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Structural defects are ubiquitous in condensed matter, and not always a nuisance. For example,
they underlie phenomena such as Anderson localization and hyperuniformity, and they are now being
exploited to engineer novel materials. Here, we show experimentally that the density of structural
defects in a 2D binary colloidal crystal can be engineered with a random potential. We generate the
random potential using an optical speckle pattern, whose induced forces act strongly on one species
of particles (strong particles) and weakly on the other (weak particles). Thus, the strong particles
are more attracted to the randomly distributed local minima of the optical potential, leaving a trail
of defects in the crystalline structure of the colloidal crystal. While, as expected, the crystalline
ordering initially decreases with an increasing fraction of strong particles, the crystalline order is
surprisingly recovered for sufficiently large fractions. We confirm our experimental results with
particle-based simulations, which permit us to elucidate how this non-monotonic behavior results
from the competition between the particle-potential and particle-particle interactions.

INTRODUCTION

Perfect crystalline structures are not commonly found
in Nature, because, even in the absence of impurities,
structural defects occur spontaneously and disrupt the
periodicity of the crystalline lattice [1]. For example,
when a melt is cooled down, multiple crystallites grow
with degenerate orientations [2]. Since the coarsening
time of these crystallites diverges with size, structural

FIG. 1. Colloidal crystals with tunable degree of dis-
order. Final configurations obtained in (a-c) experiments
and (d-f) simulations, for different molar fractions χ of strong
particles. The weak (silica) particles are light gray, and the
strong (polystyrene) particles are dark gray. The illumination
for the images is delivered by an optical fibre which produces
the vignetting effect observed in the experimental images.

defects appear and prevent the emergence of global or-
der [3, 4]. While the existence of these defects is a chal-
lenge when growing single crystals, it can also be an op-
portunity when engineering the properties of materials;
indeed, control over defects enables the development of
solid-state devices with fine-tuned mechanical resilience,
optical properties, and heat and electrical conductivity
[5–9]. In atomic crystals, engineering structural defects is
an experimental challenge for two reasons [10]: first, cur-
rent visualization techniques at the atomic scale do not
provide a high spatial or time resolution [11, 12]; second,
no current technique can control the density of defects
in a systematic manner [13]. The first challenge can be
overcome studying colloidal crystals as models for atomic
systems [14, 15], where colloidal particles can be indi-
vidually tracked using standard digital video microscopy
techniques [16–18], and have in fact also been used to
study crystallisation and melting of colloidal crystals in
the presence of extended laser fields [19, 20]. Here, we
demonstrate that the second challenge can be solved com-
bining a binary colloidal mixture and an optical random
potential generated by a speckle light pattern. This per-
mits us to control the density of structural defects in the
resulting 2D colloidal crystal and to explore a surprising
non-monotonic behavior of their ordering and stability.

RESULTS

We use a binary colloidal suspension of equally-sized
polystyrene (refractive index nps ≈ 1.59) and silica
(nsi ≈ 1.42) spherical particles with diameters dPS =
6.24 ± 0.22µm and dSi = 6.73 ± 0.22µm, respectively.
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The particles interactions are hard-sphere like but the
following results can be reproduced with soft interactions
as well (see Supplemental Material [21]). To characterize
the composition of the mixture, we use the molar fraction
of polystyrene particles defined as χ = Nps/Nt where Nps

is the number of polystyrene particles and Nt is the to-
tal number of particles. We let these particles sediment
at the bottom surface of a homemade sample chamber
so that they are effectively confined in a quasi-2D space
(see the section Materials and Methods). We illuminate
from above with a speckle pattern, which we generate by
mode-mixing a laser beam in a multimode optical fibre
(see Fig. 5) [22–24]. Speckle patterns form rough, dis-
ordered optical potentials characterized by wells whose
depths are exponentially distributed, with spatial corre-
lations that are Gaussian with an average width (grain
size) set by diffraction. As proposed in Ref. [25], to
characterize the strength and correlation length of the
optically generated random field, we first identify the
“bright spots” and then fit a Gaussian to each spot, us-
ing the code in Ref. [26]. We found σ = 2.7 ± 0.2 µm,
which is less than half the diameter of the particles. Fur-
thermore, the fibre imposes a Gaussian envelope (beam
waist σG = 72.5± 0.2 µm) to the speckle pattern, which
attracts the particles towards the center of the speckle
pattern effectively confining them in space. Since the
optical forces acting on the particles increase for larger
mismatches between their refractive index and that of
the surrounding medium (here water, nw ≈ 1.33) [27], the
optical forces acting on the polystyrene (strong) particles
are about 2× higher than those exerted on silica (weak)
particles (estimated using the FORMA method [28]). Im-
portantly, the optical forces at the deepest local minima
of the speckle potential are strong enough to trap the
strong particles, but not the weak ones (see Supplemental
Material for an estimation of the strength of the optical
traps [21]).

We start with a low concentration of particles (1.4 ·
107 ml−1) and switch on the optical potential. The par-
ticles are attracted towards its center by the Gaussian
envelope. When only weak particles are present (χ = 0),
they eventually form a compact structure with hexag-
onal order, as shown in Fig. 1a. When we introduce
strong particles, these get trapped in the local minima
of the disordered potential and introduce defects that
reduce the hexagonal order. Already with only 20% of
strong particles (χ = 0.2), the presence of structural de-
fects is clearly visible (see Fig. 1b). The impact is even
more pronounced when 50% of the particles (χ = 0.5) are
strongly interacting with the potential (Fig. 1c). Thus,
strong particles act as defects in the crystalline structure
of the weak ones, compromising global order. We were
able to determine that the deformation of the structure
was not caused by particle bidispersity since when sub-
ject only to a Gaussian envelope the particles formed
a crystalline structure independently of the number of

FIG. 2. Crystalline order for different molar fractions
of strong particles. Six-fold bond order parameter 〈φ6〉 as
a function of the molar fraction χ obtained experimentally
(circles) and numerically (squares; the blue line connects the
symbols for visual guidance). The error bars show the stan-
dard deviation of φ6 over 500 frames in the stationary state
of the experiments (i.e., after 30 minutes from the start of
the experiments). The numerical results are averages over
100 samples. The top snapshots show the final configurations
in the experiments (first row), the Voronoi tessellation (sec-
ond row), and the spatial Fourier transform (third row) for
χ = 0, 0.23, 0.6, and 1. The filled (empty) circles at the cen-
ter of the Voronoi cells indicate strong (weak) particles. The
cells are colored by the number of nearest neighbors, namely,
equal (green), lower (red), greater (blue) than six. See also
supplementary video 1.

strong particles present (see Supplemental Material [21]).
The experimental results are confirmed by particle-based
simulations, as shown in Figs. 1d-f (see section Materials
and Methods). As we will see in more detail below, we
can control the density of defects by adjusting χ as well
as the intensity and grain size of the pattern.

To quantify the order of the crystalline structure, we
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FIG. 3. Local dynamics of the interaction between particles and minima in the random potential. (a) Examples of
trajectories of weak (light gray) and strong (dark gray) particles in the presence of a speckle obtained numerically for different
values of the molar fraction χ. The particle density is 10× lower than that of maximal packing and the Gaussian envelope
is absent. The four simulations were preformed under exactly the same conditions, including the same sequence of random
numbers for the thermostat (see Supplemental Material [21]). The black circles on the top left corner indicate the particle size.
The random potential intensities are in units of kBT and σ is one particle diameter. (b) When a weak particle (light gray)
is located at a potential minimum and a strong particle (dark gray) is in its vicinity, it is energetically favorable to exchange
the two, but the opposite process (c) is not. (d) The free energy may be significantly reduced when two particles of the same
species share the same potential minimum. See also supplementary video 2.

measure the six-fold bond-order parameter, 〈φ6〉, defined
as [29]

〈φ6〉 =
1

6Nc

Nc∑
l

∣∣∣∣∣∣
Nb∑
j

ei6θlj

∣∣∣∣∣∣ , (1)

where the out sum is over the Nc particles within 7.5 par-
ticle diameters from the center of the potential (the area
shown in Fig. 1), which is the area where the aggregate is
formed and does not include the boundary particles. The
inner sum is over the Nb neighbors of a particle in the
Voronoi tessellation, and θlj is the angle between the x-
axis and the line connecting the centers of particles j and
l. 〈φ6〉 = 1 for perfect hexagonal crystals (in practice, it
is never exactly one, because of thermal fluctuations and
other transient perturbations to the periodic order) and it
decreases with the number of structural defects. Figure 2
shows 〈φ6〉 obtained experimentally and numerically as
a function of the molar fraction χ. For χ = 0, 〈φ6〉 ≈ 1,
consistent with the formation of an hexagonal periodic
structure. As expected, as χ increases, the value of 〈φ6〉
decreases due to the formation of structural defects. The
snapshots in the top rows of Fig. 2 show the final con-
figurations (first row), the corresponding Voronoi tessel-

lations (second row), and the spatial Fourier transform
(third row), for different values of χ.

Surprisingly, the data reported in Fig. 2 show that 〈φ6〉
reaches a minimum at χmin ≈ 0.6, and that the global
order increases for χ > χmin. In particular, for χ = 1,
the strong particles self-assemble into a hexagonal crys-
tal, despite the presence of the underlying random po-
tential. This non-monotonic dependence is also observed
at higher densities. In Fig. S5 of the Supplemental Ma-
terial [21], we shown that the same behavior is observed
numerically in a system with a number of particles that
is 25% higher. This result is corroborated by the Voronoi
tessellation of the final configurations and by the respec-
tive spatial Fourier transforms. From this analysis, we
can see that the number of Voronoi cells with a num-
ber of neighbors different from six becomes higher near
the minimum of 〈φ6〉, even though the Voronoi-cell size
in both experiments and simulations does not vary sig-
nificantly compared with the particle size (see Fig. S6
from the Supplemental Material [21]). Also, The Fourier
transforms display dimmer intensity peaks near the min-
imum of 〈φ6〉.

In order to shed light on the non-monotonic behav-
ior, we first analyze the trajectories obtained by particle-
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FIG. 4. Dependence of the order parameter on the speckle properties. Six-fold bond order parameter as a function
of the molar fraction (χ) obtained numerically, for different values of the speckle (a) strength and (b) spatial correlation σ.
Results in (a) were obtained for σ = 0.5 and in (b) for V = 15.1, and are averages over 100 samples.

based simulations, without the Gaussian envelope and a
particle density 10× lower than that of maximal packing,
to study the interactions between the two particle species
and the local minima in the potential. Figure 3(a) shows
individual trajectories of weak (light gray) and strong
(dark gray) particles at various χ. In all cases, the weak
particles can hop between minima, while the strong par-
ticles are readily trapped in them. This qualitative anal-
ysis for a lower density elucidates the possible underly-
ing mechanisms at higher densities. In the presence of
the Gaussian envelope, particles are dragged to the cen-
ter and the strong particles quickly populate the minima
that are sufficiently deep to prevent their escape. At low
χ, the number of strong particles is lower than the num-
ber of such minima so they remain there for the entire
simulation time, because this configuration is energeti-
cally favorable (Figs. 3b and c); therefore, the number of
spatial defects increases monotonically with the number
of the trapped strong particles, leading to a decrease of
〈φ6〉 with increasing χ. At large χ, the number of strong
particles is greater than the number of potential minima
and thus it becomes energetically favorable to have more
than one strong particle in one minimum (Fig. 3d). This
allows the spatial rearrangement of the particles since the
energy of the interaction with the speckle is no longer
strong enough to localize the particles, a large-scale crys-
talline structure is favorable, consistent with the increase
in 〈φ6〉 observed in Fig. 2. When χ = 1, all particles are
strong and thus the hexagonal crystalline structure is re-
covered. We also counted the number of strong and weak
particles situated in minima of the random potential as
a function of χ. As shown in Fig. S8 of the Supplemen-
tal Material [21], the minima are mainly populated by
strong particles and the average number of particles is

larger than one for values of χ above the one at which
the six-fold bond order parameter is the minimum.

In order to explore how robust the non-monotonic de-
pendence of 〈φ6〉 as a function of χ is, we studied nu-
merically how it depends on the properties of the under-
lying speckle pattern. The speckle is characterized by a
strength V corresponding to the average potential depth
(in units of kBT , where kB is the Boltzmann constant
and T is the absolute temperature of the sample) and by
a spatial correlation σ (in units of the particle diameter),
which corresponds to the average grain size. Figure 4(a)
shows 〈φ6〉 for different V . Although the curves in the
range 1.51 < V 6 18.8 feature one minimum, its posi-
tion and intensity vary with V : the number of minima
that can trap particles is expected to increase with V .
Thus, the fraction of particles that can be trapped also
increases and the corresponding value of χmin shifts to the
right while the minimum becomes deeper. For V > 18.8,
the behavior seems to become independent of the mo-
lar fraction (and always disordered), because the weak
particles are also strongly trapped. Figure 4(b) shows
〈φ6〉 for different values of σ. A pronounced minimum is
only observed for intermediate values of σ, close to unity
(particle diameter). If σ � 0.5 or σ � 0.5, the optical
forces are negligible for different reasons: for σ � 0.5,
the gradient of the optical potential is very small on the
scale of the particle; and for σ � 0.5, the optical poten-
tial varies on a length scale smaller than the particle size
and thus its gradient averages to zero over the particle
cross-section (see supplementary Fig. S9 [21]). In the lat-
ter case, the optical force on a particle is the sum of the
contributions over the particle’s cross-section, which can
be described by an effective random potential that differs
from the one originally applied (Supplemental Material
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and supplementary Fig. S10 and S11 [21]).

DISCUSSION

In conclusion, we have shown that the order in a two-
dimensional binary colloidal crystal can be controlled by
an underlying random optical potential. While previous
studies [19, 20] have shown how freezing and melting are
influenced by the intensity of the laser field and the par-
ticle density. We employ a disordered potential and a bi-
nary mixture where some particles interact strongly with
the substrate and others are weakly interacting. This
permits us to study a system where disorder and impuri-
ties are present, which is highly relevant for applications.
Since the intensity of the optical forces depends on the
mismatch of the indices of refraction of the particles and
the surrounding medium, the particles with the larger in-
dex mismatch are more responsive (strong particles) than
those with the lower mismatch (weak particles). For the
parameters of the optical potential that were considered,
only the strong particles respond significantly to the po-
tential. Thus, strong particles tend to occupy the min-
ima of the potential and nucleate structural defects in
the, otherwise, periodic hexagonal structure of the weak
particles. The density of defects is controlled by the frac-
tion of strong particles and the statistical properties of
the underlying potential. When the number of strong
particles increases beyond the number of local minima
that can trap them, the trapping mechanism becomes
less effective and the hexagonal order is recovered as the
fraction of strong particles increases.

Here, we have considered a random optical potential
with Gaussian spatial correlations and a characteristic
length that is of the order of the particle size. How-
ever, it is technically possible to generate other opti-
cal potentials, e.g. periodic [27] or with different spa-
tial correlations [30, 31]. Thus, one can control not only
the density of defects but also their spatial distribution.
Time-varying optical potentials or driving forces could
also be employed to change the position of strong par-
ticles and defects in time, affecting the overall dynam-
ics, what raises several relevant fundamental and applied
questions [18, 23, 32, 33]. Understanding how the spatial
distribution of defects influences the physical properties
of materials is a question of both scientific curiosity and
technological interest that can now be addressed in a sys-
tematic way.

A non-monotonic dependence of the density of defects
on the particle ratio was also found for a binary mix-
ture of Yukawa particles coupled to a random (quenched)
field in Ref. [34], where the particles differ in charge,
which impacts the particle-particle interaction, but the
response to the external field is identical. By contrast,
here the particle-particle interactions are identical for
both species, while their response to the external field

is distinct. This difference is key to enable the external
control of the density of defects, as proposed here.

MATERIALS AND METHODS

FIG. 5. Schematic representation of the experimental setup
and sample chamber.

Sample preparation

Diluted aqueous stock solutions of polystyrene and
silica colloidal spheres (Microparticles GmbH, diameter
dPS = 6.24 ± 0.22µm and dSi = 6.73 ± 0.22µm, respec-
tively) were used to prepare binary solutions with differ-
ent molar fractions of polystyrene particles from χ = 0
to χ = 1. The total density of particles was kept con-
stant at 1.4 · 107 ml−1. These colloidal solutions were
confined in a homemade sample chamber (internal thick-
ness 200µm), built between a bottom glass slide (made
hydrophilic by treatment in a 0.25 M NaOH solution) and
a top flat-terminated fibre coupler (Thorlabs, SM1SMA)
held apart by two layers of a thermoplastic spacer, which
at the same time was also used for sealing the cham-
ber. The fibre coupler was used to connect the output
end of a multimode optical fiber (core diameter 105µm,
NA = 0.22, length 51 m) . See also Fig. 5.

Experimental setup

A homemade inverted optical microscope setup was
used for carrying out the experimental investigations of
structural defects in colloidal crystals formed under ran-
dom optical potentials, as schematically shown in Fig. 5
[24]. An image of the sample with colloidal particles was
projected by a microscope objective (Nikon Plan Fluo-
rite Imaging Objective, 20×, NA = 0.5, WD = 2.1 mm)
onto a monochrome charge-coupled device (CCD) cam-
era with an acquisition rate between 1 and 8 frames per
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second (fps). The incoherent illumination was provided
by a LED lamp at λ = 625 nm coupled into the optical
fiber using a dichroic mirror (Thorlabs, DMLP650). The
particles were tracked by digital video microscopy [35].

The static speckle light pattern with a Gaussian enve-
lope was generated by focusing a laser beam (wavelength
λ = 976 nm, output power P = 90 mW) into a multi-
mode optical fiber using a plano-convex lens (focal dis-
tance f = 25.4 mm). The output speckle pattern is the
result of the multipath interference of the optical waves
carrying random phases within the multimode optical
fiber [23, 24, 36]. The length of the optical path between
the fiber tip and the imaging plane where the colloidal
particles lay (i.e., the bottom of the sample chamber) de-
termines the final speckle grain size. The typical duration
of an experiment is about 90 minutes.

The smooth optical potential was obtained by the
speckle suppression using a high frequency mechanical
oscillator connected to the stretched interval of the op-
tical fiber. The vibrational frequency was adjusted with
DC voltage up to 12000 rpm.

Simulations

We performed Brownian dynamics (BD) simulations
of a binary mixture of N = 800 particles with several
compositions, on a two-dimensional square box with lin-
ear size L. The particle species differ in the strength of
their response to the optical potential. The interaction
potential between a pair of particles i and j with diam-
eter dp is independent of the species and is given by the
repulsive part of a Lennard-Jones potential:

Vij(r) = ε

[(
dp
r

)12

−
(
dp
r

)6
]
, (2)

where ε sets the energy scale. This is a very steep
and short-ranged potential that only affects neighbouring
particles within a cut-off distance of rcut = 2−1/6dp.

The external potential has two contributions. The first
contribution is a Gaussian potential that attracts the par-
ticles towards the centre of the simulation box, given by

VGaussian(r) =

{
−VGke

− (r−7.5)2

σ2
G if r > 7.5

0 if r ≤ 7.5
(3)

where σG is the width of the Gaussian and VGk sets the
scale of this interaction, which depends on the particle
type k; the interaction VGk with the most responsive
(strong) particles is 2× that with the least responsive
(weak) ones; r is the distance to the centre of the sim-
ulation box. By definition, we ensure that the Gaussian
potential is zero in the central region of the box, of ra-
dius 7.5, where we carried out the statistical analysis of
the system. This potential is used to confine the parti-
cles in the centre of the box at sufficiently high densities.

The second contribution to the external potential repro-
duces the potential generated by a speckle pattern [22].
We used the Fourier filtering method (FFM) to gener-
ate numerically random potentials with Gaussian spa-
tial correlations [37, 38]. The FFM takes advantage of
the fact that the correlation function of a field E(~r), is
the inverse Fourier transform of the absolute value of
its Fourier coefficients, |E~k|

2, as stated by the Wiener-
Khinchin theorem [39]. This relation allows us to sample
random Fourier coefficients that when transformed back
into real space describe a random potential with the de-
sired spatial correlations. The depths of those potentials
have a Gaussian distribution. To convert it into an ex-
ponential distribution, as measured for the speckle, we
used the following procedure: the random surface is dis-
cretized in 1024 × 1024 cells, which we sort by the in-
tensity of the potential. Then, we produce a sorted list
of intensities drawn from an exponential distribution and
substitute each cell intensity by the corresponding entry
on the ranked list of intensities. We tested this proce-
dure with Gaussian and power-law correlation functions
and confirmed that it does lead to the desired distribu-
tion of intensities, without affecting the nature of the
correlation function. The forces due to this potential are
then calculated using finite differences. In all simulations,
we considered Gaussian correlations with a dispersion σ.
When σ < dp (where dp is the diameter of the particles)
the speckle features vary on distances shorter than the
particle size and we need to consider an effective speckle
pattern that is the result of the integration of the speckle
intensities over the particle volume (see below section
“Effective speckle properties”). The results present in
Figs. 1 and 2 were achieved with σ = 0.4. The potentials
strength ratio is VG/V = 1 in the simulations presented
in Figs. 1, 2, 4(a) and 4(b).

The motion of a particle i in the surrounding medium
is described by the overdamped Langevin equation

γ
d~ri
dt

= −~∇i

∑
j

Vij(r) + Vext(~ri)

+ ~ξi, j 6= i, (4)

where γ is the Stokes-Einstein friction coefficient and ~ξi is
a random stochastic term that mimics the thermal noise
that results from the interaction with the medium. This
term is given by a normal distribution with zero mean
and auto-correlation that is independent of space and
time and proportional to the thermostat temperature T ,
i.e.

〈
ξni (t)ξli(t

′)
〉

= 2kBTγiδnlδ(t− t′), where n and l are
indices that run over the space dimensions and kB is the
Boltzmann constant. The characteristic time is defined
as τ = d2pγ/kBT . Equation (4) is integrated following
the algorithm developed by Branka and Heyes [40], i.e.
a second-order stochastic Runge-Kutta scheme, with a
time step of ∆t = 10−4τ . We set the diameter of the
particle, dp, as the unit length, the simulation box has
linear size L = 50 and the width of the external Gaussian
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potential is σG = L/2. The energy is given in units of
kBT with ε = 10 and VG = 200. The simulations were
run for 2 × 104τ and the data used in the calculations
was taken in the last 1.5× 103τ , when the evolution was
found to be in the stationary state in the centre of the
box. For all data points, we used 100 samples to aver-
age the relevant quantities. While we do not expect a
strong dependence on the geometry of the experimental
setup, in order to make a direct comparison with the ex-
perimental results, rather than using periodic boundary
conditions, we considered the same circular confinement
with an external potential. This also allows us to study
the initial dynamics that result from increasing the local
concentration in the center due to the confining potential.
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