UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

On outflow boundary conditions for CT-based computation of FFR: Examination using PET images

Lo, EW; Menezes, LJ; Torii, R; (2020) On outflow boundary conditions for CT-based computation of FFR: Examination using PET images. Medical Engineering & Physics , 76 pp. 79-87. 10.1016/j.medengphy.2019.10.007. Green open access

[thumbnail of MEP_paper_revised_EL_RT_forRPS.pdf]
Preview
Text
MEP_paper_revised_EL_RT_forRPS.pdf - Accepted Version

Download (1MB) | Preview

Abstract

CT-based computations of fractional flow reserve (FFR) have been widely utilized for evaluating functional severity of a coronary artery stenosis. Whilst this approach has been successful clinically, assumptions involved in the analysis still need to be investigated for further improvement in predictive accuracy. To better understand the sensitivity of computational FFRs on outflow boundary condition – typically reflecting patient's own physiology only through anatomical features – FFR computations for 10 patients with different degree of stenosis was conducted. The computations were based on 3D anatomical model reconstructed from CT images and patient-specific in/outflow boundary conditions (BC). Two outflow BCs were considered: (1) conventional morphology-based and (2) PET perfusion-based conditions. The results showed that the FFRs derived from the two boundary conditions agree in general. It was also found that the FFRs computed with the morphology-based BC tend to estimate higher functional severity, especially in patients with reduced vasodilatory response under hyperaemia – an essential physiological condition in FFR measurement. Further investigation was made by varying hyperaemic resistances (30%-90% of the baseline) in the morphology-based BC. The variation of FFR for the varied resistances was narrow for patients with mild stenosis and wider for those who have severe stenosis. This latter approach confirmed that variability of FFR due to outflow condition tends to come from overestimation of vasodilatory response, especially those who have abnormal myocardial perfusion. The results suggest that outflow conditions that are more representative of each patient could be an effective way to improve CT-based FFR computation.

Type: Article
Title: On outflow boundary conditions for CT-based computation of FFR: Examination using PET images
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.medengphy.2019.10.007
Publisher version: https://doi.org/10.1016/j.medengphy.2019.10.007
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: CT-based FFR computation, Coronary artery stenosis, Outflow boundary conditions, Positron emission tomography perfusion imaging
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10094290
Downloads since deposit
236Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item