in the introduction chapter (Section 1.3):

• Does analysing uncertainty during release planning lead to better release

planning decisions than if uncertainty is ignored? Would different release

planning methods applied in the same context recommend the same release

plans? If not, do some methods make better recommendations than others?

In these experiments, we will apply BEARS and other release planning methods

on a set of release planning problems and compare the resulting shortlisted release

plans. We will observe that release plans shortlisted by BEARS are better than

85

5.1. Experiment I: BEARS vs. EVOLVE-II 86

those shortlisted by other methods in the sense that they have higher expected

net present value and expected punctuality.

In the previous chapters, we have argued that expected net present value and

expected punctuality are better criteria for shortlisting release plans than the

simpler net present value (or value points) used by methods that ignore uncertainty.

Evaluating expected net present value is more accurate than evaluating net

present value (or value points) because it takes into account that work items

may be delivered later than planned. Evaluating expected punctuality is more

informative and realistic than assuming all work items will be delivered on time.

We have therefore argued that optimising expected net present value and expected

punctuality is preferable to optimising net present value (or value points) without

considering punctuality. So far, we have argued that analysing uncertainty is

in theory better than ignoring it. In this chapter, we study whether analysing

uncertainty also makes a difference in practice.

5.1 Experiment I: BEARS vs. EVOLVE-II

• RQ1: How does BEARS shortlists compare to EVOLVE-II when applied on

the same backlog?

Our first experiment compares BEARS to EVOLVE-II on our motivating example.

We have chosen EVOLVE-II because it epitomizes the use of value points in release

planning. It is also the most prominent release planning method in literature [9, 10],

is supported by a professional tool, and has been applied in industrial contexts

[11, 12].

The first objective of this experiment is to provide a concrete illustrative example

of the differences between release plans shortlisted by BEARS and EVOLVE-II.

5.1. Experiment I: BEARS vs. EVOLVE-II 87

The second objective is to introduce our approach to comparing alternative release

planning methods on the same problem. The same approach will be used in our

second experiment, and introducing this approach on a single example will make

the second experiment easier to explain.

Our first and second experiments aim to compare alternative release planning

methods when the models are used on the same product backlog. Alternative mod-

els use different optimisation criteria. For example, BEARS has two objectives,

maximizing ENPV and maximising expected punctuality, whereas EVOLVE-II

has a single objective, maximising value points. Alternative models also require

eliciting different inputs from stakeholders. For example, BEARS requires elicit-

ing probability distributions for the work items effort in person-days and value

in £, whereas EVOLVE-II requires eliciting work items effort in person-days

and value points. However, when applied to the same product backlog, different

models evaluate and shortlist release plans from the same set of release plans (they

have the same solution space). The purpose of our experiments are to compare

shortlists generated from different models. Does BEARS shortlist the same release

plans as EVOLVE-II and other methods? If not, how significant are the differences

between the shortlists?

5.1.1 Experiment Design

Chapter 4 presented the application of BEARS on our running example. The

shortlisted release plans were shown in Figure 4.8.

Imagine now that we had used EVOLVE-II instead of BEARS in the same

situation. Starting from the same product backlog described in Section 1.1, we

would have estimated the work items’ effort and value as described in Section 2.1.3

and 2.1.4. This would have resulted in estimates such as those shown Table 2.3.

5.1. Experiment I: BEARS vs. EVOLVE-II 88

We would also have had to define the release weights and capacities. We would

then have used ReleasePlanner, the tool supporting EVOLVE-II, to shortlist top 5

release plans that maximize value points (Eq. 2.4) subject to capacity constraints

(Eq. 2.5).

Our experiment will simulate this process of applying EVOLVE-II. Instead of

eliciting effort and value estimates from stakeholders, we will derive such estimates

from the BEARS estimates by assuming that the stakeholders’ EVOLVE-II

estimates would be consistent with the estimates they have given using BEARS.

This allows us to compare the outputs of BEARS and EVOLVE-II optimisation

models independently from differences between their effort and value elicitation

techniques. For our experiments, we set the EVOLVE-II effort and value point

estimates to be the mean of the value and effort probability distributions in

BEARS, normalised on a scale from 0 to 9. We chose a scale from 0 to 9

because it is the default scale in EVOLVE-II. Likewise, we define other inputs

of the EVOLVE-II model so that they are consistent with the corresponding

parameters in the BEARS model. We define the team capacity for each release

period in EVOLVE-II from the team capacity in the BEARS model using the

same approach used to scale effort estimate. We set the weight of each release

period i to be (1 + r)−i where r is the NPV discount rate in the BEARS model.

This ensures that both models apply the same relative weights to sum up values

in different release periods.

Once all model inputs have been defined, we have used ReleasePlanner 2.0, the

commercial tool supporting EVOLVE-II, to shortlist release plans with high value

points among those that satisfy the capacity constraints. ReleasePlanner uses a

specialised integer programming algorithm that shortlists release plans that can

be proven to be within a given bound of the maximal value points [6, 92]. The

algorithm also uses heuristics to increase diversity (in the solution space) among

5.1. Experiment I: BEARS vs. EVOLVE-II 89

the shortlisted release plans. This approach recognises that the EVOLVE-II model,

like any model, is necessarily approximate, and it gives release planners a more

diverse set of choices than simply selecting the release plan with the most value

points.

In order to compare optimal release plans in the BEARS and EVOLVE-II models

without being affected by the optimisation algorithm, we have developed an

alternative optimisation algorithm for EVOLVE-II that uses the same MOEAs

with repair as BEARS. In this example, we have used NSGA-II. The objective

function here is to maximize value points. The algorithm shortlists the top n release

plans that satisfy the capacity constraints, without considering diversity among

the shortlisted plans. We call this approach EVOLVE-max. When comparing

BEARS to EVOLVE-max, we set the EVOLVE-max shortlist to be of the same

size of the BEARS shortlist (28 in this example). ReleasePlanner, in contrast,

shortlists 5 release plans only and we did not have control over this number. On

this example, EVOLVE-max shortlists release plans with higher value points than

ReleasePlanner: from 331 to 361 value points for EVOLVE-max, from 335 to

341 for ReleasePlanner.

After generating the ReleasePlanner and EVOLVE-max shortlists, we compute

the expected NPV and expected punctuality of all shortlisted release plans using

the BEARS model (Equations 4.1-4.3) so that they can be compared to the release

plans shortlisted by BEARS.

5.1.2 Results

Figure 5.1 shows the expected NPV and expected punctuality of release plans in

the BEARS, ReleasePlanner and EVOLVE-max shortlists. For the release plans

in the EVOLVE-max shortlist, we have used the BEARS model to compute their

5.1. Experiment I: BEARS vs. EVOLVE-II 90

Figure 5.1: Release plans shortlisted by BEARS(green crosses), ReleasePlanner
(red triangle) and EVOLVE-max (blue diamonds) for the local government project.

expected net present value and expected punctuality. For a fair comparison, we

include as many release plans in the EVOLVE-max shortlist as there are in the

BEARS shortlist (27 in this example). Figure 5.1 shows that:

1. The shortlists are disjoint; none of the release plans shortlisted using Re-

leasePlanner or EVOLVE-max are short-listed by BEARS, and vice-versa.

2. The BEARS shortlist strictly dominates the two EVOLVE-II shortlists; in

other words, for every release plan in the EVOLVE-II shortlists there is at

least one release plan in the BEARS shortlist that has higher expected

NPV and higher expected punctuality.

3. The maximum expected NPV is nearly 10% higher in the BEARS shortlist

than in the EVOLVE-II shortlists. The difference is due to the EVOLVE-II

model evaluating value points under the assumption that all work items are

delivered on time. Hence, the release plans with the most value points are

not necessarily those with the highest expected NPV.

5.1. Experiment I: BEARS vs. EVOLVE-II 91

4. The expected punctuality in the BEARS shortlist ranges from 72% to 100%.

In contrast, the highest expected punctuality in the EVOLVE-II shortlist is

around 80%. Most importantly, in practice ReleasePlanner users would not

be aware of the release plans’ expected punctuality.

In summary, Figure 5.1 shows that on this example BEARS shortlists release

plans that are better than those shortlisted by EVOLVE-II in terms of expected

NPV and expected punctuality. BEARS also provide information about expected

punctuality that is missing in ReleasePlanner.

Incidentally, Figure 5.1 also shows that the EVOLVE-II strategy of shortlisting

diverse release plans is useful on this example because it shortlists release plans

with a better range of expected punctuality than EVOLVE-max. This usefulness

is however reduced by the lack of information that ReleasePlanner users would

not have about expected punctuality.

In terms of run-time, BEARS is slower than EVOLVE-II. In this example, BEARS

shortlists release plans in 35 seconds, compared to around 3 seconds for EVOLVE-

max and 7 seconds for the web-based ReleasePlanner (whose run-time includes

GUI functions and network communications not included in EVOLVE-max). In

our implementations, BEARS and EVOLVE-max are configured to stop after

evaluating a fixed number of release plans (25,000). The run-time increase in

BEARS is due to the Monte-Carlo simulation required to evaluate each candidate

release plans.

5.1.3 Threats to Validity

External validity. This experiment compares BEARS to EVOLVE-II on a single

example. The next section will extend this comparision to more release planning

problems.

5.1. Experiment I: BEARS vs. EVOLVE-II 92

Internal validity. Comparing BEARS against ReleasePlanner and EVOLVE-max

allows us to check that differences between the BEARS and EVOLVE-II shortlists

are not due to differences in optimisation algorithms. We have evaluated the

release plans shortlisted by EVOVLE-II in terms of the BEARS objectives of

maximizing expected NPV and expected punctuality, even though such objectives

are not used by EVOLVE-II. Doing so is appropriate because our objective is to

study differences between release plans shortlisted by BEARS and EVOLVE-II for

the local government release planning problem where two important stakeholders’

concerns are the financial implications and punctuality of release plans. The

BEARS model provides one way to model these two concerns. The EVOLVE-II

model provides another, lighter way to model the financial concern using value

point and ignores the punctuality concern due to the method’s lack of support for

probabilistic reasoning. This experiment showed that using the simpler EVOLVE-

II model comes at a cost of shortlisting release plans with lower expected NPV

and punctuality.

In this experiment, we have simulated the application of EVOLVE-II by deriving

its inputs from the BEARS model instead of applying EVOLVE-II independently

from BEARS. This allowed us to minimize the difference between the application

of the two methods. If EVOLVE-II had been applied independently from BEARS,

it would most likely have led to different effort and value estimates and probably

even larger differences between the shortlisted release plans.

We have used EVOLVE-II’s default 9 point scale for estimating value. Using a

more precise scale might lead to different results. Our next experiment will address

this concern by comparing BEARS to a method we call BEARS-deterministic

where the mean value estimates in BEARS are not scaled down to a 9 point scale.

Finally, this experiment compared a single run of BEARS to a single run of

EVOLVE-II. Since both methods use a stochastic optimisation algorithm, different

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods 93

runs may generate different shortlists. Our second experiment will address this

concern by repeating each experiment 30 times.

5.2 Experiment II: Comparing BEARS to Other

Release Planning Methods

In our second experiment, we want to study more systematically whether analysing

uncertainty using BEARS leads to shortlisting different release plans than if

uncertainty is ignored. We also want to study differences between BEARS and

release planning models that assume fixed-scope releases. Our research questions

are:

• RQ1: How does BEARS compare to release planning methods that ignore

uncertainty?

• RQ2: How does BEARS compare to release planning methods under

uncertainty with fixed-scope releases?

To study these questions, we compare BEARS to 4 release planning methods on

32 release planning problems drawn from 8 product backlogs.

5.2.1 Experiment Design

Release Planning Methods

Table 5.1 lists the release planning methods in our experiment. The first two,

EVOLVE-max and BEARS-deterministic, are used to answer Q1.

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods 94

Table 5.1: Release Planning Methods in Our Empirical Evaluation

Method Effort estimates Value estimates Simulation Method Optimisation problem

EVOLVE II person-days value points deterministic Maximise value points subject to capacity constraint
BEARS-deterministic person-days economic value deterministic Maximise NPV subject to capacity constraint
EVOLVE-with-uncertainty uncertain story points value points stochastic, fixed-scope Maximise value points; Maximise on-time probability
BEARS-fixed-scope uncertain person-days uncertain economic value stochastic, fixed-scope Maximise expected NPV; Maximise on-time probability
BEARS uncertain person-days uncertain economic value stochastic, flexible-scope Maximise expected NPV; Maximise expected punctuality

EVOLVE-max was introduced in our first experiment. It is a variant of EVOLVE-

II that uses the same release planning model as EVOLVE-II and a simpler

optimization algorithm. Comparing BEARS to EVOLVE-max allows us to study

differences between the BEARS and EVOLVE-II models, independently from the

effects of the diversity heuristics used in the ReleasePlanner implementation. Our

objective is to study differences between the methods’ release planning models,

not between their optimisation algorithms.

BEARS-deterministic is a variant of BEARS where effort and value are rep-

resented as point estimates instead of probability distributions. In BEARS-

deterministic, effort are represented in person-days while values are represented

using financial metrics. The optimisation problem of BEARS-deterministic is to

maximise NPV (Eq. 4.1) subject to effort capacity constraints (Eq. 2.5). Compar-

ing BEARS to BEARS-deterministic allows us to isolate the effect of modelling

uncertainty from other differences between BEARS and EVOLVE-max (in partic-

ular the 9-point scale used in EVOLVE to estimate story points and value points).

For both EVOLVE-max and BEARS-deterministic, our experiment will shortlist

the top n release plans, where n is the maximum number of release plans in the

BEARS shortlist.

The other two methods in Table 5.1, EVOLVE-with-uncertainty and BEARS-

fixed-scope are used to answer Q2. EVOLVE-with-uncertainty is based on a

previously published variant of EVOLVE that models uncertainty about effort

but not value [15]. The method simulates effort uncertainty assuming fixed-scope

releases and the optimisation problem has two objectives: maximise value points

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods 95

Table 5.2: Release Planning Problems in Our Empirical Evaluation

Release Planning Problem Backlog Size Number of Constraints Original effort estimates Original value estimates

Local Government Project 20 23 uncertain person-days uncertain economic value
Release Planner 25 11 person-hours value points
Word Processor 50 65 person-hours value points
RALIC 143 0 person-hours value points
Synthetic-30 30 11 uncertain person-days uncertain economic value
Synthetic-50 50 15 uncertain person-days uncertain economic value
Synthetic-100 100 30 uncertain person-days uncertain economic value
Synthetic-200 200 51 uncertain person-days uncertain economic value

(Eq. 2.4) and maximise the probability of delivering all features on time (Eq. 2.6).

BEARS-fixed-scope is a variant of BEARS that uses the same uncertain effort and

value estimates as BEARS but simulates effort uncertainty assuming fixed-scope

releases instead of flexible-scope. Comparing BEARS to BEARS-fixed-scope

allows us to study the difference between fixed-scope and flexible-scope simulations

independently from other factors. The shortlists in EVOLVE-with-uncertainty and

BEARS-fixed-scope are the set of Pareto-optimal solutions returned by the multi-

objective optimisation algorithm. Shortlists of different methods can therefore be

of different sizes.

In our experiments, we have used our own implementation of each method. As

stated in Section 5.1, EVOLVE-max uses the sames MOEAs with repair as

BEARS. The variants of EVOLVE that deal with uncertainty have no publicly

available implementation; we therefore had to build our own. For consistency,

we have tested all methods using NSGA-II as MOEA. This reduces the risk that

differences between the methods’ shortlists are due to the MOEA rather than due

to more fundamental differences in the optimisation models.

Release Planning Problems

Table 5.2 lists the 8 product backlogs in our experiment. For each product

backlog, we consider 4 release planning problems by varying the planning horizon

from 2 to 5 periods. The local government project is the illustrative example

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods 96

we have used throughout the thesis, Release Planner, Word Processor, and

RALIC product backlogs have been used in previous studies to evaluate the

performance of MOEAs on release planning problems [24, 27, 93, 26, 94]. The

product backlogs for the Release Planner and Word Processor projects contains

candidate features for future releases of the Release Planner tool and for a word

processor, respectively. The features were elicited and evaluated during exploratory

studies for a variant of the EVOLVE method [55]. The product backlog for the

RALIC project includes requirements for a future building access control system

at University College London. The requirements were elicited from and evaluated

by 87 stakeholders using an online tool that leveraged stakeholders’ relationships

to drive the requirements elicitation and prioritization process [95]. The last 4

product backlogs are synthetic backlogs of size 30, 50, 100, and 200, respectively.

The work items precedence constraints, effort and value estimations have been

generated at random.

For the Release Planner, Word Processor and RALIC product backlogs, the

original effort and value estimates do not include uncertainty. To be able to apply

BEARS on these problems, we have artificially added uncertainty to the estimates

by simulating the uncertainty elicitation process described in Section 4.2. For an

original point-based effort estimate x, we have set the upper and lower bounds to x

and 1.8x and the lower quartile, median and upper quartile to 1.2x, 1.5x and 1.7x.

This simulates a situation where the original effort estimate is the most optimistic

value and the true development time could take up to 1.8 times this optimistic

value. This situation is consistent with studies of software estimations that show

that people tend to underestimate development time [38]. For an original value

point estimate y, we have set the lower and upper bounds to £0 and £1000y and

the lower quartile, median and upper quartile to £200y, £500y, and £750y. This

simulates a situation where one value point is worth £1, 000 and the original value

estimate is the most optimistic value and the true value could be as low as zero.

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods 97

This is consistent with observations of software project where initial prediction

of business value tend to be overestimated [96, 77] We make no claim that the

values we have chosen represent the true uncertainty that would have been elicited

from real developers and stakeholders in these projects. Since our objective is to

compare the outputs of different release planning method when applied on the

same inputs, it is sufficient that these inputs are realistic and used consistently

across our experiments.

For converting BEARS probability distributions to EVOLVE estimates, we used

the approach described in Section 5.1. For the Release Planner, Word Processor,

and RALIC product backlogs, we first generate BEARS probability distribution

as described in the previous paragraph, then generate new EVOLVE estimates

that are proportional to the mean of the BEARS distributions as described

in Section 5.1. When applying BEARS-deterministic, we use the mean of the

BEARS probability distribution as single-point estimate for effort and value.

Evaluation Metrics

The first evaluation metric is to observe how often the BEARS shortlist strictly

dominates the shortlists of other methods. In our context, a release plan p1 strictly

dominates a release plan p2 if ENPV(p1) > ENPV(p2) and EP(p1) > EP(p2). A

shortlist L1 strictly dominates a shortlist L2 if every release plan in L2 is strictly

dominated by at least one release plan in L1. Strict dominance is the strongest

possible form of dominance relation between sets of solutions in multi-objective

optimisation problems [97]. If a single release plan in L2 is equal to, or is not

dominated by some release plan in L1, then L1 does not strictly dominates L2.

As in the first experiment, we have used the BEARS model (Equations 4.2 and

4.3) to compute the expected NPV and expected punctuality of release plans

shortlisted by other methods.

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods 98

Analysing strict dominance can tell us whether the release plans shortlisted by

BEARS are better than those shortlisted by other methods but it does not tell

us how much better. Our second evaluation metric measures the improvement of

a BEARS shortlist compared to the shortlist of another method by comparing

their hypervolumes. In multi-objective optimisation problems, the hypervolume

of a solution set A, noted HV(A) is the volume of the objective space dominated

by A [98]. For example, in Figure 5.1 the hypervolume of the shortlist is the

area dominated by the release plans in the shortlist, bounded below by the x-

axis (ENPV = 0) and to the left by the y-axis (EP= 0). In this example, the

HV of the BEARS and EVOLVE-II shortlists are 2047 and 1541, respectively.

The HV of the BEARS shortlist is larger because it covers a larger area. The

Hypervolume improvement ratio (HVIR) of a solution set A over a solution set

B is HV(A)/HV(B). In Figure 5.1, the HVIR of the BEARS shortlist over the

EVOLVE-II shortlist is 2047/1541 = 1.33. Hypervolume is a widely used metric to

compare solution sets of multi-objective optimisation problems. We have chosen

this metric because it has as simple visual interpretation and is compatible with

strict dominance, i.e. if A strictly dominates B then HV(A)/HV(B) > 1 [97].

Experimental Set Up

The MOEAs used by the release planning methods in Table 5.1 are stochastic

algorithms that can generate different results each time they are executed on a

given problem. To account for such randomness, we have executed 30 independent

runs of each of our 5 release planning methods on all 32 release planning problems.

Each release planning method is thus executed 960 times (30 × 32). In total,

our experiment includes 4, 800 independent runs (5× 960), resulting in as many

shortlists. All runs were executed on a single PC with Intel Core i5 CPU at

3.20GHz x 4 and 8GB of RAM.

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods 99

5.2.2 Results

Table 5.3 reports how often BEARS generates a shortlist that strictly dominates

the shortlist of other methods when each method is executed 30 times. Table 5.4

reports the mean, minimum and maximum hypervolume improvement ratios over

30 runs for each release planning problem. We have checked that all observed

differences in hypervolumes between BEARS and other methods are statistically

significant using Mann-Whitney U test with p < .05. All p-values are reported in

Table 5.5.

RQ1) How does BEARS compare to release planning methods that ignore uncer-

tainty? Table 5.3 shows that out of 960 runs, BEARS shortlist strictly dominates

the EVOLVE-II and BEARS-deterministic shortlists in 96% and 97% of the

runs, respectively. BEARS shortlist strictly dominates the shortlists of the two

deterministic methods in all 30 runs in at least 23 of the 32 release planning

problems, and strictly dominates the other shortlists in all problems in at least

21 out of 30 runs. Furthermore, Table 5.4 shows that BEARS shortlist has an

hypervolume that is on average 17% and 18% higher than the EVOLVE-II and

BEARS-deterministic shortlists, respectively. The hypervolume improvements

range from 3% to 42%.

Comparing BEARS and BEARS-deterministic shortlists allow us to study the

effect of analysing uncertainty in isolation of other factors. Tables 5.3 and 5.4

show that BEARS shortlists strictly dominates BEARS-deterministic shortlists

and has better hypervolume improvement ratio respectively. Therefore, based

on evidence from our experiment, we can conclude that analysing uncertainty

during release planning leads to shortlisting different and better release plans that

if uncertainty is ignored.

To help us understand the practical significance of the above results in specific

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods100

BEARS vs.

Product Backlog H EVOLVE-max
Bears-

Deterministic
Evolve-with-
uncertainty

Bears-fixed-
scope

Local Government Project 2 30/30 21/30 18/30 18/30
3 30/30 30/30 19/30 21/30
4 21/30 27/30 22/30 23/30
5 27/30 29/30 21/30 27/30

Release Planner 2 23/30 25/30 25/30 21/30
3 30/30 30/30 30/30 28/30
4 30/30 30/30 30/30 30/30
5 30/30 30/30 30/30 30/30

Word Processor 2 23/30 24/30 20/30 26/30
3 29/30 29/30 27/30 23/30
4 30/30 30/30 30/30 30/30
5 30/30 27/30 26/30 30/30

RALIC 2 30/30 30/30 30/30 30/30
3 29/30 30/30 27/30 29/30
4 24/30 30/30 30/30 29/30
5 22/30 30/30 20/30 27/30

Synthetic-30 2 30/30 30/30 18/30 20/30
3 30/30 29/30 20/30 30/30
4 30/30 30/30 21/30 30/30
5 30/30 30/30 27/30 30/30

Synthetic-50 2 30/30 29/30 20/30 20/30
3 30/30 30/30 20/30 21/30
4 30/30 30/30 18/30 24/30
5 30/30 30/30 23/30 28/30

Synthetic-100 2 30/30 30/30 21/30 28/30
3 30/30 30/30 24/30 29/30
4 30/30 30/30 20/30 28/30
5 30/30 30/30 20/30 29/30

Synthetic-200 2 30/30 30/30 20/30 27/30
3 30/30 30/30 22/30 30/30
4 30/30 30/30 20/30 29/30
5 30/30 30/30 25/30 30/30

Overall 918/960 930/960 754/960 855/960
(96%) (97%) (79%) (89%)

Table 5.3: Proportion of runs where the BEARS shortlists strictly dominates the
shortlist of other methods.

contexts, Figure 5.2 show examples of shortlists generated by BEARS and the

two deterministic methods for each product backlog and a planning horizon H = 3.

These examples all correspond to the first of the 30 runs of each method. For

each release planning problem, the figure shows how much the shortlist generated

by BEARS dominates the shortlists generated by the deterministic methods. In

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods101

BEARS vs.

EVOLVE-max
Bears-

deterministic
Evolve-with-
uncertainty

Bears-fixed-
scope

Product Backlog H Mean Range Mean Range Mean Range Mean Range

Local Government
Project

2 1.22 1.19 –1.26 1.27 1.22 –1.34 1.06 1.03 –1.07 1.05 1.00 –1.12

3 1.24 1.20 –1.33 1.30 1.22 –1.55 1.12 1.07 –1.23 1.12 1.05 –1.33
4 1.28 1.16 –1.76 1.32 1.19 –1.51 1.11 1.07 –1.17 1.15 1.10 –1.27
5 1.34 1.18 –1.48 1.47 1.30 –1.68 1.11 1.05 –1.19 1.16 1.11 –1.24

Release Planner 2 1.05 0.97 –1.10 1.06 1.02 –1.11 1.02 0.95 –1.07 1.01 0.93 –1.06
3 1.07 1.05 –1.10 1.08 1.05 –1.11 1.06 1.03 –1.09 1.05 1.01 –1.08
4 1.06 1.04 –1.09 1.06 1.04 –1.09 1.05 1.03 –1.08 1.06 1.03 –1.11
5 1.07 1.06 –1.10 1.09 1.06 –1.15 1.06 1.03 –1.08 1.08 1.05 –1.12

Word Processor 2 1.00 0.95 –1.05 1.01 0.96 –1.05 1.00 0.94 –1.05 1.01 0.94 –1.03
3 1.04 1.02 –1.06 1.04 1.02 –1.06 1.03 1.00 –1.05 1.03 1.00 –1.05
4 1.06 1.05 –1.07 1.05 1.04 –1.06 1.05 1.04 –1.05 1.03 1.02 –1.04
5 1.04 1.01 –1.04 1.03 1.00 –1.04 1.02 0.99 –1.03 1.04 1.01 –1.07

RALIC 2 1.10 1.04 –1.20 1.12 1.08 –1.16 1.07 1.03 –1.12 1.08 1.04 –1.14
3 1.08 1.02 –1.15 1.14 1.08 –1.22 1.06 0.98 –1.12 1.08 1.02 –1.15
4 1.09 1.02 –1.14 1.16 1.11 –1.25 1.07 1.01 –1.11 1.08 1.03 –1.15
5 1.08 1.01 –1.15 1.16 1.07 –1.26 1.06 1.00 –1.09 1.08 1.02 –1.17

Synthetic-30 2 1.15 1.09 –1.67 1.11 1.05 –1.25 1.03 1.01 –1.09 1.02 1.00 –1.05
3 1.14 1.09 –1.20 1.11 1.06 –1.20 1.08 1.03 –1.11 1.08 1.04 –1.13
4 1.16 1.09 –1.23 1.15 1.10 –1.30 1.11 1.06 –1.15 1.12 1.06 –1.17
5 1.16 1.12 –1.27 1.16 1.11 –1.22 1.14 1.11 –1.18 1.15 1.11 –1.23

Synthetic-50 2 1.15 1.07 –1.30 1.14 1.03 –1.26 1.05 1.04 –1.08 1.02 1.00 –1.06
3 1.23 1.10 –1.36 1.25 1.12 –1.42 1.08 1.05 –1.12 1.08 1.03 –1.12
4 1.28 1.16 –1.42 1.30 1.22 –1.45 1.13 1.05 –1.25 1.14 1.08 –1.20
5 1.30 1.20 –1.44 1.30 1.21 –1.40 1.17 1.10 –1.26 1.20 1.14 –1.27

Synthetic-100 2 1.09 1.04 –1.14 1.08 1.05 –1.15 1.07 1.04 –1.12 1.09 1.04 –1.13
3 1.21 1.14 –1.31 1.20 1.10 –1.33 1.15 1.09 –1.22 1.16 1.10 –1.26
4 1.32 1.21 –1.44 1.32 1.20 –1.43 1.20 1.09 –1.32 1.22 1.12 –1.32
5 1.39 1.28 –1.52 1.38 1.30 –1.51 1.25 1.16 –1.34 1.26 1.18 –1.35

Synthetic-200 2 1.12 1.06 –1.22 1.11 1.05 –1.20 1.15 1.07 –1.23 1.16 1.09 –1.25
3 1.17 1.10 –1.24 1.19 1.11 –1.26 1.21 1.12 –1.29 1.24 1.13 –1.31
4 1.28 1.21 –1.38 1.26 1.18 –1.34 1.32 1.17 –1.92 1.33 1.17 –1.55
5 1.38 1.24 –1.50 1.40 1.23 –1.50 1.37 1.25 –1.69 1.36 1.18 –1.54

Overall 1.17 1.03 –1.39 1.18 1.03 –1.42 1.11 1.01 –1.29 1.12 1.01 –1.32

Table 5.4: Hypervolume Improvement Ratios of BEARS with respect to other
release planning methods.

Figure 5.2, we observe that the dominance of BEARS over methods that ignore

uncertainty is important in practice. For each of these examples, we can make

similar observations to those made in our first experiment (Section 5.1).

Analysing uncertainty using BEARS leads to shortlisting release plans with

higher expected NPV and expected punctuality than methods that ignore

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods102

uncertainty. In our experiments, the improvement in hypervolume range from

3% to 42%, with an average of 17%.

RQ2) How does BEARS compare to release planing methods under uncertainty

with fixed-scope releases? Table 5.3 shows that out of 960 runs, BEARS short-

list strictly dominates the EVOLVE-with-uncertainty and BEARS-fixed-scope

shortlists in 79% and 89% of the runs, respectively. BEARS shortlist strictly

dominates the shortlists of EVOLVE-with-uncertainty and BEARS-fixed-scope in

all 30 runs in at least 6 of the 32 release planning problems, and strictly dominates

the other shortlists in all problems in at least 18 out of 30 runs. Furthermore,

Table 5.4 BEARS shortlist has an hypervolume that is on average 11% and 12%

higher than the EVOLVE-with-uncertainty and and BEARS-fixed-scope shortlists,

respectively. The hypervolume improvements range from 1% to 32%.

To help us understand the practical significance of the above results in specific

context, Figures 5.3 show examples of shortlists generated by BEARS and analyse

uncertainty assuming fixed-scope releases for each product backlog and a planning

horizon H = 3. For each release planning problem, the figure shows how much the

shortlist generated by BEARS dominates the shortlists generated by methods

that analyse uncertainty assuming fixed-scope releases. In Figure 5.3, we see that

the difference between BEARS and methods that analyse uncertainty assuming

fixed-scope releases is smaller but still important enough to justify using BEARS

for projects with fixed-date, flexible-scope release cycles.

In the context of fixed-time releases, analysing uncertainty using BEARS

leads to shortlisting release plans with higher expected NPV and expected

punctuality than methods designed for fixed-scope releases. In our experiments,

the improvement in hypervolume range from 1% to 32%, with an average of

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods103

11%.

BEARS vs.

Product Backlog H EVOLVE-max
Bears-

deterministic
Evolve-with-
uncertainty

Bears-fixed-
scope

Local Government Project 2 2.87E − 11 2.87E − 11 2.87E − 11 5.77E − 11
3 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
4 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
5 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11

Release Planner 2 2.11E − 07 2.10E − 08 4.58E − 04 1.25E − 02
3 2.87E − 11 2.87E − 11 2.87E − 11 3.51E − 11
4 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
5 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11

Word Processor 2 3.01E − 01 6.04E − 02 4.87E − 01 3.85E − 02
3 2.87E − 11 6.37E − 11 1.15E − 10 3.06E − 09
4 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
5 2.87E − 11 2.74E − 10 5.84E − 10 2.87E − 11

RALIC 2 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
3 6.37E − 11 2.87E − 11 3.31E − 10 2.05E − 10
4 3.18E − 11 2.87E − 11 3.18E − 11 2.87E − 11
5 3.51E − 11 2.87E − 11 9.44E − 11 3.51E − 11

Synthetic-30 2 2.87E − 11 2.87E − 11 4.73E − 11 6.41E − 10
3 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
4 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
5 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11

Synthetic-50 2 2.87E − 11 2.87E − 11 2.87E − 11 7.39E − 08
3 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
4 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
5 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11

Synthetic-100 2 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
3 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
4 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
5 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11

Synthetic-200 2 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
3 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
4 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11
5 2.87E − 11 2.87E − 11 2.87E − 11 2.87E − 11

Overall 5.43E − 116 3.21E − 149 1.36E − 104 2.71E − 114

Table 5.5: Statistical Significance (p-value) of the observed difference in hypervol-
ume between BEARS and other methods over 30 runs using Mann-Whitney U
test.

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods104

(a) Local Government (b) Release Planner

(c) Word Processor (d) RALIC

(e) Synthetic-30 (f) Synthetic-50

(g) Synthetic-30 (h) Synthetic-50

Figure 5.2: Examples of shortlists generated by BEARS (green crosses), EVOLVE-
max (blue diamonds) and BEARS-deterministic (yellow triangles). These exam-
ples correspond to the first runs out of 30.

Run-times

Table 5.6 shows that BEARS is on average 25 times slower than the two methods

that ignore uncertainty and 5 times slower than the two methods that analyse

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods105

(a) Local Government (b) Release Planner

(c) Word Processor (d) RALIC

(e) Synthetic-30 (f) Synthetic-50

(g) Synthetic-30 (h) Synthetic-50

Figure 5.3: Examples of shortlists generated by BEARS (green crosses), EVOLVE-
with-uncertainty (red diamonds) and BEARS-fixed-scope (black triangles). These
examples correspond to the first runs out of 30.

uncertainty assuming fixed-scope releases. For our largest product backlog of 200

work items and H = 5, BEARS takes 10 minutes to run. Although BEARS

5.2. Experiment II: Comparing BEARS to Other Release Planning Methods106

Product Backlog H EVOLVE-max Bears-deterministic Evolve-with-uncertainty Bears-fixed-scope BEARS

Local Government Project 2 2 3 10 18 45
3 2 4 12 20 48
4 3 4 15 21 60
5 3 5 17 25 65

Release Planner 2 2 3 10 15 37
3 2 4 14 25 55
4 3 5 16 30 70
5 5 8 20 35 95

Word Processor 2 2 4 18 36 95
3 3 7 20 47 135
4 4 8 23 58 155
5 6 10 26 65 163

RALIC 2 4 10 37 85 153
3 5 12 45 102 192
4 5 12 54 123 225
5 7 15 68 150 259

Synthetic-30 2 2 6 15 33 75
3 3 7 17 42 95
4 3 9 17 40 112
5 5 11 20 49 125

Synthetic-50 2 5 9 20 68 158
3 7 11 25 75 170
4 7 12 29 84 188
5 9 14 37 96 205

Synthetic-100 2 6 13 56 75 229
3 6 16 75 94 284
4 7 20 85 110 302
5 7 24 97 115 357

Synthetic-200 2 9 20 83 112 288
3 9 21 85 122 365
4 10 22 95 130 486
5 10 30 120 150 533

Table 5.6: Release planning methods’ run-times in seconds

is significantly slower than other methods, its run time remains acceptable and

does not prevent BEARS being used during release planning workshops. In such

workshops, release plans are typically shortlisted only once after all work items

effort and values estimates have been elicited.

5.2.3 Threats to Validity

External validity. Our results may not generalise beyond the 32 release planning

problems considered in this experiment. Release planing problems where work

items have different uncertainty or where other model parameters, such as team

capacity, have different values could lead to different results. Further experiments

on other problems are needed to refine the findings. Nevertheless, this experiment

showed important differences can exist between the outputs of different release

5.3. Evaluating BEARS Optimisation Algorithms 107

planning methods, and we have found important differences between BEARS

and methods that ignore uncertainty in all release planning problems studied so

far.

Internal validity. As in the first experiment, we used the BEARS objectives of

expected NPV and expected punctuality to evaluate release plans generated by

other methods that optimise different objectives. This evaluation is appropriate

because the experiments’ objective is to compare different release planning methods

in the context for which BEARS is designed, which is the context most commonly

found in practice. Also as in the first experiment, we have deliberately aimed

to minimize differences in effort and value elicitation techniques. Taking such

differences into account is likely to amplify the differences found in the experiments.

Out of scope. Our experiments focused on comparing BEARS shortlists against

those of other methods but have ignored other factors that are important in

practice. In particular, we have not evaluated the uncertainty elicitation method

used in BEARS (Section 4.2), the ability of release planners to understand

BEARS’ outputs, the overall cost of applying the method, and the general

perceived benefits and limitations of the method by release planners, development

teams and other stakeholders.

5.3 Evaluating BEARS Optimisation Algorithms

Our third experiment evaluates the performance of BEARS MOEAs. It aims to

answer the following questions:

• RQ3: Do the three MOEAs used in BEARS perform better than a random

search?

5.3. Evaluating BEARS Optimisation Algorithms 108

• RQ4: Do the three MOEAs used in BEARS have significant differences in

performance?

Our objective here is not to propose novel MOEAs, nor to look for the best

possible algorithms for solving BEARS optimisation problems. This experiment

is a sanity check aimed at evaluating whether existing MOEAs are suitable for

solving BEARS optimisation problems. Developing and evaluating more efficient

algorithms for solving BEARS optimisation problems is left as future work.

5.3.1 Experiment Design

The three MOEAs used in BEARS are NSGA-II, SPEA2, and MOCell (see

Section 4.4). We selected these MOEAs because they have readily available

implementations in JMetal, the optimisation framework used in BEARS [89].

We compare these algorithms against a random search augmented with the same

constraints violation detection and repair technique used with the MOEAs (see

Section 4.4). The random search is configured to evaluate the same number of

valid release plans as the MOEAs (25, 000).

We have executed each of these 4 algorithms 30 times on the same 32 release

planning problems used in our second experiment. This makes up a total of

3, 840 runs. For each run, we retrieve the generated shortlist and measure its

Hypervolume (HV) [98] and modified Inverted Generational Distance (IGD+) [99].

In this experiment, we compute HV using normalised expected NPV values for

each problem, where the minimum is 0 and maximum is the highest expected NPV

found in all evaluated release plans for that problem. The HV for all problems

are thus all measured on the same scale. Better shortlists have higher HV.

The IGD+ of a solution set A is the average distance between the true Pareto-

5.3. Evaluating BEARS Optimisation Algorithms 109

optimal solutions and the region in the objective space dominated by A [99]. When,

as in our case, the true Pareto optimal solutions are unknown, these solutions

are approximated by so-called reference Pareto-optimal solutions, which are the

non-dominated solutions in the union of all solutions explored by all algorithms

over all of independent runs. Better shortlists have lower IGD+.

We have chosen HV and IGD+ as our evaluation metrics based on guidance

from Li et al. [100] that recommend using these metrics in situations, like ours,

where the decision makers’ preferences about the qualities of solutions sets are

unknown. These metrics are recommended because they are compatible with the

strict dominance relation, and they cover all typical qualities desired of solutions

sets, i.e. their convergence (how close the solutions set is to the true Pareto front),

diversity (the extent to which the solutions set includes diverse solutions), and

cardinality (the number of solutions in the set).

5.3.2 Results

This section presents the conclusion of this experiment. Table 5.7 reports the

median HV and IGD+ of each algorithm over 30 runs for each release planning

problem. In each row, the best result is highlighted in a light grey and the

worst in dark grey. We have used Mann-Whitney U test to evaluate whether

the observed differences in HV and IGD+ between algorithms are statistically

significant. Table 5.9 reports the results of these tests.

RQ3) Do the three MOEAs used in BEARS perform better than a random search?

The experiment show that the three MOEAs perform better than random search

and that the differences in HV and IGD+ are statistically significant. In terms of

IGD+, the three MOEAS outperform random search in all 32 problems. In terms

of HV, the three MOEAS outperform random search in 27 of the 32 problems.

5.3. Evaluating BEARS Optimisation Algorithms 110

Product Backlog H NSGA-II SPEA2 MOCell Random

Local Government Project 2 0.956 0.947 0.903 0.825
3 0.982 0.982 0.991 0.878
4 0.973 0.988 0.968 0.943
5 0.975 0.982 0.996 0.888

Release Planner 2 0.806 0.807 0.851 0.752
3 0.873 0.949 0.879 0.820
4 0.948 0.973 0.900 0.917
5 0.945 0.927 0.969 0.739

Word Processor 2 0.938 0.946 0.949 0.820
3 0.971 0.988 0.999 0.907
4 0.971 0.986 0.994 0.915
5 0.925 0.938 0.996 0.925

RALIC 2 0.984 0.986 0.996 0.780
3 0.967 0.992 0.994 0.686
4 0.927 0.971 0.997 0.669
5 0.922 0.984 0.942 0.660

Synthetic-30 2 0.594 0.598 0.517 0.526
3 0.720 0.723 0.721 0.670
4 0.846 0.947 0.845 0.818
5 0.933 0.945 0.955 0.906

Synthetic-50 2 0.718 0.955 0.714 0.688
3 0.943 0.945 0.970 0.808
4 0.958 0.962 0.889 0.914
5 0.963 0.968 0.965 0.841

Synthetic-100 2 0.886 0.886 0.687 0.711
3 0.936 0.936 0.888 0.931
4 0.948 0.948 0.948 0.758
5 0.922 0.922 0.959 0.839

Synthetic-200 2 0.726 0.709 0.727 0.681
3 0.975 0.945 0.961 0.956
4 0.970 0.911 0.953 0.887
5 0.970 0.964 0.938 0.819

Overall 0.726 0.829 0.784 0.670

Table 5.7: Mean Hypervolume Performance of a random search and the 3 Multi-
Objective Optimisation Algorithms used in BEARS.

In the remaining 5 problems, random search performs better than MOCEll in 4

cases and better than SPEA2 in 1 case. Note that the random search in BEARS

uses the same constraint violation detection and repair technique used by the

5.3. Evaluating BEARS Optimisation Algorithms 111

Product Backlog H NSGA-II SPEA2 MOCell Random

Local Government Project 2 0.019 0.011 0.009 0.080
3 0.076 0.042 0.002 0.115
4 0.021 0.004 0.002 0.110
5 0.019 0.009 0.005 0.114

Release Planner 2 0.268 0.025 0.019 0.444
3 0.424 0.088 0.020 0.635
4 0.178 0.014 0.005 0.301
5 0.047 0.026 0.001 0.180

Word Processor 2 0.560 0.138 0.032 1.880
3 0.257 0.016 0.005 1.050
4 0.076 0.035 0.001 0.525
5 0.052 0.006 0.005 0.361

RALIC 2 0.038 0.001 0.002 6.040
3 0.319 0.002 0.081 9.700
4 0.455 0.005 0.008 6.260
5 0.466 0.019 0.001 4.320

Synthetic-30 2 0.579 0.509 0.025 0.726
3 0.383 0.251 0.378 0.412
4 0.284 0.008 0.039 0.353
5 0.021 0.004 0.01 0.125

Synthetic-50 2 0.216 0.011 0.161 0.216
3 0.123 0.011 0.014 0.137
4 0.030 0.009 0.007 0.161
5 0.034 0.008 0.012 0.332

Synthetic-100 2 0.136 0.058 0.134 0.137
3 0.037 0.016 0.012 0.104
4 0.083 0.014 0.039 0.265
5 0.083 0.025 0.024 0.506

Synthetic-200 2 0.023 0.021 0.021 0.024
3 0.024 0.008 0.020 0.081
4 0.061 0.003 0.048 0.274
5 0.079 0.009 0.047 0.606

Overall 0.020 0.003 0.002 0.110

Table 5.8: Mean IGD+ Performance of a random search and the 3 Multi-Objective
Optimisation Algorithms used in BEARS.

MOEAs. Random search in BEARS is therefore more than a blind search, which

may explain why in a few cases it performs better than one of the three MOEA

on one of the evaluation criteria, even if overall the MOEAs have better IGD+

5.3. Evaluating BEARS Optimisation Algorithms 112

Random vs. NSGA-II vs. SPEA2 vs.
Product Backlog Metric H NSGA-II SPEA2 MOCell SPEA2 MOCell MOCell

Local Government
Project

HV 2 2.87E − 11 2.87E − 11 8.68E − 01 2.44E − 03 2.87E − 11 2.87E − 11

3 6.87E − 08 5.45E − 09 3.85E − 08 4.43E − 04 1.89E − 08 9.76E − 06
4 3.88E − 04 8.01E − 06 5.87E − 09 8.08E − 01 6.11E − 06 8.86E − 04
5 2.84E − 05 5.43E − 10 2.87E − 11 2.83E − 03 3.50E − 08 5.62E − 07

IGD+ 2 2.87E − 11 3.96E − 09 2.87E − 11 9.62E − 03 7.14E − 08 5.70E − 01
3 2.87E − 11 2.87E − 11 2.87E − 11 2.98E − 06 3.88E − 11 1.43E − 10
4 2.87E − 11 2.87E − 11 2.87E − 11 4.09E − 05 9.44E − 11 2.08E − 06
5 2.87E − 11 2.87E − 11 2.87E − 11 2.47E − 07 2.26E − 10 1.11E − 07

Release Planner HV 2 3.96E − 07 2.87E − 11 5.32E − 10 9.06E − 01 4.79E − 05 7.44E − 09
3 5.27E − 06 9.44E − 11 1.38E − 05 3.50E − 08 2.25E − 01 1.47E − 01
4 7.10E − 04 8.12E − 09 2.14E − 01 7.43E − 05 2.19E − 02 3.66E − 07
5 4.22E − 05 4.27E − 06 3.88E − 11 7.01E − 01 4.44E − 02 1.09E − 03

IGD+ 2 3.31E − 10 6.81E − 09 2.87E − 11 1.37E − 08 3.51E − 11 1.65E − 01
3 2.87E − 11 2.87E − 11 2.87E − 11 1.63E − 08 3.06E − 09 1.63E − 04
4 2.87E − 11 2.87E − 11 2.87E − 11 4.49E − 08 2.74E − 10 8.71E − 01
5 2.87E − 11 2.87E − 11 2.87E − 11 4.99E − 07 5.32E − 10 5.22E − 09

Word Processor HV 2 1.02E − 09 2.87E − 11 2.87E − 11 8.14E − 03 1.47E − 02 1.53E − 02
3 3.64E − 10 2.87E − 11 2.74E − 10 7.10E − 04 5.32E − 10 2.98E − 06
4 6.07E − 06 1.77E − 09 9.31E − 10 8.63E − 02 3.21E − 08 2.40E − 06
5 2.87E − 01 4.34E − 04 1.37E − 04 1.17E − 01 5.79E − 05 2.87E − 02

IGD+ 2 2.87E − 11 2.87E − 11 2.87E − 11 2.13E − 09 2.87E − 11 1.12E − 09
3 2.87E − 11 2.87E − 11 2.87E − 11 6.81E − 09 2.87E − 11 1.54E − 10
4 2.87E − 11 2.87E − 11 2.87E − 11 2.71E − 08 5.77E − 11 7.04E − 10
5 2.87E − 11 2.87E − 11 2.87E − 11 3.31E − 10 3.51E − 11 5.10E − 02

RALIC HV 2 2.87E − 11 2.87E − 11 2.87E − 11 7.13E − 02 4.27E − 06 2.82E − 03
3 2.87E − 11 2.87E − 11 2.87E − 11 1.80E − 07 1.94E − 09 4.69E − 01
4 7.73E − 10 2.87E − 11 2.87E − 11 1.15E − 06 2.49E − 10 3.70E − 06
5 5.32E − 10 2.87E − 11 2.87E − 11 1.02E − 09 1.94E − 02 5.32E − 10

IGD+ 2 2.87E − 11 2.87E − 11 2.87E − 11 1.35E − 09 6.37E − 11 9.27E − 03
3 2.87E − 11 2.87E − 11 2.87E − 11 2.49E − 10 1.54E − 10 7.44E − 09
4 2.87E − 11 2.87E − 11 2.87E − 11 1.62E − 09 6.37E − 11 5.65E − 02
5 2.87E − 11 2.87E − 11 2.87E − 11 1.62E − 09 7.03E − 11 9.44E − 08

Synthetic-30 HV 2 1.17E − 01 3.88E − 04 7.78E − 03 5.35E − 01 2.76E − 02 7.36E − 02
3 5.32E − 10 1.12E − 09 2.87E − 11 2.14E − 01 1.53E − 02 8.48E − 01
4 6.51E − 06 2.87E − 11 2.87E − 11 1.84E − 04 1.47E − 01 1.14E − 01
5 6.04E − 02 2.82E − 03 2.19E − 04 3.83E − 01 9.19E − 02 3.59E − 01

IGD+ 2 4.28E − 07 2.26E − 10 2.87E − 11 3.21E − 02 3.31E − 10 1.95E − 07
3 2.87E − 11 2.87E − 11 2.87E − 11 1.95E − 07 5.43E − 05 3.26E − 05
4 2.87E − 11 2.87E − 11 2.87E − 11 7.73E − 10 1.77E − 08 1.05E − 05
5 2.87E − 11 2.87E − 11 2.87E − 11 5.84E − 10 1.49E − 08 6.98E − 05

Synthetic-50 HV 2 5.77E − 11 5.23E − 11 7.49E − 04 8.70E − 08 1.10E − 02 1.77E − 08
3 7.44E − 09 1.37E − 08 9.31E − 10 2.49E − 01 1.47E − 02 5.10E − 02
4 6.16E − 05 1.48E − 09 2.76E − 04 7.34E − 01 5.70E − 03 3.45E − 06
5 1.62E − 09 2.87E − 11 2.87E − 11 1.60E − 01 3.09E − 02 6.36E − 01

IGD+ 2 9.64E − 01 4.40E − 10 3.18E − 11 3.66E − 09 2.26E − 10 9.44E − 08
3 1.11E − 07 2.87E − 11 2.49E − 10 3.31E − 10 2.68E − 07 9.41E − 01
4 2.87E − 11 2.87E − 11 2.87E − 11 1.02E − 09 3.88E − 11 1.73E − 02
5 2.87E − 11 2.87E − 11 2.87E − 11 2.74E − 10 1.04E − 10 6.04E − 02

Synthetic-100 HV 2 3.71E − 05 3.71E − 05 1.20E − 07 9.99E − 01 6.56E − 05 6.56E − 05
3 6.05E − 01 6.04E − 01 1.02E − 07 9.99E − 01 3.33E − 02 3.33E − 02
4 3.51E − 11 3.51E − 11 3.88E − 11 9.99E − 01 9.76E − 01 9.76E − 01
5 2.87E − 11 2.87E − 11 2.87E − 11 9.99E − 01 6.73E − 04 6.73E − 04

IGD+ 2 1.31E − 07 1.31E − 07 2.26E − 10 9.99E − 01 3.09E − 04 3.09E − 04
3 2.87E − 11 2.87E − 11 2.87E − 11 9.99E − 01 1.60E − 01 1.60E − 01
4 2.87E − 11 2.87E − 11 2.87E − 11 9.99E − 01 4.58E − 04 4.58E − 04
5 2.87E − 11 2.87E − 11 2.87E − 11 9.99E − 01 9.41E − 01 9.41E − 01

Synthetic-200 HV 2 8.12E − 09 7.79E − 03 2.87E − 11 3.91E − 01 2.37E − 02 2.14E − 01
3 5.71E − 09 1.73E − 02 2.87E − 11 8.01E − 06 2.68E − 05 2.07E − 04
4 4.49E − 08 4.79E − 05 2.87E − 11 6.28E − 07 1.20E − 07 4.58E − 04
5 1.54E − 10 2.87E − 11 2.87E − 11 7.34E − 01 2.56E − 02 4.10E − 04

IGD+ 2 1.53E − 02 2.87E − 11 4.73E − 09 1.54E − 10 3.50E − 08 2.04E − 01
3 2.87E − 11 2.87E − 11 2.87E − 11 2.74E − 10 1.02E − 07 3.96E − 05
4 2.87E − 11 2.87E − 11 2.87E − 11 7.76E − 11 1.63E − 08 2.10E − 08
5 2.87E − 11 2.87E − 11 2.87E − 11 3.17E − 11 1.23E − 09 5.22E − 09

Overall HV 6.17E − 98 2.84E − 139 1.09E − 110 2.71E − 11 3.29E − 06 3.40E − 01
IGD+ 9.03E − 110 1.74E − 243 5.99E − 246 2.30E − 98 6.82E − 105 9.85E − 01

Table 5.9: Statistical Significance (p-value) of the differences between MOEAs on BEARS release planning problems
using Mann-Whitney U test. Highlighted cells are those where the differences are not statistically significant (p>.05)

5.3. Evaluating BEARS Optimisation Algorithms 113

and HV.

RQ4) Do the three MOEAs used in BEARS have important differences in per-

formance? The experiment show no statistically significant differences between

SPEA2 and MOCell, and a slight advantage of these two algorithms over NSGA-II.

The experiment therefore suggest that SPEA2 and MOCell may find slightly

better shortlists than NSGA-II for BEARS optimisation problems.

5.3.3 Threats to Validity

Our third experiment follows common guidelines and practices for evaluating the

performance of stochastic multi-objective algorithms [101, 100]. This experiment

is therefore subject to the usual limitations of such evaluations, notably the extent

to which results can be generalized beyond the 32 release planning problems.

Chapter 6

Conclusion and Future Work

The thesis studied the following research questions:

1. How can we extend cost-value based release planning methods to analyse

uncertainty?

2. How can we analyse uncertainty during release planning in the context of

fixed-date release processes?

3. Does analysing uncertainty during release planning lead to better release

planning decisions than if uncertainty is ignored? Would different release

planning methods applied in the same context recommend the same release

plans? If not, do some methods make better recommendations than others?

We addressed the first research question by proposing a release planning method

called MOIFM. MOIFM extends the traditional Incremental Funding Method

by analysing uncertainty and shortlisting release plans using multiple objectives.

This work showed the possibility of analysing uncertainty in the context of the

IFM. However, the release process assumed by the IFM is rarely used in practice.

The IFM assumes fixed-scope release when most organisations today have release

114

115

process with fixed dates. Furthermore, the IFM focuses on analysing work items

cost and revenue but has no explicit model of work items’ development time.

MOIFM is different from other IFM extensions that analyses uncertainty. Barbosa

et al [18] approach allows project managers to devise a policy that maximizes the

number of features built over some period of time. Alencar et al [71] approach

improved algorithms for identifying optimal development sequences. Eduardo et

al [75] applied game theory to analyse competitors’ behaviours in a duopolistic

market to maximize financial returns on software project. These extensions

focused on introduced uncertainty to cash flow projections but unlike MOIFM,

they optimise single objective.

To address the second research question, we have developed a second release

planning method, called BEARS, designed for release planning decisions under

uncertainty in the context of fixed-date release processes commonly used in

industry. BEARS allows release planners to model uncertainty about work items

development time and business value. It then uses Monte-Carlo simulation and

multi-objective optimisation to shortlist release plans that maximised expected

net present value and expected punctuality. Release planners can then select

their preferred release plan from the shortlist based on full information about

candidate release plans’ expected net present value and expected punctuality.

Existing release planning methods that analyses uncertainty assume fixed-scope

releases [15, 28, 29, 16, 102, 27], which is inconsistent with current industrial

practices. Ruhe et al [15] approach used value point to estimate value of features

and analyses uncertainty about effort uncertainty using triangular distribution

but ignores value uncertainty and assumes fixed-scope release. McDaid et al[16].

Lingbo et al [28] and Paixao et al [29] robust optimization approaches focuses on

robustness of shortlisted solutions but assumes fixed-scope release in its simulation

and not suitable for planning for multiple releases. Lingbo et al [43] proposed

METRO framework focuses on reducing algorithmic uncertainty that originates

6.1. Future Work 116

from simulation of uncertain effort and value parameters during optimization but

METRO assumes fixed-scope release and does not support planning for more than

one release. Pitangueira et al [27] proposed RA-MONRP to tackle problem faced

by risk-aware stakeholders during release planning.

To study whether analysing uncertainty during release planning would lead to

better decisions than if uncertainty is ignored, we have compared BEARS to

alternative release planning models that ignore uncertainty on a series of example

release planning problems. Our results showed that analysing uncertainty using

BEARS leads to shortlisting release plans that have higher expected net present

value and higher expected punctuality than if uncertainty is ignored. Previous

empirical studies of release planning methods have either focused on evaluating

release planning methods in industry [11, 12, 13], or on comparing the performance

of alternative optimisation techniques as in our third experiment. A recent paper

references 38 different evaluation of MOEAs for software release planning and

presents the most comprehensive such evaluation to date [103]. Like in our third

experiment, such evaluation compare the outputs of different MOEAs in the

context of a single release planning method. In contrast, our first and second

experiments focused on comparing alternative release planning methods. These

experiments enabled us to observe important differences in the release plans

shortlisted by BEARS compared to other methods.

6.1 Future Work

We highlight potential future research directions following the research presented

in this thesis as follows:

6.1. Future Work 117

6.1.1 Extend BEARS to analyse fairness and multiple value

dimensions from multiple perspectives

Stakeholders concerns are not limited to maximization of financial gains. Their

concerns can also include non-financial soft criteria such as customer satisfaction

[25], risk factor [27], fairness analysis [30], value from multiple perspectives [30] etc.

BEARS can be extended to include a third optimisation objective of maximising

value points for dealing with soft-criteria in addition to its current two objectives

of maximising expected net present value and expected punctuality. Soft criteria

are difficult to estimate accurately because they are intangible in nature. These

soft criteria can be represented using value point metrics used in previous release

planning methods [6, 30].

6.1.2 Managing technical debt during release planning

BEARS can be extended to reason about technical debts in a software system

as-is, model how technical debt will affect the realization of release plan objectives

and determine when development effort should be allocated to fix such debts.

Financial concepts that have been recently applied for managing technical debt

are real options, portfolio management, cost/benefit analysis and value-based

analysis [90]. Technical debts introduced into the system in previous releases can

be modelled as a real option before the commencement of development for the

next release. Real option will allow planners and managers to view risks and

uncertainties of the technical debts in the system and exercise an option whether

to fix, defer, or ignore the technical debt. The option to fix, defer or ignore

will impact the value delivered over the next releases. The challenges to extend

BEARS include (i) how to quantify the technical debt in the current system (ii)

how to analyse the impact of each option on release objectives

6.1. Future Work 118

6.1.3 Feedback mechanism for updating value and effort

uncertainty

BEARS can be extended with feedback mechanism that allows effort and value

uncertainty to be updated when new information are discovered due to change in

demands, priority or market demands. Uncertainty about project parameters can

be reduced when more information becomes available [41]. Current implementation

of BEARS computes value of information to identify the benefits that can be

realised from gathering more information about the work items but does not

provide way to incorporate such information back into the model. The feedback

mechanism can be modelled using statistical learning models such as Bayesian

network [91].

6.1.4 Tool Evaluation of BEARS in Industrial Context

BEARS has been evaluated in this thesis using various case studies in retrospective.

An important future work would be to further evaluate BEARS tool on large

industrial case studies within an organisational setting. This will help in answering

questions about whether applying BEARS to analyse release decisions will help

planner to better manage uncertainty in the project; whether release decisions are

improved compared to current state of practice in the organization; whether the

decisions made from using BEARS helps to make decisions that are based on

real business value. Such experiment design will be similar to a previous study

carried out at Trema Laboratories, Inc [12]. The challenges of such a study are

(i) finding an organisation that will allow such study in their establishment (ii)

such study might require the organisation to change their process, this can create

impediments as business organisations do not change their process unless there

are huge business benefits.

Bibliography

[1] P. Bhawnani and G. Ruhe, “Releaseplanner-planning new releases for soft-

ware maintenance and evolution.” in ICSM (Industrial and Tool Volume),

2005, pp. 73–76.

[2] M. Denne and J. Cleland-Huang, Software by Numbers: Strategies for High

Return, Low Risk Application Development. Pearson Education, 2003.

[3] D. E. Morris, J. E. Oakley, and J. A. Crowe, “A web-based tool for eliciting

probability distributions from experts,” Environmental modelling & software,

vol. 52, pp. 1–4, 2014.

[4] C. Larman and V. R. Basili, “Iterative and incremental developments. a

brief history,” Computer, vol. 36, no. 6, pp. 47–56, 2003.

[5] B. W. Boehm, “A spiral model of software development and enhancement,”

Computer, vol. 21, no. 5, pp. 61–72, 1988.

[6] G. Ruhe, Product Release Planning: Methods, Tools and Applications. CRC

Press, 2010.

[7] R. Günther, “Software release planning,” Handbook Software Engineering

and Knowledge Engineering, vol. 3, 2005.

[8] G. Ruhe and M. Saliu, “The art and science of software release planning,”

IEEE Software, vol. 22, no. 6, pp. 47–53, 2005.

119

BIBLIOGRAPHY 120

[9] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B. Saleem, and M. U.

Shafique, “A systematic review on strategic release planning models,” Infor-

mation and software technology, vol. 52, no. 3, pp. 237–248, 2010.

[10] D. Ameller, C. Farré, X. Franch, and G. Rufian, “A survey on software release

planning models,” in Product-Focused Software Process Improvement: 17th

International Conference, PROFES 2016, Trondheim, Norway, November

22-24, 2016, Proceedings 17. Springer, 2016, pp. 48–65.

[11] Amandeep, G. Ruhe, and M. Stanford, Intelligent Support for Software

Release Planning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,

pp. 248–262.

[12] J. Momoh and G. Ruhe, “Release planning process improvement—an in-

dustrial case study,” Software Process: Improvement and Practice, vol. 11,

no. 3, pp. 295–307, 2006.

[13] M. Lindgren, R. Land, C. Norström, and A. Wall, “Key aspects of software

release planning in industry,” in 19th Australian Conference on Software

Engineering (aswec 2008). IEEE, 2008, pp. 320–329.

[14] S. A. Busari and E. Letier, “Radar: A lightweight tool for requirements

and architecture decision analysis,” in 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). IEEE, 2017, pp. 552–562.

[15] G. Ruhe and D. Greer, “Quantitative studies in software release planning

under risk and resource constraints,” in Proceedings of the 2003 International

Symposium on Empirical Software Engineering, ser. ISESE ’03. Washington,

DC, USA: IEEE Computer Society, 2003, p. 262.

[16] K. McDaid, D. Greer, F. Keenan, P. Prior, G. Coleman, and P. S. Taylor,

“Managing uncertainty in agile release planning.” in SEKE, 2006, pp. 138–143.

BIBLIOGRAPHY 121

[17] K. Logue and K. McDaid, “Agile release planning: Dealing with uncertainty

in development time and business value,” in Engineering of Computer Based

Systems, 2008. ECBS 2008. 15th Annual IEEE International Conference

and Workshop on the. IEEE, 2008, pp. 437–442.

[18] B. P. Barbosa, E. A. Schmitz, and A. J. Alencar, “Generating software-

project investment policies in an uncertain environment,” in Systems and

Information Engineering Design Symposium, 2008. SIEDS 2008. IEEE.

IEEE, 2008, pp. 178–183.

[19] D. Leffingwell, Agile software requirements: lean requirements practices for

teams, programs, and the enterprise. Addison-Wesley Professional, 2010.

[20] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley, “The next release

problem,” Information and software technology, vol. 43, no. 14, pp. 883–890,

2001.

[21] D. Greer and G. Ruhe, “Software release planning: an evolutionary and

iterative approach,” Information and software technology, vol. 46, no. 4, pp.

243–253, 2004.

[22] M. Denne and J. Cleland-Huang, “The incremental funding method: Data-

driven software development,” IEEE Software, vol. 21, no. 3, pp. 39–47,

2004.

[23] A. Shalloway, G. Beaver, and J. R. Trott, Lean-agile software development:

achieving enterprise agility. Pearson Education, 2009.

[24] Y. Zhang, M. Harman, and S. L. Lim, “Empirical evaluation of search

based requirements interaction management,” Information and Software

Technology, vol. 55, no. 1, pp. 126–152, 2013.

BIBLIOGRAPHY 122

[25] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective next

release problem,” in Proceedings of the 9th annual conference on Genetic

and evolutionary computation. ACM, 2007, pp. 1129–1137.

[26] Y. Zhang, E. Alba, J. J. Durillo, S. Eldh, and M. Harman, “Today/future

importance analysis,” in Proceedings of the 12th annual conference on

Genetic and evolutionary computation. ACM, 2010, pp. 1357–1364.

[27] A. M. Pitangueira, P. Tonella, A. Susi, R. S. Maciel, and M. Barros, Require-

ments Engineering: Foundation for Software Quality: 22nd International

Working Conference, REFSQ 2016, Gothenburg, Sweden, March 14-17,

2016, Proceedings. Cham: Springer International Publishing, 2016, ch.

Risk-Aware Multi-stakeholder Next Release Planning Using Multi-objective

Optimization, pp. 3–18.

[28] L. Li, M. Harman, E. Letier, and Y. Zhang, “Robust next release problem:

handling uncertainty during optimization,” in Proceedings of the 2014 Annual

Conference on Genetic and Evolutionary Computation. ACM, 2014, pp.

1247–1254.

[29] M. Paixao and J. Souza, “A robust optimization approach to the next release

problem in the presence of uncertainties,” J. Syst. Softw., vol. 103, no. C,

pp. 281–295, May 2015.

[30] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y. Zhang, ““fair-

ness analysis” in requirements assignments,” in International Requirements

Engineering, 2008. RE’08. 16th IEEE. IEEE, 2008, pp. 115–124.

[31] M. Cohn, Agile estimating and planning. Pearson Education, 2005.

[32] C. K.Beck, “Extreme Programming Explained,” Writing, pp. 85–110, 2005.

BIBLIOGRAPHY 123

[33] M. Jorgensen and M. Shepperd, “A systematic review of software develop-

ment cost estimation studies,” IEEE Transactions on software engineering,

vol. 33, no. 1, pp. 33–53, 2007.

[34] M. Jørgensen, “A review of studies on expert estimation of software devel-

opment effort,” Journal of Systems and Software, vol. 70, no. 1, pp. 37–60,

2004.

[35] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby,

“Cost models for future software life cycle processes: Cocomo 2.0,” Annals

of software engineering, vol. 1, no. 1, pp. 57–94, 1995.

[36] J. Grenning, “Planning poker,” Renaissance Software Consulting, 2002.

[37] N. C. Haugen, “An empirical study of using planning poker for user story

estimation,” in AGILE 2006 (AGILE’06). IEEE, 2006, pp. 9–pp.

[38] M. Jorgensen, “What we do and don’t know about software development

effort estimation,” IEEE software, vol. 31, no. 2, pp. 37–40, 2014.

[39] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher, Value-based

software engineering. Springer Science & Business Media, 2006.

[40] B. W. Boehm, “Value-based software engineering: Overview and agenda,”

in Value-based software engineering. Springer, 2006, pp. 3–14.

[41] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information

value in software requirements and architecture,” in 36th International

Conference on Software Engineering (ICSE 2014), 2014, pp. 883–894.

[42] M. Khurum, T. Gorschek, and M. Wilson, “The software value map—an

exhaustive collection of value aspects for the development of software inten-

sive products,” Journal of Software: Evolution and Process, vol. 25, no. 7,

pp. 711–741, 2013.

BIBLIOGRAPHY 124

[43] L. Li, M. Harman, F. Wu, and Y. Zhang, “The value of exact analysis in

requirements selection,” 2016.

[44] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing require-

ments,” IEEE software, vol. 14, no. 5, pp. 67–74, 1997.

[45] L. Lehtola, M. Kauppinen, and S. Kujala, “Requirements prioritization

challenges in practice,” in International Conference on Product Focused

Software Process Improvement. Springer, 2004, pp. 497–508.

[46] P. Carlshamre, “Release Planning in Market-Driven Software Product De-

velopment: Provoking an Understanding,” Requirements Engineering, vol. 7,

pp. 139–151, 2002.

[47] B. Regnell, P. Beremark, and O. Eklundh, “A market-driven requirements

engineering process: results from an industrial process improvement pro-

gramme,” Requirements Engineering, vol. 3, no. 2, pp. 121–129, 1998.

[48] B. Flyvbjerg, “Policy and Planning for Large Infrastructure Projects,” no.

December, p. 32, 2005.

[49] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: Nsga-ii,” Trans. Evol. Comp, vol. 6, no. 2,

pp. 182–197, Apr. 2002.

[50] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength

pareto evolutionary algorithm,” 2001.

[51] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic

algorithm for multiobjective optimization,” in Evolutionary Computation,

1994. IEEE World Congress on Computational Intelligence., Proceedings of

the First IEEE Conference on. Ieee, 1994, pp. 82–87.

BIBLIOGRAPHY 125

[52] Y. Zhang and M. Harman, “Search based optimization of requirements

interaction management,” in Search Based Software Engineering (SSBSE),

2010 Second International Symposium on. IEEE, 2010, pp. 47–56.

[53] M. O. Saliu and G. Ruhe, “Bi-objective release planning for evolving soft-

ware systems,” in Proceedings of the the 6th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering. ACM, 2007, pp. 105–114.

[54] N. Agarwal, R. Karimpour, and G. Ruhe, “Theme-based product release

planning: An analytical approach,” in System Sciences (HICSS), 2014 47th

Hawaii International Conference on. IEEE, 2014, pp. 4739–4748.

[55] M. R. Karim and G. Ruhe, “Bi-objective genetic search for release planning

in support of themes,” in International Symposium on Search Based Software

Engineering. Springer, 2014, pp. 123–137.

[56] O. Saliu and G. Ruhe, “Supporting software release planning decisions

for evolving systems,” in 29th Annual IEEE/NASA Software Engineering

Workshop. IEEE, 2005, pp. 14–26.

[57] M. Li, M. Huang, F. Shu, and J. Li, “A risk-driven method for extreme

programming release planning,” in Proceedings of the 28th international

conference on Software engineering. ACM, 2006, pp. 423–430.

[58] D. Pfahl, A. Al-Emran, and G. Ruhe, “A system dynamics simulation model

for analyzing the stability of software release plans,” Software Process:

Improvement and Practice, vol. 12, no. 5, pp. 475–490, 2007.

[59] A. Al-Emran and D. Pfahl, “Operational planning, re-planning and risk

analysis for software releases,” in International Conference on Product

Focused Software Process Improvement. Springer, 2007, pp. 315–329.

BIBLIOGRAPHY 126

[60] A. Ngo-The and M. O. Saliu, “Fuzzy structural dependency constraints in

software release planning,” in The 14th IEEE International Conference on

Fuzzy Systems, 2005. FUZZ’05. IEEE, 2005, pp. 442–447.

[61] A. Ngo-The and O. Saliu, “Measuring dependency constraint satisfaction

in software release planning using dissimilarity of fuzzy graphs,” in Fourth

IEEE Conference on Cognitive Informatics, 2005.(ICCI 2005). IEEE, 2005,

pp. 301–307.

[62] G. Ruhe and A. Ngo, “Hybrid intelligence in software release planning,” Int.

J. Hybrid Intell. Syst., vol. 1, no. 1-2, pp. 99–110, Apr. 2004.

[63] S. Maurice, G. Ruhe, O. Saliu et al., “Decision support for value-based

software release planning,” in Value-Based Software Engineering. Springer,

2006, pp. 247–261.

[64] T. AlBourae, G. Ruhe, and M. Moussavi, “Lightweight replanning of software

product releases,” in 2006 International Workshop on Software Product

Management (IWSPM’06-RE’06 Workshop). IEEE, 2006, pp. 27–34.

[65] L. Karlsson, “Requirements prioritisation and retrospective analysis for

release planning process improvement,” Ph.D. dissertation, Lund University,

2006.

[66] B. Regnell and K. Kuchcinski, “Exploring software product management

decision problems with constraint solving-opportunities for prioritization

and release planning,” in Software Product Management (IWSPM), 2011

Fifth International Workshop on. IEEE, 2011, pp. 47–56.

[67] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y. Zhang, “A

search based approach to fairness analysis in requirement assignments to

aid negotiation, mediation and decision making,” Requirements Engineering,

vol. 14, no. 4, pp. 231–245, 2009.

BIBLIOGRAPHY 127

[68] D. Hubbard, How to Measure Anything: Finding the Value of Intangibles in

Business. Wiley, 2010.

[69] S. Tockey, Return on software. Addison-Wesley, 2005.

[70] M. Cantor, “Calculating and improving roi in software and system programs,”

Commun. ACM, vol. 54, no. 9, pp. 121–130, Sep. 2011.

[71] A. J. Alencar, C. A. Franco, E. A. Schmitz, and A. L. Correa, “A statistical

approach for the maximization of the financial benefits yielded by a large set

of mmfs and aes,” Computing and Informatics, vol. 32, no. 6, pp. 1147–1169,

2014.

[72] A. O’Hagan, C. Buck, A. Daneshkhah, J. Eiser, P. Garthwaite, D. Jenkin-

son, J. Oakley, and T. Rakow, Uncertain Judgements: Eliciting Experts’

Probabilities. Wiley, 2006.

[73] Hubbard, “Applied Information Economics : A New Method for Quantifying

IT Value An Executive Overview,” Decision Analysis, p. 6, 2004.

[74] E. Mattos, M. Vieira, E. A. Schmitz, and A. J. Alencar, “Applying game

theory to the incremental funding method in software projects,” Journal of

Software, vol. 9, no. 6, pp. 14–35, 2014.

[75] E. M. Da Cunha Mattos, M. Vieira, E. A. Schmitz, and A. J. Alencar,

“Applying Game Theory to the Incremental Funding Method in Software

Projects,” Journal of Software, vol. 9, no. 6, pp. 1435–1443, 2014.

[76] J. Oakley and A. O’Hagan, “Shelf: the sheffield elicitation framework

(version 3.0),” in SHELF. School of Mathematics and Statistics, University

of Sheffield, UK. (http://tonyhagan.co.uk/shelf), 2016.

[77] B. Flyvbjerg and A. Budzier, “Why Your IT Project You Think,” Harvard

Business Review, no. September 2011, 2011.

BIBLIOGRAPHY 128

[78] S. Group et al., “Chaos summary 2009,” Online report. Accessed June,

vol. 20, 2009.

[79] S. Group, “Standish chaos report,” Chaos report, 2014.

[80] T. DeMarco and T. Lister, Waltzing with Bears: Managing Risk on Software

Projects. New York, NY, USA: Dorset House Publishing Co., Inc., 2003.

[81] R. Darimont and A. Van Lamsweerde, “Formal refinement patterns for goal-

driven requirements elaboration,” in ACM SIGSOFT Software Engineering

Notes, vol. 21, no. 6. ACM, 1996, pp. 179–190.

[82] E. Letier and A. Van Lamsweerde, “Reasoning about partial goal satisfaction

for requirements and design engineering,” in ACM SIGSOFT Software

Engineering Notes, vol. 29, no. 6. ACM, 2004, pp. 53–62.

[83] A. van Lamsweerde, Requirements Engineering: From System Goals to UML

Models to Software Specifications, 1st ed. Wiley Publishing, 2009.

[84] A. O’Hagan and J. E. Oakley, “Probability is perfect, but we can’t elicit

it perfectly,” Reliability Engineering & System Safety, vol. 85, no. 1, pp.

239–248, 2004.

[85] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Mocell:

A cellular genetic algorithm for multiobjective optimization,” Int. J. Intell.

Syst., vol. 24, no. 7, pp. 726–746, Jul. 2009.

[86] J. Sagrado, I. M. Águila, and F. J. Orellana, “Multi-objective ant colony

optimization for requirements selection,” Empirical Softw. Engg., vol. 20,

no. 3, pp. 577–610, Jun. 2015.

[87] J. C. Felli and G. B. Hazen, “Sensitivity analysis and the expected value of

perfect information,” Medical Decision Making, vol. 18, no. 1, pp. 95–109,

1998.

BIBLIOGRAPHY 129

[88] M. Sadatsafavi, N. Bansback, Z. Zafari, M. Najafzadeh, and C. Marra,

“Need for speed: an efficient algorithm for calculation of single-parameter

expected value of partial perfect information,” Value in Health, vol. 16, no. 2,

pp. 438–448, 2013.

[89] A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the jmetal multi-

objective optimization framework,” in Proceedings of the Companion Publi-

cation of the 2015 Annual Conference on Genetic and Evolutionary Compu-

tation, ser. GECCO Companion ’15. New York, NY, USA: ACM, 2015, pp.

1093–1100.

[90] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou,

“The financial aspect of managing technical debt: A systematic literature

review,” Information and Software Technology, vol. 64, pp. 52–73, 2015.

[91] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe, “Toward data-driven

requirements engineering,” IEEE Software, vol. 33, no. 1, pp. 48–54, 2016.

[92] G. Ruhe et al., “A systematic approach for solving the wicked problem of

software release planning,” Soft Computing, vol. 12, no. 1, pp. 95–108, 2008.

[93] A. A. Araújo, M. Paixao, I. Yeltsin, A. Dantas, and J. Souza, “An architec-

ture based on interactive optimization and machine learning applied to the

next release problem,” Automated Software Engineering, vol. 24, no. 3, pp.

623–671, 2017.

[94] Y. Zhang, M. Harman, G. Ochoa, G. Ruhe, and S. Brinkkemper, “An

empirical study of meta-and hyper-heuristic search for multi-objective release

planning,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 27, no. 1, p. 3, 2018.

BIBLIOGRAPHY 130

[95] S. L. Lim and A. Finkelstein, “StakeRare: using social networks and collab-

orative filtering for large-scale requirements elicitation,” IEEE transactions

on software engineering, vol. 38, no. 3, pp. 707–735, 2012.

[96] N. A. Office, “Over-optimism in government projects,” 2013.

[97] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca,

“Performance assessment of multiobjective optimizers: An analysis and

review,” IEEE Transactions on evolutionary computation, vol. 7, no. 2, pp.

117–132, 2003.

[98] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-

parative case study and the strength pareto approach,” IEEE Transactions

on Evolutionary Computation, pp. 257–271, 1999.

[99] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, “Modified distance

calculation in generational distance and inverted generational distance,”

in International Conference on Evolutionary Multi-Criterion Optimization.

Springer, 2015, pp. 110–125.

[100] M. Li, T. Chen, and X. Yao, “A critical review of: a practical guide to

select quality indicators for assessing pareto-based search algorithms in

search-based software engineering: essay on quality indicator selection for

SBSE,” in Proceedings of the 40th International Conference on Software

Engineering: New Ideas and Emerging Results. ACM, 2018, pp. 17–20.

[101] A. Arcuri and L. Briand, “A practical guide for using statistical tests to

assess randomized algorithms in software engineering,” in Proceedings of

the 33rd International Conference on Software Engineering, ser. ICSE ’11.

New York, NY, USA: ACM, 2011, pp. 1–10.

[102] K. Logue and K. McDaid, “Agile release planning: Dealing with uncertainty

in development time and business value,” Proceedings - Fifteenth IEEE

BIBLIOGRAPHY 131

International Conference and Workshops on the Engineering of Computer-

Based Systems, ECBS 2008, pp. 437–442, 2008.

[103] Y. Zhang, M. Harman, G. Ochoa, G. Ruhe, and S. Brinkkemper, “An

empirical study of meta-and hyper-heuristic search for multi-objective release

planning,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 27, no. 1, p. 3, 2018.

	Declaration
	Abstract
	Impact Statement
	Acknowledgements
	List of Publications
	Introduction
	Motivating Example
	State of the Art and Limitations
	Research Questions
	Thesis Contributions
	Thesis Structure

	Background on Release Planning
	Release Planning Concepts
	Product Backlog
	Release Plan
	Managing Capacity Constraints
	Value

	Optimizing Value Points
	Ad Hoc Release Planning
	Greedy Approaches
	EVOLVE Release Planning Approaches
	Multi-objective Release Planning Approach
	Optimizing Value Points with Uncertainty
	Other Variants of EVOLVE-II methods
	Limitations of Value Point Optimization in Release Planning

	Optimizing Economic Value in Release Planning
	The Incremental Funding Methodology (IFM)
	Criticisms of Traditional IFM Approach

	Summary and Conclusion

	Cost-Value Based Release Planning with Uncertainty
	Extending IFM with Uncertainty
	Eliciting Uncertainty as Triangular Distribution
	Adding Uncertainty to Point-Based Estimates
	Simulation Cash Flow Projections

	Multi-objective Optimization Extension
	Expected Net Present Value
	Expected Investment Cost
	Investment Risk

	Optimizing Release Plans
	Summary, Conclusion and Limitations

	Release Planning with BEARS
	BEARS: Overview
	Estimating Effort and Value Distributions
	Pre-elicitation Tasks
	Quartile Elicitation Method

	Simulating BEARS Release Plans
	Evaluating Expected Net Present Value
	Evaluating Expected Punctuality

	Shortlisting Release Plans
	Information Value Analysis
	BEARS JAVA Tool
	BEARS Limitations
	Chapter Summary

	Evaluation
	Experiment I: BEARS vs. EVOLVE-II
	Experiment Design
	Results
	Threats to Validity

	Experiment II: Comparing BEARS to Other Release Planning Methods
	Experiment Design
	Results
	Threats to Validity

	Evaluating BEARS Optimisation Algorithms
	Experiment Design
	Results
	Threats to Validity

	Conclusion and Future Work
	Future Work
	Extend BEARS to analyse fairness and multiple value dimensions from multiple perspectives
	Managing technical debt during release planning
	Feedback mechanism for updating value and effort uncertainty
	Tool Evaluation of BEARS in Industrial Context

	Bibliography

