
Thompson, S, et al. 2020 SnappySonic: An Ultrasound
Acquisition Replay Simulator. Journal of Open Research
Software, 8: 8. DOI: https://doi.org/10.5334/jors.289

Journal of
open research software

SOFTWARE METAPAPER

SnappySonic: An Ultrasound Acquisition Replay Simulator
Stephen Thompson, Thomas Dowrick, Goufang Xiao, João Ramalhinho, Maria Robu,
Mian Ahmad, Dan Taylor and Matthew J. Clarkson
Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
Corresponding author: Stephen Thompson (s.thompson@ucl.ac.uk)

SnappySonic provides an ultrasound acquisition replay simulator designed for public engagement and
training. It provides a simple interface to allow users to experience ultrasound acquisition without the
need for specialist hardware or acoustically compatible phantoms. The software is implemented in Python,
built on top of a set of open source Python modules targeted at surgical innovation. The library has high
potential for reuse, most obviously for those who want to simulate ultrasound acquisition, but it could
also be used as a user interface for displaying high dimensional images or video data.

Keywords: ultrasound; simulation; education; aruco; medical device; data visualisation; graphical user
interface; GUI; serious games
Funding statement: This work is supported by the Wellcome/EPSRC Centre for Interventional and Surgical
Sciences (WEISS) (203145Z/16/Z).

1 Introduction
The use of ultrasound acquisition simulators for medical
training purposes is increasing and has been shown to
provide benefit for training purposes [27, 28]. Removing
the need for actual ultrasound saves equipment
costs, and allows for more tightly controlled training
environments. Currently available ultrasound simulators
range from combinations of specialized hardware [6, 14,
15] that provide a tactilely realistic experience to phone
based apps [1, 13] that provide convenient training
examples. Serious Games for ultrasound training have
also been developed using simulated ultrasound images
[24] and more abstract representations [20]. However,
the available platforms are limited in their configuration
options, being tailored to training clinicians on specific
anatomical examples. Lack of configuration makes
it difficult if you wanted to use your own recorded
ultrasound data or configure the geometry to your
hardware requirements.

SnappySonic was developed to form part of a public
engagement exercise targeted at school age children and
their parents/carers. The aim was to demonstrate to the
general public (families and our local community) some
of the challenges in interpreting ultrasound images. We
did this via a serious game, where the user was required
to identify objects in recorded ultrasound images. The
software provides a semi-realistic experience of ultrasound
acquisition, whilst avoiding the need for novice users to
cope with such issues as maintaining acoustic contact
and beam angle. The software reads a video buffer of
appropriate pre-recorded images, and looks up and

displays an appropriate image based on the position of
a tracked object under the user’s control. Tracking can
be done either with a webcam and ArUco markers [25]
or with one of NDI’s [7] tracking systems. The user can
configure the images to be shown and the geometry of
the tracking system. The video buffer we used, together
with an example configuration file can be downloaded
from the source code repository. The software has been
tested by approximately 100 users at a public engagement
event, during which we evaluated its performance with a
questionnaire, see section 3.1.

2 Implementation and architecture
SnappySonic was developed in Python using dependencies
available from the Python Packaging Index [12]. Three
dependencies are from the SNAPPY [17] software libraries
under development by the authors to support innovation
in surgical and interventional sciences. There are three
further direct dependences on PySide2, NumPy [32] and
OpenCV [23]. Figure 1 shows the dependency graph for
SnappySonic.

SnappySonic implements an OverlayApp class
which inherits from scikit-surgeryutils OverlayBaseApp.
OverlayBaseApp implements a Qt widget capable of
showing a video image overlaid with a VTK [30] renderer.
SnappySonic implements the update member function to
take input from a physical tracking system, using scikit-
surgerynditracker, or scikit-surgeryarucotracker. The
tracker position is used to select an image from an image
buffer which is preloaded when the class is initialised. The
image buffer used and how the images are selected can

https://doi.org/10.5334/jors.289
mailto:s.thompson@ucl.ac.uk

Thompson et al: SnappySonicArt. 8, page 2 of 5

be controlled via a configuration file written in JavaScript
Object Notation [5]. An image buffer containing
ultrasound images of four household items together with
an example configuration file can be downloaded from
the source repository.

Figure 2 shows a screen shot of the software in use. The
interface uses two separate windows, one showing the
tracking information, so the user knows where they are in
the tracked volume, while the second shows the pseudo
ultrasound image. It is possible to place the windows on
separate screens to prevent the user seeing the tracking
information.

Figure 3 shows the system in use, coupled with a plastic
torso phantom. We attached an ArUco tag to an obsolete

ultrasound probe for a more realistic experience, however
it is not necessary to use an ultrasound probe.

3 Quality control
SnappySonic, and its dependences (Figure 1) have
been developed within the Wellcome/EPSRC Centre
for Interventional and Surgical Sciences (WEISS) with
the aim to develop robust, reusable libraries to support
translational research in surgery, [29]. Well defined
software process [31] is central to the development
process. WEISS operates its own quality management
system (QMS), implementing the IEC EN 62304:2006
standard “Medical device software – Software life cycle
processes” [26] to enable the deployment of software to

Figure 1: Dependency graph for SnappySonic. All dependencies are from the Python Package index. Dependencies in
blue are developed by the authors of this paper and have any further dependencies shown. External dependencies do
not have further dependencies shown.

snappysonic

numpy

opencv-contrib-python

PySide2

scikit-surgeryutils scikit-surgerynditracker

scikit-surgeryarucotrackerscikit-surgeryimage

scikit-surgeryvtk ndicapi

scikit-surgerycore

vtk

Figure 2: A screen shot of the system in use, top left is the command line and console output. Bottom left a window
showing the tracker position with respect to the different parts of the video buffer. At right is the recorded ultrasound
image. In this example the image is of a latex glove filled with water, which the user is trying identify by moving the
probe around in “Box A”.

Thompson et al: SnappySonic Art. 8, page 3 of 5

theatre. The software described in this paper falls outside
the QMS as it is not a medical device, however we take care
to follow as much of the standard as practical, to allow
the component software to be used in a medical device at
some future date.

We use our own GitLab [3] server [21] for project
management, and implement GitLab-CI [4] for continuous
integration testing. We use the issue tracker functionality
of GitLab to document bug reports and feature requests
and reference the issues from code commits. This creates
a link between software requirements and development
steps, in line with Section 6 of [26].

We use a test driven development process [22]. New
features or bug fixes are first defined via a set of failing
unit tests. Code changes are then made to get the unit
tests passing. GitLab-CI is used to monitor the status
of these and existing tests to ensure that any changes
do not cause regression of any existing requirements.
PyTest [11] is used to manage a suite of unit tests.
Tests are executed in different virtual environments,
managed using tox [19]. Unit tests are performed
independently on individual target environments. Unit
test coverage is monitored using coverage [2], where
practical a coverage target of 100% is used. There are
currently 12 unit tests, providing 100% coverage of the
package. 7 of the unit tests cover stand alone functions,
while the remaining 5 cover the functioning of the main
widget under various configurations. Within the testing
framework the Pylint [10] static code analysis tool is
used to ensure clear coding style and conformance with
PEP 8 [8].

Documentation is generated from the source tree
using sphinx [16]. The status of unit tests, coverage, and
documentation is communicated to users via flags on the
project home page and on the project’s PyPi page.

3.1 Functional Testing
The performance of the software was assessed during
a public engagement held at WEISS. The ultrasound
replay simulator was set up similarly to Figure 3 and
members of the public were asked to work out what what
objects were “hidden” in boxes, based on interaction

with pre-recorded ultrasound images of the objects.
A form (Figure 4) was used to determine whether the
users had been able to interpret the images correctly.
Qualitatively, users agreed that the simulation gave a
good experience of ultrasound scanning. Quantitative
results are in Table 1.

Figure 3: The software in use during our “Science of Surgery” event. We attached a printed ArUco tag to an obsolete
ultrasound probe to provide a sense of realism. The user moves the probe over a plastic torso phantom, the probe is
tracked by a webcam on top of the monitor, and the ultrasound image shown changes depending on where the probe
is over the phantom. Images by James Tye.

Figure 4: We evaluated the functional performance of
the ultrasound simulator during a public engagement
event. We asked participants to use the system to
identify what household object was “in the box”,
from a selection of eight possible objects shown on
this form.

Thompson et al: SnappySonicArt. 8, page 4 of 5

4 Availability and Support
SnappySonic can be installed on supported platforms
using the pip [9] installation tool, or downloaded from the
source repository [18].

We welcome feature requests and bug reports, which
can be submitted via the source repository’s [18] issue
tracker, or by emailing the lead author.

4.1 Operating system
SnappySonic is available for Python 3.6 onwards and has
been tested on Linux, Windows, and MacOS.

4.2 Programming language
Python 3.6

4.3 Additional system requirements
A webcam is required to use the ArUco based tracking
system.

4.4 Dependencies
Excluding the scikit-surgery libraries listed in Figure 1,
SnappySonic has the following external dependencies
numpy>=1.11 opencv-contrib-python>=3.4.4 PySide2<=5.
11.0 vtk.

4.5 List of contributors
The contributors are the listed authors.

4.6 Software location
4.6.1 Archive

Name: SnappySonic
Persistent identifier: 10.5281/zenodo.3491054
Licence: BSD Licence
Publisher: Zenodo
Version published: v0.0.2
Date published: 05/09/19

4.6.2 Code repository
L o c a t i o n : h t t p s : / / w e i s s l a b . c s . u c l . a c . u k /
W E I S S / S o f t w a r e R e p o s i t o r i e s / S N A P P Y /
scikit-surgerytorsosimulator/
Licence: BSD Licence
Date published: 31/07/19

4.7 Language
English

5 Reuse potential
SnappySonic can most obviously be reused by anyone who
wants to create a customisable ultrasound acquisition
simulator, either using the ultrasound data buffer within
the source repository or by recording their own data.

However reuse is not limited to ultrasound data. The
interface could be used to navigate quickly through any
image buffer so may have applications in video navigation
or navigation though multidimensional medical image
data sets.

The dependent libraries can also be reused individually
or in combination. The software may be forked via gitlab
which implements issue trackers to enable bug reporting
and feature requests.

Competing Interests
The authors have no competing interests to declare.

References
1. Awesome ultrasound simulator. https://

ultrasoundsimulator.com/ Accessed: 2019-05-14.
2. coverage. https://coverage.readthedocs.io/en/v4.5.x/

Accessed: 2019-05-28.
3. Gitlab. https://about.gitlab.com/ Accessed: 2019-05-

21.
4. Gitlab-ci . https://about.gitlab.com/product/

continuous-integration/ Accessed: 2019-05-21.
5. Javascript object notation. http://www.json.org/

Accessed: 2019-05-29.
6. Medsim: Reality in ultrasound training. https://

medsim.com/ Accessed: 2019-05-14.
7. Northern digital. https://www.ndigital.com/ Accessed:

2019-05-14.
8. Pep8. https://www.python.org/dev/peps/pep-0008/

Accessed: 2019-05-28.
9. pip. https://pypi.org/project/pip/ Accessed: 2019-05-

28.
10. pylint. https://www.pylint.org/ Accessed: 2019-05-28.
11. Pytest. https://docs.pytest.org/en/latest/ Accessed:

2019-05-28.
12. Python packaging index. https://www.pypi.org/

Accessed: 2019-05-14.
13. Scanbooster: World’s first realistic ultrasound

simulator for iphone and ipad! https://www.
scanbooster.com/ Accessed: 2019-05-14.

14. Scantrainer. https://www.intelligentultrasoundsimul
ation.com/scantrainer/ Accessed: 2019-05-14.

15. The sonosim ultrasound training solution. https://
sonosim.com/ Accessed: 2019-05-14.

16. sphinx. http://www.sphinx-doc.org/ Accessed: 2019-
05-28.

17. Surgical navigation platform in python. https://
weisslab.cs.ucl.ac.uk/WEISS/PlatformManagement/
SNAPPY Accessed: 2019-05-14.

18. Torsosim on weisslab. https://weisslab.cs.ucl.ac.uk/
WEISS/Sof t wareRepositories/SNAPPY/scikit -
surgerytorsosimulator/ Accessed: 2019-05-14.

Table 1: The results of the functional test. 35 users filled in the form. Most users were able to correctly identify objects
based on the recorded ultrasound. The orange was notably more challenging to identify.

Box A: Glove Box B: Centipede Box C: Duck Box D: Orange

No. Right 28 27 28 20

No. Wrong 7 8 7 15

https://doi.org/10.5281/zenodo.3491054
https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/scikit-surgerytorsosimulator
https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/scikit-surgerytorsosimulator
https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/scikit-surgerytorsosimulator
https://ultrasoundsimulator.com/
https://ultrasoundsimulator.com/
https://coverage.readthedocs.io/en/v4.5.x/
https://about.gitlab.com/
https://about.gitlab.com/product/continuous-integration/
https://about.gitlab.com/product/continuous-integration/
http://www.json.org/
https://medsim.com/
https://medsim.com/
https://www.ndigital.com/
https://www.python.org/dev/peps/pep-0008/
https://pypi.org/project/pip/
https://www.pylint.org/
https://docs.pytest.org/en/latest/
https://www.pypi.org/
https://www.scanbooster.com/
https://www.scanbooster.com/
https://www.intelligentultrasoundsimulation.com/scantrainer/
https://www.intelligentultrasoundsimulation.com/scantrainer/
https://sonosim.com/
https://sonosim.com/
http://www.sphinx-doc.org/
https://weisslab.cs.ucl.ac.uk/WEISS/PlatformManagement/SNAPPY
https://weisslab.cs.ucl.ac.uk/WEISS/PlatformManagement/SNAPPY
https://weisslab.cs.ucl.ac.uk/WEISS/PlatformManagement/SNAPPY
https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/scikit-surgerytorsosimulator/
https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/scikit-surgerytorsosimulator/
https://weisslab.cs.ucl.ac.uk/WEISS/SoftwareRepositories/SNAPPY/scikit-surgerytorsosimulator/

Thompson et al: SnappySonic Art. 8, page 5 of 5

19. tox. https://tox.readthedocs.io/en/latest/ Accessed:
2019-05-28.

20. Underwater, the ultrasound training game. https://
www.sfinxgames.com/ Accessed: 2019-10-16.

21. Weisslab. https://weisslab.cs.ucl.ac.uk/ Accessed:
2019-05-21.

22. Beck: Test Driven Development: By Example. Boston,
MA, USA: Addison-Wesley Longman Publishing Co.,
Inc. 2002.

23. Bradski, G 2000 The OpenCV Library. Dr. Dobb’s
Journal of Software Tools.

24. Chan, W Y, Qin, J, Chui, Y P, Heng and P A 2012 A
serious game for learning ultrasound-guided needle
placement skills. IEEE transactions on information
technology in biomedicine: a publication of the
IEEE Engineering in Medicine and Biology Society,
16. DOI: https://doi.org/10.1109/TITB.2012.220
4406

25. Garrido-Jurado, S, Muñoz-Salinas, R, Madrid-Cuevas,
F and Medina-Carnicer, R 2015 Generation of
fiducial marker dictionaries using mixed integer linear
programming. Pattern Recognition, 51. DOI: https://
doi.org/10.1016/j.patcog.2015.09.023

26. International Organization for Standardization:
Medical device software – software life cycle processes,
2006.

27. Lewiss, R E, Hoffmann, B, Beaulieu, Y and Phelan,
M B 2014 Point-of-care ultrasound education. Journal

of Ultrasound in Medicine, 33(1): 27–32. DOI: https://
doi.org/10.7863/ultra.33.1.27

28. Orr, K, Hamilton, S, Clarke, R, Adi, M, Gutteridge,
C, Suresh, P and Freeman, S 2019 The integration
of transabdominal ultrasound simulators into an
ultrasound curriculum. Ultrasound, 27(1): 20–30. DOI:
https://doi.org/10.1177/1742271X18762251

29. Ourselin, S, Emberton, M and Vercauteren, T
2016 From computer-assisted intervention research
to clinical impact: The need for a holistic approach.
Medical Image Analysis, 33: 72–78. 20th anniversary
of the Medical Image Analysis journal (MedIA). DOI:
https://doi.org/10.1016/j.media.2016.06.018

30. Schroeder, W, Martin, K M and Lorensen, W E
1998 The Visualization Toolkit (2nd Ed.): An Object-
oriented Approach to 3D Graphics. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc..

31. Schroeder, W J, Ibanez, L and Martin, K M 2004
Software process: the key to developing robust,
reusable and maintainable open-source software.
In: 2004 2nd IEEE International Symposium on
Biomedical Imaging: Nano to Macro (IEEE Cat No.
04EX821), 1: 648–651. DOI: https://doi.org/10.1109/
ISBI.2004.1398621

32. Walt, S v d, Colbert, S C and Varoquaux, G 2011
The numpy array: A structure for efficient numerical
computation. Computing in Science and Engg, 13(2):
22–30. DOI: https://doi.org/10.1109/MCSE.2011.37

How to cite this article: Thompson, S, Dowrick, T, Xiao, G, Ramalhinho, J, Robu, M, Ahmad, M, Taylor, D and Clarkson, M
J 2020 SnappySonic: An Ultrasound Acquisition Replay Simulator. Journal of Open Research Software, 8: 8. DOI: https://doi.
org/10.5334/jors.289

Submitted: 01 August 2019 Accepted: 08 March 2020 Published: 30 March 2020

Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press

https://tox.readthedocs.io/en/latest/
https://www.sfinxgames.com/
https://www.sfinxgames.com/
https://weisslab.cs.ucl.ac.uk/
https://doi.org/10.1109/TITB.2012.2204406
https://doi.org/10.1109/TITB.2012.2204406
https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.7863/ultra.33.1.27
https://doi.org/10.7863/ultra.33.1.27
https://doi.org/10.1177/1742271X18762251
https://doi.org/10.1016/j.media.2016.06.018
https://doi.org/10.1109/ISBI.2004.1398621
https://doi.org/10.1109/ISBI.2004.1398621
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.5334/jors.289
https://doi.org/10.5334/jors.289
http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	2 Implementation and architecture
	3 Quality control
	3.1 Functional Testing

	4 Availability and Support
	4.1 Operating system
	4.2 Programming language
	4.3 Additional system requirements
	4.4 Dependencies
	4.5 List of contributors
	4.6 Software location
	4.6.1 Archive
	4.6.2 Code repository

	4.7 Language

	5 Reuse potential
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

