Treatment Outcomes in Trigeminal Neuralgia—A Systematic Review of Domains, Dimensions and Measures

Carolina Venda Nova¹, Joanna M. Zakrzewska¹, Sarah R. Baker², Richeal Ni Riordain¹,³

Key words
- Outcome measures
- Systematic review
- Treatment outcomes
- Trigeminal neuralgia

Abbreviations and Acronyms
BNI: The Barrow Neurology Institute Pain Intensity Scale
BPI: Brief Pain Inventory
COS: Core Outcome Set
MVD: Microvascular decompression
QOL: Quality of life
TN: Trigeminal neuralgia
VAS: Visual analogue scale

From the ¹UCL Eastman Dental Institute, London, United Kingdom; ²School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom; and ³Department of Oral Medicine, Cork University Dental School and Hospital, Cork, Ireland

To whom correspondence should be addressed:
Carolina Venda Nova, M.Sc. (O.M.)
[E-mail: carolina.venda-nova@hns.nhs.uk]

Citation: World Neurosurg. X (2020) 6:100070.
https://doi.org/10.1016/j.wnsx.2020.100070
Journal homepage: www.journals.elsevier.com/world-neurosurgery-x
Available online: www.sciencedirect.com

INTRODUCTION

The International Classification of Headache Disorders defines trigeminal neuralgia (TN) as “A disorder characterized by recurrent unilateral brief electric shock-like pain, abrupt in onset and termination, limited to the distribution of one or more divisions of the trigeminal nerve and triggered by innocuous stimuli.” It is a rare condition, and population-based studies estimate a prevalence ranging from 0.03% (95% confidence interval 0.01–0.08) to 0.3% (95% confidence interval 0.16–0.55). It remains one of the few neuropathic pain conditions for which multiple therapies, including medical and surgical, are available. However, the best treatment option has yet to be identified. The difficulty in defining what the most successful treatment for TN is relates to the fact that there are no clearly defined outcomes; therefore, comparison between treatments is challenging. Outcomes are defined as measures or observations, which are used to assess treatment effects. For the purpose of this review, outcome refers to clinical outcome, which is the result(s) of the medical or surgical treatment of TN on the patient’s health or well-being. To improve comparison of treatments, clearly defined outcomes (what is assessed) and outcomes measures (how to assess outcome magnitude) should be used. Outcome measures are tools used to assess the impact of treatment interventions.

The variability in instruments used to measure treatment outcomes contributes to the difficulties in appraising research results. These difficulties are a reality for clinicians and patients and result in uncertainty when faced with multiple treatment options.

To minimize the discrepancy between studies and results, groups of researchers and clinicians have developed guidelines for the systematic reporting of outcome measures. One such example is the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT), which has developed recommendations for core outcome domains to be reported in clinical trials of pain disorders.

METHODS: We have conducted a literature search using a wide range of databases (1946–2019 for medical and 2008–2019 for surgical treatment), for all intervention studies in TN. Four hundred and sixty-seven studies were selected for data extraction on TN classification, data collection method, intervention, and treatment outcomes mapped to the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT guidelines).

RESULTS: Most studies collected data on pain (n = 459) and side effects (n = 386) domains; however, very few collected data on the impact on physical (n = 46) and emotional functioning (n = 17) and on patient satisfaction (n = 35). There was high variability on outcome measures used for pain relief (n = 10), pain intensity (n = 9), and frequency of pain episodes (n = 3).

CONCLUSIONS: A clear definition of what are the important outcomes for patients with TN is essential. The choice of standardized outcome measures allowing for consistent reporting in TN treatment will allow for comparison of studies and facilitate treatment choice for patients and clinicians thus, improving health outcomes and reducing health care cost.

BACKGROUND: Trigeminal neuralgia (TN) is a painful disorder characterized by sudden electric shock–like pain. It is a rare condition for which multiple treatments are available, including medical and surgical. The best treatment option is yet to be defined, and this is related to the lack of definition in the treatment outcomes and outcome measures. The aim of this systematic review was to summarize all the outcomes and outcomes measures that have been published to date and highlight variability in their use.
date. The aim of this systematic review was, therefore, to summarize all the treatment outcomes used in the TN literature, to highlight the variability in their reporting, and, additionally, to summarize the instruments used to measure those outcomes.

METHODS

A protocol for the systematic review was published in the International Prospective Registry of Systematic Reviews (PROSPERO) (Registration CRD42018118675, December 2018) and followed recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses group.5

Search Strategy

A literature search was conducted to include all TN studies in which there was a medical and/or a surgical intervention with a view to capturing all treatment outcomes and the outcome measures used. The searches were performed electronically, with the help of a librarian, and by hand. We searched MEDLINE (Ovid) (1946 to October 2019 for medical treatment and 2008 to October 2019 for surgical treatment), EMBASE (1947 to October 2019 for medical treatment and 2008 to October 2019 for surgical treatment), Cochrane Oral Health Group’s Trials Register, CINAHL Plus with Full Text, and PsycINFO. The search of surgical papers was restricted to studies published from 2008 onwards, given that 2 systematic reviews had been published on surgical management of TN.6,7 Furthermore, international guidelines on the surgical management of TN8 and a review of quality of reporting of surgical studies, which reviewed the literature up to 2008,9 also had been published. The search strategy for MEDLINE AND EMBASE can be found in Appendix A.

Eligibility Criteria

The inclusion criteria were as follows: 1) intervention studies with a cohort of patients diagnosed with TN; 2) medical and/or surgical intervention; 3) TN cohort ≥10 patients; 4) subjects aged 18 years and older; 5) English language; and 6) full text available.

No discrimination was made concerning the study design, as the aim was to capture all the treatment outcomes and outcomes measures published to date. Studies in which there were 2 or more cohorts (TN and hemifacial spasm, for example) were included but only data relevant to the TN cohort was evaluated.

Screening

The references were organized in EndNote X9 and duplicates removed. Initially, 25 study titles were piloted between 2 reviewers (C.V.N. and R.N.R.). The interrater agreement was 0.60. Following discussion and modification of the piloting sheet to include abstracts, the process was repeated with 50 further studies. The final Kappa coefficient was 0.80.

The body of references was then screened on title and abstract; if no consensus was reached, a third reviewer (J.M.Z.) made the final decision. Three reviewers (C.V.N., R.N.R., and J.M.Z.) subsequently screened full texts, if available, against eligibility criteria.

Data Collection and Synthesis

We have used EPPI-Reviewer 4 software10 to extract data from the final selected references. Data were extracted by 3 reviewers (C.V.N., R.N.R., and J.M.Z.) on TN classification (classical, idiopathic, and secondary to neurologic disease, Burchiel classification, and unspecified), cohort type (prospective, retrospective, and unspecified), intervention (medical and/or surgical), and treatment outcomes (domain, dimension, and instruments). Data on outcome domains were captured according to the IMMPACT recommendations.4 This review includes studies that precede those recommendations, as well as study designs other than clinical trials, but it was decided to use their guidance for a clear and standardized organization of the results. Treatment outcome measures were identified, and where available, data were collected on outcome measure instruments. The complete data extraction code can be found in Appendix B.

Statistical Analysis

Descriptive statistical analysis was performed to summarize the number of times outcomes and outcome measures were reported in the TN literature.

RESULTS

Four hundred sixty-seven (n = 467) papers were included in the final review and grouped according to TN classification, method of data collection, treatment intervention, and treatment outcomes (domain, dimension, and instruments/measures). Figure 1 illustrates the flow chart of references.11

TN Classification

Just less than one half of the papers (47%) described their TN cohort as classic, idiopathic, secondary to neurologic disease or used the Burchiel classification.12 One hundred twenty (n = 120) studies did not specify the type of TN in their cohort and 47 others used a nomenclature that was not clearly defined, e.g., refractory TN, medically unresponsive TN, and recurrent TN after microvascular decompression (MVD).

Method of Outcome Data Collection

More than one half of the studies reviewed (n = 254) collected their data retrospectively. Data were collected prospectively in 131 studies and 81 did not specify how their data were collected.

Intervention

Treatment interventions were divided into medical and surgical; however, data were not collected on the specific medical and surgical treatment modalities. The use of systemic and topical medicines and botulin toxin were included in medical management and all the ablative techniques,7 neurosurgical procedures (MVD), and laser treatment in surgical management. The majority of studies reviewed were surgical papers (n = 398) and a minority combined medical and surgical treatment (n = 10).

Outcome Domains, Dimensions, and Measures

For systematization and clarity, outcome data were organized and mapped to the IMMPACT outcome domain recommendations for clinical trials in chronic pain (Figure 2).4 Only 42 of the 467 reviewed studies were published during or before 2003, predating the IMMPACT publication. The IMMPACT Outcome Domains are as follows: 1) Pain; 2) Physical functioning; 3) Emotional
Records identified through database searching: EMBASE, MEDLINE, COCHRANE DATABASE, CINAHL, PSYCHINFO (n = 6889)

Additional records identified through hand search (n = 5)

Records after duplicates removed (n = 5093)

Records excluded (n = 4376)
- Abstract not available (n=115)
- Age < 18ys (n=22)
- Anatomy studies (n=77)
- Animal studies/basic science (n=164)
- Cohort < 10 pts (n=911)
- Conference abstracts/proceedings/commentaries/editorials (n=972)
- Facial pain overview (n=352)
- Full text not in English (n=23)
- Imaging studies (n=154)
- Not TN (n=1127)
- Pharmacology (n=194)
- SRs, MA and protocols (n=49)
- Technical surgical papers (n=216)

Records screened by title and abstract (n = 5093)

Records excluded (n=250)
- Age < 18ys (n=1)
- Animal studies (n=1)
- Cohort < 10 pts (n=22)
- Conference abstracts/proceedings/commentaries/editorials (n=16)
- Full text not available (n=48)
- Full text not in English (n=2)
- Not intervention studies (n=59)
- Not TN (n=29)
- SRs, MA and protocols (n=33)
- Technical surgical papers (n=39)

Full-text articles assessed for eligibility (n = 717)

Studies included in narrative synthesis (n=467)

Figure 1. Systematic review flow chart. (Adapted from Moher et al.11)
functioning; 4) Participant ratings of global improvement/satisfaction; 5) Symptoms and adverse events; and 6) Participant disposition.

With the exception of 8 papers, all studies used pain as an outcome domain (Figure 2 and Table 1). Symptoms and adverse events also were described in a high number of papers (n = 386); however, the impact of treatment on physical and emotional functioning was significantly less evaluated, in 46 and 17 studies, respectively (Tables 2 and 3). Of the 334 surgical studies that described adverse events, only 62 mentioned mortality rates. Participant disposition was described in 16 studies (3%).

Pain

Pain Relief. Pain relief was used as an outcome dimension in the majority of studies (n = 459). Ten different outcome measures were used for pain relief and 78 of 314 (25%) studies did not use an outcome measure. The Barrow Neurology Institute Pain Intensity Scale (BNI) was the most used pain relief measure in 131 of studies (42%), followed by a Likert scale in 76 (24%) and the visual analogue scale (VAS) in 18 (6%).

Pain Intensity. Pain intensity was used as a treatment outcome dimension in 193 of the 459 studies describing pain as an outcome domain. There were 9 different measures used for pain intensity and 8 studies did not use any. The VAS was the most commonly used measure in 85 studies followed by the BNI (n = 45) and the use of qualitative pain descriptors (n = 32).

Pain Frequency. Only 27 of 459 studies (6%) used pain frequency as a treatment outcome dimension. The majority did not use an outcome measure (n = 15) and 10 indicated the use of a pain diary. One study used a pain vector diagram and another study used the Constant Face Pain Questionnaire.

Physical Functioning

Forty-six studies included at least 1 measure for evaluating physical functioning dimensions, such as quality of life (QOL; n = 34), daily activities (n = 9), pain interference (n = 4), ability to work (n = 2), and disability (n = 1). These are summarized in Table 2 with the references.

Quality of Life. The most used instrument for assessing impact on QOL was the 36-Item Short Form Survey Instrument (n = 14), followed by the EQ-5D (5-Question Quality Of Life Instrument) (n = 4), Sickness Impact Profile (n = 2), and Brief Pain Inventory (BPI) (n = 2). The World Health Organization Quality of Life and 12-Item Short Form Health Survey were used in 1 study each. Of note, the BPI facial was used only once.

Two studies did not use an outcome measure and 8 used a different measure (Quality of Life Impact Scale, 0–100 scale (2 studies used this measure), Trigeminal Neuralgia Quality of Life Assessment Scale, Epilepsy Surgery Inventory-55, 10-point Quality of Life Scale, Wong Baker FACES scale, and a 5-Point Stage).

Daily Activities. Activities of daily living was the most commonly used instrument (n = 4) followed by the Penn Facial Pain scale (n = 1). One study did not use an outcome measure and 4 studies used different measures (Brief Fatigue Inventory, Karnofsky Performance Status Scale, Category Point Scale, yes/no questionnaire).

Pain Interference. The only instrument used to evaluate pain interference was the BPI facial (n = 4), which is the only instrument specific for facial pain.

Ability to Work. Only 2 measures were used to evaluate ability to work; one study used a Likert scale and a second study used the Self Perceived Productivity Scale.

Disability. The Pain Disability Index was used in 1 study only.

Emotional Functioning

Three dimensions were assessed in this domain: depression (n = 5), anxiety (n = 3), and catastrophizing (n = 1). Some studies combined anxiety and depression (n = 12). Please refer to Table 3 for references.

Anxiety and Depression. The combination of anxiety and depression was evaluated by the use of Hospital Anxiety and Depression Scale in 9 studies, and 1 study did not use an outcome measure. One other measure was found in 2 studies—the Research Diagnostic Criteria.

Depression. To evaluate depression alone, the Beck Depression Inventory was used in 3 studies followed by the Hamilton Depression Scale (n = 1) and the Patient Health Questionnaire-9 (n = 1).

Anxiety. To evaluate anxiety, only 2 instruments were used, the Beck Anxiety Inventory (n = 2) and the Hamilton Anxiety Scale (n = 1).

Catastrophizing. Only one study evaluated catastrophizing, with the aid of the Pain Catastrophizing Scale.

Figure 2. Number of studies divided according to IMMPACT recommendations on Outcome Domains.

<table>
<thead>
<tr>
<th>Outcome Domains</th>
<th>Number of studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>459</td>
</tr>
<tr>
<td>Symptoms and Adverse Events</td>
<td>386</td>
</tr>
<tr>
<td>Physical Functioning</td>
<td>46</td>
</tr>
<tr>
<td>Participant Rating of Improvement and Satisfaction with Treatment</td>
<td>35</td>
</tr>
<tr>
<td>Emotional Functioning</td>
<td>17</td>
</tr>
<tr>
<td>Participant Disposition</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 2. Number of studies divided according to IMMPACT recommendations on Outcome Domains.
Satisfaction with Treatment

Only 35 studies (7%) reported on patient ratings of improvement and satisfaction with treatment. The majority of studies (n = 17) used a Likert Scale to rate their patient satisfaction with treatment, whereas 2 studies used a Patient Satisfaction Scale and one other a VAS scale. Nine studies used the Patient Global Impression of Change to rate change with treatment. Three studies did not use an outcome measure and 4 studies used other outcome measures (QUASU - Satisfaction with Treatment and Medical Team; Satisfaction Survey; The Patient Global Rating of Efficacy and Safety; and The Wong Baker FACES scale).

Adverse Events

Data on adverse events and side effects were collected in 83% of the studies. Of the 59 medical studies, 85% described side effects. Outcome measures were used in only 3 studies—The Liverpool Adverse Event Profile (n = 2) and the A-B Neuropsychological Assessment Schedule (n = 1).

On the surgical studies group, side effects and adverse events were collected in 334 (84%). The most reported side effect was numbness (n = 220) and the Barrow Neurology Institute Numbness Scale was administered in 62 studies. A Likert scale was used once to assess degree of numbness. One other surgical study used the Landriel Ibanez classification, but the majority of studies limited their reporting to the passive description of the cohort side effects opposed to using an instrument to collect the data.

Patient Disposition

Patient disposition is not considered a treatment outcome. This domain refers to the patient navigating through a study and often presented in a flow diagram.

Guidance on reporting for the different types of studies has been published by the EQUATOR Network (Enhancing the QUAlity and Transparency Of health Research) (https://www.equator-network.org/) and endorsed by medical and surgical journals. It has been accepted that the

| Table 1. Pain Dimensions and Outcome Measures Identified in the Systematic Review |
|----------------------------------|--------------------------|----------------|
| Outcome Dimension | Outcome Measure | Reference Numbers |
| Pain relief (314) | Barrow Neurology Institute Pain Intensity Scale (BNI) | 13-143 |
| | No outcome measure | 144-211 |
| | Likert scale | 66219,222-296 |
| | Visual analogue scale (VAS) | 113,258,256-311 |
| | Numeric Rating Scale (NRS) | 296,312-316 |
| | Modified BNI | 317,318 |
| | Marseille scale | 41,64,319 |
| | MVD evaluation score | 320,321 |
| | Regis classification | 112,322 |
| | Burchiel classification | 323 |
| | Other | 324 |
| | Qualitative pain descriptors | 150,184,186,188,191,192,218,295,366,368,407-428 |
| | NRS | 31,35,71,149,235,266,278,298,304,314,413,429-440 |
| | Brief Pain Inventory (BPI) | 34,48,127,311,438,441-447 |
| | McGill Pain Questionnaire | 22,214,241,279,344,357,446-448 |
| | No outcome measure | 116,117,225,292,448-462 |
| | Verbal Pain Scale (VPS) | 224,395,363,409,453,454 |
| | Verbal Numeric Pain Scale (VNPS) | 49,189,455 |
| | Other | 324 |
| | Pain diary | 188,278,292,295,309,330,376,380,448,458 |
| | Pain vector diagram | 453 |
| | The Constant Face Pain Questionnaire | 241 |

MVD, microvascular decompression.
reporting of the patient progression in clinical trials should be illustrated by a CONSORT diagram (Consolidated Standards of Reporting Trials)465 and, in the case of observational trials, the STROBE statement (Strengthening the Reporting of Observational studies in Epidemiology) should be followed.466

In this review, we have identified 16 studies in which there was information about patient progression—CONSORT diagram (n = 4), STROBE reporting (n = 5) and 7 illustrated their information with a diagram but did not follow any specific guidance.

DISCUSSION

This systematic review provides a summary of the outcomes and outcome measures that have been used in the medical and surgical treatment of TN to date, performed by clinicians from varied backgrounds, and it highlights the variability in the methodology of studies and choice of outcome measures employed.

Pain: Outcome Dimensions and Outcome Measures

The degree of pain relief as well as the level of pain intensity have been the most commonly used dimensions in chronic pain studies.467,468 Similar to what others have found in the TN surgical literature,45,47 the most common pain dimension reported was pain relief. In the context of TN, however, there seems to be no consensus in what should be the primary outcome dimension in trials of TN. Studies that use either pain intensity or pain relief as their outcome of interest are difficult to compare. Pain intensity refers to “how intense the pain is,” whereas pain relief refers to “how much pain relief” has resulted from a certain treatment and so requires a baseline assessment.469 Some authors have attempted to clarify if pain relief ratings and pain intensity ratings are comparable. For example, Jensen et al.470 looked at a cohort of 248 postsurgical patients (knee replacement vs. laparoscopy) whose outcomes were pain intensity (VAS and Verbal Rating Scale) and pain relief (VAS). They had hypothesized that the differences in sensitivity to detect change would be similar in both cohorts; however, this was not supported. They

<table>
<thead>
<tr>
<th>Table 2. Physical Functioning Domain and Outcome Measures Identified in the Systematic Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome Dimension</td>
</tr>
<tr>
<td>Quality of life (34)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Daily activities</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pain interference</td>
</tr>
<tr>
<td>Ability to work</td>
</tr>
<tr>
<td>Disability</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
have confirmed that even though related, pain relief and intensity mean slightly different things, as patients report pain relief even when pain intensity ratings are the same or even greater than presurgery. Their conclusions point to the need of a clear definition of the primary outcome and a clear choice of a validated tool capable of capturing it.470 In addition, pain intensity may remain the same but patient’s ability to cope with it may change, and this would be reflected in measures looking at aspects such as activities of daily living. Baseline data before surgical procedures are rarely reported and yet they are crucial to determine the true impact of a treatment. TN is an episodic pain; it is interesting to see that little attention is given to this early on, that the outcome collected is not patient reported. If the information sought is related to effects of treatment on someone’s level of pain, then the patient is the only valid source of information.474

Domains Other Than Pain
There has been extensive research highlighting the impact of chronic pain in mood and QOL.475 Tölle et al.476 and Zakrzewska et al.477 described the high impact of TN pain on activities of daily living as well as on emotional functioning; however, the reporting of TN impact on QOL has been sparse.478 Of the 8 different instruments used for emotional functioning, only one, the Hospital Anxiety and Depression Scale, has been validated for TN. The BPI facial has been validated in a cohort of patients with TN,478 but its uptake, in studies published since 2010 and included in this review, is low, being used in 4 studies to assess pain interference474,475,447 and in one to assess impact on QOL.476 Interpreting the effects of TN on the emotional and physical health will also depend on the appropriateness of these instruments for their use in a TN cohort.

The reporting of side effects should go beyond a narrative list and incorporate how individual side effects might affect patients’ QOL or what the impact on daily living is. As illustrated by Akram et al.,9 the side effects of treatment might impact more on a patient’s QOL than the pain itself.

There might be a few practical explanations for the poor reporting on domains other than pain. First, reporting on multiple outcome domains would require more comprehensive questionnaire(s) that could be a burden to patients, risking a poor response rate and validity of results. Second, time might be a limiting factor for researchers who need to administer, collect and analyze all the data. Patients may not be made aware of their relevance and so not complete them. Finally, although attempts have been made to improve reporting of outcomes in studies on TN, journal editors have not insisted on more comprehensive reporting.9

Table 3. Emotional Functioning Domain and Outcome Measures Identified in the Systematic Review

<table>
<thead>
<tr>
<th>Outcome Dimension</th>
<th>Outcome Measure</th>
<th>Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety and depression (12)</td>
<td>Hospital Anxiety and Depression Scale (HADS)</td>
<td>214,364,356,432,446,488,482,463</td>
</tr>
<tr>
<td>Depression (5)</td>
<td>Beck Depression Inventory (BDI)</td>
<td>335,372,444</td>
</tr>
<tr>
<td>Anxiety (3)</td>
<td>Beck Anxiety Inventory (BAI)</td>
<td>335,372</td>
</tr>
<tr>
<td>Catastrophizing (1)</td>
<td>Pain Catastrophizing Scale (PCS)</td>
<td>447</td>
</tr>
</tbody>
</table>

The retrospective collection of data, specifically, the interviewing of patients, months or years after their treatments were done, raises the question of recall bias and it can be influenced, for example, by severity of pain at time of recall.473

Of note, in one of the studies, family members of deceased patients were contacted to obtain information about their condition.475 The experience of pain is a very personal one and it is unreasonable to expect that others can provide information, except if stated early on, that the outcome collected is not patient reported. If the information sought is related to effects of treatment on someone’s level of pain, then the patient is the only valid source of information.474

Data-Collection Method

The retrospective collection of data, specifically, the interviewing of patients, months or years after their treatments were done, raises the question of recall bias and it can be influenced, for example, by severity of pain at time of recall.473

Of note, in one of the studies, family members of deceased patients were contacted to obtain information about their condition.475 The experience of pain is a very personal one and it is unreasonable to expect that others can provide information, except if stated early on, that the outcome collected is not patient reported. If the information sought is related to effects of treatment on someone’s level of pain, then the patient is the only valid source of information.474

LITERATURE REVIEW

OUTCOMES AND OUTCOME MEASURES IN TN

CAROLINA VENDA NOVA ET AL.
LIMITATIONS
The inclusion of a large number of studies to summarize information on outcomes and outcome measures in the treatment of TN created a heterogeneous data set, which was challenging to organize. The studies were not appraised on their scientific rigor, as we wanted to capture the diversity of outcomes and outcome measures available in the literature. Due to the volume of results, our data extraction on outcomes was limited to identifying the outcome measure instrument used and for the majority of the studies we failed to retrieve information concerning the timing and method of questionnaire administration. Although guidance from IMMPACT is to be considered in clinical trials, due to the lack of available guidance for the reporting of outcomes in TN studies, we decided to map our results to their recommended 6 core domains. We acknowledge that these outcomes might not comprehensively reflect the ones patients with TN consider important and that fewer may be required when reporting other types of studies. Finally, our search included English-language literature only, and we might have left out relevant research published in other languages (language bias).

RECOMMENDATIONS FOR FUTURE RESEARCH
Following this work, it is our aim to develop a Core Outcome Set (COS) for the treatment of TN. COS is a group of defined outcomes that should be consistently collected and measured in all trials of a specific condition.479

We aim to seek guidance from IMMPACT, where possible, but we will not limit it to this, as there might be other outcome dimensions relevant to the TN population, for example, frequency of pain episodes, duration of pain-free episodes, and fear of attacks in between episodes. We will also follow recommendation from COMET (Core Outcome Measures in Effectiveness Trials) and COSMIN (Consensus-based Standards for the selection of health Measurement Instruments) initiatives for methodological guidance.480 One of the fundamental steps in the COS-development process will be to confirm whether patient’s views on outcomes map to the currently used instruments and if not, the validity of tools needs to be tested for their ability to detect change over time—what is the value of a composite measure opposed to a single item measure? For example, patient global impression of change may cover all the required features and has been shown to be useful in neuropathic pain.481

A TN COS could be used in all prospective trials and could consistently capture data that can be compared between studies improving patient health and reducing health care expenditure. We acknowledge the complexity of this process and that it will take time to take into account all stakeholders views.

CONCLUSIONS
Patients and clinicians currently have no reliable way of comparing outcomes in TN especially between medical or surgical treatments. Trials of medical therapies are said to be positive if 50% of patients are pain free,482 whereas surgical outcomes require 100% pain relief if they are said to be successful.

The variability in the reporting outcomes as well as the lack of validation of the instruments highlights the need for a partnership between different stakeholders—patients, patient groups, clinicians, researchers—in the preparation of a well-defined core set of outcomes and there are examples in the chronic pain field where this partnership has proved to be successful.483,484

Until there is a rigorous process for gathering TN treatment outcome data, which includes defining the primary outcome of importance to patients, the lack of consistency between studies will continue to account for the difficulties patients and clinicians have in identifying the best treatment option for each individual patient as this can vary significantly. This is of particular importance, given the range of treatments currently available for TN and, in addition, as not all patients opt for surgical therapies.

ACKNOWLEDGMENTS
We want to thank Mrs. Beata Coffey BSc (Hons) MSc MCLIP, Information Specialist, at the Royal Society of Medicine Library, for her support with the database searches.

DECLARATION OF COMPETING INTEREST
This work was supported by the Trigeminal Neuralgia Association UK (TNAUK) and by the Rosetrees Trust (grant A2327). J.Z. undertook this work at UCL/UCLHT, who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centre funding scheme. The founding sources had no role in the study design, in the collection, analysis and interpretation of the data, in the writing of the report and in the decision to submit the article for publication.

REFERENCES

41. Inoue T, Hirai H, Shima A, Suzuki F, Fujishima T, Matsuda M. Diagnosis and

137. Chen AY, Hsieh Y, McNair S, Xu KY, Abdel-Rahman KA, Elawamy AM, Mostafa MF. CAROLINA VENDA NOVA ET AL. OUTCOMES AND OUTCOME MEASURES IN TN GLIO.

254. Jagannath PM, Venkataramana NK, Bansal A, Ravichandra M. Outcome of microvascular decompression for trigeminal neuralgia using

277. Pollock BE, Stein KJ. Surgical management of trigeminal neuralgia patients with recurrent or persistent pain despite three or more prior operations. *World Neurosurg.* 2010;73:523-528.

LITERATURE REVIEW

302. Huang Q, Liu X, Chen J, et al. The effectiveness and safety of thermocoagulation radiofrequency treatment of the ophthalmic division (V1) and/or maxillary (V2) and mandibular (V3) division in idiopathic trigeminal neuralgia: an observational study. Pain. 2016;159:E142-E147.

336. Ebrahimi H, Najafi S, Khayyamzadeh M, Zahedi A, Mahdavi A. Therapeutic and analgesic efficacy of laser in conjunction with

409. Massouka J, Matsumiha T, Inoue K, Nakahara Y, Takase Y, Kawashima M. Outcome of microvascular decompression for trigeminal neuralgia treated with the stitched saccus retraction

Received 4 November 2019; accepted 18 January 2020

Citation: World Neurosurg. X (2020) 6:100070.

https://doi.org/10.1016/j.wnsx.2020.100070

Journal homepage: www.journals.elsevier.com/world-neurosurgery-x

Available online: www.sciencedirect.com