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Spin ice may be considered to be a model system for the investigation of pinch point scattering. We present
very-high-resolution numerical simulations and an analytical theory of the pinch point profiles of the near-
neighbor and dipolar spin ice models and find these to be in excellent agreement with each other and with
existing theory. Most importantly, the pinch points of the dipolar spin ice model are infinitely sharp, as a result
of unscreened dipolar fields. These results are compared to polarized neutron scattering measurements of the
pinch point profiles in Ho2Ti2O7, considered to be an accurate realization of dipolar spin ice. In contrast to the
numerical and analytical results, the experimental pinch point profiles are shown to be broadened in a manner
that is quantitatively consistent with fully screened dipolar fields. This striking paradox is not easily resolved:
Possible resolutions implicate quantum fluctuations or fundamental corrections to the theory of simulation or
polarized neutron scattering. We further discuss our results in the context of spin ice’s role as a model Coulomb
fluid.
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I. INTRODUCTION

The pinch point [Fig. 1(a)] is a type of singularity that
occurs in the scattering cross section of diverse types of
condensed matter. Important examples include dipolar sys-
tems, such as ferromagnets [1,2] and ice-rule systems, which
include hydrogen bonded ferroelectrics [3–6], water ice [7,8],
spin ice [9–14], ionic ice [15,16], artificial spin ice [17–19],
quantum spin ice [20–22], and antiferromagnetic spin liquids
[23–27]. In contrast to the Landau description, many of these
systems enter a highly correlated low-temperature state with-
out any symmetry breaking.

The pinch point is expected to be a principal characteristic
of such states (in some, but not all, of the above examples,
Pauling entropy [28–30] is another key characteristic). How-
ever, despite its widespread relevance, the pinch point concept
has barely been tested. This is because, in both simulation
and experiment, particularly high resolution is required, while
in experiment, high intensity is also necessary. In addition,
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well-defined model systems are scarce. Spin ice [31,32],
whose pinch points arise from the combined effects of dipolar
and ice-rule correlations [33] is an exception, a nearly ideal
model system that lends itself well to advanced experiment
and numerical modeling (see Fig. 2).

Classical spin ices like Ho2Ti2O7 and Dy2Ti2O7 are de-
scribed by the dipolar spin ice (DSI) model [34], with
the spin Hamiltonian consisting of exchange and dipolar
terms:

H = Hexchange + Hdipolar. (1)

This model (along with its extensions [35]) is consistent
with some surprising properties, including residual (Paul-
ing) entropy [29], emergent electromagnetism [36,37], frac-
tionalization [37], and fragmentation [38,39]. A truncation
of the dipole-dipole interaction to the near-neighbor in-
teraction in Eq. (1) gives the simpler near-neighbor spin
ice (NNSI) model [31,32], which is a valuable point of
reference.

The spin ices further represent model Coulomb fluids
[37,40–44] (of magnetic monopoles). Neutron scattering
therefore affords a rare opportunity to experimentally image
the field correlations and screening in the Coulomb fluid,
which may shed light on topical questions raised by experi-
ments on ionic liquids [45,46].
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FIG. 1. (a) Pinch point. The function approaches a singularity in
which its value at q = 0 (center of plot) depends on the orientation
of any line passing through q = 0. (b) The (simulated) SF pattern
of spin ice in the 11̄0 scattering plane of reciprocal space; the
pinch point at 002 is circled. (c) Shown on the left is the relation
of the scattering vector Q, reciprocal lattice vector G, and q =
Q − G, illustrating the representative ellipsoid of the inverse of the
structure factor tensor Sαβ (q). The ellipsoid has different transverse
projections on Q in the first zone (where Q = q) and higher zones
(where Q = G + q); it is these projections that are seen in neutron
scattering. Shown on the right is how the ellipsoid varies with q in
the case of sharp pinch points (upper, where the ellipsoid is eccentric
at all finite q) and broadened pinch points (lower, where it becomes
a sphere for small q). (d) Representation ellipsoid and principal axes
of the inverse structure factor tensor along the line hh2 (scan across
the pinch point at 002), as discussed in this work.

A. Structure factor of spin ice

In spin ice, the structure factor tensor Sαβ (q) is character-
ized by two eigenvalues, longitudinal and transverse (to q),
here denoted by SL and ST, respectively. Polarized neutron
scattering is required to fully characterize the correlations
as it can separate these two functions, which in unpolarized
neutron scattering appear in combination [11].

Here we define Q = q + G, where Q is the scattering vec-
tor and G is a reciprocal lattice vector [Fig. 1(c)]. The neutron
scattering differential cross section measures the transverse
projection of the structure factor on the scattering vector [47]

dσαβ

d�
= A(δαβ − Q̂αQ̂β )Sαβ (Q) (2)

(we set A = 1 henceforth). With the caveat discussed in the
Appendix, Sec. 1, which is unimportant here, the structure
factor is the same in each Brillouin zone [hence characterized
as Sαβ (q)], but its projection may vary from zone to zone, as
seen in Figs. 1(b) and 1(c).

FIG. 2. Conventional cubic unit cell of the pyrochlore lattice
consisting of 16 lattice sites (corners of the tetrahedra are the sites).
The spins reside on the corners of the tetrahedra and their respective
lattice vectors are pinned to the local 〈111〉 directions due to the
nature of the crystal fields. A spin thus points towards the center
of one tetrahedron while pointing away from the center of another
and vice versa. The inset (top right) shows that the ground state of
spin ice consists of a spin configuration for which each tetrahedron
exhibits two spins pointing in and two spins pointing out.

The origin of the pinch points may be visualized by rep-
resenting the inverse of the tensor Sαβ (q) as an ellipsoid of
dimensions

√
SL(q) × [

√
ST(q)]2, oriented with the principal

(L) axis parallel to q [48,49]. In a dipolar ferromagnet, say,
the ellipsoid is eccentric, i.e., SL �= ST, only at small q [2],
but in spin ice, the conspiracy of ice rules and very strong
dipolar forces impose a nonspherical structure factor tensor
over nearly the entire Brillouin zone [48]. Considering the in-
plane projection of this ellipsoid on Q [Fig. 1(c)], the pattern
shown in Fig. 1(b) is easily inferred. If the ellipsoid remains
eccentric as q → 0+ then the pinch points are infinitely sharp;
if it evolves to a sphere in that limit they are broadened [Fig.
1(c)]. Precisely at q = 0, in either case, the structure factor
ellipsoid is a sphere, in accord with the crystal symmetry.
In physical terms, the sharpness of the pinch points gives a
highly sensitive measure of the screening of fields at long
distance, as discussed subsequently.

We focus on the case of G = 002 in the 11̄0 scattering
plane used in the experiments [11,12]. If we inspect wave
vectors Q = hh(l = 2) within the 002 zone, then hh̄0 and
hh0 define two principal axes of the tensor [Fig. 1(d)]. Non-
spin-flip (NSF) scattering then measures the out-of-plane
transverse (to q) eigenvalue, while spin-flip (SF) scattering
measures a mixture of longitudinal and transverse eigenvalues
in plane; with the projection perpendicular to Q, this mixture
creates the pinch points in the SF channel [Fig. 1(b)], while
the NSF scattering, as a pure eigenvalue, remains a periodic
function. However, it turns out (see the Appendix, Sec. 1) that
a SF scan along hh2 picks out only the longitudinal eigenvalue

013305-2



SCREENING AND THE PINCH POINT PARADOX IN SPIN … PHYSICAL REVIEW RESEARCH 2, 013305 (2020)

up to about h = 0.5, so this particular scan “across” the pinch
point isolates the two eigenvalues needed to characterize the
correlations in spin ice: SL in the SF channel and ST in the
NSF channel. Thus, except very near the zone boundary, the
entire correlation function of spin ice is contained in the two
channels (SF and NSF) of the single line scan across the 002
zone center in the 11̄0 scattering plane.

B. Plan and summary of the paper

In this paper we ask whether the pinch points of spin
ice are broad or sharp [see Fig. 1(c)] and what physics the
answer reveals. We discuss this with respect to high-resolution
numerical simulations of NNSI and DSI, as well as with
respect to existing experimental data [11,12] and analytical
theories [13,14].

The paper is organized as follows. In Sec. II we describe
details of our numerical simulations. In Sec. III we present an
analytical theory of the correlations of NNSI that perfectly
captures the simulated pinch point profile. In Sec. IV we
extend this model to dipolar spin ice by including the long-
range dipole interactions and show how the (the hitherto
broad) pinch points become infinitely sharp, consistent with
existing theory [13,14]. This is indicative of unscreened fields.
As a contrast, in Sec. V we consider the corresponding model
of fully screened dipolar fields, which leads to broad pinch
points but is ruled out by the simulations. In Sec. VI we
compare these results with the results of polarized neutron
scattering experiments [11,12]. The experimental data are
shown to be quantitatively described by the screened theory,
rather than by the unscreened theory that describes the dipolar
spin ice simulation. This disagreement between theory and
experiment follows logically from accepted premises and so
has the character of a paradox: the pinch point paradox of our
title. In Sec. VII we summarize and discuss our main results,
including possible resolutions of the paradox.

II. NUMERICAL SIMULATIONS

In the spin ice materials R2Ti2O7, rare-earth ions R = Ho
or Dy are located on the points of a cubic pyrochlore lattice
of corner-sharing tetrahedra [50] (see Fig. 2). The trigonal
crystal field enforces a doublet ground state for each ion
[51–54] and establishes a local Ising-like [54] confinement
with effective two-state spins Si pointing between the centers
of each pair of adjacent tetrahedra. The associated magnetic
moments are very large, μ ≈ 10 μB, with the consequence
that dipole-dipole interactions are particularly strong in these
materials. For modeling purposes we consider classical spins
of unit length. The dipolar spin ice model combines the long-
range dipolar interaction with short-range exchange terms
[34]:

H = J1

∑
〈i, j〉

Si · S j + Da3
∑
i> j

Si · S j − 3(r̂i j · Si )(r̂i j · S j )

r3
i j

.

(3)
Here D is the dipolar interaction constant, ri j the distance
between spins i and j, and J1 the nearest-neighbor exchange
interaction [33]. Considering only nearest-neighbor interac-
tions, the model reduces to the NNSI model, which gives an

accurate approximation to DSI down to about 0.6 K [55].
The NNSI model has an effective ferromagnetic exchange
parameter Jeff , which takes the values 1.1 K for Dy2Ti2O7

and 1.9 K for Ho2Ti2O7 [33]. The NNSI model maps exactly
[32] to Pauling’s model of (cubic) water ice [28], based on the
Bernal-Fowler ice rules [56]. Hence it exhibits a degenerate
ground state with strong correlations, but no long-range order
(see Fig. 2). By introducing the dipolar interaction, the degen-
eracy of the NNSI model is weakly broken and an ordering
transition at very low temperature is induced. However, this
is not relevant at the temperatures (T > 1 K) considered in
this paper, where DSI behaves qualitatively like NNSI. In
addition to the nearest-neighbor exchange interactions J1, the
generalized spin ice model contains second- and third-nearest-
neighbor interactions J2, J3a, and J3b. A set of parameter
values was previously determined for Dy2Ti2O7 (J1 = 3.41 K,
J2 = −0.14 K, and J3a = J3b = 0.025 K) which models unpo-
larized neutron scattering and bulk thermodynamic properties
at a quantitative level [35].

We previously reported that demagnetizing effects are a
pure outcome of dipolar interactions in highly correlated
systems [57], i.e., the exchange interactions do not alter the
shape-dependent physics at the zone center. Nevertheless,
the diffuse scattering elsewhere in the Brillouin zone may
depend upon exchange, as discussed subsequently. To model
the neutron structure factor in more detail, we reconstruct the
Fourier transform of the spin-spin correlation function in Q
space. Following the use of a parallel Monte Carlo code [30]
that exploits the symmetry of the dipolar interactions [58],
we use periodic Ewald boundary conditions [58] and a loop
algorithm [59] to speed up equilibration when needed at low
temperature.

The surface dependence is treated via spherical boundary
conditions by considering the addition of a microscopic term
to the Ewald sum [60,61]. The choice of this boundary term is
the foundation of the conditional convergence of the dipolar
sum and exploits a way to manage the demagnetizing effects.

High resolution is key to this study. The allowed Q points
were determined by considering only the set of points in
which the discrete Fourier transform is defined, i.e., the in-
verse cubical system size 1/L. For example, the high res-
olution of L = 16 which we reach corresponds to 65 536
particles and a resolution of 1/L = 0.0625 in units of 2π .
Considering that the dipolar systems under study occupy an
ordered lattice, parallel computing is essential, given that a
system of 65 536 particles corresponds to almost 4.3 × 109

interactions per Monte Carlo step. Note that we do not employ
any interpolation schemes such as the Nyquist-Shannon sam-
pling theorem as this would defeat our purpose of establishing
the actual line shapes and their comparison with experiment.

III. NEAR-NEIGHBOR SPIN ICE

In this section we derive closed-form analytical expres-
sions for the eigenvalues of the structure factor tensor Sαβ (Q)
of NNSI and compare them with our simulations. As justified
in the Appendix, Sec. 1, the theory presented below assumes
a continuum magnetization M(r). We consider a cut through
the G = 002 zone center such that q = hh0 in reduced units.
Defining θ as the angle between Q and G, it is shown in
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the Appendix, Sec. 1 that up to h ≈ 0.5, the SF and NSF
channels measure the longitudinal and transverse eigenvalues
of the magnetization structure factor to an excellent approx-
imation. We can therefore conveniently compare dσ NSF

hh2 /d�

with ST
hh0 and dσ SF

hh2/d� with SL
hh0 cos2 θ = 4SL

hh0/(4 + 2h2)
in this range.

Introducing the susceptibility χ and diffusion length ξ

[14], the scattering function of NNSI may be calculated from
the free-energy functional [62]

G[M] = μ0

∫ (
M2

2χ
+ ξ 2(∇ · M)2

2χ
− H · M

)
d3r, (4)

which comes from an expansion of the free energy in powers
of magnetization M. Its first term in the susceptibility χ and
its third term in the field H are common to all classical spin
systems, while the second term in (∇ · M)2 expresses the
free-energy cost of divergence and is the lowest-order gradient
term for ice systems [5,6]. The Euler-Lagrange equation M −
ξ 2∇(∇ · M) = χH may be solved in Fourier components to
give the wave-vector-dependent susceptibility χ (q) and, by
the classical fluctuation dissipation theorem, the eigenvalues
of the scattering tensor

ST(q) = χT/3C, SL(q) = χT/3C

1 + ξ 2q2
. (5)

Here T (L) indicates transverse (longitudinal) to the wave
vector q.

The susceptibility may be expressed as χ = γ (T )C/T ,
with C = μ0m2/(3kBv0/2), where m is the rare-earth moment
and v0 = v/2 is the volume per tetrahedron. The moment
is related to the monopole charge Q by Q = 2m/a, where
a is the diamond lattice constant [37]. The factor γ (T )
has been calculated by Jaubert et al. [63] in a Husimi tree
approximation

γ (T ) = χT/C = 2(1 + e2Jeff /T )

2 + e2Jeff /T + e−6Jeff /T
, (6)

where Jeff is the effective exchange defined above [33].
The diffusion length ξ (T ) depends on the densities of

single and double charge monopoles (which have no Coulomb
interaction in NNSI). We make a low-temperature approxima-
tion by setting the chemical potential of the double-charge
monopoles infinite. We write the entropy [36,41] in terms
of the densities of positive and negative monopoles, pick
out a component of the free energy G = −μn+ − μn− −
T S (where μ = −2Jeff is the monopole chemical potential),
and then substitute n+ → (n + δn)/2 and n− → (n − δn)/2,
where n is the equilibrium monopole density and δn a fluc-
tuation. A Taylor expansion of the free energy in powers
of δn, followed by setting the linear term to zero, gives the
equilibrium density [36]

n = 4e−2Jeff /T

3 + 4e−2Jeff /T
(7)

and a second-order fluctuation term G′′ = μ0kT (δn)2/2nv0.
The latter may be related to Eq. (4) using (δn)2 = (∇ ·
M)2/(Q/v0)2 to give [62]

ξ 2 = χkT v0

μ0Q2n
. (8)

FIG. 3. Test of the accuracy of our analytic theory of (NNSI)
(periodic boundary conditions). Shown is the pinch point profile
at T = 1 K with Ho2Ti2O7 parameters. Results of the numerical
simulation (points) are shown versus those of the analytical theory
developed in this paper (lines). The comparison of analytical theory
and simulation is observed to be essentially perfect.

Equations (5)–(8) combine to give an analytic calculation of
the full scattering function tensor. This is a low-temperature
approximation: For Ho2Ti2O7 parameters (2Jeff = −μ =
3.8 K), it should be valid at T = 2 K and below, where
double-charge monopoles are very scarce.

In Fig. 3 we compare the calculated scattering functions of
NNSI with the numerically simulated one: The parameter-free
comparison is excellent, showing that the continuum theory
is a nearly exact description of NNSI over the wave vectors
considered. This gives us great confidence that the theory
can be adapted to describe DSI as well. It is noteworthy that
use of the continuum Laplacian (−q2), rather than a lattice
Laplacian, is sufficient to describe the data, which validates
our continuum description.

IV. DIPOLAR SPIN ICE

Given the excellent comparison of theory and simulation
for NNSI (preceding section), we seek to describe DSI by a
natural extension of the NNSI theory. In particular, we simply
add a term to Eq. (4) to describe the magnetostatic energy

Umag = −μ0

2

∫
M · H̃ d3r, (9)

where H̃(r) represents the local internal far field arising from
the dipoles at points r′ in the sample. Treating H̃ as an
independent variable, the Euler-Lagrange equation becomes

M − ξ 2∇(∇ · M) = χ (H + H̃), (10)

which can be solved for the structure factor as above if H̃ can
be expressed as a function of M.

It is well known (see, for example, Ref. [64]) that the
field at a point external to a system of dipoles (e.g., at r
where the dipoles are at r′) may be expressed as a sum
over the fields arising from surface magnetic charge density
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σ = M · n̂ (where n̂ is the unit vector normal to the surface)
and volume magnetic charge density ρ = −∇ · M. Without
yet being explicit about surface effects, we write

H̃(r) = − μ0

4π
∇

∫
ρ(r′)

|r − r′|d3r′. (11)

By the Helmholtz theorem, the dipolar field is then equal to
the irrotational (longitudinal) component of the magnetization
H̃ = −ML. Writing M = ML + MT thus renders the dipolar
correction entirely local and we may proceed as above to find
the structure factors

ST = γ /3, SL = γ /3

(1 + χ ) + q2ξ 2
. (12)

These are the same as Eq. (5) but with the longitudinal
structure factor suppressed by a factor 1/(1 + χ ) at the zone
center. Also, the characteristic length becomes the Debye
length ξ/

√
1 + χ rather than the diffusion length ξ [14]. In

addition [not shown in Eq. (12)], there is a δ function at
the zone center; this is elucidated for the case of different
boundary conditions in the Appendix, Sec. 2.

It has been shown [48] that treating the dipolar field in
this way is equivalent to Onsager’s cavity construction [65]
for dipolar fields, where the magnetic charge resides on the
surface of a spherical cavity cut in a continuous polarizable
medium. Alternatively, we can see that the dipolar integral is
equivalent to a discrete summation over the effective magnetic
monopoles of spin ice. These two different physical pictures
give the same result only if the fields are unscreened [48].
Hence we refer to this as the unscreened model going forward.

Following Eq. (A4) and the discussion thereafter, we may
once again compare dσ NSF

hh2 /d� with ST
hh0 and SSF

hh2 with
SL

hh0 cos2 θ up to h = 0.5. Figure 4 compares the DSI simu-
lation with the unscreened dipolar calculation at T = 2 K. We
see that the simulated SF scattering function is immediately
well described by the unscreened model, the NSF slightly
less well. Since χ is large, e.g., χ ≈ 6 at T = 2 K [66], the
Lorentzian peak becomes very broad and flat compared to that
of NNSI.

There are two small modifications to the unscreened model
that are worth considering. First, we notice that the NSF
scattering is better described by ST ∼ 2/3 − SL (see Fig. 4).
As discussed in Ref. [48], this correction is both plausible,
because it satisfies the total moment sum rule, and justifiable,
because the longitudinal fields were altered independently of
the transverse. Second, the scattering function (A9) apparently
depends on 2Jeff rather than the magnetic monopole chemical
potential, which, for dipolar spin ice, exceeds 2Jeff in magni-
tude owing to the Coulomb interaction between monopoles.
This difference increases the equilibrium defect density n,
altering the specific heat [41]. As Eq. (A9) depends on n
through ξ [Eqs. (7), (8), and (A9)], it might be appropriate
to replace n by the true equilibrium density [41]. A fit to the
ensuing function is tested in Fig. 4, but in fact it makes the
description of the DSI simulation slightly poorer.

V. SCREENED MODELS

In the preceding section it was shown that high-resolution
numerical simulations of the pinch points in dipolar spin ice

FIG. 4. Dipolar spin ice at T = 2 K with Ho2Ti2O7 parameters
and spherical boundary conditions. A comparison of the numerical
simulation (points) and the unscreened analytical theory presented in
this paper (lines) is shown. Red lines show the unmodified analytical
theory (12). The blue line is the NSF scattering generated with ST ∼
2/3 − SL (see the text). The dotted line shows the result using the
monopole density replacing the bare defect density (see the text). The
figure shows that the simplest possible extension of the near-neighbor
spin ice theory to include dipolar interactions captures the numerical
data to a close approximation.

do not evidence the deconfined and screened magnetic charge
expected of magnetic monopole theory [37]. In the Appendix,
Sec. 2 we show that the same theoretical result may be
recovered from Debye-Hückel theory of magnetic monopoles,
by tending the inverse monopole screening length κ to zero
while keeping the Debye length fixed. This is a surprise
because it is well established from analysis of the specific heat
that monopoles are screened with a finite κ [41] equal to the
inverse Debye length. However, it was shown in Ref. [14] that
the monopole potential φ consists of both a screened part and
an unscreened part (see Fig. 5) (this feature was also noted
as a dipolar tail in the correlation function in Ref. [13]). The
energy and hence specific heat is determined by the short-
range screened part of the potential, whereas the pinch point
is determined by the long-range unscreened part. An analysis
based on the Poisson-Boltzmann equation (see the Appendix,
Sec. 2) forces the potential into a perfectly exponential decay.
Hence Debye-Hückel theory can only describe the pinch point
if the screening length κ−1 is set to be infinite, recovering the
Poisson equation. In contrast, to calculate the specific heat
[41], it incurs a negligible error to neglect the power-law tail
of the potential, and equate κ with the Debye length of the
monopole fluid.

We also show in the Appendix, Sec. 2 how the inverse
screening length κ and defect correlation length ξ may be
treated in phenomenological terms, as independent parame-
ters in a generalized theory. Suppression of screening (κ → 0
at finite ξ ) yields the unscreened model that captures the
numerical simulation, while setting κ to the Debye-Hückel
parameter for single- and double-charge magnetic monopoles
(as calculated in Ref. [41]) and ξ = 0 results in a differ-
ent physical picture. This consists of dipoles screened by
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FIG. 5. Magnetic monopole potential calculated using Ho2Ti2O7

parameters at T = 2 K. The figure shows rφ(r) normalized to its
value at r = 0 (here a is the lattice constant of the diamond lattice
inhabited by the monopoles [37]). The blue line is the standard
Debye-Hückel potential φ(r) ∼ e−r/r, which is screened to zero at
long distance. The red line is the monopole potential in spin ice
[14], revealing a power-law tail φ(r) ∼ 1/r and hence an unscreened
contribution at long distance. The unscreened contribution is the
cause of the infinitely sharp pinch points in dipolar spin ice. It is
confirmed in simulation (Fig. 4) but is not observed in experiment
(Sec. VI).

deconfined monopoles, the model of Ref. [48], which we refer
to as the screened dipolar fluid model, or screened model for
short; it is essentially a two-fluid model of dipoles coexisting
with deconfined charge. A comparison of the line shapes of
the two limiting cases is given in Fig. 6. The key difference is
that the screened model has a broadened pinch point and an
inverse Lorentzian dip in the transverse channel.

To confirm that the simulated pinch point is truly sharp,
we examine the simulation at a much higher temperature
(10 K) where κ should be sufficiently large to make the central
Lorentzian (broadened δ function) easily visible within the

FIG. 6. Limiting line shapes in our more general analytical the-
ory that allows for screening of dipolar fields by the magnetic charge
density. (a) Case of infinite screening length (1/κ = ∞) and finite
defect diffusion length ξ . (b) Case of finite screening length (1/κ)
and zero diffusion length ξ = 0. It can be seen that the screening
length 1/κ controls the sharpness of the central peak, while the
defect diffusion length controls the flatness of the background. The
completely flat background in the right-hand feature corresponds to
the harmonic phase of Ref. [48].
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FIG. 7. (a) High-resolution simulation of DSI at T = 10 K to
test for the sharpness of the central peak component. Points show
the simulated data. The lower line is the unscreened line shape and
the upper line is the corresponding NNSI line shape for comparison.
There is no broadening of the central peak within the resolution
of the simulation. (b) Comparison of simulations of the dipolar
spin ice model with a single exchange constant (sDSM) with the
generalized dipolar model (gDSM) (Dy2Ti2O7 parameters [35]).
Simulated points spaced by 0.125 are linked by solid lines as guides
to the eye. Differences between the sDSM and gDSM are observed to
be confined to the wings of the scan, showing that the detailed tuning
of short-range exchange constants does not significantly affect the
pinch point profile near the zone center.

resolution of our simulation. The result, shown in Fig. 7, does
indeed rule out any pinch point broadening on the expected
scale. (Note that, to obtain the fit to the unscreened model, we
adjusted ξ slightly to account for double-charge monopoles.)
Our simulation rules out the screened dipolar fluid model
although the harmonic phase (flat background) of Ref. [48]
is present to a certain approximation, given that the diffusion
Lorentzian is very broad and flat at higher temperatures.

VI. PINCH POINT PARADOX

The pinch point line shape of polarized neutron scattering
in Ho2Ti2O7 spin ice has been independently studied by Fen-
nell et al. [11] and by Chang et al. [12]. Both sets of authors
found that it can be described by a central Lorentzian plus
a temperature-dependent flat, i.e., q-independent, component
at all temperatures. An explanation of the flat component
was put forward by one of us in Ref. [48] in terms of the
screened dipolar fluid model described above, i.e., ξ = 0,
finite κ as calculated in Ref. [41]. This quantitatively produced
the observed temperature dependence of the flat component
as well as producing a Lorentzian central peak (note that in
subsequent figures, the “flat” background is not completely
flat because of the cos2 θ factor discussed above). However,
the screened model of Ref. [48] is already ruled out as a model
for the DSI simulations.

The essence of the pinch point paradox is shown in Fig. 8,
where we compare the SF scattering at T = 2 K measured by
Chang et al. [12] with the DSI simulation, and the screened
and unscreened theories (the latter for ξ = 0, the dipolar fluid
case [48]). The experimental data were scaled such that the
q = 0 point is coincident with the theory, i.e., we assume
that theory and experiment are consistent as regards the bulk
susceptibility (this is an approximation, but a reasonably
accurate one). We see very clearly that the experiment rules
out the unscreened DSI but is remarkably well described by
the screened dipolar fluid. Indeed, the screened line shape
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FIG. 8. Pinch point paradox in spin ice. A comparison of the
experimental data and numerical data with the limiting forms of
the analytical theory is shown. The SF data of Chang et al. [12]
(blue circles) and our simulation (red circles, spherical boundary
conditions) are shown at T = 2 K. The experimental data have
been scaled to fit the theory (lines) at 002. The blue line is the
screened theory and the red line the unscreened theory. The fact that
experiment and simulation are only consistent with different limiting
cases of the same analytical theory (Fig. 6) is the essence of the pinch
point paradox.

can be transformed [48] into independent flat and Lorentzian
components, where the Lorentzian component has the same
width parameter as NNSI. This is in perfect agreement with
the analysis of Chang et al., who fitted these data using Monte
Carlo simulations of NNSI plus an arbitrary flat background;
our theory eliminates the adjustable parameter used by these
authors. They also drew a central Lorentzian through the
points of their simulations of DSI, a reasonable extrapolation
in view of knowledge available at the time, but one that we
have now shown to be incorrect through higher-resolution
simulations. Because DSI has a δ function rather than a
Lorentzian central peak, the discrepancy between simulation
and experiment for spin ice is a very large one, yet both
simulation and experiment should a priori be considered
correct, hence the paradox.

In the case of the 1.7 K SF, NSF, and total neutron scatter-
ing data of Fennell et al. [11], the DSI again fails badly, while
the screened dipolar fluid is again close to the experimental
data (see Fig. 9; the fit has been improved slightly by adjusting
the demagnetizing factor to 0.2). Notably, the screened dipolar
fluid model captures the striking zone center dip in the SF
scattering as well as the small zone center bump in the total
scattering. In general, we found that the screened model
outperforms the unscreened one at all temperatures, in every
case describing the flat (harmonic phase) background well,
though at higher temperatures overestimating the Lorentzian
width by a significant factor, e.g., ∼5. Despite this, we can
certainly conclude that, in the temperature range where we
are most sure of the theory, the screened dipolar fluid model
is fully consistent with experiment, while the DSI simula-
tion and unscreened models are ruled out as descriptions of
experiment.

FIG. 9. Further comparison of the numerical data and limiting
forms of the analytical theories at T = 1.7 K with the experimental
SF (lower, red), NSF (middle, blue), and total (upper, black) data of
Fennell et al. [11]. The red, blue, and black lines are the screened
theory. The experimental data have been scaled such that the total
scattering approximately fits the solid black line. The dotted black
lines are the unscreened theory that has been shown to describe
DSI extremely well (Fig. 4). It is concluded that numerics and
experiments are again described by different limiting cases of the
same theory (see Fig. 6). Note that the demagnetizing factor in the
screened theory has been adjusted to better fit the data in the center
of the scan (see the text).

VII. DISCUSSION

Our study exposes two significant results: (i) The pinch
point profile in the dipolar spin ice simulation is infinitely
sharp and (ii) experiment disagrees with simulation in that the
profiles are broad, rather than sharp. Yet both are described
quantitatively by different limits of the same theory.

To elaborate on (i), we recall that the subtle long-range
correlations in spin ice are entirely revealed by neutron polar-
ization analysis of the pinch point profile, as explained in the
Introduction. In the near-neighbor spin ice model the pinch
points are broad, but the addition of the long-range dipole-
dipole interaction causes them to be infinitely sharp with a
δ-function singularity at q = 0 [13,14]. The structure factor
(inverse) tensor remains an oblate spheroid [see Figs. 1(c) and
1(d)], except precisely at q = 0, where it becomes a sphere, in
keeping with the cubic space symmetry [49].

As dipolar spin ice represents a model Coulomb gas, this
raises an interesting and topical point. The Debye length for
magnetic monopole interactions (=ξ/

√
1 + χ ) is always fi-

nite, and any long-range correction to the exponential screen-
ing is essentially negligible as regards monopole correlations
or specific heat. However, the field-screening length (=1/κ)
is, at the same time, divergent. Thus dipolar spin ice, a polar-
izable Coulomb gas that is relevant even as a model of water
ice [67], presents a very different picture as regards charge
correlations and field correlations: The screening length for
fields diverges while the Debye length remains finite. This is
not a contradiction as it depends on how a particular experi-
mental measure picks out the details of what is a rather subtle
and long-range correlation function [14] (see Fig. 5). In this
context, we may make a connection with an interesting recent
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discussion of the experimental observations of underscreening
in dense ionic liquids [45,46]. We see that dipolar spin ice af-
fords a tangible example where the screening length diverges,
while the Debye length remain constant. This suggests that
the observations of Refs. [45,46] may be consistent with the
dense ionic liquid having a stable polarization.

To elaborate on (ii) we have constructed flexible theories
of the line shape that accurately and quantitatively account
for both our numerical results and the experimental results,
but only, paradoxically, under different limits. Specifically, in
experiment magnetic monopoles appear to screen the dipolar
fields, leading to broad pinch points, while in simulation they
do not screen, leading to sharp pinch points.

In seeking a resolution of the pinch point paradox, we
believe that a first obvious possibility, pinch point broaden-
ing by structural defects and disorder in the samples, may
immediately be discarded. Although real samples do contain
defects and disorder (see Refs. [68–70] for a discussion of
this and how to prepare defect-free samples), theory appears
to rule this out as a cause of pinch point broadening. Thus, the
role of defects and disorder has been considered theoretically
in Ref. [13]. The case of nonmagnetic dilution was shown to
lead to no broadening of the dipolar pinch points. Since our
results agree with this theory in other respects, it therefore
seems highly unlikely that a small concentration of defects
and disorder in the experimental samples can give the very
strong pinch point broadening that is actually observed.

We are also confident that a second obvious possibility,
broadening by extra terms in the spin Hamiltonian, may also
be ruled out. We have checked this by simulating the refined
generalized DSI model (see Sec. II), which has been shown
to give a most accurate description of Dy2Ti2O7 [35]. We
find differences with DSI only near zone boundaries (see
Fig. 7). This is to be expected: In this dipolar paramagnet,
only long-range, i.e., dipolar, interactions should affect the
correlation function at small q. We also tested the dumbbell
model [37] (as implemented in Ref. [71]), but found this to be
qualitatively the same as DSI. We conclude with confidence
that simple corrections to the classical model, or competition
between short-range exchange and long-range dipolar forces
(which can cause changes in the character of correlations in
some systems [72]), are not implicated in the pinch point
paradox.

Similarly, we have considered the possibility of various
experimental corrections, but none of these give a convincing
explanation of the paradox. For example, incomplete beam
polarization, corrections to the static approximation, or other
sources of background would not lead to the systematics that
we observe. Finite instrumental resolution is always a poten-
tial source of broadening but can be largely ruled out here
because the peak widths are much broader than the expected
resolution and they are temperature dependent [11]. The fact
that neutron data taken under different conditions on different
instruments and sources are in excellent agreement further
indicates that experimental corrections are not involved. It is
also crucial to emphasize, as discussed above, that the analysis
of Chang et al. of their data (Fig. 8) is quantitatively consistent
with ours; this is a crucial proof that there is no inadvertent
bias in our analysis (for example, a scaling of the experimental
data onto one theoretical curve rather than the other in Fig. 8).

These considerations leave us to face the likelihood of
more fundamental causes of the pinch point paradox, includ-
ing quantum fluctuations, corrections to neutron scattering
theory, and corrections to dipolar simulation methods.

A. Quantum fluctuations

We have treated spin ice here as a classical spin system,
which is the accepted description of Ho2Ti2O7 and Dy2Ti2O7.
However, there has been great interest recently in quantum
spin ice and the possibility that it forms a quantum spin liquid
state at low temperatures [73]. The key to formation of this
state is the introduction of ring exchange, which leads to a
quantum superposition of a hexagonal loops of spins in the
Pauling state with its spin-reversed state [20,74–77]. Such ring
exchange, and eventually the quantum spin liquid, can origi-
nate in anisotropic exchange terms that arise in higher orders
of perturbation theory for the exchange-coupled rare-earth
doublets (either Kramers or non-Kramers) [73]. Despite many
complicating factors in experiment (not least the ubiquitous
dipolar coupling) there is promising experimental evidence
of quantum spin ice in several rare-earth pyrochlore materials
(see Refs. [22,78,79] for recent examples). It has been shown
by Benton et al. [20] that a key characteristic of quantum spin
ice is a broadening and loss of the pinch point, qualitatively
similar to what we observe. It has also been shown that this
effect may survive the presence of dipolar coupling [80]. It
is therefore worth asking if the pinch point paradox can be
resolved by admitting quantum fluctuations into the hitherto
classical description of the canonical spin ice materials. If that
were the case we would have less of a paradox and more
a simple disagreement of theory and experiment, requiring
adjustment of the model.

On the one hand, there is strong experimental evidence of
quantum superposed spin states in nominally classical spin
ice. In particular, the superposition of spin-up and spin-down
states associated with a monopole hop can be shown to give
rise to a large isolated, i.e., quantum adiabatic, susceptibility
at high frequency and this has been observed in experiment
[43]. Hyperfine coupling can also cause tunneling between
spin states [81]. On the other hand, it seems unlikely that
such effects would give rise to appreciable ring exchange: As
pointed out many years ago [32], the tunneling of hexagonal
spin loops is hardly compatible with the low-temperature
spin ice freezing observed experimentally. Theory also casts
doubt on the possibility of quantum spin ice behavior in these
materials: A careful appraisal of the theoretical problem [54]
showed that the experimental systems considered here should
approximate classical dipolar spin ice very closely.

On balance, we therefore think it unlikely that the broad-
ening of the pinch point in the classical spin ices arises by the
mechanism identified in Refs. [20,80], although we might add
that stranger things have happened and more detailed theory,
accounting for the dipole interaction and general sources of
quantum fluctuations, would be very welcome.

B. Corrections to neutron scattering theory

The theory of neutron polarization analysis is well estab-
lished following the pioneering work of Halpern and Holstein
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[82] and Moon et al. [83]. It is customary to map the orbital
contributions to the magnetic moment onto effective spin
operators, but the experimental systems considered here have
largely orbital, rather than spin, magnetism. We suggest it
would be worth closely examining the polarization analysis
theory for spin ice. For example, it is certain that there would
be some degree of interaction of the neutron within the orbital
dipole, i.e., with the self-field, and we speculate that this might
have some effect on the structure factor. Similarly, we might
imagine some rather complex depolarization effects in spin
ice, but these would have to go well beyond the standard
picture of depolarization to explain our observations.

C. Corrections to dipolar simulation method

Clearly, the method used agrees with experiment at large
q and at q = 0, but does not do so at small but finite q. If
we take the analytical theory to be a guide, we can expect the
pinch point broadening to occur, regardless of the boundary
conditions, so it would even be present for periodic (Ewald)
boundaries. Although it seems most unlikely that a tried
and tested method like Ewald summation would have some
basic flaw, it is also unlikely that it has ever been subject to
such a stringent experimental test, so this question is worth
examining in much greater detail. In this context, it is worth
emphasizing that the simulation does agree with experiment
insofar as the total scattering or trace of the correlation
function; the discrepancy is at the level of the Helmholtz
decomposition or polarization analysis. As above, it would be
worth reconsidering the role of self-field (the internal structure
of the dipole) as an obvious point of difference between
theory and experiment. It is not present in simulation, the
demagnetizing effect being implemented via a demagnetizing
tensor, but it remains a very real and potentially important [84]
experimental property.

VIII. CONCLUSION

In conclusion, pinch points typify an important and
widespread scattering feature in condensed matter. Topics of
current theoretical interest include the coexistence of pinch
points with ordered states [38,85,86], extensions of the pinch
point concept [87,88], pinch points as a diagnostic of quantum
fluctuations [20,89], and pinch points in Coulomb systems
[90–93]. In general, a sharp pinch point indicates that the
structure factor tensor remains eccentric as q → 0, typically
as a result of unscreened power-law correlations. These pinch
points will broaden if the long-range correlations are expo-
nentially damped, as occurs with the screening of long-range
interactions. Using very-high-resolution dipolar simulations
and by comparing to existing experiment, we have exposed
an unusual paradox in dipolar spin ice: The dipolar fields are
not screened in simulation but do appear to be screened in
experiment.

From a purely theoretical perspective, the pinch point
paradox may be summarized as follows. In the description of
the experiment, the Poisson-Boltzmann equation for magnetic
monopoles appears where the Poisson equation is expected; it
is as if the magnetic monopoles of spin ice behave much more
like “real charges” (Dirac monopoles) than expected [37].
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APPENDIX

1. Magnetization fluctuations

Here we show that the NSF and SF channels of the scan
considered in the main paper, and in the experiments, measure
transverse and longitudinal magnetization fluctuations, re-
spectively. This is not a foregone conclusion because the glide
symmetry that emerges in the Fd 3̄m space group of spin ice
means that, with respect to the face-centered-cubic reciprocal
lattice {G}, the function Sαβ (Q) is modulated such that the
unit cell in reciprocal space is doubled. Hence every second
zone is inequivalent; for example, the function is different in
the zones defined by G = 002 004. In associated work [60] we
refer to zones like 002 as false zones and zones like 004 as true
zones. The fact that there are two types of zones is the only
reason that experiment can clearly resolve the pinch points
in spin ice. At the true zone centers the nuclear Bragg peak
has its full intensity and this will always obscure the subtle
magnetic diffuse scattering, even in a polarized experiment. In
contrast, at a false zone center, e.g., 002, the nuclear intensity
is zero, making the magnetic diffuse scattering accessible
to precise measurement. However, this advantage potentially
comes at a price: At a false center Sαβ (Q) is not necessarily
a measure of magnetization fluctuations, the quantity of most
immediate interest. Yet there is a fortunate crystallographic
coincidence that renders this point irrelevant to the present
study: Scans across the pinch point at 002 (surprisingly) do
yield the magnetization fluctuations as required, as described
subsequently.

The continuum approximation to the local magnetization
used in our theory can only really be valid with respect to
magnetization defined on a Bravais lattice such that a primi-
tive unit cell can be defined which, on repetition, just fills all
space. The pyrochlore lattice (Fig. 2) is a face-centered-cubic
(F ) Bravais lattice with a four-point tetrahedral basis. Hence
M should be interpreted as the magnetization averaged over
the four 〈111〉 spins of the spin ice basis

M = gμBv−1
4∑

i=1

si, (A1)

where g is the g factor, v is the primitive unit cell volume, and
the spins

s1 = (1/
√

3)(1, 1, 1),

s2 = (1/
√

3)(−1,−1, 1),
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s3 = (1/
√

3)(1,−1,−1),

s4 = (1/
√

3)(−1, 1,−1) (A2)

are located at

r1 = (0, 0, 0),

r2 = (1/4, 1/4, 0),

r3 = (0, 1/4, 1/4),

r4 = (1/4, 0, 1/4), (A3)

respectively, in the conventional cubic unit cell. It is straight-
forward to demonstrate that with respect to the axes x =
[11̄0], y = [110], and z = [001], the structure factors probed
in the NSF and SF channels, Sxx and Syy, measure the fluc-
tuations 〈Mx(q)Mx(−q)〉 and 〈My(q)My(−q)〉, respectively.
Because 002 is a false zone center (discussed above) this is not
true of the third (zz) component. The difference arises because
the zz structure factor samples fluctuations of four spins
per tetrahedron in the combination

√
1/3(sz

1 + sz
2 − sz

3 − sz
4),

which is not the same as Mz, while the xx and yy structure
factors sample two spin combinations, e.g.,

√
2/3(sx

1 + sx
2)

and
√

2/3(sy
3 + sy

4), which are the same as the corresponding
projections of Mx and My (this is because two of the spins in
each case have zero component on the given axes x and y).
We focus on a cut through the G = 002 zone center such that
q = hh0 in reduced units and the observed differential cross
sections are

dσ NSF
hh2

d�
= Sxx

hh0,

dσ SF
hh2

d�
= Syy

hh0 cos2 θ + Szz
hh0 sin2 θ, (A4)

where θ is the angle between Q = G + q and G = 002.
Fortunately, the phase factors of the zz component act to
suppress the second term in Eq. (A4) such that it may be
neglected up to h ≈ 0.5. The net result is that the SF and NSF
channels measure the longitudinal and transverse eigenvalues
of the magnetization structure factor to an excellent approx-
imation. We can therefore conveniently compare dσ NSF

hh2 /d�

with ST
hh0 and dσ SF

hh2/d� with SL
hh0 cos2 θ = 4SL

hh0/(4 + 2h2)
in this range.

2. Boundary conditions and screened models

To account for different boundary conditions, we add a
self-field [84] to the dipolar field which generates the correct
average when the field is summed over a ellipsoidal volume; in

this way the demagnetizing factor Nd (=1/3 and 0 for spher-
ical and Ewald boundaries, respectively) naturally enters the
equations, obviating the need to treat surface charge explicitly.
This factor is conveniently introduced by treating the dipolar
integral as a sum over thermally generated monopoles and
allowing these to screen each other as in a Debye-Hückel gas
[41]. In this approximation, the dipolar field is not simply
equal to negative ML, but in addition has a longer-range
harmonic component. At the very least, such a component
is expected from the demagnetizing field that arises from
the surface charge (surface monopoles). It was suggested in
Ref. [48] that it could also arise from thermally generated
monopoles at mesoscopic distances [48], although that is
ruled out here for dipolar spin ice (see the main text).

We first consider the Debye-Hückel equation for the poten-
tial φ,

∇ · ∇φ(r) + κ2φ(r) = 0, (A5)

which applies outside a region of size ∼a at the origin.
By taking the gradient of this equation and introducing a δ

function to extend it to the origin we find, for the field at all r,

−∇[∇ · H̃(r)] − κ2H̃(r) = [∇(∇ · M) + κ2NdM(r)]δ(r),
(A6)

where −NdM(r)δ(r) is the self-field. The Debye-Hückel solu-
tion κ → κDH then gives the Green’s function solution for the
more general equation where charge density is widely spread:

− ∇[∇ · H̃(r)] − κ2H̃(r)

=
∫

{∇[∇ · M(r′)] + κ2NdM(r′)}δ(r − r′)d3r′.

(A7)

In Fourier components the field becomes

H̃(q) = −{q[q · M(q)] + κ2NdM(q)}/(κ2 + q2) (A8)

and the solution of the Euler-Lagrange equation is then

SL = (γ /3)(κ2 + q2)

κ2(χNd + 1) + q2(1 + χ + κ2ξ 2) + q4ξ 2
, (A9)

ST = (γ /3)(κ2 + q2)

χκ2Nd + (κ2 + q2)
. (A10)

Setting κ → 0 in Eq. (A9) results in the unscreened scattering
functions (12). In Fig. 4, to compute the scattering functions,
we left κ small but finite, which broadens the δ function
slightly to render it visible to the eye. Referring to Eq. (A9),
varying κ and ξ finally generates a family of curves, as
illustrated in Fig. 6.
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