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Abstract—Two auditory-inspired feature-extraction models, 
the Multi-Resolution CochleaGram (MRCG) and the Auditory 
Image Model (AIM) are compared on their acoustic noise 
classification performance, when combined with two supervised 
machine-learning algorithms, the ensemble bagged of decision 
trees or Support Vector Machine (SVM). Noise classification 
accuracies are then assessed in nine different sound 
environments with or without added speech and at different 
SNR ratios. The results demonstrate that classification scores 
using feature extraction with the MRCG model are significantly 
higher than when using the AIM model (p< 0.05), irrespective 
of machine-learning classifier. Using the SVM as a classifier 
also resulted in significantly better (p<0.05) classification 
performance over bagged trees, irrespective of feature-
extraction model. Overall, the MRCG model combined with 
SVM provides a more accurate classification for most of the 
sound stimuli tested. From the comparison study, suggestions 
on how auditory model-plus-machine-learning can be improved 
for the purpose of sound classification are offered. 
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I.  INTRODUCTION 
A lot of challenges persist in current research that impede 

Cochlear Implant (CI) listeners from achieving the same level 
speech intelligibility as normal hearing listeners in noisy 
conditions. One challenge is developing noise suppression 
algorithms for pre-processing noisy speech in CIs that will not 
degrade in challenging listening situations, such as in 
nonstationary noise and reverberant environments [1]. This is 
usually hard to achieve because many noise suppression 
algorithms rely on accurate noise estimation, but these 
challenging listening conditions make it hard to track and 
predict accurately their statistical properties [2]. Another 
reason is because the spectrotemporal characteristics of the 
various types of real-life background noise can vary widely, 
rendering a single speech processing algorithm often applied 
to all listening conditions too ambitious. A way to improve 
the effectiveness of CIs in a range of acoustic environments 
is for an audiologist to program the CI for the user to 
incorporate multiple maps (map: a set of parameters unique 
to the user, controlling speech processing via the CI). This 
allows a CI user to switch between different speech 
processing programs, each of which has been optimised for 
different listening environments [3]. However, the process of 

changing between maps may be tedious for many CI users and 
they may feel more comfortable with using solely the default 
setting without exploring the benefits of using other maps in 
different listening environments. Therefore, an automated 
identification of the listening environment and a real-time 
adaptation of speech processing by incorporating machine-
learning approaches into the CI design is desirable. The front-
end noise classification by the CI would enable automatic 
selection of an optimised set of parameters to process the 
incoming audio for a particular listening environment and this 
would improve speech intelligibility for the CI user. 
Furthermore, there is ongoing research on how to effectively 
restore and increase spectrotemporal cues to CI users since 
findings suggest that CI users’ greater susceptibility to noise 
are caused by many factors such as reduced spectral 
resolution, high degree of spectral smearing that is associated 
with cochlear electrode channel interaction [4] and lack of 
spectrotemporal adaptation [5], a vital ability possessed by the 
human auditory system beneficial for discriminating sounds. 
Processing audio signals in a way that more closely represents 
how human ears perceive sound has led to an improved 
listening experience for CI users. For example, [6] reported 
that utilising a gammatone filterbank, which was designed to 
model the filtering process employed by the human auditory 
system, as a front-end was found to result in a significant 
improvement in melodic contour identification for both 
normal hearing and CI listeners. From this, it is hypothesised 
that feature extraction models inspired by the human auditory 
system, combined with machine-learning which can carefully 
consider non-obvious but important spectrotemporal patterns 
of different real-world listening environments, would lead to 
a robust noise event classification system beneficial for 
improving speech intelligibility for CI users. 

In this study, two auditory-inspired feature-extraction 
models, the Multi-Resolution CochlearGram (MRCG) model 
[7] and the Auditory Image Model (AIM) [8], are combined 
with machine-learning approaches, an ensembled bagged 
(from the present continuous tense ‘bagging’, which stands 
for Bootstrap Aggregating) trees and a Support Vector 
Machine (SVM), and compared on their acoustic noise 
classification efficacy when exposed to various test stimuli 
and training methodologies. Fig. 1 depicts a high-level block 
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Fig. 1. Basic block diagram representation of the auditory-inspired 
noise classification process in this study. 
 

 



diagram representation of the noise classification process. 
The output measure of correct classification, measured by the 
classification accuracy in percentages, of the acoustic 
environment is used as the evaluation metric and the 
significance of the classification results are further assessed 
using the ANalysis Of VAriance (ANOVA) [9]. 

The rest of the paper is organised as follows. In the next 
section, operations of the auditory models, AIM and MRCG, 
and the machine-learning classifiers employed are explained. 
Section III and IV describe the datasets used and the 
experimental setup for the different experiments executed, 
respectively. Section V discusses the observations and results 
from the comparison. Finally, the concluding remarks are 
given. 

II. METHODOLOGIES  
In this section, the operations of the auditory models, AIM 

and MRCG, and the machine-learning classifiers, ensemble 
bagged trees and SVM, are explained, and example 
visualisations of the mentioned auditory models are provided. 

A.  Auditory Image Model (AIM)   
The AIM feature extraction used in this study is the one 

described by [8]. However, the model was first described by 
[10]. Since the model has been comprehensively described in 
these papers, only the vital components of the model will be 
mentioned here.  

The AIM is a time-domain functional model of sound 
representations in the hearing system which can be associated 
with the cascade of processing stages in the auditory pathway. 
The principle functions of the AIM are to describe and 
simulate: (1) peripheral auditory processing, such as pre-
cochlear processing, Basilar Membrane Motion (BMM) and 
the transduction process in the cochlea, (2) central auditory 
processing, such as neural activity patterns in the auditory 

nerve and cochlear nucleus and (3) higher auditory 
processing, such as strobed temporal integration and source 
size normalisation which will eventually yield the Size-Shape 
transformed auditory Image (SSI). The AIM feature set used 
for the noise classification only consists of the outputs from 
the BMM and SSI stages. The BMM features are obtained by 
calculating the logarithmic envelope power of a linear 
gammatone filter output. The gammatone function is defined 
in the time domain by its impulse response as shown in 
Equation 1 [11]: 

!(#) = &#!"# cos(2+,# + .)/"$%&' 																		(1) 
where 2 is the filter order, 3 is the filter bandwidth in Hz, # 
represents time in seconds, , is the filter centre frequency, & 
is the amplitude of the signal, . is the phase of the signal. A 
gammatone filterbank with 64 frequency channels is used to 
match the number of channels used in the construction of the 
MRCG (described later). The SSI is a vocal tract length 
covariant representation of the input signal and it is obtained 
from the Stabilised Auditory Image (SAI) output at the higher 
auditory processing of the AIM, through processes described 
in [12]. The SAI is an interpretable stabilised representation 
of sound that preserves temporal fine structure through the 
strobed temporal integration process that converts the time 
dimension of the neural activity pattern into the time-interval 
dimension of the SAI [10]. After the processes described in 
[12], discrete cosine transform is applied to the 12 columns 
of the output with the greatest root mean square and then only 
the 2nd to 22nd coefficients are retained for the SSI features to 
be used for the classification. Error! Reference source not 
found. depicts the processes required for extracting the SSI 
features from the SAI. For a 20 ms long time frame (with 10 
ms overlap), the resulting dimensionality was 316 for each 
feature vector, i.e., 64 BMM features and 252 SSI features. 

 
Fig. 2. Procedure for obtaining the SSI from SAI features. 

 
Fig. 3. (a) BMM of the clean speech. (b) SAI of the clean speech. (c) 
BMM of the speech contaminated with babble noise at 0 dB SNR. (d) 
SAI of the speech contaminated with babble noise at 0 dB SNR. 
 
 

 

 
Fig. 4. Procedure for obtaining the MRCG features. 20 ms frames are used 
to obtain CG1, 200 ms frames are used to obtain CG2 and averaging 
windows are applied on CG1 to obtain CG3 and CG4. 

 
Fig. 5. (a) From left to right: MRCG, Δ and ΔΔ of the clean speech. (b) 
From left to right: MRCG, Δ and ΔΔ of the speech contaminated with 
babble noise at 0 dB SNR.  
 

 



Error! Reference source not found. provides example 
visualisations of the BMM and SAI features (of which the 
SSI features are obtained from) extracted from a 20 ms frame 
of a clean IEEE sentence – “the birch canoe slid on the 
smooth planks” – spoken by a male talker, and from a 20 ms 
frame of the same sentence contaminated with babble noise 
at 0 dB SNR. 

B. Multi-Resolution CochleaGram (MRCG) 
The MRCG proposed by [7] is a combination of four 

cochleagrams (CG1, CG2, CG3 and CG4) that encode power 
distributions of an audio signal in the time-frequency 
representation at different resolutions. The high-resolution 
cochleagram captures the local information while the three 
low-resolution cochleagrams capture the spectrotemporal 
contexts at different scales. Fig. 4 is provided to summarise 
the construction process. In addition to the MRCG, [7] 
suggested adding delta (Δ) and double-delta (ΔΔ), the first 
and second-order derivatives of the MRCG feature vector 
respectively, features to yield the MRCG+Δ+ΔΔ feature set. 
Adding Δ and ΔΔ is a popular post-processing technique in 
speech processing, widely used to capture temporal 
dynamics. In [13] the addition of Δ and ΔΔ features was 
found to improve speech separation results. The 
MRCG+Δ+ΔΔ feature set resulted in a dimensionality of 768 
for each 20 ms frame (64×4 for MRCG + 256×Δ + 256×ΔΔ). 
Hereinafter the term ‘MRCG’ includes the Δ and ΔΔ 
features. Example visualisations of MRCG features extracted 
from a clean and contaminated speech are shown in Fig. 5. 
The same clean IEEE sentence and IEEE sentence 
contaminated with babble noise at 0 dB SNR mentioned in 
the previous section were used for attaining the examples. 
The figure shows that the energy of a clean speech signal 
tends to have a sparse distribution in time and frequency. In 
other words, a clean speech signal usually posesses 
significant energy in small, isolated regions of a time-
frequency representation. On the contrary, a signal is likely 
to be dominated by noise when relatively high energy is 
observed across a large spread of time-frequency units. 
Sparser energy distribution in time and frequency leads to 
larger energy differences between many adjacent time-
frequency units as observed in the Δ and ΔΔ features shown 
in same figure. 

C. Machine-Learning Classifiers  
The extracted MRCG and AIM features are used to train 

two supervised machine-learning classifiers: an ensemble 
bagged of decision trees (hereinafter referred to as bagged 
trees) and a Support Vector Machine (SVM). An SVM is a 
discriminative classifier, formally defined by a separating 
hyperplane. Initially, SVMs with several variations of kernel 
functions – linear, quadratic and cubic – were used for 
testing. However, the cubic SVM resulted in deterioration in 
the validation accuracy score (a prediction of the 
performance of the trained model on test sets), potentially 
due to its higher sensitivity to outliers, and the quadratic 
SVM gave the same results as the linear SVM. Therefore, 

only the results obtained from the linear SVM are reported 
here. The linear kernel is given by the inner product of the 
feature space <4, 6> plus an optional constant c as shown in 
Equation 2: 

7(4, 6) = 4(y + c																													(2) 
where 9 represents the transpose operation. 

The bagged trees method combines several decision trees 
to produce better predictive performance than when a single 
decision tree is utilised. The decision to use a bagged trees 
classifier stemmed from [14]’s finding that using a random 
forest tree classifier in a hierarchical sound classification 
algorithm leads to higher robustness to non-trained sound 
signals.  

All algorithms in this study were implemented in 
MATLAB R2019b. The classifiers, bagged trees and linear 
SVM, were constructed and the trained prediction models 
were obtained using the Classification Learner application 
from MATLAB (provided in the Statistics and Machine 
Learning Toolbox). 5-folds cross-validation (the default 
validation scheme) was chosen for all training to prevent 
overfitting during the training process. The bagged trees 
classifier was implemented using the Breiman's random 
forest algorithm [15]. The number of learners (or number of 
trees) and the maximum number of splits (or branch points) 
were kept at the Classification Learner app’s default setting 
of 30 and 28,727 respectively. 

III. DATASETS  
The dataset used in the study is a noisy speech corpus, 

NOIZEUS, obtained from [16]. This corpus was developed 
with the intention of providing a common noisy speech 
(speech tokens combined with noise) database for the 
evaluation of speech-enhancement algorithms. The database 
consists of 30 IEEE sentences (produced by three male and 
three female speakers) corrupted by eight different real-
world noises (airport noise, babble noise, car noise, 
exhibition noise, restaurant noise, train-station noise, street 
noise and suburban train noise) at different SNRs (0 dB, 5 
dB, 10 dB and 15 dB SNRs). The noise files used for the 
noisy speech mixture were obtained from the AURORA 
database and different portions of a single noise file were 
used for different mixtures to ensure that the noisy segments 
used in testing and training were different. Clean speech files 
are also provided in NOIZEUS. The NOIZEUS files are 
sampled at 8kHz and each file is 2s long. 

IV. EXPERIMENT SETUPS 
The experimental setups, such as how the training and 

testing sets are generated, for the different experiments 
directed are described here. 

A. Experiment 1: AIM and MRCG’s classification 
performance 
12 IEEE sentences from NOIZEUS (recorded by male 

speakers only) from each category (i.e., clean speech and 
speech corrupted by the eight different real-world noise types 



– airport, babble, car, exhibition, restaurant, station, street 
and train noise) are used for training. The corrupted 
sentences are all presented at 0 dB SNR. 3 different IEEE 
sentences (obtained from the same database, also recorded 
by male speakers and corrupted by eight different real-world 
noise types at 0dB SNR) are used for the testing. 

B. Experiment 2: AIM and MRCG’s ability to distinguish 
between SNRs 
12 recordings of babble noise at different SNRs (clean 

speech, 0 dB, 5 dB, 10 dB and 15 dB SNR) from NOIZEUS 
are used for training and 3 other different recordings of 
babble noise at the same SNRs (clean speech, 0 dB, 5 dB, 10 
dB and 15 dB SNR) are used for testing. Each recording used 
for training/testing consists of a different IEEE sentence.  

C. Supplementary Experiment: AIM’s classification 
performance with a longer frame length 
The methodology is exactly as described for Experiment 

2. However, the frame length is increased to 200ms (the 
overlap is kept at 10ms) and the supplementary experiment 
is conducted only with AIM as the MRCG model has already 
been designed to extract cochleagrams at different frame 
lengths (20 ms and 200 ms).  

V. RESULTS AND DISCUSSION  
Fig. 6 presents the outcome from Experiment 1. The error 

bars presented in some of the result figures indicate the 
standard error of mean calculated from conducting five 
repetitions of the experiment. The MRCG feature set resulted 
in a high classification accuracy with majority of its 
classification accuracies at above 80%. The average 
classification accuracy is best at 89.8% when MRCG in 
combination with linear SVM is used. The AIM feature set 
performed worse than the MRCG feature set for identifying 
most noise types, except for the exhibition (with both bagged 
trees and SVM) and train noise (with SVM only). However, 
it was able to identify clean speech better than the MRCG 
method. The ANOVA results are reported as F-statistic and 
its associated p-value, and eta squared (η2). The F-statistic 
and p-value are used in combination to determine the 
significance of the data whereas η2 represents the proportion 
of variance. For the ANOVA, the three factors considered are 
the auditory model (two levels; MRCG or AIM), machine-
learning approach (two levels: bagged trees and SVM) and 
sound stimulus (nine levels; airport, babble, car, clean 
speech, exhibition, restaurant, station, street and train). There 
is a significant effect of auditory model [F(1,4) = 12001.2, p 
< 0.001 (two-tailed) with effect size, η2 = 1.00)] and 
machine-learning approach [F(1,4) = 330.4, p < 0.001 (two-
tailed) with effect size, η2 = 0.98]. There are also significant 
2-way interactions between the auditory model and machine-
learning approach [F(1,4) = 8.14, p < 0.05 (two-tailed) with 
effect size, η2 = 0.67], auditory model and sound stimulus 
[F(8,32) = 306.4, p < 0.001 (two-tailed) with effect size, η2 
= 0.98)], machine-learning approach and sound stimulus 

[F(8,32) = 34.1, p < 0.001 (two-tailed) with effect size, η2 = 
0.89)], and a 3-way interaction between the auditory model, 
machine-learning approach and sound stimulus [F(8,32) = 
20.76, p < 0.001 (two-tailed) with effect size, η2 = 0.84)]. 

Post hoc pairwise comparisons were conducted with a 
Bonferroni correction to keep Type I error at 5%. Post hoc 
pairwise comparisons showed that when using the MRCG 
model, classification scores using SVM are significantly 
higher for sound samples of airport, babble, car, exhibition, 
restaurant, station, street and train than when using bagged 
trees (p<0.05). Only for sound stimulus clean speech, with 
the MRCG model, is the score significantly higher when 
using bagged trees than SVM (p<0.05). Post hoc pairwise 
comparisons also showed that when using AIM, 
classification scores using SVM are significantly higher for 
sound samples of airport, street and train than when using 
bagged trees (p<0.05). Only for sound stimulus clean speech, 
with the AIM feature set is the score significantly higher 
when using bagged trees than SVM (p<0.05). For the AIM 
model, there is no significant difference in classification 
accuracy when comparing between machine-learning type 
(SVM and bagged trees) for sound stimuli babble, clean 
speech, exhibition, restaurant and station. 

The results for Experiment 2 shown in Fig. 7 shows that 
AIM has a better distinguishing power between various 
SNRs compared to the MRCG model. MRCG’s better 
performance in Experiment 1 indicates that temporal cues at 
different resolutions are beneficial for distinguishing 
between different noise types. However, more sophisticated 

 
Fig. 6. AIM’s and MRCG’s classification performance, when combined 
with bagged trees and SVM, for Experiment 1. 

 
Fig. 7. AIM’s and MRCG’s classification performance, when combined 
with bagged trees and SVM, when tested with the same noise 
environment at different SNRs (Experiment 2). 
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auditory model such as AIM, which includes more complex 
processing stages (e.g., converting BMM to neural activity 
patterns to model central auditory processing and 
identification of neural peak times to preserve fine-structure 
of noise etc.) before finally yielding the SSI features, might 
lead to the ability to better distinguish between different SNR 
values. There were many cases where both models confused 
adjacent SNRs with the correct one (e.g., 10 dB SNR is 
confused for 15 dB or 5 dB SNR). This is especially true for 
identifying babble noises at 5 dB and 10 dB SNR, where the 
classification accuracies are observed to be poorest. This 
outcome suggests that better classification accuracy is 
achieved when the signal is either clean or dominated by 
noise (two extreme ends). In this test condition, the bagged 
trees performed better than the linear SVM for the MRCG 
model but linear SVM is preferred when used in combination 
with AIM.  

The reason for AIM’s poorer classification performance 
in Experiment 1 may be due to its extraction of solely fine 
temporal context. Unlike the MRCG model which extracts 
features from the audio signals using two different 
timescales, the AIM only extracts features using frames of 20 
ms. This time scale may be too small to the extent that useful 
temporal information that describes a certain noise class may 
not be visible, and that many frames from the training and 
testing data are significantly different from each other, thus 
preventing the classifiers when combined with AIM, from 
generalising from the training data. [17] emphasised that 
natural sounds, music and vocal sounds have rich temporal 
structure over multiple timescales. Therefore, it is imperative 
that an audio classification system accounts for both: fine-
grained information in short timescales (<50 ms) and global 
pattern in long timescales (~200ms). Fig. 8 depicts the results 
attained from a supplementary experiment conducted to 
determine whether the performance of the AIM model could 
be improved when a longer frame length of 200 ms is used 
for feature extraction. The test stimuli and methodology are 
exactly the same as that in Experiment 1 with exceptions that 
only the AIM model is tested, and the frame length is 
increased to 200 ms with 10 ms overlap. Indeed, remarkable 
improvement is observed for almost all noise types except 
for airport noise when both bagged trees and SVM were 
used. When the airport noise is tested, a considerable number 
of frames are identified as restaurant noise. To investigate a 
possible reason for this, a sample BMM output of the tested 
airport noise is compared against sample BMM outputs of 
the trained airport and restaurant noise. The result, depicted 
in Fig. 9, suggests that the machine-learning model achieved 
low classification accuracy for the tested airport noise as the 
BMM output of the tested airport noise more closely 
resembles the BMM output of the trained restaurant noise. It 
appears that confusions are inevitable as many noise types 
share similar spectrotemporal contexts that are not easily 
distinguishable. Therefore, to implement a sound 
classification system in CIs, similar noise types should be 
classed together (i.e., training class labels should be more 

carefully deliberated) to minimise classification errors, and 
they will share the same noise reduction parameters during 
the speech processing stage.  

Although the bagging method used in the bagged trees 
classifier is widely used to reduce the variance of a decision 
tree, a greater variance is still observed for the bagged trees 
classifier than the linear SVM. This could be seen from the 
error bars included in Fig. 6-8 which show larger variability 
in the results for MRCG+bagged trees and AIM+bagged 
trees. Utilising a larger set of training and testing samples 
should further reduce this variance. Moreover, the optimal 
combination of number of learners and maximum number of 
splits could be explored to further reduce variance, prevent 
overfitting and produce high classification accuracy but in 
the expense of training and testing time, and memory usage. 
Post hoc pairwise comparisons from the ANOVA analyses 
conducted for Experiment 1 showed that the classification 
accuracy is significantly higher only for the clean speech 
stimulus when the bagged trees classifier is used (p<0.05).  
This possibly implies that the combination of number of 
learners and maximum number of splits was already 
sufficiently optimal for the clean speech stimulus which has 
more distinct spectrotemporal features than the rest of the 
stimuli. 

The dimensionality is larger for the MRCG+Δ+ΔΔ (total 
dimensionality of 768 for each 20 ms frame) but AIM (total 
dimensionality of 316 for each 20 ms frame) took a longer 
time to extract the required features due to the various 
processing stages it must go through before finally yielding 
the SSI features. With a desktop platform equipped with a 

 
Fig. 8. AIM’s classification performance, when combined with bagged 
trees and SVM, when a longer frame length of 200 ms is employed 
(Experiment 3). 
 
 

 

 
Fig. 9. The BMM output of the tested airport noise compared with the 
BMM output of the trained airport noise and trained restaurant noise. 
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3.6GHz clock processor, it took an average of 8.62 ms and 
23.8 ms to extract the MRCG and AIM features, respectively, 
for a 20 ms frame of a clean IEEE sentence sampled at 8 kHz. 
The processing time of the MRCG features was below the 
frame overlap time of 10 ms (50% of 20 ms). The time 
required to extract the AIM features, on the other hand, 
exceeds the overlap time. This renders AIM unsuitable for 
real-time operation as this factor might lead to a snowball 
effect of creating a larger latency. Investigating the 
significance of the SSI features for accurate sound 
classification is vital as the same classification accuracy may 
be achieved with less complex features obtained with less 
computations.  

From this study, auditory-inspired feature extraction 
models are observed to provide promising results for the task 
of sound classification even when trained with a small 
dataset. However, a good compromise must be achieved 
between classification accuracy and computation complexity 
in order for them to be suitable to be implemented in hearing 
devices such as cochlear implants, where low power 
consumption and compacity are sought after. Although the 
models have displayed a fair capability in discriminating 
between different SNR values, the classification system 
should be made insensitive to changes in SNR when it comes 
to classifying noise types. Further testing should be carried 
out to investigate the extent of the impact varying SNR 
values have on the sound classification performance of the 
models. More could also be done to optimise the classifier 
employed for sound classification applications when used in 
conjunction with auditory-inspired feature extraction. 

CONCLUSION 
Overall, the MRCG model gave more consistent results 

across experiments but AIM can better distinguish between 
different SNRs when the same noise type is used for testing.  
The linear SVM gave more favourable classifications in most 
of the tests conducted but it is clear that the classifiers’ 
performance varies when combined with different features 
and different test materials. There is a significant interaction 
between the feature extraction model and machine-learning 
approach, such that when using the MRCG model 
classification, scores using SVM are significantly higher for 
the majority of sound samples (i.e., all except for clean 
speech) than when using bagged trees (p<0.05). Overall, the 
best classification scores are obtained with MRCG when 
combined with SVM.  

Limitations and challenges found in the comparison 
study have been discussed. Using variable frame sizes can 
account for temporal structure over multiple different 
timescales to a certain extent but this is still far from 
modelling the superior spectrotemporal adaptation exhibited 
by the human auditory system. Future work could look into 
identifying the combination of suitable frame lengths and 
filter channels to use to account for various important 
spectrotemporal contexts of different sound classes; 

characteristics of auditory model that when combined with 
the appropriate machine-learning approach best represents 
human performance in speech recognition in a variety of 
noise environments without requiring high processing 
demands; and incorporating behavioural and sensory context 
into auditory-inspired models to increase spectrotemporal 
adaptation.  
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