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Abstract 
Although collaboration is considered a key 21st-century skill, oftentimes it is only assessed through the outcome 
measures of individual learners. In this paper, we draw upon collaborative cognitive load theory (CCLT) to explain 
the process of collaboration in learning from the point of view of the collective, rather than an individual learner. 
Using CCLT we suggest a new method of measuring the process of collaboration regardless of its outcome 
measures. Our approach — Collaborative Learning as a Process (CLaP) — uses social network analysis to evaluate 
the balance between interactivity gains and coordination costs of learner communities. Here, we demonstrate the 
approach using real-world data derived from the digital tracks of two online discussion communities. We argue that 
our conceptual approach can enable instructors and learners to unlock the black box of collaboration in learning. It 
has the potential to support the development of learner skills that go beyond cognition. We conclude the paper with 
the results of our investigation of the value of the approach to the online module instructor. 

 
Notes for Practice 

• Research on the assessment of collaborative learning is still ongoing, considering the advancement in 
online technologies and new theoretical considerations such as collaborative cognitive load theory 
(CCLT). 

• Collaboration in learning is currently mainly assessed through summative evaluation of individuals. 

• We draw upon CCLT to suggest a quantitative instrument for the assessment of the collaboration 
process in learning. 

• We evaluate the collective rather than the individual, and the process rather than the outcome. 

• The CLaP approach introduced here gives teachers a glimpse into the process of collaboration rather 
than its summative outcomes by viewing the changes occurring in the relationship between interactivity 
gains and coordination costs. 
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1. Background and Introduction 
Every psychological process can be considered as cognitive in the sense of relying on information processing; however, “non-
cognitive” has become the common term for “traits or skills not captured by assessments of cognitive ability and knowledge” 
(West et al., 2016, p. 1; Farrington et al., 2012), especially in the context of 21st century skills (Dede, 2010). The interest in 
measuring non-cognitive skills is increasing, as employers are challenged with graduates proficient at passing exams, but 
lacking the expected expertise in non-cognitive skills such as the ability to collaborate effectively (Dede, 2010; Casner-Lotto 
& Barrington, 2006; Murnane & Levy, 1996). The assessment of collaboration skills requires looking beyond particular 
learning outcomes such as grades, and beyond individual-level skills of learners (Farrington et al., 2012). In this paper, the 
learning goal is focused on how to collaborate, which requires an emphasis on the process of collaboration rather than domain-
specific knowledge. We draw upon collaborative cognitive load theory (CCLT; Kirschner, Sweller, Kirschner, & Zambrano, 
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2018) to analyze and explain the process of collaboration in learning as a function of the collective working memory gains and 
coordination costs inherent in working together. 

The assessment of non-cognitive skills is essential to provide teachers and learners with insights into their development. 
Summative, outcome-based methods of measuring non-cognitive skills (such as multi-choice end-of-term exams) are generally 
mature and technically simple to assess. However, their accuracy and external validity have been criticized (Knight, 
Buckingham Shum, & Littleton, 2013). For instance, can we really measure collaboration skills using individual tests? The 
challenge in assessing non-cognitive skills such as collaboration remains relevant today, particularly in terms of process-
oriented and formative assessments (Gardner, 2011). 

Kent, Laslo, and Rafaeli (2016) have shown a correlation between summative learning outcomes and processual 
interactivity patterns of behaviours in online collaborative learning discussions. However, it is not a strong correlation and 
there is no causal direction. This suggests that individual outcome evaluations alone might not be enough to judge the quality 
of collaboration in online learning settings. Instead, we suggest that the dynamic measurement of interaction networks should 
be considered. As the area of learning analytics has shown, analytical technologies can be instrumental in assisting teachers 
with the assessment itself (Strijbos, 2011). However, deductive approaches driven by learning theories in the learning analytics 
field, appear to be less frequent, and are indeed needed (Cukurova, 2018). Therefore, in this paper we offer a theory-driven 
learning analytics approach to the process evaluation of learner collaboration. 

The paper is structured as follows: the introduction and related work sections present the literature on our chosen theoretical 
framework that drives the analytical framework. The methods section explains our methodology to assess collaboration in 
learning as a process. In the results section, we present two case studies to illustrate the potential of our approach using real-
world data. Lastly, we discuss our conclusions. 

2. Related Work 
2.1. Collaboration and Learning Outcomes 
Collaboration is about interacting with others to apply knowledge and to reach a shared understanding. Looking at the existing 
evidence, collaboration can reinforce knowledge and improve learner attainment, as well as improving their attitudes towards 
certain subject areas (Johnson & Johnson, 2002; Johnson, Johnson, Roseth, & Seob Shin, 2014). However, collaboration’s 
positive outcomes for learning are not always consistent (Kester & Paas, 2005; Slavin, 2014). Most researchers would agree 
that learners should be appropriately guided while collaborating to achieve the expected learning outcomes (Kirschner, 
Sweller, & Clark, 2006; Cukurova, Bennett, & Abrahams, 2018). However, the peculiarities of the collaboration process and 
what makes it work or fail are still being questioned by our research community (Dillenbourg, 1999; Collazos, Padilla, Pozzi, 
Guerrero, & Gutierrez, 2014). 

2.2. Theoretical Framework to Conceptualize the Process of Collaborative Learning 
Kirschner et al. (2018) argued that existing theories on the human cognitive architecture underlying learning processes, 
particularly cognitive load theory (CLT), can provide valuable insights into collaborative learning. CLT proposes a 
transactional model to describe our cognitive resources used in individual learning (Sweller, 1988). Specifically, its emphasis 
is on the working memory (WM) resources required to carry out a learning task, which is used to assess the effort invested in 
individual learning. CLT is based on the notion that the WM, thought of as our main cognitive consumer of novel information, 
is known to be limited in capacity (Cowan, 2001) and duration (Peterson & Peterson, 1959). Long-term memory (LTM), on 
the other hand, thought of the cognitive storage of our existing information, does not impose any limits to learning in terms of 
capacity (Janssen, Kirschner, Erkens, Kirschner, & Paas, 2010). 

According to CLT’s environmental organizing and linking principle, external signals trigger the retrieval of information 
from the LTM to the WM (Janssen et al., 2010). The effective incorporation of new information elements into schemas in the 
LTM will make retrieval from the LTM back into the WM more effective. This interaction between the newly acquired 
information and already assimilated knowledge is at the heart of cognitive and constructivist theories of learning (Ausubel, 
1968). In his assimilation theory, Ausubel (1968) made a distinction between meaningful and rote learning. To be meaningful, 
newly acquired information must be assimilated into existing cognitive structures. Thus, we use the concept of a “meaningful 
interaction” as the act of relating newly introduced information with already structured knowledge to serve as the core of our 
working definition for learning. This definition posits the importance of 1) learners’ opportunities to be exposed to new 
concepts, information, and observations; 2) solid schemas of existing knowledge in the LTM; and 3) learning designs that 
reflect on the connections between new information and existing LTM schemas. 

2.3. From Solo to Socio: Placing Group “Cognition” Within its Network of Interactions 
In constructivist conceptualizations, learning is placed among learners before it takes place within the individuals. For example, 
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Piaget’s sociocognitive conflict theory saw the potential in learning within contradictions created between learners’ existing 
understanding and their new experiences resulting from social interactions. Vygotsky’s (1978) sociocultural view places 
individual learning as originating within social interactions, and human actions as mediated by knowledge co-construction 
semiotic tools (Palincsar, 1998). Similarly, other branches of cognitive sciences, such as Distributed Cognition (Hutchins, 
1996) places cognition as distributed across objects, individuals, artefacts, and the environment. That is, when a group is 
performing a cognitive task, it manifests cognitive properties that differ from the cognitive properties of individual learning 
(Hutchins, 1996). From a CLT perspective, collaborative learning avails the group’s cognitive resources to the disposal of the 
individual learner (Janssen et al., 2010). In these conceptualizations of collaborative learning, similar to the use of distributed 
computing or cloud computing, the effect of collaboration on the individual’s learning is mainly achieved by affording more 
resources at the individual’s disposal. In this sense, collaborative learning can be considered as a network of interactions 
between learners and artefacts that scaffold and set the context for individual learners by allowing them to be exposed to other 
people’s relation making, and to other people’s LTM. Based on these theoretical considerations, we define collaboration in 
learning as the process of establishing and growing a network of learners and knowledge artefacts (e.g., Siemens, 2005) that 
will serve as a shared cognitive resource (Kirschner et al., 2018) used by individual learners. This scaling — from interactions 
between newly introduced and already established knowledge at the individual level to the set of interactions between learners 
and concepts at the collective level — is instrumental to our conceptualization of group “cognition.” 

2.4. Analyzing the Process of Collaboration 
The above conceptualization of collaboration in learning as a process is well-resonated in the literature. Roschelle and Teasley 
(1995) define collaboration as “a coordinated, synchronous activity that is the result of a continued attempt to construct and 
maintain a shared conception of a problem” (p. 70). However, the measurement of collaboration often focuses on individual 
gains in the learning process rather than the actual collaboration. For instance, Kirschner, Paas, and Kirschner (2011) and 
Kirschner, Kirschner, and Janssen (2014) discuss the concept of collective memory effect, suggesting that collaborative 
learning may be more effective than individual learning if the complexity of the learning task requires cognitive resources 
exceeding the limits of each individual learner’s WM (Janssen et al., 2010). However, the collective memory effect is defined 
and evaluated from the perspective of the individual’s learning gains, and it assumes the role of the group’s cognitive resources 
as facilitating or enabling tools for individual learning, rather than as an entity by itself. Thus, in that research stream, the 
effectiveness of collaborative learning is measured through the individual lens (Johnson & Johnson, 2002), and the cognitive 
load is measured using the individual unit of analysis (Kirschner et al., 2018). 

On the other hand, Ickes and Gonzalez (1996) argue that the study of the subjective phenomena occurring within a single 
cognitive system cannot be carried out using the same sterile approach when studying the intersubjective phenomena occurring 
between several cognitive systems. “Research on subjective social cognition derives from the paradoxical assumption that the 
best way to study social cognition is to first remove it from the social interaction context in which it naturally occurs” (Ickes, 
2002, p. 7). Within the context of collaborative learning, though, it is not ideal to artificially consider each cognitive system as 
a separate entity without also evaluating the interdependent network effect. 

Bridging such a gap requires us to question whether the cognitive ecosystem of the learning group can be modelled as a 
linear additive function of its individual cognitive ecosystems. Woolley, Chabris, Pentland, Hashmi, and Malone (2010) show 
that collective intelligence of a group, defined as the general performance of the group in a wide variety of tasks, is not 
correlated with an aggregative function of the intelligence of its participants, but rather on interactional traits of the group, such 
as social sensitivity, the equality in distribution of conversational turn-taking and the proportion of females. The cognitive 
systems of the group participants are intertwined in a network of interactions between LTMs and WMs of the agents (human 
and artefacts) involved in the collaboration. Similarly, Stahl (2010) claimed that the collaborative cognitive act could not be 
reduced to and discussed in terms of individual cognition. To Stahl, cognition does not necessarily need to be attributed to an 
individual, not even to a human: “Anything that can compute well enough to play chess or prove theorems can be a cognitive 
agent — whether they are a person, computer or collaborative small group” (p. 26). Therefore, as opposed to a linear addition 
of the individual cognitive systems, interactivity itself should be considered as a new resource at the disposal of each learner. 
This leads us to choose a network analysis approach to operationalize the collective entity of learner collaboration in learning. 

3. Methodology: Calculating The Clap Evaluation Framework 
Researchers have used a variety of approaches to analyze collaborative learning, such as content analysis methods (Veerman 
& Veldhuis-Diermanse, 2001), mixed-evaluation methodologies (Martinez, Dimitriadis, Rubia, Gomez, & De La Fuente, 
2003), and social network analysis (SNA; De Laat, Lally, Lipponen, & Simons, 2007). Here, we use SNA as one potential 
way of realizing collaboration in learning as a process. SNA has been used extensively to analyze collaborative learning, 
especially to assess individual learner roles (Rabbany, Elatia, Takaffoli, & Zaïane, 2013), but also for assessing collaborative 
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patterns (Chounta, Hecking, Hoppe, & Avouris, 2014) and with specific focus on temporality (Claros, Cobos, & Collazos, 
2016). Most of these investigations are inductive in nature, as the conclusions are drawn from applying common SNA 
measures, rather than deduced from educational theories. Although the use of SNA to interpret collaborative learning is not 
new to the field, to the best of our knowledge, this paper is the first attempt to use SNA to operationalize CCLT. 

Based on CCLT, we suggest that analyses of collaboration in learning should consider at least the following two main 
values: 1) the overhead of coordination costs and 2) the added value of interactivity between the network participants. The 
coordination costs are the WM cognitive costs of general communication and coordination processes. They might be low due 
to being biologically primary, such as gestures, or high due to being biologically secondary, such as task-specific 
communication (Paas & Sweller, 2012). On the other hand, the interactivity gains are the cognitive contributions or aids 
resulting from interactions among co-learners. 

Assessing the coordination costs (increasing the cognitive load) and interactivity gains (decreasing the cognitive load) 
using network analysis could provide an authentic estimation of collaboration processes in learning. We call this relationship 
between interactivity gains and coordination costs the Collaborative Learning as a Process (CLaP) index. In terms of a 
networked view, the group structural features that prevent an efficient, quick, effective flow of information would lead to high 
coordination costs. On the other hand, structural features that support a free, egalitarian, efficient flow of information, that 
expose learners to content and connect new information to existing knowledge, would lead to high interactivity gains. Given 
a specific collective learning process for a specific community within a finite duration, the higher the relation between the 
interactivity gains and coordination costs (i.e., the CLaP index), the higher the likelihood of effective collaboration among the 
participants. 

3.1. Operationalizing the Concept of CLaP Analysis 
In this section, we will suggest various operationalizations, or proxies, to calculate both the coordination costs and the 
interactivity gains using social network analysis. It is not our intention to provide an exhaustive list of proxies, but merely to 
suggest a potential operationalization for our theoretical arguments. Thus, we begin by suggesting a few guidelines for 
choosing a specific operationalization. First, the measure should analyze the process of collaboration rather than just its 
outcomes. Second, the unit of analysis should reflect on the whole group, aiming to reflect on the interdependencies between 
participants. Third, in order to measure the quality of the collaborative process, we aim to evaluate the relation between 
interactivity gains and coordination costs (CLaP index) rather than their independent absolute values. Our purpose is to provide 
an assessment that would operate regardless of the instructional design, and would not need to be tailored to the subject domain, 
both of which (among other factors) may affect the absolute values of coordination costs and interactivity gains. In the next 
section, we demonstrate these guidelines by using SNA. 

3.2. Using SNA to Measure Interactivity Gains and Coordination Costs 
Social network theory provides tools to understand how autonomous individuals combine to create sustainable societies 
(Borgatti, Mehra, Brass, & Labianca, 2009). One of its key axioms is that structure matters. For example, groups composed of 
the same set of member skills can perform differently depending on the patterns of interaction among them. For example, 
group cohesion (i.e., level of connectedness) may be accountable for the superiority of group performance over individual 
(e.g., Chiocchio & Essiembre, 2009). 

A detailed explanation of SNA approaches is beyond the scope of this paper. However, we provide definitions of the SNA 
proxies referred to here in Appendix A (for details, see Wasserman & Faust, 1994; Easley & Kleinberg, 2010). Here, we 
suggest some structural properties that can be used to measure the dynamics of interactivity gains and coordination costs. These 
proxies are merely initial suggestions for operationalization. An extended, fine-tuned suggestion for proxies is also beyond the 
scope of this paper. 

Before turning to proxies, it is important to mention a well-researched, non-structural property of learning communities: 
their size. As the number of interactions that learners maintain with their peers increases, their potential ability to learn 
increases, but at the same time there is a cognitive limitation to the number of ties humans can maintain (e.g., Dunbar, 1992). 
Many group dynamics studies have shown how smaller groups can more easily enable trust, commitment, and cohesion 
(Soboroff, 2012). However, since collaborative learning is such a complex construct, and since group size also relates to other 
structural properties of networks such as density and mean degree, we must investigate further which size and tie formation 
process result in the coordination costs overcoming the interactivity gains, leading to a lower CLaP. 

3.2.1. Measures of Interactivity Gains 
Interactivity gains are the cognitive wealth and benefit resulting from interactions with co-learners. Interactions, using social 
influence, are known to boost collaborative learning and collective performance (Bernstein, Shore, & Lazer, 2018). We suggest 
the three proxies below to measure interactivity gains. 
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Group cohesion is related to group members’ motivation to advance the group’s continuity and to group collaboration in 
general (Kwon Liu & Johnson, 2014; Tulin, Pollet, & Lehmann-Willenbrock, 2018). One of the network measures commonly 
used for cohesion is density. The denser the network, the more cohesive the group. Some rationales behind it are the shorter 
paths of information flow and the social “stickiness” that discourages group members from leaving (Tulin et al., 2018). 

The clustering coefficient of a node essentially measures how well its direct neighbours are connected between themselves. 
Thus, a network with a higher average of clustering coefficient is likely to manifest more collaborative behaviours (Newman, 
2001). 

The reciprocity of interactions in a network indicates its level of mutuality in interactions. Mutuality and the members’ 
level of participation in a two-way dialogue are indicators of collaborative learning (Damon & Phelps, 1989; Cukurova, Luckin, 
Millán, Mavrikis, & Spikol, 2017; Cukurova, Luckin, Millán, & Mavrikis, 2018). Thus, reciprocity is the third proxy we 
suggest for interactivity gains. 

3.2.2. Measures of Coordination Costs 
The coordination costs in our context are the cognitive resources required by group members to manage the interdependencies 
between themselves, their ideas, and interpretations, in order to complete a task collaboratively. The dynamics of interactions 
network evolvement is very crucial to the level of coordination costs. For the same resulting network structure, a different 
process of a network’s growth may lead to a different amount of associated coordination costs (Goyal & Vega-Redondo, 2005). 
We suggest the six proxies below to measure the coordination costs: 1) variance in degree, 2) average closeness, 3) diameter, 
4) average path length, 5) variance in betweenness, and 6) number of strongly connected components. 

Variance in degree: The concept of network controllability is strongly related to coordination costs. According to control 
theory (Kalman, 1963), a dynamic network is controllable if there exists a specific choice of inputs for which it can evolve 
from an initial state to any desired final state within a finite time (Liu, Slotine, & Barabási, 2011). Thus, the more controllable 
a network, the fewer resources needed for coordination. Liu et al. (2011) have shown that sparse and heterogeneous networks 
(in terms of node degrees) are harder to control than dense and homogeneous ones. Thus, we suggest variance in the nodes’ 
degree as a proxy for coordination costs. 

Average closeness: Coordination has been operationalized by centralization, which was found to be negatively correlated 
with knowledge sharing (Tsai, 2002). Closeness centrality (Freeman, 1978) measures how close, and thus central, a node is in 
relation to all other nodes. The higher the closeness level of a node, the more independent its associated learner since they do 
not need to go through many others to access information. Thus, we use the average closeness in a network as a proxy for 
coordination. The lower the average closeness, the higher the coordination costs. 

Diameter and average path length: Using the same argument, network distance measures such as diameter and average 
path length are also related to the inverse of closeness. Thus, coordination costs could also be explained by distance measures. 
The more distant nodes are from each other, the higher the coordination costs required to collaborate. 

Variance in betweenness: A high betweenness value of a node means its associated learner is more likely to become a 
bottleneck in the network since the flow of information depends on them (Tulin et al., 2018). The higher the variance in 
betweenness, the more extreme values of betweenness exist, and thus more nodes with low betweenness might be dependent 
on more nodes with high betweenness. Thus, we suggest the variance in betweenness as a proxy for coordination costs. The 
higher the variance, the more costly coordination will be. 

Number of strongly connected components (SCCs): The circulation of information and ideas is much faster within a 
strongly connected component than in a less connected one (Newman, 2001). Thus, assuming the coordination costs between 
SCCs is higher than within an SCC, lead us to suggest that the number of SCCs can also serve as a proxy for coordination 
costs. The larger the number of SCCs, the higher the coordination cost. 

The SNA measures for both interactivity gains and coordination costs are summarized in Table 1. In section 4, we will 
demonstrate our approach using data extracted from online interactions. Although it is clear that online and face-to-face 
collaborative learning hold many differences, as both are based on a network of interactions, we hypothesize that this approach 
could be demonstrated for face-to-face collaborative learning as well. 

4. TWO CASE STUDIES OF CLaP ANALYSIS 
To demonstrate the operationalization of our approach, we use two case studies of two graduate classes in two different 
universities, both under a business faculty taught by the same instructor, using blended learning and the same discussion 
platform, as described in the next subsection. 

 
 



 
 
 

ISSN 1929-7750 (online). The Journal of Learning Analytics works under a Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported 
(CC BY-NC-ND 3.0) 

 

64 

Table 1. Summary of Suggested Network Measures and Interpretations 
Network Measure Operationalized 

Construct 
Dimension Interpretation 

Density Cohesion  Interactivity 
gains 

High density indicates high interactivity 
gain. 

Average clustering 
coefficient  

Direct neighbours’ 
connectedness  

Interactivity 
gains 

High average clustering coefficient 
indicates high interactivity gain. 

Reciprocity  Mutuality in 
interactions  

Interactivity 
gains 

High reciprocity indicates high interactivity 
gain. 

Variance in nodes degree  Controllability  Coordination 
costs 

High variance in the node degree indicates 
high coordination costs. 

Average closeness  Independence  Coordination 
costs 

Low average closeness indicates high 
coordination costs. 

Diameter  Longest distance 
in the network  

Coordination 
costs 

High diameter indicates high coordination 
costs. 

Average path length Average distance 
in the network  

Coordination 
costs 

High average path length indicates high 
coordination costs. 

Variance in betweenness  Inequality  Coordination 
costs 

High variance in betweenness indicates 
high coordination costs. 

Number of strongly 
connected components  

Speed of 
communication  

Coordination 
costs 

A high number of strongly connected 
components indicates high coordination 
costs. 

 

4.1. Online Discussion Tool: Ligilo 
The online discussion tool we use is called Ligilo1,  a hyperlinked discussion platform where each post is expressed as a node 
in a semantic network of posts. Using Ligilo, collaborative learning communities create collective concept maps while 
conducting online discussions. The relations among posts are semantically tagged by community members (e.g., “reminds me 
of” or “as opposed to”; see screenshots in Appendix B). 

Ligilo was chosen since it is based on our working definition of learning as occurring meaningfully when new information 
is related to existing prior knowledge (Ausubel, 1968). Essentially, three types of learning interactions are implemented in 
Ligilo: 1) active contribution (e.g., creating, updating, or deleting posts); 2) content consumption (e.g., viewing posts, 
refreshing sub-posts, viewing a map of posts, viewing posts’ links, viewing attachments, and searching); and 3) content 
organization (e.g., connecting non-connected posts, voting and un-voting for a post, following and unfollowing posts, and 
following and unfollowing learners). In our analysis, we adopted this separation of measuring the different three types of 
interactions based on the notion that the three sub-networks behave differently (which might result from a different learning 
design; Kent & Rechavi, 2018). Interactions of and with the platform, such as logins and profile updates, were excluded from 
the analysis. 

4.2. CLaP Analysis of Two Communities 
4.2.1. The Sample and Study Context of the Case Studies 
We investigated two communities as part of our case study, pseudo-named Community 1 and Community 2. The descriptive 
details about these two communities’ discussions are summarized in Table 2. As can be seen, although both communities were 
taught using blended learning, both within management faculties, using the same discussion tool by the same instructor, and 
with a similar moderation style, they present quite different descriptive features of collaboration such as the total number of 
interactions, posts, and cross-references. 

The two communities were given the similar collective task of building a collective concept map, covering the module’s 
concepts, including the mapping of articles and relevant examples to the various concepts. Community 1 was given a second 
collective task, starting the 5th week, of collectively creating a set of questions and answers for their final exam, also related 
to the concepts contributed at the first task. From a CLT perspective, Ligilo’s interactions can be thought of as “footprinting” 
the collective schema as it is being generated. Thus, the effective incorporation of new information elements into the created 
map is designed to help the retrieval from the “collective LTM” back into the students individual WMs. 

 

 
1 www.go-ligilo.com 
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Table 2: High-Level Description of the Two Learning Communities 
Class name Term Total number of 

interactions 
Total number of 

posts 
Number of 

students 
Total number of 
cross-references* 

Community 1 Autumn 
2015 

7,600 253 (246 after 
deletions) 

42 24 

Community 2 Spring 2017 15,515 408 (399 after 
deletions) 

32 222 

* Cross-references are the actions of relating two existing (initially unrelated) posts. 
In order to gather more contextual information about the two communities, we interviewed the course instructor. 

Community 1 was taught within a special postgraduate business program in which students arrive from out of the country for 
a one-year degree. Most students were thus not local and were very young (in their early twenties) relative to other MBA 
students, who often have substantial work experience. According to the course instructor, because of the students’ young age, 
and perhaps due to their cultural heterogeneity, the interaction in class was not as the instructor would have expected. The 
instructor also argued that most of the students’ motivation was not rooted in a genuine interest in the taught subjects. 
Community 2, on the other hand, was composed of local postgraduate students studying in a more common two-year program. 
Most of these students were experienced knowledge workers in their thirties and forties who chose to study the course out of 
professional interest. Thus, the instructor argues that due to their maturity, and perhaps cultural homogeneity, the interaction 
between the instructor, the students, and the learning materials was more efficient. 

4.2.2. CLaP Analysis 
Ligilo’s bimodal network of posts and learners is a nearly bipartite graph. As a pre-analysis phase, we transformed this graph 
into a single modal graph in the following way: for each pair of learners (j, i), if post x created by i with which j interacts, the 
network will possess a tie (edge) j→ i. The number of edges reflects on the number of absolute interactions. For example, if 
learner i views the same post (contributed by j) twice, the network will include two edges of type “view” between i and j. 

 

 
Figure 1. Evolving interaction networks of Community 1 (top) and Community 2 (bottom). Consumption type 

interactions are orange, contributions are blue, and organizational interactions are green. 

Aligned with the instructor’s comments, it becomes clear from Figure 1 that the two communities show different trends of 
interaction. First of all, Community 1 starts slowly with very few interactions and builds slowly. Whereas, Community 2 starts 
with a high number of interactions and continues to grow for the next seven weeks. It is also clear that Community 1 is 
composed mainly of consumption-type interactions and very few contributional and organizational interactions. On the other 
hand, Community 2 shows plenty of organizational interactions, particularly after the first two weeks, and more contribution 
interactions compared to consumption interactions. 

Looking at basic metrics of network growth, as shown in Figure 2, the two communities’ interaction networks show a 
similar rate of growth. Albeit Community 1 presenting much lower values and a much less variant network of interaction, the 
rate of growth is similar. However, using the CLaP index computed by interactivity gains and coordination costs provides us 
with a clearer picture of the collaboration process for both communities. 
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Figure 2. Interactions of Community 1 (brown) and Community 2 (pink): (a) the number of edges, (b) the number of 
posts per week, and (c) the average number of posts per person per week. 

In Appendix C, we show the interactivity gains and coordination costs of the two communities as operationalized by all the 
metrics suggested in section 3.2.1. To demonstrate the use and validation of CLaP analysis, in the next section we describe a 
single CLaP operationalization in which interactivity gains are proxied as reciprocity and transaction costs are proxied as the 
variance in degree. These were chosen in accordance with the course instructor’s two pedagogical goals for collaboration 1) 
learners should engage in mutual interactions and 2) learners should reach a shared understanding. More specifically, 
reciprocity was chosen to reflect how mutual the learner actions are; the variance in their degree of interactions was chosen as 
an aggregation of how similarly individual learners “see the world,” and to what extent they reach a shared understanding. The 
more unbalanced they are, the more effort they would need to put into coordinating their understanding to reach a consensus. 

4.2.3. Initial Validation of Clap as the Relationship Between Reciprocity and Degree Variance 
One of the challenges associated with evaluating the process of collaboration in learning is that there is no commonly accepted 
standard validation measure (OECD, 2015). Individual summative assessments are not the right assessment for collaboration 
on the collective level (Kent, Rechavi, & Rafaeli, 2018). To address this challenge, we chose a mixed-methods approach in 
which we apply a quantitative analysis and then qualitatively validate the value of the CLaP approach with the module 
instructor (Chounta et al., 2014). 

Woolley et al. (2010) address collective intelligence as the group’s collective performance in a variety of tasks. In the 
context of our two communities, the collective tasks were carried by means of online interactions in a virtual shared space. 
From a CLT perspective, the individual efforts (measured by learner interactions) are done to avail the group’s cognitive 
resources back to the disposal of the individuals (Janssen et al., 2010). Our hypothesis is that the CLaP index would 
significantly correlate with the number of the three types of interactions measured in Ligilo. Figures 3 and 4 show a strong 
positive correlation between the progress of the CLaP index (in purple), in both left images for Community 1 (Figure 3) and 
Community 2 (Figure 4), and the collective effort as measured by the number and the types of learner interactions on the right 
images respectively. 

 
Figure 3. (Left) Community 1’s CLaP components, normalized to a 0–1 scale; (right) Community 1’s number of 

interactions, normalized to the size of the community and to a 0–1 scale. 
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Figure 4. (Left) Community 2’s CLaP components, normalized to a 0–1 scale; (right) Community 2’s number of 
interactions, normalized to the size of the community and to a 0–1 scale. 

Despite the obvious limitations of this kind of quantitative analysis (the small dataset of only seven data points for each 
community) significant correlation results are indicative of the CLaP index’s validity to measure the collaboration process. In 
general, it is interesting to note that all three participation variables behave similarly, and that they all strongly correlate with 
the CLaP index (Pearson correlation between the three participation variables and the CLaP index was above 0.9). We also 
confirmed that CLaP is more highly correlated to the participation metrics than its two independent components (reciprocity 
and efficient of variation) individually did. This also indicates the higher meaning of their relationship as opposed to their 
absolute values for measuring collaboration. 

To obtain external validity and rich insights into the potential of the index, we organized a feedback session with the course 
instructor. When presented with the charts above to reflect upon, the instructor argued that the CLaP index can be valuable in 
capturing the general collaboration quality of the class, which is especially problematic in large classrooms and distance 
learning settings such as MOOCs. When asked to interpret the graphs, the instructor talked us through some examples where 
CLaP raises issues that cannot be seen using simple participation metrics (such as those on the right side of Figures 3 and 4). 
For example, the stable correlation between the CLaP index and the participation charts begins from the first week of 
Community 2 and stays steady, but only begins to be stable by week 3 in Community 1. As a reflection on this irregularity 
over the first three weeks, the instructor pointed to tensions arising in Community 1. He explained how the learners had 
relatively low motivation to use online discussions and lacked appreciation for collaborative work in general. The instructor 
asserted that “this made their collaboration process somewhat ‘bumpy.’” This might also explain why, in general, the 
collaboration process was limited in Community 1. Among Community 2 members, as argued by the instructor, “the need to 
collaborate online was well understood and appreciated.” Reflecting upon the performance of Community 1, the instructor 
noted that “students were not happy with the introduction of collaborative tasks and they were asking why they need to complete 
them. Previous cohorts of the same class didn’t have the same tasks and students of the investigated cohort were uncomfortable 
for the first few weeks with the allocated collaborative tasks. This phenomenon is not captured in regular participation 
analysis, such as number of contributions, but can be easily seen with CLaP charts.” 

Another example of CLaP’s ability to capture the collaboration process, according to the instructor, was the indicated rise 
in the CLaP index in Community 1 during week 6. This was associated with the introduction of the second collaborative task, 
which was to collect questions and answers for the course’s final exam. The instructor, reflecting upon this change in the CLaP 
index, emphasized that “compared to the first task (a collective concept mapping), students more easily related the second task 
to their own motivations of doing well in their exam and observing an immediate impact on their individual outcomes. It is 
very interesting to see that the change of the collaborative task in week 6 led to a rise in collaborative behaviours of the 
cohort.” Such insights show that CLaP type of process evaluation is not only valuable for instructors to reflect on the class 
dynamics retrospectively, but also might help them design more relevant collaborative tasks in the future. 
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5. DISCUSSION AND CONCLUSIONS 
In this paper, we present an argument for investigating the collaboration process in learning based on CCLT. Our approach 
explains the collaboration process as a function of the relationship between interactivity gains and coordination costs. 

5.1. Practical Implications 
As demonstrated in section 4.2.3, CLaP analysis can be used by instructors to open-up the black box of the collaboration 
process taking place in their class. It can be used not just by presenting the trends in collective actions, but also by suggesting 
an explanation, by breaking it down to its components of coordination costs and interactivity gains. It is important to note here 
that we do not present CLaP as a single aggregate value of different proxies, which could be calculated to assess the level of 
collaboration of a community. This is mainly because the different measures of both interactivity gains and coordination costs 
are not interchangeable. Each measure adds its own dimension, reflecting the multidimensional nature of the process of 
collaboration in learning. 

5.2. Theoretical Implications 
Our theoretical contribution is manifested by turning the CLT flashlight onto collaborative learning from the perspective of 
the collective unit of analysis, rather than the individual learner. Collaboration in learning is a process rather than a result. It is 
not ideal to investigate collaboration in learning as a process by artificially considering each individual’s cognitive system as 
a separate entity without evaluating the interdependent network effect. Hence, we perceive collaboration in learning as the 
process of establishing and growing an interactions network among learners and knowledge artefacts. We show that using 
social network analysis to calculate the relationship between coordination costs and interactivity gains can shed light on the 
collaboration processes of learning groups. To the best of our knowledge, this is the first attempt to operationalize CCLT 
within learning analytics. 

5.3. Limitations and Future Studies 
The CLaP framework is designed to be used cross-medium, cross-subject, and cross-instructional design, in the sense that it 
does not depend on content, or any other specifics of subject domain or design. On the other hand, it helps teachers and learners 
understand the impact of a change in these variables on the collaboration process. This is both a strength and a limitation. 
Thus, as shown in our case studies, CLaP analysis must be combined with other measures, such as instructor reflections and 
expert rating of the quality of collaboration (Chounta et al., 2014). This study is mainly conceptual, presenting an analysis 
framework for the collaboration process. Therefore, further work must be undertaken to empirically validate the approach 
using various data sources and other proxies. SNA literature offers numerous network formation properties that could 
potentially be used to measure coordination costs and interactivity gains. We name just a few proxies and demonstrate their 
use in section 4. However, we encourage future studies to experiment with other network measures in order to refine and 
validate the selection of best-fit measures for each learning context. In this paper, our intention is not to provide a conclusive, 
exhaustive list of proxies, but rather to demonstrate a potential operationalization of our theoretical arguments. Next, we plan 
to validate the CLaP approach in near real-time visualizations in a MOOC, validating its impact with more instructors and 
learner groups. We also plan to further develop CLaP in a co-design process with a group of instructors to produce some 
guidelines for possible recommended action plans resulting from CLaP reflections, and for developing guidelines as to which 
proxies of interactivity gains and coordination costs best suit different pedagogical goals. 
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APPENDIX A: SNA DEFINITIONS 
● The average path length (APL) of a network is the average number of ties between all pairs of nodes in the network. 
● The betweenness centrality of a given node (i) is the number of shortest paths between any other two nodes that pass 

through i. High betweenness means that a node is connecting many pairs of nodes that would not have been connected 
without it. 

● The closeness centrality of node i is inverse of the sum of the length of shortest paths between i and all other nodes in 
the network. It is a measure of how central a node is in its network. 

● The clustering coefficient of node i is the proportion of ties connecting i’s neighbours to each other out of the number 
of ties that could possibly exist between them. 

● The degree of a node i in a network is the number of ties connected to it. In a directed network, it is the number of ties 
outgoing from i to its neighbours plus the number of ties incoming into i from its neighbours. 

● Density is the number of ties (or edges) in a network, as a proportion of the maximum possible number of ties that 
could have existed potentially within that network. In case there is more than one edge between two nodes, the density 
values can be larger than one. 

● The diameter of a network is the longest path between any two nodes in the network. 
● A strongly connected component is a sub-network in which each pair of nodes is connected by a path. 
● Reciprocity is the proportion of ties that show two-way communication (also called reciprocal or mutual ties) out of 

the total number of existing ties.
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APPENDIX B: LIGILO SCREENSHOTS 

 

Figure 5. Ligilo’s basic view. Posts to the left are connected by blue tags to posts on the right. 

 

 

Figure 6. Bird’s-eye view of posts in Ligilo. 
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APPENDIX C: OPTIONAL INTERACTIVITY GAINS AND TRANSACTION COST METRICS 
FOR COMMUNITY 1 AND COMMUNITY 2 
As discussed in section 3.2.1, we suggested reciprocity, density, and average clustering coefficient values as proxies to 
calculate interactivity gains. Figure 7 shows that the reciprocity, density, and average clustering coefficients of both 
communities increase with time, with similar trends, whilst Community 1 almost always shows higher values. 

 
Figure 7. Values each week for Community 1 (brown) and Community 2 (pink): (a) reciprocity, (b) density, and (c) 

average clustering coefficient. 

On the other hand, we use coefficients of variance in degree and betweenness, average closeness centrality, average path 
length, number of strongly connected components, and diameter in each week to evaluate the coordination costs. Please note 
that we have used the coefficient of variation instead of the variance in order to neutralize the difference of the average values 
between the communities. The coefficient of variation is the ratio between the standard deviation to the mean. 

As can be seen from Figure 8, although both communities present similar trends in the investigated aspects of interactivity 
gains, their coordination costs are quite different. Community 2 shows a steady decrease in variance of betweenness and degree, 
while this is not the case in Community 1 which is generally showing higher coordination costs. On the other hand, in terms 
of distance metrics, whereas Community 2’s distance decreases and closeness increases, Community 1’s distance increases 
and closeness decreases. Similarly, the number of strongly connected components constantly decreases in Community 2, 
whereas it sharply increases initially in Community 1 and then plummets. 

 
Figure 8. Weekly values for Community 1 (brown) and Community 2 (pink): (a) coefficients of variance in degree, (b) 

coefficient of variance in betweenness, (c) average closeness centrality, (d) average path length, (e) number of strongly 
connected components, and (f) diameter. 


