
 

Decentralized Privacy-Preserving 
Proximity Tracing 

Version: 3rd April 2020. 
Contact the first author for the latest version. 

 

EPFL: Prof. Carmela Troncoso, Prof. Mathias Payer, Prof. Jean-Pierre 
Hubaux, Prof. Marcel Salathé, Prof. James Larus, Prof. Edouard 

Bugnion, Dr. Wouter Lueks, Theresa Stadler, Dr. Apostolos Pyrgelis, Dr. 
Daniele Antonioli, Ludovic Barman, Sylvain Chatel 

ETHZ: Prof. Kenneth Paterson, Prof. Srdjan Capkun, Prof. David Basin, 
Dennis Jackson 

KU Leuven: Prof. Bart Preneel, Prof. Nigel Smart, Dr. Dave Singelee, 
Dr. Aysajan Abidin 

TU Delft: Prof. Seda Guerses 

University College London: Dr. Michael Veale 

CISPA: Prof. Cas Cremers 

University of Oxford: Dr. Reuben Binns 

TU Berlin / Fraunhofer HHI: Prof. Thomas Wiegand 
 
 

  

CC-BY 4.0 



2 

Executive Summary 
This document proposes a system for secure and privacy-preserving proximity tracing (aka             
contact tracing) at large scale. Its goal is to simplify and accelerate the process of identifying                
people who have been in contact with an infected person, thus providing a technological              
foundation to help slow the spread of the SARS-CoV-2 virus. The system aims to minimise               
privacy and security risks for individuals and communities and guarantee the highest level of              
data protection. 
 
We are publishing this document to seek feedback from a broad audience on the high-level               
design, its security and privacy properties, and the functionality it offers; so that further              
protection mechanisms can be added if weaknesses are identified. This document is            
accompanied by an overview of the Data Protection compliance of the design. 
 
The goal of proximity tracing is to determine who has been in close physical proximity to an                 
infected person, without revealing the contact’s identity or where this contact occurred. To             
achieve this goal, users continually run a smartphone app that broadcasts an ephemeral,             
pseudo-random ID representing the user and also record pseudo-random IDs observed from            
smartphones in close proximity. Whenever a patient is diagnosed, he or she can upload              
some anonymous data from their phone to a central server. This step should only be done                
with the approval of a health authority and the consent of the individual. Before, no data is                 
communicated to any entity. Other instances of the app can use the anonymous data from               
the server to locally compute whether the app’s user was in physical proximity and              
potentially infected by an infected person and to inform the user of the risk. Additionally, the                
system enables users to voluntarily provide information to epidemiologists, in a           
privacy-preserving manner, to enable studies of the evolution of disease and to assist in              
finding better policies to prevent further infections. 
 
The system provides the following security and privacy protections: 
 

- Ensures data minimization. The central server only observes anonymous identifiers          
of infected people without any proximity information; health authorities learn no           
information (beyond when a user manually reaches out to them after being notified);             
and the epidemiologists obtain an anonymized proximity graph with minimal          
information. 

- Prevents abuse of data. As the different entities in the system receive the minimum              
amount of information tailored to their requirements, none of them can abuse the             
data for other purposes, nor can they be coerced or subpoenaed to make other data               
available. 

- Prevents tracking of non-infected users. No entity, including the backend, can           
track non-infected users based on broadcasted ephemeral identifiers. 

- Graceful dismantling. The system will organically dismantle itself after the end of            
the epidemic. Infected patients will stop uploading their data to the central server,             
and people will stop using the app. Data on the server is removed after 14 days. 

 

 



3 

Goals and Requirements 

System Goals 
1) Enable quick notification of contact persons at risk and give guidance on next 
steps  
In Switzerland, the proximity tracing (also known as contact tracing) process is legally             
anchored in the Infection Protection Act and is carried out by the health authorities. Other               
countries have similar laws. The multi-stage procedure is time-consuming and requires a           
large number of trained personnel. Under the current process, an employee of the health              
authorities conducts an in-person interview with an infected person to trace her or his              
contact history and identify other people who are likely to have contracted a disease.              
However, this process is slow and the results incomplete as usually patients are often              
unable to recall without gaps all contacts over a period of days.  Furthermore, random              
contacts (e.g., seat neighbours in public transport) cannot be identified and alerted. 
 
Fortunately, most adults carry smartphones throughout the day, which opens the possibility            
of an app that can aid health authorities in their efforts to quickly and precisely notify all                 
individuals who have been in close proximity to an infected person during an infectious              
period. We call the process that enables the health authority to learn whom to notify               
proximity tracing. 
 
2) Enable epidemiologists to analyse the spread of SARS-CoV-2 
Currently, there is a lack of detailed data on the spread of SARS-CoV-2. Epidemiologists              
are trying to understand the key factors in the spread of the virus. More precise and timely                 
data would enable epidemiologists to improve their recommendations to policy makers and            
health authorities about the most important and effective measures during the containment            
phase of this and future pandemics. 
 
The application should provide users with the possibility to voluntarily share data with             
epidemiologists and research groups to enable these groups to reconstruct the interaction            
graph among infected and at-risk users (referred to as a proximity graph). 

System requirements 
1) Functional requirements  
To achieve the system goals outlined above, the application must fulfill these functional 
requirements: 

● Completeness: The contact history is comprehensive regarding contact events. 
● Precision: Reported contact events must reflect actual physical proximity  
● Integrity: Contact events corresponding to at-risk parties are authentic, i.e., users           

cannot fake contact events. 
● Confidentiality: A malicious actor cannot access the contact history of a user 
● Notification: At-risk individuals can be informed 

 

 

https://www.rki.de/EN/Content/infections/inf_dis_down.pdf?__blob=publicationFile


4 

 
2) Respect and preserve digital right to privacy of individuals 
It is of paramount importance that any digital solution to enhance proximity tracing respects              
the privacy of individual users and communities and complies with relevant data            
protection guidelines such as the European General Data Protection Regulation (see           
EDPB Statement on GDPR and COVID-19). The GDPR does not stop the use of data for                
public health, particularly in times of crisis, but it still imposes a binding obligation to ensure                
that 'only personal data which are necessary for each specific purpose of the processing are               
processed' (art 25). It is therefore a legal requirement to consider, particularly in the creation               
of systems with major implications for rights and freedoms, whether such a system could be               
technically designed to use and retain less data while achieving the same effect. To this end,                
an application must minimize the amount of data collected and processed to avoid risks for               
individuals and communities, and it should reveal only the minimum information truly needed             
to each authorized entity. 
 
Furthermore, a common concern with systems like these is that the data and infrastructure              
might be used beyond its originally intended purpose. Data protection law supports the             
overarching principle of ‘purpose limitation’ — precluding the widening of purposes after the             
crisis through technical limitations. Such assurances will likely be important to achieve the             
necessary level of adoption in each country and across Europe, by providing citizens with              
the confidence and trust that their personal data is protected and used appropriately and              
carefully. Only applications that do not violate a user’s privacy by design will be widely               
accepted. 
 
The system should provide the following guarantees: 

● Data use: Data collection and use should be limited to the purpose of the data               
collection: proximity tracing and proximity graph reconstruction. This implies that the           
design should avoid collecting and using any data, such as for example geolocation             
data, that is not directly related to the task of detecting a close contact between two                
individuals.  

● Controlled inference: Inferences about individuals and communities, such as         
information about social interactions or medical diagnosis, should be controlled to           
avoid unintended information leakage. Each authorised entity should only be able           
learn the information strictly necessary to fulfill the functional requirement. 

● Protect identities: The system should collect, store, and use anonymous or           
pseudonymous data that is not directly linkable to an individual’s identity where            
possible.  

● Erasure: The system should respect best practices in terms of data retention periods             
and delete any data that is not relevant. 

 
3) Fulfill the scalability requirements posed by a global pandemic 
SARS-CoV-2 is rapidly spreading across the globe due to the free movement of people              
across national borders and continents. As a core principle of free democracies, after the              
current confinement measures end, free movement should resume. Proximity tracing must           
support free movement across borders and scale to the world’s population. 
 

 

https://edpb.europa.eu/sites/edpb/files/files/file1/edpb_statement_2020_processingpersonaldataandcovid-19_en.pdf


5 

The system should give the following guarantees: 
● Scalability: The system scales to billions of users. 
● Interoperability: The system works across borders and health authorities. 

 
4) Feasibility under current technical constraints 
There is an urgency to not only design but implement a digital system that simplifies and                
accelerates proximity tracing in the near future. This mandates a system design that is              
mindful of the technical constraints posed by currently available technologies. 
 

● No reliance on new breakthroughs: The system should, as far as possible, only             
use techniques and methods readily available at the time of development and avoid             
relying on new breakthroughs in areas such as GPS localisation or Bluetooth            
distance measurements. 

● Widely available hardware: The goal of high adoption of proximity tracing can only             
be achieved if both server- and client-side applications can run on widely available             
smartphones and server hardware 

  

 



6 

Decentralized proximity tracing 
We propose a privacy-friendly, decentralized solution that reveals minimal information to the            
backend server. To facilitate proximity tracing, smartphones locally generate ephemeral          
bluetooth identifiers (EphIDs ) and broadcast them. Other smartphones observe these          
EphIDs and store them together with the duration and a coarse indication of time (e.g., “The                
morning of April 2”). See Figure AA. 
 
The proximity tracing process is supported by a backend server that shares infection             
information with the app running on each phone. This backend server is trusted to not add or                 
remove information shared by the users and to be available. However, it is untrusted with               
regards to privacy (i.e., collecting and processing of personal data). In other words, the              
privacy of the users in the system does not depend on the actions of this server. Even if the                   
server is compromised or seized, privacy remains intact.  
 
When patients are diagnosed with SARS-CoV-2, they will be authorized by national health             
authorities to publish information. Then, they will instruct their phones to upload to the              
backend a compact representation of their EphIDs for the infectious period. The backend             
stores these compact representations. Other smartphones periodically query the backend for           
this information and reconstruct the corresponding EphIDs of infected patients locally. If the             
smartphone has stored a record of any of these infected EphIDs, then the smartphone’s user               
has been in contact with an infected person and the smartphone computes the owner’s risk               
score. If this score is above the threshold the smartphone initiates a notification process. 
 

 
Figure AA: Processing and storing of observed EphIDs . 

Setup 
Generating a key. Smartphones generate a random initial daily key SK 

0 . As we explain              
below, smartphones use hash chaining to compute daily secret keys SK 

t . From each day              
key, they generate a set of EphIDs to broadcast during that day. Smartphones store the last                
14 keys SK 

t
(corresponding to an infectious window of 14 days, ultimately, the length of this                

window is a parameter that should be determined by the health authorities). 
 

Creating ephemeral IDs (EphIDs) 
EphID Constraints. Given the completeness requirement, it is necessary that smartphones           
can observe and record as many EphIDs as possible. This precludes the use of              
connection-based communication between smartphones, as establishing connections limits        

 



7 

the amount of exchanges of EphIDs . Instead, we rely on Bluetooth Low Energy beacons.              
These beacons’ payload is 16 bytes, which technically limits the size of our system’s              
EphIDs .  
 
EphID Generation. Smartphones generate a stream of secret day keys SK 

t , by computing 

SK 
t  = H( SK t - 1  ) , 

where H is a cryptographic hash function. The smartphone will use the secret key SK 
t

during                
day t  to generate EphIDs . 

Smartphones locally generate EphID 
i s to use during day t as follows. Let t be the current                

day, and n the number of distinct EphIDs we must generate for that day. Then the                
smartphone computes 

EphID 
1  || ... || EphID n  = PRG( PRF(SK t , “broadcast key”) ), 

where PRF is a pseudo-random function (e.g., HMAC-SHA256), “broadcast key” is a            
fixed and public string, and PRG is a stream cipher (e.g., AES in counter mode, or Salsa20)                 
producing n * 16 bytes, which we split into 16-byte chunks to obtain the n ephemeral                
Bluetooth identifiers EphID  of the day. 

Smartphones pick a random order in which to broadcast the EphID during the day. Each               
EphID 

 is broadcast for (24 * 60)/n  minutes. 

Local storage of observed EphIDs 
Smartphones locally store each observed EphID together with the corresponding proximity,           
duration, and other auxiliary data, and a coarse time indication (e.g., “The morning of April               
2”). See Figure AA. 

Decentralized proximity tracing 
The decentralized proximity tracing process requires the participation of infected patient’s           
smartphones, all other smartphones, the backend, and the health authority. The backend            
acts solely as a communication platform and does not perform any processing.  
 
Once the health authority triggers proximity tracing for an individual (Figure PT, step 1), the               
patient instructs their phone to send to the backend the key SK 

t
corresponding to the first                

day in which the app user was considered to be infectious (Figure PT, step 2). Note that                 
given the key SK 

t , everyone can compute all ephemeral identifiers EphID used by the              
infected patient starting from epoch t by repeating the process described in “EphID             
generation” above. 
 
After reporting their current SK 

t , the smartphone of the infected patient picks a new              
completely random key. 
 
Periodically, the backend sends the SK 

t
of infected patients to all other smartphones in the               

system (Figure PT, step 3). If an update is needed, it can also send to the smartphones the                  

 



8 

latest risk-scoring algorithm parameters provided by the health authority. Each smartphone           
uses this key to reconstruct the list of EphIDs of an infected person and checks if it has                  
observed any of these EphIDs in the past (i.e., before the corresponding key SK 

t
was               

published). If so, the smartphone owner may be at risk. The smartphone uses the              
risk-scoring algorithm with its local records corresponding to the infectious EphID , to            
determine the owner’s risk score. See Figure PT step 4.  
 

 
Figure PT: proximity tracing process. 

Notification of Risk 
If the risk score computed in the previous step is below a threshold determined by the health                 
authority, the smartphone does nothing. Otherwise, the smartphone displays a notification           
that the user has been in close proximity to an infected patient. The notification advises the                
user on what to do and where to find more information. 

Interoperability 
To enable interoperability between countries, the smartphone records the countries that a            
user has visited. This can either happen automatically, in the background, based on GPS              
location data or through a manual entry by the user (e.g., if GPS was not available or                 
inaccurate). To learn if a user has been in contact with an infected patient, the phone                
regularly requests data (containing SK 

t ’s from infected users) from the backend services of             
all visited countries. The addresses of these backends can be hardcoded in the app. In case                
of a positive diagnosis, the smartphone uploads its own key SK 

t
to the backends of all visited                 

countries. 
 

 



9 

When the smartphone determines its owner has a high risk score, the smartphone contacts              
its local health authority as if it was not roaming. 

Sharing data with epidemiologists 
When installing the app, users will be asked if they want to opt-in to sharing data with                 
epidemiologists in case they have been in contact with an infected person. If users opt in,                
the app will regularly (e.g., every day) upload a dummy package to the epidemiologists to               
defeat traffic analysis. No real data is uploaded at this time. 
 
After a patient receives a notification that they are now at risk, the app again asks users to                  
confirm that they still want to opt-in to sharing data with the epidemiologists. If so, at the next                  
transmission time, the app will send anonymous data about all contact events the user had               
with each infected individual over the past period to a selected research center. In our               
scheme, infected individuals are represented by their keys SK 

t . The data shared includes a              
tag that indicates whether the user herself has been infected and information about the              
duration of encounters or the distance between the two individuals. However, any location or              
precise timing information about contact events will never be shared. The data submitted             
enables epidemiologists to study the proximity graph around an infected individual and            
understand which circumstances and encounters led to an infection. However, it does not             
reveal any information about other encounters the user has had with non-infected people. 

Scalability 
The decentralized design scales very well. For each infected user, the backend needs to              
store a 32 bytes key for the duration of the infectious window. Storage cost at the backend is                  
therefore not a problem. Throughout the day, smartphones download the 32 byte keys of              
newly diagnosed patients. This data is static, and can therefore be effectively served through              
a content delivery network. 
 
Smartphones download a small amount of data every day. For 40.000 new infections per              
day, smartphones download 1.25 MB each day. They require a few seconds of computation              
time to regenerate the ephemeral keys EphID , and to check if they are included in the local                 
list of observed EphIDs . 

  

 



10 

Security and privacy considerations 

Threat model 
Regular user. A typical user of the system that is assumed to be able to install and use the                   
application by navigating its user interface (UI). They will exclusively look at information             
available via the app UI to infer private information about other users. 
 
Tech-savvy user (Blackhat/Whitehat hacker, NGOs, Academic researchers, etc.).  
This user has access to the system via the mobile App. Can set up (BT, WiFi, and Mobile)                  
antennas to eavesdrop locally. Can decompile/modify the app. Can have access to the             
backend source code. 
● (Whitehat hacker) Will investigate the App code, the information in the phone, and will              

look at what information is exchanged with the server (using an antenna or software              
installed on the phone, e.g., Lumen) or broadcast via Bluetooth (passive).  

● (Malicious) Can DOS the system (targeted or system-wide), deviate from protocols, and            
actively broadcast Bluetooth identifiers. 

 
Eavesdropper (Internet Service Provider, Local System administrators, Bluetooth sniffer).  
Can observer network communication (i.e., source and destination of packages, payload,           
time) and/or Bluetooth BLE broadcast messages. 

● (Network adversary) Can use observed network traffic to determine the state of a             
user (e.g., whether they are at-risk, infected, etc.) 

● (Local Bluetooth BLE Sniffer) Can observe local Bluetooth broadcasts (possibly with           
a big antenna to cover a wider area) and try to trace people. 

 
It should be noted however that in many instances, for individuals or companies to use data 
in this way, such as to collect data about passers-by to try and estimate their infection status 
based on the announced identifiers, will fall foul of a range of existing national and European 
laws around data protection, ePrivacy and computer misuse. 

 
Health authority. Receives information about infected people as part of their normal            
operations to diagnose patients. The health authority learn information about at-risk people            
only when these at-risk people themselves reach out to the health authority (e.g., after              
receiving a notification from their app). 
 
Epidemiologists. Receive and analyse data about interactions between infected and at-risk           
users. Epidemiologists and related research groups are not in direct contact with app users              
and data is shared with them on a voluntary basis. They are mainly interested in learning the                 
proximity graph around an infected user but can combine background knowledge about            
individual users with the inferred graph data to learn more about infected and at-risk users.  
 
Backend. Can access all data stored at the servers. Moreover, the backend can query data               
from the mobile app in the same way that it would do during normal operations (in our                 
system, it can only send). They could also change the code of their backend software and                

 

https://haystack.mobi/


11 

the code of the mobile apps. We assume they will not modify the mobile app because doing                 
so would be detectable. They can combine and correlate information, request information            
from apps, combine with other public information to learn (co-)location information of            
individuals. 

 
State-level adversary (Law enforcement, intelligence agencies). Has the combined 
capabilities of the tech-savvy user and the eavesdropper. In addition, a state-level adversary 
can obtain subpoenas that give them the capabilities of the health authority, epidemiologists 
or the backend. Their goal is to obtain information about the population or to target particular 
individuals. They may be interested in past information, already stored in the system, or 
future information that will enable them to trace target individuals based on observed 
EphIDs . 

Privacy  

Privacy Concerns 
Global interaction graph. The global interaction graph reflects the social relationships of all             
users in the system. A labelled edge indicates an interaction between two adjacent users at               
a specific time. Knowledge of this graph is not necessary for proximity tracing nor for               
analyzing the spread of SARS-CoV-2. Therefore, no party needs to learn the global             
interaction graph. Only the relevant subset of this graph, such as for example the proximity               
graph (below), should be revealed to the authorised entities. 
 
Proximity graph. The proximity graph is a subset of the global interaction graph. It encodes               
contacts between infected users and others individuals. Every edge is adjacent to at least              
one infected patient. Edges can be labeled with coarse-grained timing information (e.g.,            
“contact on the 4th of April”). This information is essential for epidemiologists but not for any                
other party in the system. 
 
Infected individuals. Only the individuals themselves, and the health authority, need to            
know that they are infected with SARS-CoV-2. No other parties in the system need to learn                
this information. In particular, infected users do not need to know which of the individuals               
they have been in contact with are infected. 
 
At-risk individuals. At-risk individuals are people that have recently been in contact with             
somebody who has been infected with SARS-CoV-2. At-risk individuals need to know that             
they are at risk so that they can take appropriate measures. The health authority needs to                
know who is at risk so that they can notify them. No other parties in the system need to know                    
this information. 
 
Location traceability. To perform proximity tracing or to analyze the virus’ spread, location             
traces are not required, e.g. GPS coordinates. Therefore, no party in the system needs to               
have access to them, or be able to easily trace individuals based on the Bluetooth signals                
that the apps broadcast. 
 

 



12 

Privacy Analysis 
Interaction graph. The system does not reveal any information about the interaction            
between two users to any entity other than the two users themselves. The EphIDs revealed               
by infected users do not allow any inference about the people they have been in contact                
with. The system thus prevents any one party from learning the interaction graph. 
 
Proximity graph. By construction, the proximity graph (containing interactions between          
infected patients and other users) is only revealed to epidemiologists, with the specific,             
separate consent of a user, and not to any other party. 
 
Location traceability. The EphIDs of all users are perfectly unlinkable, and only the             
smartphone that generated them knows the corresponding keys SK 

t . When the phone’s            
owner is diagnosed with SARS-Cov-2, the phone publishes to the backend the key SK 

t
              

corresponding to the first infectious day. After disclosing this information, the phone will             
generate a new key at random. Given this key SK 

t , all corresponding EphIDs of the infected                
person are linkable during the infectious period. 
 
As a result, tech-savvy users, eavesdroppers, and state-level adversaries with strategically           
placed Bluetooth receivers and recording devices can track infected patients during the            
(earlier) window in which the identifiers broadcasted via Bluetooth are linkable. The app’s             
Bluetooth broadcasts of non-infected people and infected people outside the infectious           
window remain unlinkable. 
 
At-risk individuals. The keys revealed to the server by infected people are independent of              
their contacts, i.e., the people they interacted with. They therefore do not give any              
information about people at risk. 
 
Smartphones locally compute at-risk status. The smartphone then relays this at-risk status to             
the health authority so that the health authority can contact the phone’s user. The health               
authority therefore learns who is at risk. 
 
If the user consents, the smartphone uploads anonymized data about the user’s encounters             
with infected individuals to epidemiologists. However, the information shared does not           
include any pseudonyms or anonymous identifiers and does not allow linking contact events             
to identities. Epidemiologists therefore cannot learn who is at risk, but they can study the               
spread of the virus through the proximity graph. 
 
Infected individuals. Any proximity tracing mechanism that informs a user that he/she has             
been in contact with an infected person inherently reveals a piece of information to the               
person at risk: one of the people they interacted with has been infected. For the purpose of                 
this analysis we will divide these people in three categories:  

- Close individuals: Family, friends, or colleagues with whom the at-risk individual           
spends long periods of time. If these people are infected, they will inform the at-risk               
user personally about their infection if they have spent time together. It is common              

 



13 

practice that the authorities ask COVID-19 patients to notify any contact person at             
risk they remember. 

- Routine-sharing individuals: People who share an activity with the at-risk individual           
such as riding a bus every day, supermarket tellers, etc. Infected individuals in this              
group will likely not remember having been in contact with them and therefore will not               
(and can not) notify the at-risk individual. 

- Anonymous individuals: People that the user sees sporadically. These people cannot           
be re-identified as their identities are unknown to the at-risk individual. They are             
therefore out of the scope for this analysis. 

 
As close individuals will reveal themselves, there is no extra information that an at-risk              
individual can gain about the infection status of this group by exploiting the app. Anonymous               
infected persons cannot be identified, so their privacy is also not at stake. In the remainder                
of this analysis we thus focus on routine-sharing individuals. 
 
First, and foremost, the app in normal operation does not reveal to users anything about the                
EphIDs downloaded from the backend. Therefore, a curious user, who only uses the             
standard interface of the app, cannot learn who is infected. As this user does not perform                
further actions, they cannot obtain any further information about who is infected other than              
the information provided to them through app notifications, health officials, or by infected             
individuals themselves.  
 
On the other end, a proactive tech-savvy person can abuse any proximity tracing             
mechanism to narrow down the group of individuals they have been in contact with to               
infected individuals. To do so they must, 1) they keep a detailed log of who they saw when.                  
2) they register many accounts in the proximity tracing system, and use each account for               
proximity tracing during a short time window. When one of these accounts is notified, the               
attacker can link the account identifier back to the time-window in which the contact with an                
infected individual occurred. The attacker can correlate this information with the detailed log             
to narrow down who in their list of contacts is now infected. This attack is inherent to any                  
proximity-based system notification system, as the adversary only uses the fact that they             
are notified together with additional information gathered by their phone or other means. 
 
In the decentralized system, tech-savvy adversaries can make this inference without having            
to create multiple accounts. To determine when they interacted with an infected individual,             
they proactively modify the app to store detailed logs of which EphID they received and               
when, and cross reference this list with the EphID s they computed for each infected person.               
They then correlate these infection times with their log of who they saw when as before. 
 
Tech-savvy users can also attempt a retroactive attack in which they attempt reidentification             
based on linkage, without the need to collect additional information in advance. The             
retroactive attacker only uses information stored by the app and auxiliary knowledge about             
the whereabouts of routine-sharing individuals during the infectious period. The data stored            
in the app provides coarse timing information when a specific EphID has been observed              
(e.g., up to 8 hour time windows). A tech-savy at-risk user could leverage this information to                
single out an infected individual based on matching observed EphID s to the background             

 



14 

knowledge about whom the at-risk user was with during this time window. A combination of               
multiple time windows might be enough to uniquely identify whom the infected EphID s             
belong to. However, since smartphones broadcast the daily set of EphIDs in random order,              
the attacker cannot use the published keys SK 

t
to narrow down this coarse time-window.              

This decreases the likelihood that she will be able to successfully identify the infected              
individual in her contact list.  
 
Furthermore, an adversary operating its own BLE equipment from a single location can             
collect EphIDs within 20-100m range, depending on the phone output power and            
environment. When combining this list with the EphID s that can be computed from the SK               

downloaded to the phone, an adversary could estimate the percentage of infected people in              
a small radius of 50m. If in addition, the adversary has a camera, he can capture images and                  
potentially re-identify those people. 
 
As for at-risk users, the pattern associated with the upload of identifiers to the server would                
reveal infected users to network eavesdroppers (ISP, curious WiFi provider) and Tech-savvy            
adversary. If these adversaries can bind the observed IP to a more stable identifier such as                
an ISP subscription number, then they can de-anonymize the infected user.  
 
 
Summary. For an adversarial at-risk user to learn which infected individuals they have been              
in contact with, the following conditions must all be met: 

- An adversary has to have access to a fine-grained log of who they have seen when                
and where. 

- An adversary has to either modify the application to store fine-grained time            
measurements alongside each observed EphID or rely on the coarse time window            
given by the unmodified implementation 

- The adversary and the infected individual must be alone for a long enough duration. 
- If there are other people around, whether they are running the app or not, the               

adversary cannot be certain of who is the infector unless the adversary sees this              
infector in a large enough number of epochs.  

Note that if, in addition to these conditions, the adversary can create multiple accounts, then               
this adversary can identify the infector regardless of the design of the proximity tracing              
system.  
 
We stress that in any case, having been close to an infected person is not a proof of                  
causality regarding an infection. Moreover it is worth noting that reidentifying individuals and             
inferring their health status as a private entity without their permission would likely violate              
data protection law and, potentially, computer misuse law, which would further increase the             
cost and risk of undertaking this attack. 
 
Mitigations. In the current setting, tech-savvy users can download and analyze the data of              
infected ids.  
As one mitigation, we propose to allow infected individuals to control the periods of time that                
they consider sensitive and to not disclose the EphIDs that their device generated during              
those sensitive periods. This can alleviate concerns that might arise e.g., in close-knit and              

 



15 

smaller communities where in person notifications are better tools for informing people about             
infections and risks.  
Another possible mitigation is the use of local trusted execution environments (TEEs) that,             
on each phone download and decrypt the list of infected EphID s and compute the local risk                
scores by cross referencing the list of infected EphIDs with the collected beacons, and              
returning a risk-score to the app. Instead on the phone, the user could also delegate this                
functionality to a TEE that she explicitly trusts. Modern phones are equipped with TEE              
functionality and TEEs are already used to harden smartphone kernels against attacks and             
to store cryptographic keys. TEEs require buy-in from mobile platform providers (Apple,            
Google) and, for Android, the device manufacturers (Samsung, Huawei, etc.). The TEEs are             
well protected and hard to attack even for tech-savvy users. While it is not impossible to leak                 
this information, it is unlikely. We think such a mitigation is worthwhile in a later version of the                  
proximity tracing system to further increase privacy guarantees. Other mitigation techniques           
could include the use of Private Information Retrieval and Private Set Intersection            
techniques.  
 
Such technical measures as well as non-technical measures (e.g., banning modified           
applications from the market) could be introduced in case that the identification of infected              
individuals would become a threat to the system operation and to the involved users. The               
introduction of such measures depends on the overall risk assessment.  
 
Furthermore, the transmit power of BLE beacons needs to be reduced in other to limit               
exposure and risks related to eavesdropping attacks.  
 
Finally, we note that if a small, extremely cautious portion of the population is concerned with                
these attacks and decides not to participate, this will not greatly impair the effectiveness of               
the deployment. As long as a large portion of the population runs the app, the number of                 
at-risk identifications will be large enough to significantly reduce the rate of infections. 
 

Security 

Security Concerns 
Fake contact events. A fake contact event could make a person believe that they are               
at-risk, even though they have never been in contact with an infected person. Attackers              
could try to generate such fake contact events. 
 
Suppressing at-risk contacts: There is a risk that either an infected person or the backend               
server could prevent other individuals from learning they are at risk, e.g., by modifying the               
app’s local storage. This violates the integrity of the system and would lead to an increased                
health risk for contact persons who rely on the system to alert them. 
 
Prevent contact discovery: A malicious actor could disrupt the system, e.g. by jamming             
Bluetooth signals, and prevent contact discovery.  

 



16 

Security Analysis 
Fake contact events. Fake contact events cannot be completely avoided. A malicious            
tech-savvy user can always use a large antenna to artificially increase their broadcast range.              
If the broadcasted identifiers belong to a (later) infected person, then any recipient will              
conclude that they are now at risk. 
 
In the decentralized system, smartphones compute risk scores purely based on the EphIDs             
they have seen and the EphIDs of infected people. Therefore, to create a fake contact               
event, an attacker must modify one of these two. The former can only be changed by using                 
Bluetooth broadcasts. The latter can only be changed by (1) being infected with             
SARS-Cov-2, and then (2) reporting somebody else’s key SK 

t so that that key is treated as        
 

       
infected. 
 
Suppressing at-risk contacts. Hiding at-risk contacts is possible in any proximity tracing            
system. Infected users can choose to not participate at all; to temporarily not broadcast              
Bluetooth identifiers, or not to upload their data once diagnosed.  
 
Prevent contact discovery. Any proximity tracing system based on Bluetooth low energy is             
susceptible to jamming attacks by active adversaries. Such jamming attacks will cause the             
normal recording of EphIDs to stop working, hence preventing contact discovery. This is an              
inherent problem of this approach. 

  

 



17 

Comparison with a centralized approach 

A centralized, on-demand trace upload 
In a centralized approach, instead of the smartphones gathering information to learn whether             
the owner is at risk, it is the central server who identifies at-risk users and notifies those                 
users' smartphones. 
 
As the central server needs means to identify users, it must hold a long-term              
pseudo-identifier and must generate the ephemeral pseudo-identities (EphID s) to be          
pushed to the smartphones. As in the decentralized design, these EphID s can be produced,              
and sent to the smartphones, in epochs. 
 
The smartphones broadcast the received EphID s and receive EphID s sent by near-by            
smartphones. Smartphones locally store all observed EphID s together with the          
corresponding proximity, duration, and auxiliary data. See Figure ZZ.  
 
As in the decentralized design, when patients have been diagnosed and they are authorized,              
they can instruct their smartphone to send the recorded list of observations to the server to                
enable proximity tracing. 
 

 
Figure ZZ: Processing and storing of observed EphID s. 

Proximity tracing 
The proximity tracing process is executed by the backend after a diagnosed patient has              
made available to the backend their list of observations [(EphID , epoch, duration)] for the              
relevant period of time. The backend recovers the long-term pseudo-identifiers of the at-risk             
users from the reported observed EphID s and triggers a process to identify them. See              
Figure ZY. 

 

 



18 

 
Figure ZY: proximity tracing for centralized design 

Interoperability  
Because EphIDs are generated by the backend, if there exist more than one backend (e.g.,               
one backend per country), each backend can only recover their own long term             
pseudo-identifiers. Therefore, if infected people have spent time in another country during            
the infectious period, the backend will receive observed EphIDs collected in that country             
that it cannot interpret. This means that the centralized design requires a “routing”             
mechanism to ensure that EphIDs arrive at the backends that can interpret them. Options to               
achieve this goal can be to include a country code in the EphID , or to broadcast                
non-interpretable EphIDs  to all other backends to make sure that it reaches home.  

Sharing data with epidemiologists 
In the centralized design, the smartphones never learn which contact events correspond to             
contact events with infected individuals, and therefore cannot provide the relevant           
information to epidemiologists. To provide this service, the central server must keep all             
relevant information and share it with researchers. 

Privacy Comparison 
Interaction graph. The centralized system reveals the interaction graph of each infected            
user to the backend server. This is by design, as the server maps each time-stamped               
ephemeral identifier back to a permanent pseudonym to enable contact tracing. The subset             
of the full interaction graph learned by the server grows quickly as every newly infected user                
uploads their entire contact history, which can be linked to existing nodes in the graph. Even                
though the nodes in the graph are pseudonymous, this is a serious privacy concern because               
graph data is easy to reidentify. 
 
Proximity graph. While in the decentralized design, the proximity graph is only selectively             
revealed to researchers, the centralised design allows the backend server to learn this             
information as well. This violates the privacy requirement about limiting inference to            
minimum necessary and to authorised entities only. 

 



19 

 
Location traceability. The decentralized design limits the potential for location tracking to            
infected users over the course of the infectious period. In the centralised system, access to               
server-side keys (e.g., the backend itself or law enforcement) enables linking ephemeral            
EphID s to the corresponding permanent app identifier and thus tracing/identifying people           
based on EphIDs  observed in the past, as well as tracing people’s future movements.  
 
At-risk individuals. In the centralized design, by design the backend recovers the identity of              
the at-risk individuals to be able to notify the health provider about the fact that they are at                  
risk. The health authority will naturally also learn their identities as they need to be               
contacted. The epidemiologists learn the same information than in the decentralized           
approach, and so does the eavesdropper that can monitor the exchange of the phone during               
at-risk notification. 
 
Infected individuals. The centralised and decentralised contact tracing systems share the           
inherent privacy limitation that they can be exploited by an eavesdropper to learn whether an               
individual user got infected and by a tech-savvy user to reveal which individuals in their               
contact list might be infected now. However, the centralised design does not allow proactive              
and retroactive linkage attacks by tech-savvy users to learn which contacts are infected             
because the server never reveals the EphID s of infected users. 

Security Comparison 
Fake contact events. Creating fake at-risk events is easy in the centralised design and can               
be done retroactively by any tech-savvy infected patient. It does not require broadcasting. It              
suffices with adding the target EphID s to the list of observed events prior to uploading it to                 
the backend. 
 
Suppressing at-risk contacts. Hiding at-risk contacts is possible in any proximity tracing            
system.  
 
Prevent contact discovery. Any proximity tracing system based on Bluetooth low energy is             
susceptible to jamming attacks by active adversaries.  
 
 

  

 



20 

Summary of central/decentral design trade-offs 
 

 Decentralised Centralised 

Privacy Concerns (who can learn what) 

Interaction graph - Backend / State-level 

Proximity graph Epidemiologist Epidemiologist / Backend / 
State-level 

Location tracking 
Of infected users 

Tech-savvy user 
During infectious period 

Backend / State-level 
Always 

Location tracking 
Of non-infected users 

- Backend / State-level 
Always 

At-risk individuals Tech-savvy user / Eavesdropper Eavesdropper / Backend / 
State-level 

Infected individuals Tech-savvy user / Eavesdropper Tech-savvy user / Eavesdropper 

Percentage infected 
individuals 

Tech-savvy external with 
antenna 

State-level 

Security Concerns   

Fake contact events Yes 
Physical proximity + amplified broadcast 
(with knowledge of infected EphID) 

Yes 
Infected tech-savvy user / Backend / 
State-level 

Suppressing at-risk 
contacts 

Yes 
Tech-savvy user (own contacts only) 

Yes 
Tech-savvy user / Backend / State-level 

Prevent contact 
discovery 

Yes 
Tech-savvy user + broadcast 

Yes 
Tech-savvy user / Backend / State-level 

 
 
 
 

  

 



21 

Conclusion  
In this whitepaper, we have outlined a reference design for a decentralized approach to              
proximity tracing, and we have described evaluation criteria to assess the level of privacy              
provided by any proximity tracing solution. A key requirement driving our design is to              
minimize exposure of private data, limiting privacy leakage. 
 
Our proposed decentralized design relies on smartphones to locally compute the risk for an              
individual user to have contracted the virus based on exposure to infected persons. Data              
about specific contact events, i.e. interactions between individuals, always remains on users’            
phones and risk calculation happens locally, according to the guidelines set by the health              
authorities. In addition, users may voluntarily and privately share data about interactions with             
infected persons (but never contact events itself) with epidemiologists to aid the investigation             
into the spread of SARS-CoV-2. The decentralised design gives users fine-grained control            
over the information they share and all data sharing happens under the user’s explicit              
permission. 
 
We have presented criteria for the evaluation of security and privacy aspects of proximity              
tracing and have thoroughly evaluated our decentralized design. Our design scales to a             
large number of users with minimal local computation and minimal centralization. Compared            
to a central design in which the backend would compute risks and inform users, our design                
protects interaction graphs from the backend, and only a determined tech-savvy adversary            
can learn any extra information besides the one made visible by the app. The centralized               
system, in comparison, leaks a lot of unnecessary information about contacts to the             
backend, and requires large amounts of trust in a central entity. 
 
We strongly urge governments, health authorities, and researchers that any deployment of            
proximity tracing follows a decentralized design similar to our system to avoid the creation of               
centralized systems that have the potential to become surveillance infrastructures. We are            
currently working on a reference implementation of the decentralized design which will be             
released openly during the next weeks. 

 


