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Abstract

Refractive errors, in particular myopia, are a leading cause of morbidity and disability world-wide.
Genetic investigation can improve understanding of the molecular mechanisms underlying abnormal
eye development and impaired vision. We conducted a meta-analysis of genome-wide association
studies involving 542,934 European participants and identified 336 novel genetic loci associated with
refractive error. Collectively, all associated genetic variants explain 18.4% of heritability and improve
the accuracy of myopia prediction (AUC=0.75). Our results suggest that refractive error is genetically
heterogeneous, driven by genes participating in the development of every anatomical component of
the eye. In addition, our analyses suggest that genetic factors controlling circadian rhythm and
pigmentation are also involved in the development of myopia and refractive error. These results may
make possible predicting refractive error and the development of personalized myopia prevention
strategies in the future.

Introduction

Refractive errors occur when converging light rays from an image do not clearly focus on the retina.
They are the seventh most prevalent clinical condition® and the second leading cause of disability in the
world?. The prevalence of refractive error is rapidly increasing, mostly driven by a dramatic rise in the
prevalence of one of its forms, myopia (near-sightedness). Although the causes of such a rise over a
short time are likely due to environmental and cultural changes from the mid-20%" century?, refractive
errors are highly heritable®. Several studies>® have previously sought to identify genes controlling
molecular mechanisms leading to refractive error and myopia. However, the variance and heritability
that can be attributed to known genetic factors is modest’ and our knowledge of pathogenic
mechanisms remains partial. Here, we conduct a meta-analysis combining data from quantitative
spherical equivalent and myopia status from large and previously unpublished genome-wide association
studies (GWAS) of more than half a million subjects from the UK Biobank, 23andMe and the Genetic
Epidemiology Research on Adult Health and Aging (GERA) cohorts, with subsequent replication and
meta-analysis with data previously reported from the Consortium for Refractive Error and Myopia
(CREAM).

Results
Association Results.

Analyses were restricted to subjects of European ancestry (Extended Data Figure 1) and combined
results from quantitative measures of spherical equivalent and categorical myopia status. Spherical
equivalent quantifies refractive error; a negative spherical equivalent, below a certain threshold defines
myopia. We used results obtained from GWAS of directly measured spherical equivalent in 102,117
population-based UK Biobank participants®, and 34,998 subjects participating in the GERA Study® and
combined them with results of analyses of self-reported myopia in 106,086 cases and 85,757 controls
from the customer base of 23andMe, Inc. (Mountain View, CA), a personal genomics company?®.
Additionally, we included results from an analysis on the refractive status inferred using demographic
and self-reported information on age at first use of prescription glasses among the UK Biobank
participants not contributing to the quantitative GWAS (108,956 likely myopes to 70,941 likely non-
myopes, see Online Methods). All analyses were adjusted for age, sex and main principal components.



To obtain an overall association with refractive error, we meta-analyzed the results from all studies by
using the z-scores from the GWAS of the spherical equivalent and the negative values of z-scores from
the case-control studies (23andMe and UK Biobank), since myopia is negatively correlated with spherical
equivalent. As expected, the large total sample size of the discovery meta-analysis (N=508,855) led to a
nominally large genomic inflation factor (A=1.94). The LD score regression intercept was (1.17), and the
(intercept-1)/(mean(chi”*2)-1) ratio of 0.097 is fully in line with the expectations of polygenicity**.

We found associations for 438 discrete genomic regions (Figure 1, Supplementary Table 1), defined by
markers contiguously associated at conventional level of GWAS significance!*!? of p<5x10%, separated
by more than 1 Mbp from other GWAS-associated markers, as recommended elsewhere*. Among them,
308 loci, including 14 on chromosome X, were not described in previous GWAS studies of refractive
error’. The observed effect sizes were consistent across all the studies (Supplementary Table 1 and
Supplementary Data 1). The association with refractive error was statistically strongest for rs12193446
(p=9.87x1073%%), within LAMAZ2, a gene previously associated with refractive error>®, mutations of which
cause muscular dystrophy®®. Consistent with these LAMA2 properties, polymorphisms located within the
genes coding for both major LAMAZ2 receptors, DAG1% (p=1.67x107 for rs111327216) and ITGA7%”
(p=8.57x10" for rs17117860) which are also known causes of muscular dystrophy!®1°, were significantly
associated with refractive error in the discovery meta-analysis.

We compared our discovery meta-analysis findings with GWAS results from 34,079 participants in the
CREAM consortium, who were part of a previously reported meta-analysis’. To avoid any potential
overlap with the UK Biobank participants, only non-UK European CREAM participants were used for
replication. Despite the vast power differential, 55 of the SNPs that showed the strongest association in
their respective regions in the discovery meta-analysis were significant after Bonferroni correction in the
replication sample. A further 142 had a false discovery rate (FDR) < 0.05 and 192 were nominally
significant at P < 0.05 (Supplementary Table 2). The effect sizes observed in the discovery and replication
samples were strongly correlated (Pearson’s r=0.91, Extended Data Figure 2). Meta-analysis of all five
cohorts (discovery and replication) expanded the number to 449 associated of regions of variable length
and number of SNPs (Extended Data Figure 3), of which 336 regions were novel (Supplementary Table
3).

Most of the 449 refractive error-associated regions contained at least one gene linked to severe ocular
manifestations in the Online Mendelian Inheritance In Man (OMIM) resource or other genes with
interesting link to eye disease (Supplementary Table 4). Although most loci identified through our meta-
analyses were novel, several of them hosted genes that harbor mutations leading to myopia or other
refractive error phenotypes (Supplementary Data 2). Several genes significantly associated with
refractive error were linked to Mendelian disorders affecting corneal structure, some of which code for
transcription factors involved in corneal development?® (Supplementary Table 5). Mutations in these
genes cause corneal dystrophies (SLC4A11, p=5.81x10! for rs41281858, TCF4, p=4.14x107%,
rs41396445; LCAT, p=1.26x10%, rs5923; and DCN, p=3.67x10", rs1280632), megalocornea (LTBP2,
p=1.91x102%, rs73296215) and keratoconus (FNDC3B, p=1.89x10*, rs199771582, previously
described’). Eleven refractive error-associated genes were linked to anomalies of the crystalline lens
(Supplementary Table 6), including genes linked to autosomal dominant cataracts (PAX6 previously
linked to myopia?!, p=8.31x101%, rs1540320; PITX3, p=1.05x10%, rs7923183; MAF, p=5.50x10"%,
rs16951312; CHMP4B, p=9.95x10 ! , rs6087538; TDRD7, p=4.79x10, rs13301794) and lens ectopia
(FBN1, p=3.30x102%, rs2017765; ADAMTSL4, p=8.19x10*, rs12131376). Some of the genes affected
several eye components. For example, LTBP2 variants are also associated with congenital glaucoma??,
and COL4A3 (rs7569375, p=1.14x10") causes Alport syndrome, which manifests with abnormal lens
shape (lenticonus) and structural changes in the retina.



Association was also observed within or near 13 genes known to harbor mutations causing
microphthalmia (Supplementary Table 7), including TENM3 (p=2.48x10, rs35446926); OTX2
(p=6.15x10", rs928109); VSX2, (p=4.60x107°, rs35797567); MFRP, (p=2.85x10%, rs10892353) and the
previously identified® TMEM98, (p=3.49x10%, rs62067167). Association was also found for VSX1
(p=4.59x10 for rs6050351), a gene that is closely regulated by VSX2% and believed to play important
roles in eye development?*. Many of the genes nearest associated SNPs have been linked to inherited
retinal disease (Supplementary Table 8), including 32 genes linked to cone-rod dystrophies, night
blindness and retinitis pigmentosa, and age-related macular degeneration (HTRA1/ARMS2). Among
genes in novel regions associated with refractive error, ABCA4 (p=3.20x10%° for rs11165052), and
ARMS2/HTRA1 (p=5.72x10"2 for rs2142308) are linked to macular disorders and numerous others to
retinitis pigmentosa, retinal dystrophy and other retinal diseases, such as FBN2, (p=8.63x10%,
rs6860901) , TRAF3IP1 (p=5.71x10, rs7596847), CWC27 (p=1.84x1078, rs1309551). Significant
association was found near other genes of interest such as DRD1 (p=4.51x10, rs13190379), a
dopamine receptor. Together, these results are consistent with previous suggestions of light
transmission and transduction in refractive error”®.

Wnt signaling has previously been implicated in experimental myopiaZ. We found significant association
near several Wnt protein-coding genes (WNT7B, a gene previously associated with axial length?’,
p=1.42x102 for rs73175083; WNTI10A, previously associated with central corneal thickness?,
p=1.65x10" for rs121908120 and WNT3B, p=8.52x10¢ for rs70600), suggesting that organogenesis
through Wnt signaling is likely to be involved in refractive error. Significant association were found at
genes coding for key canonical (e.g. rs13072632 within the CTNNB1 gene, p=7.30x10%; AXIN2,
rs9895291, p=1.40x10") and non-canonical Wnt pathway members (NFATC3, rs147561310,
p=1.493x101?) or at genes coding for both (RHOA, rs7623687, p=1.81x10! or the previously described’
TCF7L2, rs56299331, p=9.38x10; Supplementary Table 9).

Similar to previous published analyses®®, we found associations for genes involved in sodium, potassium,
calcium magnesium and other cation transporters (Supplementary Table 10). The involvement of genes
related to glutamatergic synaptic transmission was also notable (Supplementary Table 11). Glutamate is
a first synapse transmitter released by photoreceptors towards bipolar cells and is the main excitatory
neurotransmitter of the retina, and expression of genes participating in glutamate signaling pathways is
significantly altered in myopia models?. These associations support the involvement in refractive error
pathogenesis of neurotransmission and neuronal depolarization and hyperpolarization that was also
suggested before’. Associations with POU6F2 gene intronic variants (rs2696187, p=1.11x10%) also
suggests involvement of factors related to development of amacrine and ganglion cells*°. Other genes at
refractive error-associated loci were annotated to infantile epilepsy, microcephaly, severe learning
difficulty, or other inborn diseases affecting the central nervous system (CNS) in OMIM (Supplementary
Table 12).

Polymorphisms in genes linked to oculocutaneous albinism (OCA) were significantly associated with
refractive error (Supplementary Table 13), although typically association was found for SNPs not
strongly associated with other pigmentation traits3!. Strong association with refractive error was found
near the OCA2 gene causing OCA type 2 (p=1.37x10"%, rs79406658), OCA3 (TYRP1, p=1.18x10"1,
rs62538956), OCAS5 (SLC39A8, p=4.03x10"", rs13107325), OCA6 (C100rf11, p=1.73x10, rs12256171). In
addition, significant association was found near genes linked to ocular albinism (OA) on chromosome X
(TBL1X and GPR143%, p=2.20x10%8, rs34437079) and Hermansky-Pudlak Syndrome albinism (BLOC1S1,
p=2.4610%, for rs80340147; note that this gene forms a conjoint read-through transcript the BLOC1S51-
RDH5 with RDH5). Other associated markers were located within genes involved in systemic



pigmentation also previously associated with refractive error’, such as RALY (p=3.14x10%8, rs2284388),
TSPAN10 (p=2.22x°, rs9747347), as well as melanoma (MCHR2, p=2.37x10"** for rs4839756).

Functional properties of the associated markers

Among the significantly associated markers, 367 unique markers were frameshift or missense variants
(Supplementary Table 14). Several are non-synonymous, such as the Arg141Leu mutation (rs1048661)
within LOXL1, a gene that causes pseudoexfoliation syndrome and glaucoma3? and Ala69Ser
(rs10490924) in ARMS2, associated with increased susceptibility to age-related macular degeneration3*.
Other associated variants with predicted deleterious consequences were located in several genes, such
as RGR (p=6.89x10-68, rs1042454), a gene previously associated with refractive error’'° and also
retinitis pigmentosa®®, and within the FBN1 gene, near clusters of mutations that cause Marfan
Syndrome and anterior segment dysgenesis3®.

Because the functional link between other associated variants and development of refractive error
phenotypes is less obvious, we next performed gene-set enrichment analyses to identify properties that
are significantly shared by genes identified by the meta-analysis. An enrichment analysis of Gene
Ontology processes (Supplementary Table 15) found enrichment for genes participating in RNA
Polymerase Il transcription regulation (p=1x107) and nucleic acid binding transcription factor activity
(p=1.10x107), suggesting that many of the genetic associations we identified interfere with gene
expression. “Eye development” (p=6.10x107) and “Circadian regulation of gene expression” (p=1.10x10"
%) were also significantly enriched.

A transcription factor binding site (TFBS) enrichment analysis identified significant (FDR < 0.05) over-
representation of sites targeted by GATA4, EP300, RREB1, for which association was observed in the
meta-analyses (Supplementary Table 16). Binding sites of transcription factors involved in eye
morphogenesis and development such as MAF (whose mutations cause autosomal cataract), FOXC1 and
PITX2 (anterior segment dysgenesis) or CRX (cone-rod dystrophy) were also enriched. CRX and PAX4,
binding sites were also significantly enriched; these transcription factors are two of the regulators of
circadian rhythm and melatonin synthesis®” alongside OTX2, for which SNP significant association was
observed in our refractive error meta-analysis (p=6.15x107! for rs928109). All of these enriched gene-
sets are observed for the first time in a GWAS analysis, although the presence of some of the
mechanisms that relate them to refractive error and myopia were hypothesized before,

Many of the variants associated with refractive error in our analyses were located within or near genes
that are expressed in numerous body tissues (Extended Data Figure 4), and in particular from the
nervous system, consistent with our evidence of extraocular, central nervous system involvement in
refractive error. Within the eye, these genes were particularly strongly expressed in eye tissues such as
cornea, ciliary body, trabecular meshwork®® and retina® (Extended Data Figure 5, Supplementary Table
17). A stratified LD score regression applied to specifically expressed genes (LDSC-SEG)* revealed the
results of the GWAS are most strongly correlated with genes expressed in the retina and basal ganglia in
the central nervous system but these correlations are not significant after multiple testing correction
(Extended Data Figure 6 and Supplementary Table 18). It is possible that the strength of these
correlations was constrained by the fact that in most cases, available expression levels were measured
in adult samples, while refractive error and myopia are primarily developed in younger ages.

A Summary data-based Mendelian Randomization (SMR) analysis*? integrating GWAS with eQTL data
from peripheral blood** and brain tissues* found concomitant association with refractive error and



eQTL transcriptional regulation effects for 159 and 97 genes respectively (Supplementary Tables 19 and
20). A similar analysis integrating GWAS summary data with methylation data from brain tissues found
association with both refractive error and changes in methylation for 134 genes (Supplementary Table
21).

Genetic effects shared between refractive error and other conditions

Examining the GWAS Catalog®, some of the genetic variants reported here were previously associated
with refractive error, and with other traits, in particular intraocular pressure, intelligence and education;
the latter two are known myopia risk factors (Supplementary Table 22). We used LD score regression to
assess the correlation of genetic effects between refractive error and other phenotypes from GWAS
summary statistics (Supplementary Table 23). refractive error genetic risk was significantly correlated
with intelligence, both in childhood® (r,=-0.27, p=4.76x10") and adulthood (fluid intelligence score rg=-
0.25, p=1.56x10%), educational attainment (defined as the number of years spent in formal education,
re=-0.24, p=3.36x10*), self-reported cataract (r,=-0.31, p=4.70x10"°) and intraocular pressure (IOP, rg=-
0.14, p=1.04x10"2).

Higher educational attainment appears to cause myopia as demonstrated by Mendelian randomization
(MR) studies*’. A gene by environment interaction GWAS for spherical equivalent and educational
attainment (using age at completion of formal full-time education as a proxy) was conducted in 66,242
UK Biobank participants. Despite the relatively well-powered sample, only one locus yielded evidence of
statistically significant interaction (rs536015141 within TRPM1, p=2.35x10"%, Supplementary Table 24),
suggesting that the true relationship between refractive error and education is compounded by several
factors and may not be linear in nature, as suggested recently®®. TRPM1 is localized in rod ON bipolar cell
dendrites, and rare mutations cause congenital stationary night blindness®, often associated with high
myopia.

To further explore the nature of the relationship between refractive error and IOP, we built MR models
using genetic effects previously reported for IOP*°. On average, every 1 mmHg increase in IOP predicts a
0.05-0.09 diopters decrease in spherical equivalent (Supplementary Table 25, Extended Data Figure 7).
We also built a MR model to assess the relationship between intelligence and spherical equivalent, but
statistical evidence in this case points towards genetic pleiotropy rather than causation (Supplementary
Table 26). This suggests that both myopia and intelligence are often influenced by the same factors, but
without direct causal path linking one to the other. We found no significant genetic correlations
between refractive error and the glaucoma endophenotype vertical cup to disc ratio (rg=-0.01, p=0.45),
or hair pigmentation (rg=-0.03, p=0.35). Therefore, refractive error and pigmentation may have different
allelic profiles with limited sharing of genetic risk.

Conditional analysis and risk prediction

We subsequently carried out a conditional analysis®* on the meta-analysis summary results and found a
total of 904 independent SNPs significantly associated with refractive error. 890 of these markers were
available in the EPIC-Norfolk Study, an independent cohort that did not participate in the refractive error
meta-analysis (Extended Data Figure 8). These markers alone explained 12.1% of the overall spherical
equivalent phenotypic variance in a regression model or 18.4% (SE=0.04) of the spherical equivalent
heritability. Newly associated markers found in our meta-analysis, but not in the previous large GWAS’,



explain 4.6% (SE=0.01) of the spherical equivalent phenotypic variance in EPIC-Norfolk Study, which is an
improvement of one third compared to heritability explained by previously associated markers’.

Predictive models, based on the above-mentioned 890 SNPs, along with age and sex, were predictive of
myopia (versus all non-myopia controls) with areas under the receiving operating characteristic curve
(AUC) of 0.67, 0.74 and 0.75 (Figure 2), depending on the severity cutoff for myopia (< -0.75D, < -3.00D
and < -5.00D respectively). The performance of the predictions appears not to improve for myopia
definitions of -3.00D or worse, suggesting that the information extracted from our meta-analysis is more
representative of the genetic risk for common myopia seen in the general population, than for more
severe forms of myopia, which may have a distinctive genetic architecture.

Further exploration of refractive error genetic architecture

Using information from over half a million population-based participants SNPs identified in these
analyses still only explain 18.4% of the spherical equivalent heritability. We next assessed how many
common SNPs are likely to explain the entire heritable component of refractive error, and what sample
sizes are likely to be needed in the future to identify them, using the likelihood-based approach
described elswhere®2. We estimate that approximately 13,808 (SE=969) polymorphic variants are likely
to be behind the full refractive error heritability. Similar to other quantitative phenotypic traits that are
previously published®?, our analyses estimate that 10.3% (SE=1.0%) of the phenotypic variance is likely
explained by a batch of approximately 543 (SE=81) common genetic variants of relatively large effect
size and a further 20.8% (SE=0.9%) of the entire phenotypic variance explained by the remainder. With
increased sample sizes, we project that the proportion of variance explained will continue to improve
fast but will start plateauing for sample sizes above one million, after which further increases in sample
size will likely yield ever diminishing additional phenotypic variance (Extended Data Figure 9).

Discussion

Our results provide evidence for at least two major sets of mechanisms in the pathogenesis of refractive
error. The first affect intraocular pressure, eye structure, ocular development and physiology, and the
second are CNS-related, including circadian rhythm control. Contributors to refractive error include all
anatomical factors that alter refractive power relative to eye size, light transmittance,
photoconductance and higher cerebral functions.

The findings implicate almost every single anatomical components of the eye, which along with the
central nervous system participate in the development of refractive error. The healthy cornea
contributes to 70% of the optical refractive power of the eyes®® and genes involved in corneal structure,
topography and function may directly contribute to refractive error through direct changes in the
corneal refraction. Our results show that several genes involved in lens development also contribute to
refractive error in the general population. It is unclear if their contribution is mediated through
alterations in biomechanical properties that affect eyes’ ability to accommodate, changes to the lens
refractive index, or alterations in light transmission properties that impair the ability to focus images on
the retina.

Many retinal genes are implicated in the development of refractive error, reflecting the role of light in
mediating eye growth and the importance of the retina’s role in light transduction and processing’.
Associations with refractive error at genes coding for gated ion channels and glutamate receptors point
to the photoreceptor-bipolar cell interface as a potentially key factor in refractive error. Rare mutations



in several of our associated genes cause night blindness, implicating the rod system in the
pathophysiology of refractive error, but many also affect cone pathways. The TRPM1 gene, important
for rod ON bipolar cell polarity®*, is also implicated in the gene-education interaction analysis.
Associations observed for the VSX1 and VSX2, its negative regulator, genes implicate the cone bipolar
cells>.

The association with genes involved in pigmentation, including most of the OCA-causing genes, raises
guestions about the relationship between melanin, pigmentation and eye growth and development.
These associations are unlikely to be influenced by any cryptic population structure in our samples,
which our analyses were designed to control. None of the major pigmentation-associated SNPs3! was
directly associated with refractive error and there was no significant correlation of genetic effects
between refractive error and pigmentation.

The mechanisms linking pigmentation with refractive error are unclear. Foveal hypoplasia®® and optic
disc® dysplasias are common in all forms of albinism®. Although melanin synthesis is disrupted in
albinism, both melanin and dopamine are synthesized through shared metabolic pathways. Disc and
chiasmal lesions in albinism are often attributed to dopamine®®, but we found limited evidence
supporting an association with refractive error for genetic variants involved in dopamine signaling. The
scarcity of association with refractive error for genes involved in dopamine-only pathways contrasts
with the abundance of association for genes involved in pigmentation and melanin synthesis. This may
suggest that melanin metabolism is connected to refractive error through other mechanisms that are
independent from the metabolic pathways it shares with dopamine production. Melanin reaches the
highest concentrations in the retinal pigment epithelium at the outmost layer of the retina, and
anteriorly, in the iris and variations in pigmentation may affect the intensity of the light reaching the
retina. Light exposure is a major protective factor for development of myopia®®! It is possible that
pigmentation plays a role in light signal transmission and transduction.

Animal model experiments suggest that in addition to local ocular mechanisms, emmetropization (the
process by which the eye develops to minimize refractive error) is strongly influenced by the CNS®2. The
strong correlation of genetic risks between refractive error and intelligence and association found for
genes linked to severe learning disability support an involvement of the CNS in emmetropization and
refractive error pathogenesis.

Results from gene-set enrichment analysis demonstrate an interesting evolution with increasing sample
sizes. While smaller previous studies were sufficiently powered to discover enrichment of low, cell-level
properties, such as cation channel activity and participation in the synaptic space structures?,
significantly more powered recent studies have found additional evidence for enrichment and
involvement of more integrated physiological functions, such as light signal processing in retinal cells
and others’. Beyond the identification of a much larger number of genes and explaining significantly
higher proportions of heritability, our results, based in a considerably more statistically powered sample,
uphold the previous findings and support the involvement of the same molecular and physiological
mechanisms that were previously described.

In line with expectations from a higher power of association to discover genes and gene sets individually
responsible for even smaller proportions of the refractive error variance®, we find evidence for even
higher regulatory mechanisms, that act more holistically over the eye development or integrate eye
growth and homeostasis with other processes of extraocular nature. For example, we found evidence
that binding sites of transcription factors involved in the control of circadian rhythm are significantly
enriched among genes associated with refractive error. Circadian rhythm is important in
emmetropization and its disruption leads to myopia in animal knock-out models®?, potentially through
dopamine-mediated mechanisms, or changes in IOP and diurnal variations.



Most of the loci identified through our meta-analysis are not subject to particularly strong and
systematic evolutionary pressures (Extended Data Figure 10). The variability in minor allele frequencies
observed across loci associated with refractive error may therefore be the result of genetic drift.
However, given the variety of the different visual components whose disruptions can result in refractive
error, this variability may also be the result of overall balancing forces which encourage high allelic
diversity of genes involved in refractive error, providing additional buffering capacity to absorb
environmental pressures® or genetic disruptions on any of the individual components of the visual
system.

Our results cast light on potential mechanisms that contribute to refractive error in the general
population and have identified the genetic factors that explain a considerable proportion of the
heritability and phenotypic variability of refractive error. This allows us to improve significantly our
ability to make predictions of myopia risk and generate novel hypotheses on how multiple aspects of
visual processing affect emmetropization, which may pave the way to personalized risk management
and treatment of refractive error in the population in the future.
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Figure Legends

Figure 1. All GWAS-associated regions from the main meta-analysis. Each band is a true scale of genomic
regions associated with refractive error listed in Supplementary Table 1 (+250kbp on each side to make
smaller regions more visible). The different color codes represent the significance (p-value) for the
genetic variant within that region that displays the strongest evidence for association.

Figure 2. Receiver Operating Characteristic (ROC) curves for myopia predictions, using information from
890 SNP markers identified in the meta-analysis. The three different colors represent three different
curves for each of the different definition of myopia: green — all myopia (< -0.75D), magenta — moderate
myopia (< -3.00 D) and brown - severe myopia (defined as < -5.00 D).



Online Methods

Study Participants
The UK Biobank

The UK Biobank is a multisite cohort study of UK residents aged 40 to 69 years who were registered with
the National Health Service (NHS) and living up to 25 miles from a study center. Detailed study
protocols are available online (http://www.ukbiobank.ac.uk/resources/ and
http://biobank.ctsu.ox.ac.uk/crystal/docs.cgi). It was conducted with the approval of the North-West
Research Ethics Committee (ref 06/MREQ8/65), in accordance with the principles of the Declaration of
Helsinki, and all participants gave written informed consent.

Two separate groups of UK Biobank participants were included in these analyses. The first included
participants whose refractive error was directly measured (non-cycloplegic autorefraction using the
Tomey RC 5000 Auto Refkeratometer, Tomey Corp., Nagoya, Japan). Direct measurements of refractive
errors were available for 22.7% of the UK Biobank sample. To ensure reliable and accurate refractive
error data, previously published QC criteria were applied®. The spherical equivalent was calculated as
spherical refractive error (UK Biobank codes 5084 and 5085) plus half the cylindrical error (UK Biobank
5086 and 5087) for each eye.

The second UK Biobank group included participants without direct measurement of refractive error.
These participants refractive error status was inferred using questionnaire and other indirect data.
Available demographic and clinical information were used to obtain an estimate about the individual’s
likely myopia status. A Support Vector Machine (SVM) model, with age, sex, age of first spectacle wear
and year of birth as prediction parameters was used to infer participants’ myopia status. Initial training
took place in 80% randomly selected UK Biobank participants of European descent for whom direct
spherical equivalent and refractive error status were available. Then the performance was assessed in
the remaining 20% of UK Biobank participants of European descent for whom direct spherical equivalent
and refractive error status were available. Finally, the SVM predictions in the remaining individuals with
no direct spherical error measurements available using the model developed for the training data.

All UK Biobank genotypes were obtained as described elsewhere®. The UK Biobank team then
performed imputation from a combined Haplotype Reference Consortium (HRC) and UK10K reference
panel. Phasing on the autosomes was carried out using a modified version of the SHAPEIT2%® program
modified to allow for very large sample sizes. Only HRC-imputed variants were used for the purpose our
analyses of the UK Biobank participants. The variant-level quality control exclusion metrics applied to
imputed data for GWAS included the following: call rate < 95%, Hardy—Weinberg equilibrium P <1 x 107°,
posterior call probability < 0.9, imputation quality < 0.4, and MAF < 0.005. The Y chromosome and
mitochondrial genetic data were excluded from this analysis. In total, 10,263,360 imputed DNA
sequence variants were included in our analysis. Non-European ancestry and participants with
relatedness corresponding to third-degree relatives or closer, samples with excess of missing genotype
calls or heterozygosity were excluded. In total, genotypes were available for 102,117 participants of
European ancestry with spherical equivalent data.



Association models in the first UK Biobank subset used the average of spherical equivalent as the
outcome and allele dosages at each genetic locus as predictors. Mixed linear regressions, adjusting for
age, sex and the first 10 principal components, implemented in the Bolt-LMM software®” were used.

For the second UK Biobank subset, for which no direct spherical equivalent measurement was available,
the mixed linear model was built with the predicted myopia status as outcome and using the same
covariates as for the previously described linear regression analysis on spherical equivalent. Odds Ratios
were obtained from the beta regression coefficient using the equation:

In (OR) = ﬁ

where p is the fraction of the cases in the sample (u=0.606). Genotypes with MAF <0.01 and MAC< 400
were removed from analyses in this group.

23andMe

Participating subjects were all volunteers from the 23andMe (Mountain View, CA, USA) personal
genomics company customer base. All participants provided informed consent and answered surveys
online according to the approved 23andMe human subjects protocol, which was reviewed and approved
by Ethical & Independent Review Services, a private institutional review board
(http://www.eandireview.com). The participants were identified as myopia cases if they self-reported a
diagnosis of myopia or suffering from symptoms of myopia (see Supplementary Notes for more detail).

DNA extraction and genotyping were performed on saliva samples by CLIA-certified and CAP-accredited
clinical laboratories of Laboratory Corporation of America. Samples were genotyped on one of four
genotyping platforms and batches (Illumina HumanHap550, BeadChip, SNPs, lllumina OmniExpress, plus
a variable number of custom SNP assays). Only samples with more than 98.5% genotyping success rate
were included. Ethnic categorization was conducted using a support vector machine (SVM) which
classified individual haplotypes into one of the 31 reference populations derived from public datasets
(the Human Genome Diversity Project, HapMap, and 1000 Genomes), as well as 23andMe customers
who have reported having four grandparents from the same country. Genotypes were imputed against
the September 2013 release of 1000 Genomes Phasel reference haplotypes using a Beagle haplotype
graph-based phasing algorithm for the autosomal and Minimac2% for X Chromosome loci.

Association test results were computed by linear regression assuming additive allelic effects using
imputed allele dosages. Covariates for age, gender, the first ten principal components to account for
residual population structure were also included into the model.

The Genetic Epidemiology Research in Adult Health and Aging (GERA) cohort

GERA is part of the Kaiser Permanente Research Program on Genes, Environment, and Health (RPGEH)
and has been described in detail elsewhere®. It comprises adult men and women consenting members
of Kaiser Permanente Northern California (KPNC), an integrated health care delivery system, with
ongoing longitudinal records from vision examinations. For this analysis, 34,998 adults (25 years and
older), who self-reported as non-Hispanic white, and who had at least one assessment of spherical
equivalent obtained between 2008 and 2014 were included. All study procedures were approved by the
Institutional Review Board of the Kaiser Foundation Research Institute. Participants underwent vision
examinations, and most subjects had multiple measures for both eyes. Spherical equivalent was
assessed as the sphere + cylinder/2. The spherical equivalent was selected from the first documented



assessment, and the mean of both eyes was used. Individuals with histories of cataract surgery (in either
eye), refractive surgery, keratitis, or corneal diseases were excluded from further analyses.

DNA samples from GERA individuals were extracted from Oragene kits (DNA Genotek Inc., Ottawa, ON,
Canada) at KPNC and genotyped at the Genomics Core Facility of the University of California, San
Francisco (UCSF). DNA samples were genotyped using the Affymetrix Axiom arrays (Affymetrix, Santa
Clara, CA, USA). SNPs with initial genotyping call rate 297%, allele frequency difference <0.15 between
males and females for autosomal markers, and genotype concordance rate >0.75 across duplicate
samples were included. In addition, SNPs with genotype call rates <90% were removed, as well as SNPs
with a minor allele frequency (MAF) < 1%.

Imputation pre-phasing of genotypes was done using Shape-IT v2.r72719, variants were imputed from
the cosmopolitan 1000 Genomes Project reference panel (phase | integrated release;
http://1000genomes.org) using IMPUTE2 v2.3.07°. Variants with an imputation IMPUTE r? < 0.3 were
excluded, and analyses were restricted to SNPs that had a minor allele count (MAC) > 20.

For each SNP locus, linear regressions of each individual’s spherical equivalent were performed with the
following covariates: age at first documented spherical equivalent assessment, sex, and genetic principal
components using PLINK v1.9 (www.cog-genomics.org/plink/1.9/). Data from each SNP were modeled
using additive dosages to account for the uncertainty of imputation. The top 10 ancestry PCs were
included as covariates, as well as the percentage of Ashkenazi ancestry to adjust for genetic ancestry, as
described previously®.

The Consortium for Refractive Error And Myopia (CREAM)

All participants selected for this study were of European descent, 25 years of age or older. refractive
error was represented by measurements of refraction and spherical equivalent (Spherical
equivalent = spherical refractive error +1/2 cylinder refractive error) was the outcome variable for
CREAM. Participants with conditions that could alter refraction, such as cataract surgery, laser
refractive procedures, retinal detachment surgery, keratoconus, or ocular or systemic syndromes
were excluded from the analyses. Recruitment and ascertainment strategies varied by study and
were previously published elsewhere’,

The genotyping process has been described elsewhere’. Samples were genotyped on different
platforms, and study-specific QC measures of the genotyped variants were implemented before
association analysis. Genotypes were imputed with the appropriate ancestry-matched reference panel
for all cohorts from the 1000 Genomes Project (Phase | version 3, March 2012 release). Quality control
criteria used for SNP and sample inclusions These metrics were similar to those described in a previous
GWAS analyses and detailed information for each cohort is described elsewhere’?.

To avert sample overlap, cohorts from the United Kingdom (1985BBC, ALSPAC-Mothers, EPIC-
Norfolk, ORCADES and Twins UK) were excluded from the GWAS meta-analysis. Association analyses
were performed as described elsewhere’*For each individual cohort, a single-marker analysis for the
phenotype of SphE (in diopters) was carried out with linear regression with adjustment for age, sex and
up to the first five principal components. For all non-family-based cohorts, one of each pair of relatives
was removed. In family-based cohorts, mixed model-based tests of association were used to adjust for
within-family relatedness.



The European Prospective Investigation into Cancer (EPIC) Study

The EPIC-EPIC is one of the UK arms of a broad pan-European prospective cohort study designed to
investigate the etiology of major chronic diseases’?. This study was conducted following the principles
of the Declaration of Helsinki and the Research Governance Framework for Health and Social Care. The
study was approved by the Norfolk Local Research Ethics Committee (05/Q0101/191) and East Norfolk &
Waveney NHS Research Governance Committee (2005EC0O7L). All participants gave written, informed
consent. Refractive error was measured in both eyes using a Humphrey Auto-Refractor 500 (Humphrey
Instruments, San Leandro, California, USA). Spherical equivalent was calculated as spherical refractive
error plus half the cylindrical error for each eye.

The EPIC-Norfolk participants were genotyped using the Affymetrix UK Biobank Axiom Array (the same
array as used in UK Biobank); 7,117 contributed to the current study. SNP exclusion criteria included:
call rate < 95%, abnormal cluster pattern on visual inspection, plate batch effect evident by significant
variation in minor allele frequency, and/or Hardy-Weinberg equilibrium P < 10”7. Sample exclusion
criteria included: DishQC < 0.82 (poor fluorescence signal contrast), sex discordance, sample call rate <
97%, heterozygosity outliers (calculated separately for SNPs with minor allele frequency >1% and <1%),
rare allele count outlier, and impossible identity-by-descent values. Individuals with relatedness
corresponding to third-degree relatives or closer across all genotyped participants were also removed
from further analyses. Following these steps all participants were of European descent. Data were pre-
phased using SHAPEIT®® version 2 and imputed to the Phase 3 build of the 1000 Genomes project’
(October 2014) using IMPUTE’® version 2.3.2.

The relationship between allele dosage and mean spherical equivalent was analyzed using linear
regression adjusted for age, sex and the first 5 principal components. Analyses were carried out using
SNPTEST version 2.5.1.

Statistical analyses

We conducted two meta-analyses. For the initial meta-analysis (discovery), we used summary statistic
results from the UK Biobank 1st and 2"¢ subset, the GERA and 23andMe Studies.

For the final meta-analysis, we used all available information (UK Biobank 1 and 2, the GERA, 23andMe
and CREAM Consortium).

For all meta-analyses we applied a Z-score method, weighted by the effective population sample size, as
implemented in METAL”. No genomic control adjustment was applied during the meta-analysis.

The effective population size was calculated per each locus and as was equal to the total sample size if a
linear regression or linear mixed model were used. For case-control studies the effective population was
calculated as:

N 1
N.c

N.eff = 2/( Cl )

as recommended before’®, where N.eff is the effective sample size, N.cases is the number of cases
considered to have myopia and N.controls is the number of subjects considered not to have myopia.
Following this method, we calculated that for the full-sample analysis of 542,934 subjects, due to the
presence of two case-control cohort, our effective sample sizes was 379,227.



Only SNPs with minor allele frequency of at least 1%, which were available from at least 70% of the
maximum number of participants across all studies and that were not missing in more than one strata
(cohorts), were considered further.

Conditional analyses were conducted using the conditional and joint analysis on summary data (COJO) as
implemented in the GCTA program’’ to identify independent effects within associated loci as well as the
calculation of the phenotypic variance explained’® by all polymorphisms associated with the trait after the
conditional analyses. The threshold of significance was set at 5x10 and the collinearity threshold was
set at r?=0.9.

Genomic inflation was assessed using the package ‘gap’ in R (https://cran.r-project.org/) and to
distinguish between the effect of polygenicity and those arising from sample stratification or uncontrolled
population admixture, the LD score regression intercepts were calculated using the program LD Score
(https://github.com/bulik/Idsc).

Bivariate genetic correlations between refractive error and other complex traits whose summary
statistics are publicly available were assessed following previously described methodologies’, using the
program LD Score (https://github.com/bulik/Idsc).

To assess the potential value of the loci associated with refractive error to predict myopia, regression-
based models were trained and tested separately in two separate groups. The training set comprises the
European UK Biobank participants for whom the spherical equivalent measurements were available. The
models were tested in the EPIC-Norfolk cohort, which was not part of any of the analyses through which
the genetic associations were identified.

The model in included age, sex, and the major genetic variants associated with refractive error after the
conditional analysis. Three different definitions of myopia were used based on sliding spherical
equivalent thresholds: M1 < -0.75D, M, < -3.00 D and M5 < -5.00D. These three different definitions of
myopia were chosen to correspond to the generally accepted definitions of “any myopia”, “moderate
myopia” and “high myopia”. For the latter, we opted for the -5.00D, because definitions based on the
more stringent threshold of < -6.00D would have not allowed for a sufficient number of cases in the
testing set. For the purpose of these analyses, a “control” was any subject who did not have myopia,

defined by a mean spherical equivalent > -0.5D.

A Receiver Operating Characteristic (ROC) curve was drawn for each case and the Area Under the Curve
(AUC) was calculated. R programming language and software environment for statistical computing
(https://cran.r-project.org/) was used for both the logistic regression models (‘glm’) and to evaluate the
performance of the model (‘ROCR’).

Polymorphisms associated at a GWAS level (P<5x10) were clustered within an “associated genomic
region”, defined as a contiguous genomic region where GWAS-significant markers were within 1 million
base pairs from each other. Significant polymorphisms were annotated with the gene inside whose
transcript-coding region they are located, or alternatively, if located between two genes, with the gene
nearest to it. The associated genomic regions were collectively annotated with the gene overlapping, or
nearest the most significantly associated variant within that region.

The known relationships between identified genetic loci and other phenotypic traits were derived from
two datasets: the Online Mendelian Inheritance In Man (OMIM, https://omim.org), which is a




continuously curated catalog of human genes and phenotypic changes their polymorphic forms cause in
humans and the GWAS Catalog® which is a curated catalog of previous GWAS association of SNPs or genes
with other phenotypic traits.

The R (https://cran.r-project.org) package MendelianRandomization v3.4.4 was used for Mendelian
randomization analyses.

Disease-relevant tissues and cell types were identified by analyzing gene expression data together with
summary statistics from the meta-analysis of refractive error in all five cohorts, as described elsewhere?®!.
Expression data was obtained from the following sources: 1) the GTEx release V7
(https://gtexportal.org/home/datasets) 2) Fetal and adult corneal, trabecular meshwork and ciliary body
RNA sequencing data previously described ® and 3) data from the subset of subjects with presumed
healthy adult retinas (AMD=1) from datasets described elsewhere®,

As the transcription data were heterogeneous and in different units, expression levels for all tissues were
rank-transformed. Hierarchical clustering was used to help visualize similarities and differences of
patterns of transcript expression across different tissues (‘hclust’ package in R).

SMR (Summary data—based Mendelian randomization) uses GWAS variants as instrumental variables and
gene expression levels or methylation levels as mediating traits, in order to test whether the causal effect
of a specific variant on the phenotype-of-interest acts via a specific gene®*. The SMR tests were performed
used three different: the summary statistics of eQTL associations in the untransformed peripheral blood
samples of 5,311 subjects®®, as well as eQTL effects and cis- methylation analysis (cis-mQTL), both in brain
tissues®®.

The Gene-Set Enrichment Analysis (GSEA) was implemented in the MAGENTA software®”. We used the
versions from September 2017.

Results of three statistical tests for natural selection were imported from the 1000 Genomes Selection
Browser®,

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to
this article.

Data availability

Summary statistics from the cohorts participating in the meta-analysis can be downloaded from
ftp://twinr-ftp.kcl.ac.uk/Refractive Error MetaAnalysis 2020/ and public repositories such as the
GWAS Catalogue (https://www.ebi.ac.uk/gwas/downloads/summary-statistics). These freely
downloadable summary statistics are calculated using all cohorts described in this manuscript, except
for the 23andMe participants. This is due to a non-negotiable clause in the 23andMe data transfer
agreement, intended to protect the privacy of the 23andMe research participants.

To fully recreate our meta-analytic results, all bona fide researchers can obtain the 23andMe summary
statistics by emailing 23andMe (dataset-request@23andme.com) and subsequently meta-analyzing
them along the freely accessible summary statistics for all the other cohorts.
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Supplementary Figure 1. Principal component plots of the subjects in each of the participating cohorts.
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Supplementary Figure 2. Correlation of effect sizes between the discovery cohort meta-analysis (UK
Biobank analysis on spherical equivalent + GERA, spherical equivalent + 23andMe, self-reported myopia
cases and controls + UK Biobank inferred myopia cases and controls) and those from the CREAM
Consortium participants, used as replication. The z-scores for the discovery are on the y-axis and those
from the CREAM cohort in the x-axis.
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Supplementary Figure 3. Distribution of the base-pair length (red) of the 449 regions associated in the
meta-analysis of all available cohorts (Supplementary Table 3), alongside the distribution of number of
SNPs (blue) for each region. Numbers in each of the axes in the figure are differentially colored to match
the density curve they correspond to: red for the length of the region and blue for the number of SNPs.
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Supplementary Figure 4. Expression of genes located in the associated loci (Supplementary Table 3) along the x-axis, across several human body
tissues (y-axis). The colors represent the centile ranking of the expression level of the gene in the tissue of interest. The hotter colors represent
higher ranking of the gene expression and the colder colors low expression. Both genes and tissues are clustered in accordance with their
pattern similarity. The symbol of all the genes could not be visualized and therefore are removed for the sake of clarity. Eye tissues, whether
fetal or adult, appear to have similar patterns of gene expressions (clustered together at the bottom of the figure). Genes that are highly
expressed in eye tissues fall in three clusters, shown with a black box. These clusters are displayed in more detail in Figure 4A, B and C.
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Supplementary Figure 5. Genes from the regions associated with RE (from Supplementary Table 3) that
are particularly expressed in eye tissues, compared to non-ocular tissues. These clusters are those
highlighted in Supplementary Figure 3, but for the sake of clarity they are shown in transposed
orientation compared to the previous figure (here genes in the y-axis and eye tissues in the x-axis), but
same color codes as before. The dendrograms represent the degree of similarity observed for both
tissues and gene expressions. The clusters are given in the order in which they were clustered together,
from left to right: A) genes that are expressed more in other ocular tissues (fetal and adult) but much
less in the adult retina. B) genes that are highly expressed in the retina and other ocular tissues, and C)
genes that are expressed in the retina, but less in the other ocular tissues tested.
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Supplementary Figure 6. Results of the LD score regression analysis applied to specifically expressed genes (LDSC-SEG) on multiple tissue for the meta-
analysis results. Each point represents one tissue or cell line (along the x-axis) and the log10 value of the p-value of the correlation between the meta-analysis
results and gene expression. There were 205 tests carried out, one in each tissue and cell line, therefore only tissues with a correlation p-value< 0.00025
(Log_P> 3.6 in this figure), would have been significant after multiple testing. This condition was not fulfilled for any of the available tissues.
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Supplementary Figure 7. Mendelian randomization results on causality of IOP over refractive error.
Single points in the graph represent coordinates determined by the effect of each specific SNP over IOP
(x-axis, mmHg) and spherical equivalent (y-axis, Diopter units). The lines represent the regression lines
from each model, as specified in the figure legend. In some cases, these lines may not visible because

they overlap (please refer to the values underneath the figure)
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Supplementary Figure 8. Venn’s Diagram of the number of SNPs considered in each of the stages of this
study. The different circles represent various stages, inclusion in the meta-analysis (blue), identification
of significant loci (green), conditional analysis results identifying independent effects (red) and the total
number of SNPs available for inclusion in prediction and heritability estimation in the independent (i.e.
not part of the original meta-analysis) EPIC-Norfolk cohort (orange).
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Supplementary Figure 9. Prediction for the total number of SNPs and phenotypic variance explained as
a function of GWAS sample size in future studies, based on the distribution of effects observed in the
current meta-analysis. The plot lines show the predicted relationship between the number of loci
associated with refractive error (left vertical axis, blue line) and the variance they help explain (red line,
right vertical axis), as a function of the sample size (x-axis) used in future GWAS or meta-analyses. These
projections are consistent with the observed results, where an effective sample of 379,227 identified
904 independent signals after a conditional analysis, explaining 12-16% of refractive error variability.
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Supplementary Figure 10. The distribution of various natural selection test scores for SNPs associated
with refractive error. The values on the x-axis represent the ranking in terms of natural selection
observed and the y-axis the density of that rank. The different tests show are iHS, XP-EHH (CEU vs YRI),

XP-EHH average score, XP-EHH maximum score and Tajima scores (black, green, red, blue and yellow
respectively)
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Meta-analysis of 542,934 subjects of European ancestry identifies new
genes and mechanisms predisposing to refractive error and myopia
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4 Cohort Description

4.1 UK Biobank

The UK Biobank is a very large multisite cohort study established by the Medical Research Council,
Department of Health, Wellcome Trust medical charity, Scottish Government and Northwest Regional
Development Agency. A baseline questionnaire, measurements, and biological samples were
undertaken in 22 assessment centers across the UK between 2006 and 2010.

4.1.1 Phenotyping

4.1.1.1 Spherical equivalent (UK Biobank — 1)

Ophthalmic assessment was not part of the original baseline assessment and was introduced as an
enhancement in 2009 for 6 assessment centers which are spread across the UK (Liverpool and Sheffield
in North England, Birmingham in the Midlands, Swansea in Wales, and Croydon and Hounslow in
Greater London). Participants completed a touch-screen self-administered questionnaire. The response
options for ethnicity included White (English/Irish or other white background), Asian or British Asian
(Indian/Pakistani/Bangladeshi or other Asian background), Black or Black British (Caribbean, African, or
other black background), Chinese, mixed (White and Black Caribbean or African, White and Asian, or
other mixed background), or other, non-defined, ethnic group.

Refractive error (RE) was measured by non-cycloplegic autorefraction in both eyes using the Tomey RC
5000 Auto Refkeratometer (Tomey Corp., Nagoya, Japan). The right eye was measured first and up to 10
measurements were taken per eye. The most representative result was automatically recorded. To
ensure reliable and accurate RE data, we excluded participants based on previously published criteria®
(Supplementary Note Figure 1). Spherical equivalent was calculated as spherical refractive error (UK
Biobank codes 5084 and 5085) plus half the cylindrical error (UK Biobank 5086 and 5087) for each eye.

If reliable data were only available for one eye, the RE of that eye was considered as the participant’s RE.
If reliable data were available for both eyes, we calculated the mean of right and left RE as the
participant’s RE.
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117,888 participants 20,330 participants
invited to round 1 invited to round 2

Excluded by test protocol (reported having any eye
| surgery in the preceding 4 weeks period or a current
‘ eye infection). N=1493 (round 1), N=307 (round 2).

h

116,395 (98.7%) 20,023 (98.5%)
eligible participants eligible participants
114,860 (97.4%) 19,722 (97.0%)
reliable autorefraction reliable autorefraction
measurement in at measurement in at
least one eye least one eye

Excluded if unable to classify the original/prior refractive
error status: self-reported cataract surgery (N=2481 round
1; N=741 round 2), self-reported refractive surgery (N=2271
round 1; N=475 round 2), self-reported corneal graft (N=153
round 1; N=26 round 2).

Exclude participants with low myopia who reported current
cataractand also reported either not wearing glasses or
contactlenses or wearing glasses or contact lenses after age
30 years/no information on age of first wearing optical
correction (N=156 round 1; N=27 round 2).

Exclude participants with inter-ocular discordance in
refraction, defined as: i) myopia in one eye and hyperopia in
the other eye, or ii) one eye high myopia/hyperopia and the
other eye emmetropia, or iii) one eye mild
myopia/hyperopia refractive error and the other eye high
myopia/hyperopia with a difference of at least 10 D in SE
between the two eyes (N=1429 round 1; N=255 round 2).

r L

108,370 (91.9%) reliable 18,158 (89.3%) reliable and
and accurate autorefraction accurate autorefraction
measurement in at least measurement in at least
one eye one eye

First autorefraction measurement
used in participants who had reliable
and accurate measurements at both
examination rounds (N=3715)

122,813 participants with
reliable and accurate
autorefraction measurement

Supplementary Note Figure 1. Flowchart explaining the exclusion of UK Biobank participants, as
described elsewhere’, for whom spherical equivalent measurements were available, based on existing
clinical data.
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A summary of the basic demographic characteristics of the subset of the UK Biobank for which the
spherical equivalent was directly measured and which was used for our analysis is given below
(Supplementary Note Table 1).

Participants Spherical Equivalent (diopters) Age (years)
N (%) Mean + SD Mean + SD
All 102,117 -0.28D (2.74) 57.26 (7.86)
Male | 47,774 -0.27D (2.65) 57.59 (7.92)
Sex
Female | 54,343 -0.29D (2.82) 56.97(7.79)

Supplementary Note Table 1. Characteristics of UK Biobank participants for whom spherical equivalent
measurements were available and included in the quantitative spherical equivalent analysis.
Abbreviations: N, number; SD, standard deviation; Age, age at first documented spherical equivalent assessment

4.1.1.2 Inferring myopia case-control status from self-reported age of spectacle wear (UKB2 sample)

Direct measurements of RE were only available for just 22.7% of the entire UK Biobank sample. However
refractive error is strongly correlated with several clinical parameters and demographic factors?, which
can be used to predict refractive error and myopia. Some of that indirect information was present for
significant numbers among the UK Biobank participants.

For example, age when the first lens correction is prescribed is strongly correlated to spherical
equivalent both at a genetic® and phenotypic level*. It has used before as a proxy for RE previously® with
reasonably low levels of genetic effect heterogeneity®.A total of 87% of the participants, responded to
the question on whether their vision needed correction when they were asked “Do you wear glasses or
contact lenses to correct your vision?” (potential answers: Yes/No/Prefer not to answer) in a touch-
screen self-administered questionnaire. If a participant answered “Yes” to this question, they were
further asked “What age did you first start to wear glasses or contact lenses?”, to which 67% of the
participants responded. In addition, spherical equivalent and myopia affection status is highly correlated
with age, sex, birth year®’, all of which were available for UK Biobank participants.

We therefore aimed at harnessing the demographic and clinical information to obtain an estimate about
the individual’s likely myopia status. This general approach has been used successfully before®, and to
better classify the non-refracted subjects into myopia cases and non-myopia controls.

We proceeded in three steps: 1) training a Support Vector Machine model in 80% randomly selected UK
Biobank participants of European descent for whom direct spherical equivalent and refractive error
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status were available, 2) validate the prediction in the remaining 20% of UK Biobank participants of
European descent for whom direct spherical equivalent and refractive error status were available, 3)
make the SVM predictions in the remaining individuals with no direct spherical error measurements
available using the model developed for the training data.

We initially fine-tuned the prediction model, in order to optimize the y (gamma) and “cost” parameters
in the 80% training data sample. The performance of the model was subsequently tested in the
remaining 20% of the UK Biobank participants with spherical equivalent measurements. Receiver
Operating Characteristic (ROC) curves were drawn and the area under the curve (AUC) calculated
(Supplementary Note Figure 2). For the optimal SVM model, an Area Under the Curve (AUC) of 0.8 was
obtained, providing strong evidence that myopia status could be inferred from ‘age of first spectacle
wear’ with sufficient reliability to serve as a proxy for myopia status in a GWAS analysis. When we
compared predicted vs observed myopia case-control status in the 20% validation subset of the UK
Biobank for which spherical equivalent were available (cases defined as < -0.75 Diopters and controls > -
0.5Diopters), the inferred myopia status was a strong predictor for actual (observed) myopia case-
control status (OR=16.79, 95%Cl 15.99-17.62).
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Supplementary Note Figure 2. ROC curve and AUCs for the SVM model trained in 80% of fully phenotyped
(i.e. spherical equivalent available) UK Biobank participants. For both ROC and AUC, the remaining 20%
(i.e. not part of the initial training set) of the UK Biobank were used. Cases defined as < -0.75 Diopters
and controls > -0.5Diopters. The standard error for the AUC is shown within brackets.

The optimal SVM model was applied to the UK Biobank sample with known ‘age of first spectacle wear’
but for whom no spherical equivalent measurements were available. That is, the GWAS for SVM-
inferred myopia case-control status did not include participants with known (measured) refractive error.
This inferred phenotypic status was used for a GWAS analysis, for which we followed the previously
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described workflow (sections 4.1.3). In further support of SVM-inferred myopia case-control status as a
valid proxy measure, the genetic effect sizes for variants assessed in the SVM-inferred phenotype were
found to be highly correlated to those from the GWAS analyses for autorefractor-measured refractive
error (Supplementary Note Table 2, Supplementary File 1Error! Reference source not found.).

UKB1! GERA! 23andMe?*? UKB22*
Beta - UKB1 1.000 0.926 0.953 0.935
Beta - GERA 0.926 1.000 0.927 0.901
23andMe - log(OR) 0.953 0.927 1.000 0.941
UKB-2 log(OR) 0.935 0.901 0.941 1.000

Supplementary Note Table 2. Correlation of effects sizes between the UKB-2 subset (for which spherical
equivalent was not available and myopia status was imputed using the SVM) with other cohorts in which
refraction was directly measured or self-reported. “Beta” linear regression coefficients; log(OR) the
logarithm of the logistic regression Odds Ratios; UKB-1 denotes the first subset of the UK Biobank
participants (spherical equivalent available), UKB -2 the second subset (myopia case-control status
inferred). For a description of the 23andMe and GERA cohorts, please refer to subsequent sections for
further cohort descriptions.

The basic characteristics of the participants that were selected for the second UK Biobank subset (UKB-
2) of our meta-GWAS are shown in the Supplementary Note Table 3.

inferred cases/controls a,iea:;;St spectacle wear Age (years)

N cases (%) Mean + SD Mean + SD
All 108,956/70,941 (60.56) | 26.1 + 13.58 56.61+£7.79
Sex Male 45,994/30,388 (60.25) 26.38+13.48 56.78 £ 7.88
Female | 62,962 /40,553 (60.82) | 25.74 +13.65 56.48 +7.73

Supplementary Note Table 3. Characteristics of UK Biobank participants included in the inferred myopia
qualitative analysis (UKB-2). Abbreviations: N, number; SD, standard deviation; Age, age at first
documented spherical equivalent assessment.

4.1.2 Genotyping

DNA extraction, genotyping and imputation of UK Biobank participants has been reported elsewhere®,
DNA extraction begun on buffy coat samples. DNA was extracted from 850 pl buffy coat (recovered from
9 ml of whole blood) on customized TECAN Freedom EVO® 200 platform?®. The samples were then
processed in the approximate order received to produce genotype data. Genotyping was done using two
arrays. The first array was the Affymetrix Axiom® platform with a custom-designed array described in
the UK Biobank Axiom® Array Content Summary'°. Processing was done using a LIMS system to track
instrumentation, Axiom consumables arrays and reagents and operators. The process is described
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elsewhere!!. Details on genotyping procedure and quality control can be found elsewhere??. The second
array is what was the UK BILEVE, described elsewhere®3.

Phasing on the autosomes was carried out using a modified version of the SHAPEIT2* program modified
to allow for very large sample sizes. This new method (which we refer to as SHAPEIT3) modifies the
SHAPEIT2 surrogate family approach to remove a quadratic complexity component of the algorithm?®°. In
small sample sizes of a few thousand samples, this part of the algorithm, which involves calculating
Hamming distances between current haplotypes estimates, contributes only a relatively small part to
the computational cost. As sample sizes increase over 10,000 samples then this component becomes
significant. The new algorithm uses a divisive clustering algorithm to identify clusters of haplotypes, and
then calculates Hamming distances only between pairs of haplotypes within each cluster. Only
haplotypes within each cluster are used as candidates for the surrogate family copying states in the
HMM model.

A total of 806,466 directly genotyped DNA sequence variants were available after variant quality
control. The UK Biobank team then performed imputation from a combined Haplotype Reference
Consortium (HRC) and UK10K reference panel; phasing was performed using SHAPEIT3 and imputation
was carried out via the IMPUTE4 program?®. Only HRC-imputed variants were used for the purpose our
analyses of the UK Biobank participants. The variant-level quality control exclusion metrics applied to
imputed data for GWAS included the following: call rate < 95%, Hardy—Weinberg equilibrium P <1 x 107,
posterior call probability < 0.9, imputation quality < 0.4, and MAF < 0.005. The Y chromosome and
mitochondrial genetic data were excluded from this analysis. In total, 10,263,360 imputed DNA
sequence variants were included in our analysis.

For sample quality control, we removed individuals of non-European ancestry and participants with
relatedness corresponding to third-degree relatives or closer, and an additional 480 samples with an
excess of missing genotype calls or more heterozygosity than expected were excluded. In total,
genotypes were available for 102,117 participants of European ancestry with spherical equivalent data.

4.1.3 Association analyses

The basic model tested was the average of spherical equivalent measured in the left and right eye as an
outcome of a regression model whose predictor is the allele dosage at a given polymorphic locus,
adjusted for the effect of relevant covariables (see table below). The empirical association between
spherical equivalent and other covariables is shown in Supplementary Note Table 4.

Effect size estimates (Beta) and P-values are from the multivariate regression model. Since demographic
factors and principal components had a small yet real effect over Spherical Equivalent, the above
variables were included in the model.

Therefore, models of mixed linear regressions, as described before!’, where the spherical equivalent
was the outcome, the allele dosage the predictor, adjusted for age, sex and the first 10 principal
components. Since there was, there is evidence of cryptic relatedness among the UK Biobank
participants, a linear mixed model that controls for population structure was used as implemented in
the Bolt-LMM software 8,
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Variable | Beta SE Z P-value

age 0.05247 | 0.001122 | 46.773 | <E-308

sex -0.08013 | 0.017988 -4.455 | 8.42E-06
PC1 0.000297 | 0.000125 2.367 | 0.017935
PC2 0.001096 | 0.000272 4.032 | 5.54E-05
PC3 0.001369 | 0.000516 2.655 | 0.007935
PC4 0.005147 | 0.000799 6.439 | 1.21E-10
PC5 0.003194 | 0.001253 2.55 | 0.010786
PC6 0.004701 | 0.001314 3.577 | 0.000348
PC7 0.008073 | 0.001614 5.002 | 5.68E-07
PC8 0.000269 | 0.001605 0.168 | 0.866871
PC9 0.008165 | 0.002385 3.424 | 0.000618
PC10 -0.00039 | 0.001885 -0.207 | 0.836117

Online Note Table 4. The association between spherical equivalent, age, sex and the first 10 Principal
Components.

For the second UK Biobank subset, for which no spherical equivalent information was available, the
mixed linear model was built with the predicted myopia status as outcome and using the same
covariates as for the previously described linear regression analysis on spherical equivalent (paragraph
4.1.3). Odds Ratios were obtained from the beta regression coefficient using the equation:

ln(OR) = ﬁ

where [ is the fraction of the cases in the sample (u=0.606). Although the case-control analysis was
quite balanced, we opted to remove genotypes with MAF <0.01 and MAC< 400 recommended
elsewhere®® (which in our samples, most often would be correspond to MAF < 0.001).

4.2 23andMe

4.2.1 Phenotyping

The subjects were all volunteers from the 23andMe (Mountain View, CA, USA) personal genomics
company. All participants included in the analyses provided informed consent and answered surveys
online according to the approved 23andMe human subjects protocol, which was reviewed and approved
by Ethical & Independent Review Services, a private institutional review board
(http://www.eandireview.com). The participants were identified as myopia cases if they responded
positively to any of the following questions:

1. "Have you ever been diagnosed by a doctor with nearsightedness (near objects are clear, far
objects are blurry)?"

2. "Are you nearsighted (near objects are clear, far objects are blurry)?"

3. "What vision problems do you have? Please check all that apply." - Nearsightedness (near
objects are clear, far objects are blurry.

4. "Prior to your LASIK eye surgery, what vision problems did you have? Please check all that
apply." - Nearsightedness (near objects are clear, far objects are blurry.
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Controls were defined as having said "No" or not checking nearsightedness to at least one of the
questions above. Subjects who gave discordant answers were removed.

4.2.2 Genotyping

DNA extraction and genotyping were performed on saliva samples by CLIA-certified and CAP-accredited
clinical laboratories of Laboratory Corporation of America. Samples were genotyped on one of four
genotyping platforms. The V1 and V2 platforms were variants of the Illumina HumanHap550+ BeadChip,
including about 25,000 custom SNPs selected by 23andMe, with a total of about 560,000 SNPs. The V3
platform was based on the lllumina OmniExpress+ BeadChip., with custom content to improve the
overlap with our V2 array, with a total of about 950,000 SNPs. The V4 platform in current use is a fully
custom array, including a lower redundancy subset of V2 and V3 SNPs, with additional coverage of
lower-frequency coding variation, and about 570,000 SNPs. Samples that failed to reach 98.5% call rate
were re-analyzed. For the GWAS only participants who have >97% European ancestry, as determined
through an analysis of local ancestry, were included. For the purposes of ethnic categorization, an
algorithm first partitioned phased genomic data into short windows of about 100 SNPs and used a
support vector machine (SVM) to classify individual haplotypes into one of 31 reference populations.
The SVM classifications then fed into a hidden Markov model (HMM) that accounts for switch errors and
incorrect assignments and gives probabilities for each reference population in each window. The
reference population data are derived from public datasets (the Human Genome Diversity Project,
HapMap, and 1000 Genomes), as well as 23andMe customers who have reported having four
grandparents from the same country. A maximal set of unrelated individuals was chosen for each
analysis using a segmental identity-by-descent (IBD) estimation algorithm?°. Individuals were defined as
related if they shared more than 700 cM IBD, including regions where the two individuals share either
one or both genomic segments identical-by-descent. This level of relatedness corresponds
approximately to the minimal expected sharing between first cousins in an outbred population.

Participant genotype data were imputed against the September 2013 release of 1000 Genomes Phasel
reference haplotypes, phased with Shapelt22!. We phased and imputed data for each genotyping
platform separately. We phased using an internally developed phasing tool which implements the
Beagle haplotype graph-based phasing algorithm?2,

SNPs with Hardy-Weinberg equilibrium P<107%, call rate < 95%, or with large allele frequency
discrepancies compared to European 1000 Genomes reference data were excluded from imputation.
Imputation was done against all-ethnicity 1000 Genomes haplotypes (excluding monomorphic and
singleton sites) using Minimac?3. For the X chromosome, separate haplotype graphs were built for the
non-pseudoautosomal region and each pseudoautosomal region, and these regions were phased
separately. Males and females were imputed together using Minimac223, as with the autosomes,
treating males as homozygous pseudo-diploids for the non-pseudoautosomal region.

HLA allele dosages were imputed from SNP genotype data using HIBAG?*. We imputed alleles for HLA-A,
B, C, DPB1, DQA1, DQB1, and DRB1 loci at four-digit resolution. To test associations between HLA allele
dosages and phenotypes, we performed logistic or linear regression using the same set of covariates
used in the SNP-based GWAS for that phenotype. We performed separate association tests for each
imputed allele.
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4.2.3 Association analyses

Association test results were computed by linear regression assuming additive allelic effects. For tests
imputed dosages rather than best-guess genotypes were used. Covariates for age, gender, the first ten
principal components to account for residual population structure were also included into the model.
Results for the X chromosome are computed similarly, with male genotypes coded as if they were
homozygous diploid for the observed allele.

4.3 GERA

The Genetic Epidemiology Research in Adult Health and Aging (GERA) cohort is part of the Kaiser
Permanente Research Program on Genes, Environment, and Health (RPGEH) and has been described in
detail elsewhere?>?®. The GERA cohort comprises 110,266 adult men and women who are consented
participants in the RPGEH, an unselected cohort of adult participants who are members of Kaiser
Permanente Northern California (KPNC), an integrated health care delivery system, with ongoing
longitudinal records from vision examinations. For this analysis, 34,998 adults (25 years and older), who
self-reported as non-Hispanic white, and who had at least one assessment of spherical equivalent
obtained between 2008 and 2014 were included (Supplementary Note Table 5). All study procedures
were approved by the Institutional Review Board of the Kaiser Foundation Research Institute.

Participants Spherical Equivalent (diopters) | Age (years)

N (%) Mean = SD Mean £ SD
All 34,998 (100) -0.35+2.56 66.54 + 11.55
Sex | Male 14,431 (41.23) -0.32+£2.46 68.84 £ 10.70
Female | 20,567 (58.77) -0.38+2.64 64.93+11.84

Supplementary Note Table 5. Characteristics of GERA non-Hispanic white subjects included in the GWAS
of spherical equivalent by sex. Abbreviations: N, number; SD, standard deviation; Age, age at first documented
spherical equivalent assessment

4.3.1 Phenotyping

All participants underwent vision examinations, and most subjects had multiple measures for both eyes.
Spherical equivalent was assessed as the sphere + cylinder/2. For this analysis, spherical equivalent was
selected from the first documented assessment, and the mean of both eyes was used. As previously
described?, individuals with histories of cataract surgery (in either eye), refractive surgery, keratitis, or
corneal diseases were excluded.

4.3.2 Genotyping

DNA samples from GERA individuals were extracted from Oragene kits (DNA Genotek Inc., Ottawa, ON,
Canada) at KPNC and genotyped at the Genomics Core Facility of the University of California, San Francisco
(UCSF). DNA samples were genotyped at over 665,000 single nucleotide polymorphisms (SNPs) on
Affymetrix Axiom arrays (Affymetrix, Santa Clara, CA, USA)?%2°, SNPs with initial genotyping call rate >97%,
allele frequency difference <0.15 between males and females for autosomal markers, and genotype
concordance rate >0.75 across duplicate samples were included?. Around 94% of samples and more than
98% of genetic markers assayed passed quality control (QC) procedures. In addition to those QC criteria,
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SNPs with genotype call rates <90% were removed, as well as SNPs with a minor allele frequency (MAF) <
1%.

Following genotyping QC, we conducted statistical imputation of additional genetic variants. Following
the pre-phasing of genotypes with Shape-IT v2.r72719%, variants were imputed from the cosmopolitan
1000 Genomes Project reference panel (phase | integrated release; http://1000genomes.org) using
IMPUTE2 v2.3.0.3:33 As a QC metric, we used the info r> from IMPUTE2, which is an estimate of the
correlation of the imputed genotype to the true genotype3*. Variants with an imputation r? < 0.3 were
excluded, and we restricted to SNPs that had a minor allele count (MAC) > 20.

4.3.3 Association analyses

A linear regression of each individual’s spherical equivalent was performed with the following
covariates: age at first documented spherical equivalent assessment, sex, and genetic principal
components. A linear regression of the residuals on each SNP was then performed using PLINK3> v1.9
(www.cog-genomics.org/plink/1.9/) to assess genetic associations. Data from each SNP were modeled
using additive dosages to account for the uncertainty of imputation®. Eigenstrat®’ v4.2 was used to
calculate the PCs?. The top 10 ancestry PCs were included as covariates, as well as the percentage of
Ashkenazi ancestry to adjust for genetic ancestry, as described previously?.

4.4 Cream Consortium

4.4.1 Phenotyping

All participants included in this analysis from CREAM were 25 years of age or older. RE was
represented by measurements of refraction and spherical equivalent (SphE = spherical refractive
error +1/2 cylinder refractive error) was the outcome variable for CREAM. Participants with
conditions that might alter refraction, such as cataract surgery, laser refractive procedures, retinal
detachment surgery, keratoconus, or ocular or systemic syndromes were excluded from the
analyses. Recruitment and ascertainment strategies varied by study and were previously published
elsewhere®.

4.4.2 Genotyping

The genotyping process has been described elsewhere®. Samples were genotyped on different
platforms, and study-specific QC measures of the genotyped variants were implemented before
association analysis. Genotypes were imputed with the appropriate ancestry-matched reference panel
for all cohorts from the 1000 Genomes Project (Phase | version 3, March 2012 release) with either
minimac?® or IMPUTE?®, The metrics for preimputation QC varied among studies, but genotype call-rate
thresholds were set at a high level (>0.95). These metrics were similar to those described in a previous
GWAS analyses®; detailed information for each cohort is described elsewhere®.

4.4.3 Association analyses

To prevent overlap of samples, cohorts from the United Kingdom (1985BBC, ALSPAC-Mothers, EPIC-
Norfolk, ORCADES and Twins UK) were excluded from the GWAS meta-analysis. Association analyses
were performed following the workflow elsewhere®: All samples analyzed were of European descent,
for each CREAM cohort, a single-marker analysis for the phenotype of Spherical equivalent (in diopters)
was carried out with linear regression with adjustment for age, sex and up to the first five principal
components. For all non-family-based cohorts, one of each pair of relatives was removed (after
detection through either GCTA or identity by sequence (IBS)/identity by descent (IBD) analysis). In
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family-based cohorts, a score test-based association was used to adjust for within-family relatedness.
We used an additive SNP allelic-effect model.

4.5 EPIC

The European Prospective Investigation into Cancer (EPIC) study is a pan-European prospective cohort
study designed to investigate the etiology of major chronic diseases®. EPIC-Norfolk , one of the UK arms
of EPIC, recruited and examined 25,639 participants between 1993 and 1997 for the baseline
examination®. Recruitment was via general practices in the city of Norwich and the surrounding small
towns and rural areas, and methods have been described in detail previously*'. Since virtually all
residents in the UK are registered with a general practitioner through the National Health Service,
general practice lists serve as population registers. Ophthalmic assessment formed part of the third
health examination and this has been termed the EPIC-Norfolk Eye Study*. In total, 8,623 participants
were seen for the Eye Study, between 2004 and 2011. The EPIC-Norfolk Eye Study was carried out
following the principles of the Declaration of Helsinki and the Research Governance Framework for
Health and Social Care. The study was approved by the Norfolk Local Research Ethics Committee
(05/Q0101/191) and East Norfolk & Waveney NHS Research Governance Committee (2005EC0O7L). All
participants gave written, informed consent.

4.5.1 Phenotyping

Refractive error was measured in both eyes using a Humphrey Auto-Refractor 500 (Humphrey
Instruments, San Leandro, California, USA). Spherical equivalent was calculated as spherical refractive
error plus half the cylindrical error for each eye.

Some basic demographic and clinical information about the samples used for the validation analyses is
given below (Supplementary Note Table 6).

Participants (S;I;c:’r;l:fsl)Equwalent Age (years)

N (%) Mean £ SD Mean £ SD
All 7,117 (100) +0.16 £ 2.25 68.80 + 8.18
Sex Male 3,253 (45.71) +0.15+2.23 69.60 £ 8.20
Female | 3,864 (54.29) +0.18 £2.27 68.13£8.11

Supplementary Note Table 6. Characteristics of the participants in the EPIC-Norfolk cohort, included in
the heritability and risk prediction analyses. Abbreviations: N, number; SD, standard deviation; Age, age at first
documented spherical equivalent assessment

4.5.2 Genotyping and imputation

Genotypes obtained using the Affymetrix UK Biobank Axiom Array on 7,117 subjects contributed to the
current study were excluded if they had low call rates, poor clustering, batch effects across genotyping
plates and/or Hardy-Weinberg equilibrium P < 10”7. Samples were excluded on grounds of poor
genotyping across all SNPs, sex discordance , exces or low heterozygosity and unexplainable identity-by-
descent values. Third-degree relatives or closer participants were also removed. Data were pre-phased
using SHAPEIT* version 2 and imputed to the Phase 3 build of the 1000 Genomes project*® (October
2014) using IMPUTE?® version 2.3.2.
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4.5.3 Association analysis

We examined the relationship between allele dosage and mean spherical equivalent using linear
regression adjusted for age, sex and the first 5 principal components. Analyses were carried out using
SNPTEST version 2.5.1.

5 STATISTICAL ANALYSES

5.1 Meta-analyses

For all meta-analyses we applied a Z-score method, weighted by the effective population sample size, as
implemented in METAL*. No genomic control adjustment was applied during the meta-analysis.

5.2 Conditional analyses

The conditional and joint analysis on summary data (COJO) ** as implemented in the GCTA program %
was used to identify independent effects within associated loci as well as the calculation of the
phenotypic variance explained*” by all polymorphisms associated with the trait after the conditional
analyses. Default parameters were used for the analysis. The LD estimates were derived from a
randomly selected sample of 10,000 unrelated subjects the UK Biobank cohort.

5.3 Multiple testing correction

Two methods of correcting for multiple testing were used. The first was a classic Bonferroni correction,
in which the threshold of significance (0.05) was divided by the number of tests (n):
_0.05

o=
n

Given the large number of loci for which replication was needed, we additionally calculated the False
Discovery Rates, using the Benjamini-Hochberg method*.

5.4  Genomic inflation
To assess the potential inflation of association probabilities, genomic inflation factors* were calculated
and Q-Q plots were drawn using the package ‘gap’ in R (https://cran.r-project.org/).
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5.5 LDscore regression-based methods

5.5.1 Polygenicity vs. inflation

To distinguish between the effect of polygenicity and those arising from sample stratification or
uncontrolled population admixture, we followed previously suggested approaches® to calculate the LD
score regression intercepts using the program LD Score (https://github.com/bulik/ldsc).

5.5.2 Calculation of genetic correlation

Bivariate genetic correlations between refractive error and other complex traits whose summary
statistics are publicly available were assessed following previously described methodologies®?, using the
program LD Score (https://github.com/bulik/Idsc).

5.6 Associated SNPs and gene annotations

Polymorphisms associated at a GWAS level (P<5x10) were clustered within an “associated genomic
region”, defined as a contiguous genomic region where GWAS-significant markers were within 1 million
base pairs from each other, as suggested elsewhere>2. Significant polymorphisms were annotated with
the gene inside whose transcript-coding region they are located, or alternatively, if located between two
genes, with the gene nearest to it. The associated genomic regions were collectively annotated with the
gene overlapping, or nearest the most significantly associated variant within that region. In addition, the
polymorphic sites were functionally annotated using SNPnexus>3.

56.1 OMIM

The Online Mendelian Inheritance In Man (OMIM) is a continuously curated catalog of human genes and
phenotypic changes their polymorphic forms cause in humans®. This catalogue contains a still partial,
but highly reliable list of gene-phenotype pairs and was used retrieve data that could inform about the
functionality of specific genes with particular focus on phenotypic expressions of extremely penetrant
mutations.

5.6.2 The GWAS Catalog.

Previous GWAS association of SNPs or genes with other phenotypic traits was conducted through
queries of the GWAS Catalog®®. Results were downloaded from the official site hosted at the European
Bioinformatics Institute: https://www.ebi.ac.uk/gwas/downloads.

5.7 Graphical illustration of association

LocusZoom®® was used to generate plot that visualize regional association and its genomic context. Data
from the European participants in the 1000 Genome Project, November 2014 was used, and the graphs
were generated using the online LocusZoomserver (http://locuszoom.org/).

5.8 Mendelian randomization
The R (https://cran.r-project.org) package MendelianRandomization v3.4.4 was used for Mendelian
randomization analyses.

5.9 Gene expression, GTEx and other transcription data

We obtained data on tissue expression from several sources for genes that map within RE associated
loci defined as described before (section Error! Reference source not found.). Information about the
expression of the genes of interest in systemic (i.e. non-ocular) tissues was obtained from the GTEx
Portal for GTEx release v7 (https://gtexportal.org/home/datasets). RNA sequencing data was obtained
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for both fetal and adult corneal, trabecular meshwork and ciliary body, as described elsewhere®’, which
we downloaded from the authors’ supplementary information. In addition, we extracted data from the
subset of subjects with presumed healthy adult retinas (AMD=1), described elsewhere>® that obtained
from the GTEx Portal (https://gtexportal.org/home/datasets).

Transcription data was processed using different platforms and were available in different units
(Transcripts per Million bases, TPM, for the retina and GTEXx tissues, and Fragments per Kilobase, FPKM
for the other tissues). For purposes of comparing expression across different tissues for which different
methodologies may have been used, expression levels for all tissues were rank-transformed.
Hierarchical clustering was used to help visualize similarities and differences of patterns of transcript
expression across different tissues (‘hclust’ package in R).

5.10 LD score regression applied to specifically expressed genes (LDSC-SEG)
Disease-relevant tissues and cell types were identified by analyzing gene expression data together with
summary statistics from the meta-analysis of refractive error in all five cohorts, as described
elsewhere®. Briefly, genes were ranked based on the t-statistic of their expression in each tisue and the
10% most expressed genes for each tissue were considered "specifically expressed genes". A stratified
LD score regression was applied to the meta-analysis summary statistics to evaluate the contribution of
the focal genome annotation to trait heritability.

5.11 SMR

SMR (Summary data—based Mendelian randomization) assesses the relationship between genetic
variant, intermediate variables such as gene expression levels or methylation levels as mediating traits,
to test causality on a specific phenotype®.

5.11.1 Test description

The SMR package helps perform two tests. The first is an SMR test, which correlates GWAS effects with
eQTL or methylation effects (or any other intermediate trait)®°. This test suggests causation, although it
is unable to fully differentiate between it and pleiotropy. The second test is that of Heterogeneity in
Dependent Instrument (HEIDI). This test against the null hypothesis that changes in both eQTL (or other
intermediary traits) and the phenotype of interest are caused by one single SNP, which is therefore
considered as the candidate for the putative causal effect.

5.11.2 Datasets for the SMR analyses: eQTL, cis-mQTL

To perform the above-mentioned tests of causation/pleiotropy, we used three different datasets of
association between genetic variants and intermediate traits. The first was the summary statistics of
eQTL associations in the untransformed peripheral blood samples of 5,311 subjects®’. There were two
advantages in using these data: 1) this was the largest eQTL dataset available and 2) the use of a highly
heterogeneous tissue such as peripheral blood would be more likely than any other single more
homogeneous tissue to overcome any heterogeneity of eQTL effects with eye and retinal tissues that
were unavailable at the time of the analysis and manuscript writing.

Assuming that tissues relevant to the development of refractive error are similar to the brain, we also
used two datasets, one with eQTL effects and the other with results of a cis- methylation analysis (cis-
mQTL), both in brain tissues®2.
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5.12 Gene-set enrichment

To identify pathways or other gene sets that were over-represented among our results, we used a Gene-
Set Enrichment Analysis (GSEA) as implemented in the Meta-Analysis Gene Set Enrichment of Variant
(MAGENTA) software®. This program assigns scores to each gene based on the strength of association
with refractive error, adjusting for potential confounders such as gene length and linkage disequilibrium.
Enrichment for any gene set was assessed within genes above the cut-off of the highest 75 centile of
significant gene scores. For the current study, the most recent versions of Gene Ontology (GO), Panther,
KGG, Biocarta and MSigDB databases were used. We also carried out a similar enrichment analysis for
the presence of transcription factor binding sites. A permutational procedure and false-discovery rates
were used to calculate significance of enrichment and control for multiple testing.

5.12.1 GSEA definitions

For the enrichment analyses we used updated versions of the GSEA gene sets as described before®. We
used the versions from September 2017 which were downloaded from:
http://software.broadinstitute.org/gsea/login.jsp

5.13 Analyses of signals of natural selection

Results of three statistical tests for natural selection were imported from the 1000 Genomes Selection
Browser®. We downloaded and reported results from several tests such as iHS%¢ and a cross-population
comparison, XP-EHH, based on extended haplotype homozygosity test (average and maximum CEU, CEU
vs YRI) ¢ and the Tajima’s D test. The absolute test scores and the rank scores (-log10 of the centile of
the absolute test score across the genome) were reported.

5.14 Estimation of effect size distributions for spherical equivalent

We used a maximume-likelihood model to estimate the distribution of effect sizes, based on summary
statistics of observations and linkage disequilibrium patterns to predict the likely number of SNPs that
explain spherical equivalent heritability as well as explore the relationship between future sample sizes
and the number of SNPs identified and variance or heritability explained as described elsewhere® and
implemented in the GENESIS R package (https://github.com/yandorazhang/GENESIS).
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