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ABSTRACT

Photoacoustic tomography (PAT) is an imaging modality developed during the past few decades. In the inverse
problem of PAT, the aim is to estimate the spatial distribution of an initial pressure p0 generated by the
photoacoustic effect, when photoacoustic time-series pt measured on the boundary of the imaged target are given.
To produce accurate photoacoustic images, the forward model linking p0 to pt has to model the measurement
setup and the underlying physics to a sufficient accuracy. Use of an inaccurate model can lead to significant
errors in the solution of the inverse problem. In this work, we study the effect and compensation of modelling
errors due to uncertainties in ultrasound sensor locations in PAT using Bayesian approximation error modelling.
The approach is evaluated with simulated and experimental data using various levels of measurement noise,
uncertainties in sensor locations and varying sensor geometries. The results indicate that even small errors
in the modelling of ultrasound sensor locations can lead to large errors in the solution of the inverse problem.
Furthermore, the magnitude of these errors is affected by the amount of measurement noise and the measurement
geometry. The modelling errors can, however, be well compensated by the approximation error modelling.

Keywords: Photoacoustic tomography, inverse problems, Bayesian methods, error modelling

1. INTRODUCTION

Photoacoustic tomography (PAT) is an imaging modality that utilises the photoacoustic effect. In PAT, the
imaged target is illuminated with a short light pulse. Absorption of this light creates areas of local thermal ex-
pansion resulting in a localised pressure distribution within the target. This pressure relaxes as ultrasonic waves
which are measured on the boundary of the imaged target. In the inverse problem of PAT, the measured ultra-
sound waves pt are used to estimate the initial pressure distribution p0 within the target volume. Applications
of PAT include, for example, imaging of vasculature, cancer detection and small animal imaging in biomedical
applications.1–3

To produce accurate images in PAT, the measurement setup and the underlying physics have to be modelled
to a sufficient accuracy. This, however, is not always possible since some model parameters may not be known
exactly or the numerical solution of the model is computationally too expensive. Use of an inaccurate forward
model can lead to significant errors in the solution of the inverse problem. Modelling errors in PAT have
previously been studied in cases such as a variable speed of sound4–6 and a finite ultrasound transducer size.7,8

In this work, the effect and compensation of modelling errors due to uncertainties in ultrasound sensor locations
are studied. The inverse problem of PAT is approached in a Bayesian framework. Compensation of the modelling
errors is carried out using Bayesian approximation error modelling.9,10

The rest of the paper is structured as follows. The forward model for PAT is described in Section 2. The
Bayesian approach to the inverse problem of PAT and the Bayesian approximation error modelling are described
in Section 3. Furthermore, results of the simulation and experimental studies are presented in Sections 4 and 5.
Finally, the results are concluded in Section 6.
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2. FORWARD MODEL

Propagation of ultrasound waves generated by an initial pressure p0 in a homogeneous non-attenuating medium
is described by an initial value problem11

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= 0

p(r, t = 0) = p0(r)

∂

∂t
p(r, t = 0) = 0,

(1)

where p is the acoustic pressure, r is the location, t denotes the time and c is the speed of sound. In this work,
the initial value problem (1) is solved using a pseudospectral k -space time-domain method implemented in the
k-Wave toolbox.12

3. INVERSE PROBLEM

In the inverse problem of PAT, the aim is to estimate the initial pressure p0 ∈ Rm, when the measured photo-
acoustic time-series pt ∈ Rn are given. The discrete observation model for PAT, which links p0 to pt, can be
written as

pt = Kp0 + e, (2)

where K ∈ Rn×m is a discrete forward operator and e ∈ Rn is additive measurement noise. In this work, the
forward operator K is constructed by simulating impulse responses from each of the pixels in the discretised
reconstruction domain and placing the resulting wave-forms on the columns of the forward operator.

In this work, the inverse problem in PAT is approached in the Bayesian framework. According to the Bayes’
theorem, the solution of the inverse problem, i.e. the posterior distribution, can be written as

π(p0|pt) =
π(pt|p0)π(p0)

π(pt)
∝ π(pt|p0)π(p0), (3)

where π(pt|p0) is the likelihood distribution, π(p0) is the prior distribution and π(pt) is a normalisation constant.
Let us now assume that the measurement noise e and the initial pressure p0 are mutually independent. Let us
further model the measurement noise e as Gaussian distributed e ∼ N (ηe,Γe) where ηe and Γe are the mean and
covariance of the measurement noise. Then, the likelihood density can be written as9

π(pt|p0) ∝ exp

{
−1

2
‖Le(pt −Kp0 − ηe)‖22

}
, (4)

where Le is the Cholesky decomposition of the inverse covariance matrix of the measurement noise Γ−1e = LT
e Le.

In this work, the noise model (4) is referred to as the conventional error model (CEM). Let us now model the
prior density as Gaussian distributed p0 ∼ N (ηp0 ,Γp0) where ηp0 and Γp0 are the mean and covariance of the
prior distribution. In this case, the posterior density, given by (3), can be written as9

π(p0|pt) ∝ exp

{
−1

2

(
‖Le(pt −Kp0 − ηe)‖22 + ‖Lp0

(p0 − ηp0
)‖22
)}

, (5)

where Lp0
is the Cholesky decomposition of the inverse covariance matrix of the prior distribution Γ−1p0

= LT
p0
Lp0

.
The posterior density (5) is a Gaussian distribution9

p0|pt ∼ N (ηp0|pt
,Γp0|pt

), (6)

where

ηp0|pt
= Γp0|pt

(KTΓ−1e (pt − ηe) + Γ−1p0
ηp0

) (7)

Γp0|pt
= (Γ−1p0

+KTΓ−1e K)−1. (8)
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3.1 Bayesian Approximation Error Approach

Ideally, the forward operator K should be constructed such that it takes into account all underlying physics and
parameters of the measurement setup. In practice, however, it can contain modelling errors arising from, for
example, coarse numerical discretisation, simplifications of the numerical model or uncertainties in the model
parameters.

Let us now consider a situation, where the forward operator K is parameterised by some, possibly inaccurately
known, parameter γ, i.e. K → K(γ), and the observation model (2) is written as

pt = K(γ)p0 + e. (9)

In practice, the parameter γ is often fixed to some constant γ → γ0 and a forward model K(γ0) is used instead.
In this case, the observation model is written as

pt = K(γ0)p0 + e. (10)

If the fixed parameter γ0 is not accurate, use of this observation model can result in errors in the solution of
the inverse problem, especially in the case of an ill-posed problem. Possible uncertainties in γ can, however,
be taken in to account by using the Bayesian approximation error modelling, in which information about the
uncertainties is incorporated to the likelihood model. In the approximation error approach, the observation
model (9) is written as

pt = K(γ0)p0 + (K(γ)−K(γ0))p0 + e (11)

= K(γ0)p0 + ε+ e (12)

= K(γ0)p0 + n, (13)

where ε is the approximation error describing the discrepancy between the accurate and inaccurate models and
n = ε+ e is the total error.

Let us now ignore the mutual dependence of the approximation error ε and the initial pressure p0. Let us
further model the approximation error ε as Gaussian distributed ε ∼ N (ηε,Γε) where ηε is the mean and Γε is
the covariance of the approximation error. Then, the total error n is also Gaussian distributed n ∼ N (ηn,Γn)
where ηn = ηε + ηe is the mean and Γn = Γε + Γe is the covariance of the total error. In this case, the likelihood
density can be written as9

π(pt|p0) ∝ exp

{
−1

2
‖Ln(pt −K(γ0)p0 − ηn)‖22

}
. (14)

The noise model (14) is referred to as the enhanced error model (EEM). Let us now model the prior density
π(p0) as Gaussian distributed. The posterior distribution (3) can then be written as9

π(p0|pt) ∝ exp

{
−1

2

(
‖Ln(pt −K(γ0)p0 − ηn)‖22 + ‖Lp0

(p0 − ηp0
)‖22
)}

, (15)

where Ln is the Cholesky decomposition of the inverse covariance matrix of the total error Γ−1n = LT
nLn. This

is a Gaussian distribution
p0|pt ∼ N (ηp0|pt

,Γp0|pt
), (16)

where

ηp0|pt
= Γp0|pt

(K(γ0)TΓ−1n (pt − ηn) + Γ−1p0
ηp0

) (17)

Γp0|pt
= (Γ−1p0

+K(γ0)TΓ−1n K(γ0))−1. (18)

Statistics of the approximation error can be computed, for example, as a sample based estimation as follows.
Let M =

{
m(1),m(2), · · · ,m(L)

}
be a set of samples drawn from the prior distribution π(p0). Furthermore, let
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(a)

PANG
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(b)

Figure 1: (a) Simulated initial pressure and sensor geometries. The sensor points are indicated as light blue points on
the boundary of the circular domain. Full-view geometry (G360) and the limited view geometries (G180 and G130) are
indicated with arc spanning 360◦ (dotted line), 180◦ (dash-dotted line) and 130◦ (dashed line) of the target domain
respectively. (b) Visualisation of the angularly altered sensor locations PANG. The unaltered sensor location is shown as
the light blue rectangle with solid outlines and the altered sensor locations are shown with gray rectangles with dotted
outlines. The distance between the unaltered and altered sensor locations is indicated with the red line.

γ(l), l = 1, ..., L be a sampled value of the uncertain parameter γ. Estimates for the mean and covariance of the
approximation error ε can then be computed as9

ηε =
1

N

L∑
l=1

ε(l) (19)

Γε =
1

N − 1

L∑
l=1

ε(l)(ε(l))T − ηεηTε , (20)

where
ε(l) = K(γ(l))m(l) −K(γ0)m(l). (21)

4. SIMULATIONS

In the simulation study, the effect and compensation of modelling errors due to uncertainties in ultrasound
sensor locations were studied using three sensor geometries, three levels of uncertainties and multiple levels of
measurement noise.

4.1 Data Simulation

In the simulations, a 10 mm diameter circular domain was considered. The simulated initial pressure p0, visualised
in Fig. 1a, consisted of seven smooth inclusion with peak amplitudes of 1 (outermost inclusions) and 0.6 (middle
inclusion). The speed of sound was set to c = 1500 m/s.

The sensor geometries used in the simulations consisted of 36, 19 and 14 ideal point-like ultrasound sensors
distributed on 360◦, 180◦ and 130◦ arcs (10◦ separation) around the boundary of the domain. These sensor ge-
ometries are referred to as G360, G180 and G130 respectively. Illustration of the sensor geometries is shown in Fig.
1a. The ultrasound sensor locations were defined using cartesian coordinates. In the situations, where the sensor
locations did not match the spatial discretisation, the recorded waveforms were interpolated using a piecewise
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Table 1: Uncertainties PANG,1–PANG,3, the corresponding uniform distribution used in alteration of the sensor positions
and the distance of the maximum alteration from the unaltered sensor position DANG.

Uncertainty Distribution DANG (µm)

PANG,1 Unif([−1◦,−0.5◦] ∪ [0.5◦, 1◦]) 89

PANG,2 Unif([−2◦,−1◦] ∪ [1◦, 2◦]) 177

PANG,3 Unif([−3◦,−1.5◦] ∪ [1.5◦, 3◦]) 266

Table 2: Noise levels σe used in the simulation study: percentages of the maximum amplitudes E% and the corresponding
signal-to-noise ratios (SNR).

σe

E% (%) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

SNR (dB) 34.9 28.9 25.4 22.9 21.0 19.4 18.1 16.9 15.9 14.9

linear triangular discretisation. To simulate uncertainties in ultrasound sensor locations, the photoacoustic data
was simulated using angularly altered sensor locations (illustrated in Fig. 1b). The alterations were drawn from
three uniform distributions PANG,1, PANG,2 and PANG,3 shown in Table 1. The altered sensor locations were
drawn separately for each sensor.

For the simulation of the photoacoustic data, a square 10.4 mm × 10.4 mm computation domain was dis-
cretised into 416 × 416 pixels with a side length of ∆x = 25 µm. The discretisation was extended with a 600
µm thick (24 pixels) perfectly matched layer (PML) to absorb reflections on the boundary of the computational
domain. The time discretisation was chosen based on a Courant-Friedrichs-Lewy (CFL) number of 0.3, which
corresponded to a time step of 5 ns and a sampling frequency of 200 MHz. Number of time points was set to
Nt = 1652, which resulted in a flight time of 8260 ns and a propagation distance of 12.4 mm. Photoacoustic
data was simulated by solving the wave-equation (1) using a k-space time-domain method implemented in the
k-Wave toolbox.12

To study the effect of measurement noise e, various levels of Gaussian distributed, zero-mean noise was
added to the data. In total, ten noise levels σe, corresponding to 0.5% – 5% with 0.5% increments of the
maximum amplitude of the simulated signal were used. In this work, these noise levels are referred to as
σe,0.5%, σe,1%, ..., σe,5% respectively. Noise levels and the respective signal-to-noise ratios are given in Table 2.

4.2 Inverse Problem

For the inverse problem, a square 10.4 mm × 10.4 mm computation domain was discretised to 133 × 133 pixels
with a side length of ∆x = 78.1 µm. The discretisation was extended by a 1600 µm (21 pixels) thick PML-layer.
The time discretisation was chosen based on a CFL number of 0.3. This resulted in a time step of 15.6 ns and a
sampling frequency of 64 MHz. Furthermore, the number of time steps was set to Nt = 477 resulting in a flight
time of 7453 ns and a propagation distance of 11.2 mm.

The inverse problem of PAT was solved using (16)–(18) and three different error models as follows. First,
the inverse problem was solved using accurately modelled sensor locations, i.e. the same sensor locations that
were used to simulate the data (γ is known accurately and ε = 0). Second, the inverse problem was solved using
inaccurately modelled sensor locations assuming the fixed (unaltered) sensor positions without error modelling
(γ = γ0 and ε assumed to be zero). Third, the inverse problem was solved using inaccurately modelled fixed
sensor locations with approximation error modelling (γ = γ0 and ε ∼ N (ηε,Γε)). In this work, these three
cases are referred to as the conventional error model with accurately modelled sensor locations (ACEM), the
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conventional error model with inaccurately modelled sensor locations (ICEM) and the enhanced error model
(EEM), respectively.

The prior model used in the reconstructions was a Gaussian Ornstein-Uhlenbeck process, defined by the
covariance function13

Γp0,ij = σ2
p0

exp

{
−‖ri − rj‖

`

}
, (22)

where σ2
p0

is the variance, ri,j are locations of the pixels and ` is a characteristic length controlling the length of
the spatial correlation. In this work the mean, standard deviation and characteristic length were set as ηp0

= 0.5,
σp0

= 0.25 and ` = 650µm respectively. In the inverse problem, the measurement noise e was modelled as zero
mean with standard deviations σe defined as a percentage of the maximum amplitude of the simulated data.

Statistics for the approximation error ε were computed as in (19)–(20) using N = 20000 samples m(l) of the
initial pressure p0 drawn from the Ornstein-Uhlenbeck prior model. In the situations, where the drawn pixel
values were negative, the value was set to zero. Using these samples, the forward solutions corresponding to
K(γ(l))m(l) were computed by drawing sensor positions γ(l) from the uniform distributions PANG,1 – PANG,3

and simulating the forward solution using the k-Wave toolbox. Sensor positions were drawn independently for
each of the sensors in the sensor geometry. Furthermore, the sensor positions were drawn repeatedly for each of
the sample m(l). Forward solutions corresponding to the term K(γ0)m(l) were computed using unaltered sensor
locations.

4.3 Results

Means of the posterior disributions (reconstructed images) using accurately modelled sensor locations (ACEM),
inaccurately modelled sensor locations without error modelling (ICEM) and inaccurately modelled sensor loca-
tions with error modelling (EEM), a noise level of σe,1,5%, uncertainties PANG,1–PANG,3 and sensor geometries
G360 and G130 are presented in Fig. 2. As it can be seen, the magnitude of the errors and artefacts in the
reconstructed images without error modelling (ICEM) are highly dependent on the level of uncertainty. In the
case of the lowest uncertainty PANG,1, these errors in the reconstructed images can be observed to be relatively
small. However, the errors grow considerably with increasing uncertainty, which can be explained by an increas-
ing magnitude of the modelling errors. In the case of the highest uncertainty PANG,3, the uncertainties result
in significant artefacts, that can be seen as distortions spanning the whole image. In addition to the level of
uncertainty, the errors in the reconstructed images are affected by the sensor geometry. When comparing the
reconstructions obtained using the inaccurately modelled sensor locations (ICEM) with the same level of uncer-
tainty and different sensor geometries, it can be seen that the errors are significantly larger in the case of the
limited-view geometry G130 than in the full-view geometry G360. The relatively large errors in the limited-view
sensor geometry can be explained by the reduced amount of information and increased ill-posedness of the inverse
problem. The errors due to the uncertainties in ultrasound sensor locations are, however, well compensated by
the enhanced error model. From the reconstructions computed using approximation error modelling (EEM), it
can be seen, that the artefacts are significantly reduced and the locations and amplitudes of the inclusions are
corrected close to the accurate reconstruction (ACEM).

Means of the posterior disributions (reconstructed images) using accurately modelled sensor locations (ACEM),
inaccurately modelled sensor locations without error modelling (ICEM) and inaccurately modelled sensor loca-
tions with error modelling (EEM), with noise levels σe,0.5%, σe,1.5% and σe,3%, uncertainty PANG,3 and sensor
geometries G360 and G130 are presensted in Fig. 3. As it can be seen, the errors in the reconstructed images are
affected by the level of the noise. The errors in the reconstructions using inaccurately modelled sensor locations
without error modelling (ICEM) are most significant in the case of the lowest measurement noise of σe,0.5%. In
this case, significant artefacts in the reconstructions can be seen with both sensor geometries G360 and G130.
These errors are, however, reduced in the cases of higher measurement noises σe,1.5% and σe,3%. Furthermore,
the larger errors due to the limited-view geometry G130, previously observed in Fig. 2, can also be seen. The
errors due to uncertainties in ultrasound sensor locations are, however, effectively compensated for every noise
level by using the approximation error modelling.
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Figure 2: Estimated initial pressure p0 using various levels of uncertainties with sensor geometries G360 (a) and G130 (b)
and noise level σe,1,5%. For each subfigure from left to right: the conventional error model with accurately modelled sensor
locations (ACEM), the conventional error model with inaccurately modelled sensor locations (ICEM) and the enhanced
error model (EEM), and from top to bottom, uncertainties PANG,1, PANG,2 and PANG,3.

Accuracy of the reconstructions was evaluated by computing the relative errors

Ep0
= 100% · ‖p0,TRUE − p0,EST‖

‖p0,TRUE‖
(23)

where p0,TRUE is the simulated initial pressure and p0,EST is the estimated initial pressure. These errors, which
were computed for all sensor geometries G360–G130, uncertainties PANG,1–PANG,3 and levels of measurement
noise σe,0.5% − σe,5% are visualised in Fig. 4.

As it can be seen, the relative errors depend on the level of uncertainty. This is most evident when the
modelling errors are ignored. Furthermore, the relative errors are highly dependent on the sensor geometry. The
effect of the sensor geometry can be seen as increasing relative errors, as the number of sensors decrease and
limited view geometries are used. This effect is most notable in the case, where the inaccurately modelled sensor
locations are used and the modelling errors are ignored. It can also be seen that modelling of errors compensates
for uncertainties in sensor positions well and the relative errors are smaller than when the uncertainties have
been ignored. However, also in these situations, the relative errors increase when uncertainties in sensor posi-
tions increase and/or when measurement geometry is limited. It can also be observed, that the relative errors
computed using accurately modelled sensor locations (ACEM) and inaccurately modelled sensor locations with
error modelling (EEM) increase as a function of increasing measurement noise. On the contrary, the relative
errors of the inaccurately modelled sensor locations (ICEM) increase with decreasing noise. This effect can be
explained by the ratio of the noise and modelling errors. Depending on the levels of measurement noise and
the modelling errors, an inverse problem could be described as either measurement noise or approximation error
dominant.9 In practice, this means that large noise can cover the effect of modelling errors. On the other hand, if

Proc. of SPIE Vol. 11240  112402L-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 3: Estimated initial pressure p0 using various noise levels with sensor geometries G360 (a) and G130 (b) and
uncertainty PANG,3. For each subfigure from left to right: the conventional error model with accurately modelled sensor
locations (ACEM), the conventional error model with inaccurately modelled sensor locations (ICEM) and the enhanced
error model (EEM), and from top to bottom, noise levels σe,0.5%, σe,1.5% and σe,3%.

the approximation errors are significantly larger compared to the measurement noise, ignoring the approximation
errors can lead to significant errors in the reconstructed images.

5. EXPERIMENTAL STUDY

We used our LED-based photoacoustic tomography system to study the methodology with experimental data.14

The LED (model SST-90-R, Luminus Devices, MA, USA) operated at 617 nm with a pulse energy of 5.26±0.02µJ.
Photoacoustic waves were recorded using a piezoelectric cylindrically focused ultrasound sensor (model V383,
Olympus NDT, MA, USA) with a focal length of 33.0 mm. The imaged target consisted of three parallel plastic
microcapillary tubes (polyethylene terephthalate glycol; Globe Scientific, NJ, USA) filled with Indian ink solution
(art. no. 44257000, Royal Talens, Apeldoorn, the Netherlands). The ultrasound sensor was rotated in a plane
perpendicular to the tubes. Photoacoustic data was recorded on a 180◦ 33.8 mm diameter arc using 5◦ increments.
The data was sampled at 50 MHz and was averaged over 1024 consecutive light pulses. The noise level in the
data corresponded to 3% – 22% of the maximum recorded amplitude depending on the measurement position.
The speed of sound was determined according to the temperature of the water and set to c = 1481.7 m/s.

5.1 Inverse Problem

For the inverse problem, a 72.4 mm × 43.3 mm × 10.2 mm rectangular computation domain was considered.
The domain was discretised in 384 × 230 × 52 pixels with a side length of ∆x = 188.4 µm. The discretisation
was extended with a 1.5 mm × 2.4 mm × 1.9 mm thick (8 × 13 × 10 pixels) PML layer. Temporal discretisation
was set to match a CFL-number of 0.3, which resulted in a time step of 38.2 ns. Number of time points was set
to Nt = 897, which corresponded to a flight time of 34.3 µs and a propagation distance of 50.7 mm.
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Figure 4: Relative errors Ep0 of the estimated initial pressure p0 obtained using the accurate conventional error model
(ACEM, dark blue bars), the inaccurate conventional error model (ICEM, yellow bars) and the enhanced error model
(EEM, light blue bars) and measurement error levels E% given in Table 2. From left to right: uncertainties PANG,1 –
PANG,3 and from top to bottom sensor geometries G360 – G130.

To simulate uncertainties in the modelling of ultrasound sensor locations, the forward operator K was con-
structed by altering the radial distance of the ultrasound sensor positions from the central axis of the measurement
setup. Alteration for each of the sensors was drawn from a discrete uniform distribution U(−188µm, 0µm, 188µm).
The forward operator was constructed by taking advantage of the symmetry of the imaged target. This meant
that instead of simulating the impulse responses of individual voxels, lines parallel to the target (z-direction)
were used instead. Using this type of approach resulted in a quasi-3D model producing computationally efficient
2D images while allowing the modelling of the shape of the finite-sized ultrasound sensor. The finite size of
the ultrasound sensor was modelled by averaging the recorded waveform over 124 point-sensors arranged to the
shape of the ultrasound sensor. The frequency response of the ultrasound sensor was modelled by filtering the
signal using the frequency response provided by the manufacturer.

As in the simulation study, the inverse problem was solved using (16)–(18) with accurately modelled sensor
locations (ACEM), inaccurately modelled sensor locations without error modelling (ICEM) and inaccurately
modelled sensor locations with error modelling (EEM). The measurement noise was modelled as Gaussian dis-
tributed. Standard deviation and mean of the measurement noise was computed from a Nt = 263 time-point
section of the recorded signal preceding the illumination. The prior model used in the reconstructions was the
Ornstein-Uhlenbeck process. The mean, standard deviation and characteristic length for the prior model were
set to ηp0

= 0.04, σp0
= 0.03 and ` = 300µm respectively.

Statistics of the approximation error were simulated using (19)–(20) and N = 10000 samples of initial pressure
p0 drawn from the Ornstein-Uhlenbeck prior model. For the forward solutions K(γ(l))m(l) sensor locations were
drawn from a uniform distribution U(−188µm, 188µm). The sensor locations were drawn independently for
each sensor. To optimise the computational time, the samples corresponding to the altered sensor locations
were computed as follows. First three distinct sensor geometries with constant radial displacements of −188µm
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Figure 5: Initial pressure p0 estimated from the experimental data. From left to right: the conventional error model with
accurately modelled sensor locations (ACEM), the conventional error model with inaccurately modelled sensor locations
(ICEM) and the inaccurately modelled sensor locations with error modelling (EEM).

(SG1), 0µm (SG2) and 188µm (SG3) were constructed. Then N = 10000 forward solutions using the drawn
prior samples were computed for each of the sensor geometries SG1−3. The forward solutions corresponding to
K(γ(l))m(l) were then computed by interpolating the waveforms SG1−3 based on the drawn radial displacement.
The forward solutions K(γ0)m(l) were chosen from the forward solutions computed using the sensor geometries
SG1−3. These forward solutions were chosen based on the sensor alterations used in the computation of the
forward operator K.

5.2 Results

Means of the posterior distributions computed using experimental data and accurately modelled sensor location
(ACEM), inaccurately modelled sensor locations (ICEM) and inaccurately modelled sensor locations with error
modelling (EEM) are shown in Fig. 5. As can be seen, the uncertainties in the modelling of ultrasound sensor
locations result in wave-like artefacts and distortions of the tube boundaries. These artefacts and distortions
are, however, well-compensated using the approximation error modelling. In this case, the shape of the tubes
are closer to the true shapes and the wave-like artefacts are corrected. The amplitude of the tubes in the
reconstructions using error modelling are, however, somewhat lower and the tube boundaries suffer from slight
blurring compared to the reconstructions using accurately modelled sensor locations.

In general, experimental setups can introduce additional possible sources of modelling errors. These sources
include factors such as inaccurately measured water temperature, inhomogeneities in the speed of sound within
the imaged target and parameters of the ultrasound sensor (such as finite size and frequency response of the
sensor). In this work, however, the uncertainties in the speed of sound had a negligible effect compared to the
magnitude of the errors due to the uncertainties in ultrasound sensor locations. Furthermore, the parameters of
the ultrasound sensors were taken into account by modelling the finite size and the frequency response of the
ultrasound sensor.

6. CONCLUSIONS

In this work, compensation of errors due to uncertainties in ultrasound sensor locations were studied. Compen-
sation of the errors was carried using the Bayesian approximation error modelling. The method was studied
using various levels of uncertainties and sensor geometries as well as different levels of measurement noise. The
approach was evaluated by simulations and experiments using accurately modelled sensor locations, inaccurately
modelled sensor locations and inaccurately modelled sensor locations with error modelling.

Uncertainties in ultrasound sensor locations were found to cause significant errors in the solution of the inverse
problem in PAT. Furthermore, effects of the modelling errors were found to depend on multiple factors, such as
the sensor geometry and the magnitude of the noise and modelling errors. The errors caused by uncertainties
in ultrasound sensor locations were, however, well compensated using Bayesian approximation error modelling.
Based on the results, the proposed approach could be utilised with measurement setups in which the accurate
measurement of ultrasound sensor locations is challenging such as hand-held systems. Furthermore, the results
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indicate, that modelling of the errors can play an increasingly important role in situations, where the level of
measurement noise is low. That is, increasing the accuracy of the measurement systems and their signal to noise
ratio sets a requirement for more accurate forward modelling and modelling of errors.
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