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Abstract

We use the Filter Diagonalization Method (FDM), a
harmonic inversion technique, to extract f-wave features
in electrocardiographic (ECG) traces for atrial fibrillation
(AF) stratification. The FDM detects f-wave frequencies
and amplitudes at frame sizes of 0.15 seconds. We demon-
strate our method on a dataset comprising of ECG record-
ings from 23 patients (61.65± 11.63 years, 78.26% male)
before cryoablation; 2 paroxysmal AF, 16 early persistent
AF (<12 months duration), and 4 longstanding persistent
AF (>12 months duration). Moreover, some of these pa-
tients received adenosine to enhance their RR intervals be-
fore ablation. Our method extracts features from FDM out-
puts to train statistical machine learning classifiers. Ten-
fold cross-validation demonstrates that the Random For-
est and Decision Tree models performed best for the pre-
ablation without and with adenosine datasets, with accu-
racy 60.89 ± 0.31% and 59.58% ± 0.04%, respectively.
While the results are modest, they demonstrate that f-wave
features can be used for AF stratification. The accuracies
are similar for the two tests, slightly better for the case
without adenosine, showing that the FDM can success-
fully model short f-waves without the need to concatenate
f-wave sequences or adenosine to elongate RR intervals.

1. Introduction

Atrial fibrillation (AF) is a fast growing global epi-
demic [1]. Treatment decisions regarding the feasibility
of restoring sinus rhythm are based on assessments of
left atrial size and the chronicity of AF, but these factors
give only an approximate assessment of disease progres-
sion and are poor discriminators of who will respond to a
rhythm control strategy. This clinical classification of AF
is crude, with little bearing on symptom severity, progres-
sion risk, and treatment success.

AF is characterised by fibrillatory waves (f-waves) in

the electrocardiographic (ECG) signal that alter in shape,
size, and organization as the disease progresses and the
atria undergo structural remodelling. Properties of f-waves
have been used for risk stratification. Bollman et al. [2]
showed f-wave frequency to be strongly correlated to the
atrial defibrillation threshold for persistent AF (PeAF) pa-
tients undergoing cardioversion. In Cheng et al. [3], f-wave
amplitude was shown to predict persistent AF recurrence
in patients who underwent catheter ablation. Zeemering
et al. [4] showed higher dominant frequency and higher
f-wave amplitude to be associated with increased risk of
progression to PeAF. Alcaraz and Rieta [5] used Wavelet
Entropy to characterise the f-wave disorder degree to pre-
dict successfully spontaneous termination of paroxysmal
AF (PAF) and cardioversion outcome in PeAF patients.

Here, we propose and test the use of the Filter Diag-
onalization Method (FDM) to extract f-wave features in
ECG traces for AF stratification. The FDM is an effective
and highly efficient harmonic inversion technique that al-
lows for super-resolution extraction of harmonic frequen-
cies and characteristics over a very short window, in com-
parison to the period of the signal. In [6], the FDM was
successfully used to detect musical vibratos, which typ-
ically range between 4–8 Hz, and characterize their fea-
tures. F-waves exhibit similar undulatory behaviors and
range between 3–12 Hz. An FFT-based method would
require multiple time periods in order to extract the har-
monic features with sufficient resolution, and f-wave fea-
tures could risk being averaged out and lost in the noise
floor. Features extracted using the FDM are used to train
statistical machine learning classifiers to stratify patients
into the labeled subgroups. In the present experiments,
ECG data is drawn from PeAF (early and longstanding)
and PAF patients prior to ablation, with some patients be-
ing administered adenosine to elongate their RR intervals.
Since there are presently no established categories of AF
which are particularly useful or reflect disease progres-
sion, to demonstrate biological plausibility of categorising
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patients using this technique, we compare the results to
the conventional categorizations of PAF, Early PeAF (E-
PeAF), and longstanding PeAF (LS-PeAF).

2. The Filter Diagonalization Method

In the FDM, the idea is to decompose a signal into a
Fourier basis. This is done by matching it to a filter com-
posed of a grid of frequencies points (which serve as initial
estimates of the harmonics), diagonalizing to place it into
a solvable (and computational efficient) form, and then ob-
taining the relevant harmonic characteristics through solu-
tion of an eigenequation.

A signal, such as an ECG waveform, can be expressed
as a sum of complex exponentials,

gn = g(nτ) =

K∑
k=0

dke
−inτωk (1)

where n = 0, 1, 2, ..., N is an integer, and τ is the mea-
surement sampling time and ωk is the frequency. A key
novelty is the recognition that this form of a time-series
waveform can be associated with an autocorrelation func-
tion , and solving for the spectral features of g is equivalent
to diagonalizing the evolution operator, Û = e−iτΩ̂ [7].

A matrix operator U is defined, in a similar manner, and
is equivalent to a two-dimensional Fourier transform,

U(p) =

N∑
n=0

N∑
n′=0

einφein
′φ′
g0 (n+ n′ + p) . (2)

To evaluate this operator, a uniform grid of frequency
search components is defined in the vicinity of the spec-
tral harmonic components, φk = −2π (k∆h+ hmin) τ ,
where (hmin, hmax) defines the search range for the har-
monic frequencies, and ∆h = 1

K (hmax − hmin). The
Nyquist criterion sets the search resolution of the grid,
K = (hmax − hmin)Nτ/2− 1.

Using the definition of the evolutionary operator, solve
for the eigenvalue equation:

U(1)Bk = ukU
(1)Bk. (3)

Each of the k solutions corresponds to a spectral harmonic,
such that hk = i

2πτ ln(uk). Note that the real part of hk
corresponds to the frequency component, and the imagi-
nary part represents the decay of the wave. The amplitude
of this component of the signal is found using the eigenvec-

tors B, such that dk =
(∑N

n=0 g(n)Bnk

)2

, where |dk| is
the amplitude of the signal, and the phase is the time delay.
Note that, because the size of the problem is proportional
to the number of harmonics, K, rather than the number of
time samples, N >> K, the computational burden is low.

Table 1. Dataset summary. Pre and PreAdenosine are two
types of ECG excerpts used for the experiments. For each
AF category C, NC

p , NC
r and NC

TQ refer to the number of
patients, recordings and TQ segments, respectively.

AF Pre PreAdenosine

NPre
p NPre

r NPre
TQ NPreA

p NPreA
r NPreA

TQ

PAF 2 9 4461 2 9 4461

E-PeAF 16 16 5108 7 7 2225

LS-PeAF 4 4 1350 1 1 474

In summary, the FDM is a highly efficient technique—
computational complexity is a function of number of
harmonics—that can accurately resolve over a small num-
ber of waveform measurements. This is well-suited to ex-
tracting fine features exhibited over a short period of time,
over which FFT-based methods would not be suitable.

3. Experiments

This section describes the experiments that demonstrate
the effectiveness of the FDM for AF stratification.

3.1. Dataset

The experiment draws ECG data from 23 patients, 18
men and 5 women aged 61.65±11.63 years, consented for
the Barts BioResource database who are participating in a
larger CardioInsight (ECGI) study (NCT03394404). 17 of
these are E-PeAF patients (AF duration < 12 months), 4
are LS-PeAF patients (AF duration > 12 months), and two
are PAF patients. Of these, 7 E-PeAF, and one LS-PeAF
patient were administered adenosine to enhance their RR
intervals for analysis before ablation.

All patients underwent cryo-ablation. However, the cur-
rent experiment only uses data preceding the ablation. We
extract 10 minute excerpts from the ECG (sampling rate
2 kHz) recorded by the digital recording system (Bard
LabSystem Pro, Boston Scientific), and label them ‘Pre’.
For patients who received adenosine, we also excerpt ECG
data after adenosine and label that ‘PreAdenosine’(PreA).
All except one patient with PreA segments also had Pre
segments. Table 1 shows the dataset distribution for the
experiments.

3.2. Feature Extraction

Our method extracts features from ECG excerpts in two
steps. We first extract TQ segments—the segments from
the end of the T wave to the start of the next QRS complex.
Then, we apply the FDM to each frame in a TQ segment
to generate one feature vector per TQ segment. Figure 1
depicts the feature extraction pipeline.
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Figure 1. Functional block diagram of the feature extrac-
tion pipeline. Red segments depict TQ segments. TQij is
the jth TQ segment of the ith ECG excerpt. The FDM
returns per frame frequency and amplitude information,
post-processing which generates the feature vector [ψij ].

Our method extracts TQ segments by first finding R
peaks using a computed minimum amplitude threshold and
a minimum distance between R peaks, and then splicing
the signal using known average times for QRS and TQ
complexes1. Table 1 shows the number of TQ segments
per AF category for Pre and PreA excerpt types.

We apply the FDM to overlapping frames of each TQ
segment by using a 150 ms window with 10 ms hop size.
The FDM returns a set of frequencies and corresponding
magnitudes for each frame, t, that we use to locate the
maximum magnitude, amaxt , and its corresponding fre-
quency, fmaxt , per frame. Over all frames, we select the
set of valid frequencies, Fval = {ft|ft ∈ [3, 12]}, those
in the f-wave range. We then construct the 15-dimensional
feature vector, [ψij ], for the j-th TQ segment in the ith-
ECG excerpt:
1. Features 1-3: fmaxt mean, median, standard deviation
2. Features 4-6: 2amaxt mean, median, standard deviation
3. Features 7-15: Normalised Fval distribution
Thus, we create a set of feature vectors, Ψ = [ψi], and
matching labels, Γ = [γi], for i = 1 . . . NC

r . Each ψi
represents a 15-dimensional feature vector, [ψij ], and each
γi points to an AF category, {PAF, E-PeAF, LS-PeAF}.

3.3. Model Training and Evaluation

We train Decision Tree (DT) [8] and Random Forest
(RF) [9] classifiers for Pre and for PreA excerpts. Table 1
shows that both the Pre and PreA subsets are highly imbal-
anced. The number of TQ segments in LS-PeAF is much
smaller than that in the other two AF categories. Train-
ing a model on such a dataset may bias the predictions to
the dominant AF categories. To avoid this, from the Pre
and PreA datasets, we create a data subset by randomly se-
lecting about 500 TQ segments per AF category to form
the ΨPre

sampled and ΨPreA
sampled datasets with 1500 and 1474

features, respectively.

1 https://www.nottingham.ac.uk/nursingpractice/resources/cardiology/
function/normal_duration.php (accessed 15 July 2019)

Table 2. Average classification accuracy (in %) and stan-
dard deviation for the best decision tree and random forest
models for each ECG excerpt type.

Classifier ECG excerpt type

Pre PreAdenosine

Random baseline 33.33 33.33

Decision tree 59.33(±0.038) 59.58(±0.040)

Random forest 60.89(±0.311) 58.22(±0.035)

We perform two types of evaluations per classifier—
cross-validation and holdout dataset-based evaluation. To
do this, we split each of the two sampled datasets into two
subsets of unequal sizes. For example, for the Pre subset,
we generate the cross-validation ΨPre

CV and holdout evalu-
ation ΨPre

Eval subsets by randomly splitting ΨPre
sampled into

90% and 10% subsets, respectively. Similarly, we create
ΨPreA
CV and ΨPreA

Eval datasets from ΨPreA
sampled.

In the first evaluation, we perform 10-fold cross-
validation over the cross-validation subsets and report the
average classification accuracy for each trained model for
the Pre and PreA subsets. We select the best model by per-
forming a random search over the hyperparameter space
and choosing the model with the best average classifica-
tion accuracy over 10 folds. Table 2 reports the results of
10-fold cross-validation for the best DT and RF models for
the Pre and PreA subsets. The evaluation results demon-
strate that all the classification models perform much bet-
ter than a random baseline (33%). Moreover, RF and
DT models perform best for the Pre and PreA subsets,
respectively. The results also demonstrate that the aver-
age classification accuracy of the best models for both the
recording categories is nearly the same—the difference is
only around 1%. This demonstrates that the FDM works
equally well for short TQ segments (in Pre) as for longer
ones (in PreAdenosine).

In the second evaluation, we select the best model, one
with the highest average classification category over the
cross-validation subsets, for the Pre and PreA subsets, and
evaluate its performance on the holdout evaluation subsets.
The holdout subsets are withheld during training, hence
evaluation on them provides an unbiased estimate of the
models’ generalizability. Table 3 presents the evaluation
results for the holdout subsets. Figure 2 plots the confusion
matrix for each model from Table 3.

4. Conclusions and Future Work

We proposed and demonstrated the effectiveness of
FDM-based features for AF stratification. The FDM ef-
fectively extracted key spectral and amplitude information
from short-duration f-waves which, when modelled with
machine learning classifiers, resulted in classification ac-
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Table 3. Best model performance statistics for holdout
datasets.‘Overall’ reports metrics for all AF categories; the
metrics per AF category reports how well the model pre-
dicts presence/absence of the AF category, giving the ac-
curacy (Acc), precision (P), recall (R), and F1-score (F1).

Category Best Model AF category Acc P R F1

Pre

Overall 57% 0.59 0.57 0.57

Random PAF 0.48 0.63 0.55

Forest E-PeAF 0.60 0.48 0.54

LS-PeAF 0.66 0.62 0.64

PreA

Overall 56% 0.60 0.56 0.56

Decision PAF 0.67 0.71 0.69

Tree E-PeAF 0.41 0.64 0.50

LS-PeAF 0.67 0.39 0.49

curacies around 60%, which is well above chance.
Although we have compared the output categories to

conventional classifications (for lack of an established al-
ternative) it is worth noting that this serves as a poor
ground truth as it is a poor reflector of disease progres-
sion. Furthermore, some E-PeAF patients were previously
cardioverted, and might be better categorized between PAF
and E-PeAF. This presentation is intended only to demon-
strate biological plausibility of the results.

We demonstrated that the best models for both Pre and
PreAdenosine excerpts have nearly the same performance.
This highlights the fact that the FDM can effectively ex-
tract discriminative features from short-duration f-waves,
avoiding the need for adenosine, which can alter f-wave
behaviour. This makes the system more straightforward to
apply, potentially through a standard ECG.

Future work includes extending the experiments to a
larger, more balanced dataset and considering other FDM
generated features such as time delay. We will seek to im-
prove the classification accuracy by using other classifiers
and to analyse the behaviour of the best performing classi-
fication models. It is hoped that the system will ultimately
stratify patients in a more meaningful way than conven-
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Figure 2. Confusion matrices for the best model for Pre
and PreAdenosine (P=PAF, EP=E-PeAF, LSP=LS-PeAF).
The number in each box gives the number of TQ segments.

tional clinical classifications. Once finished, we plan to
test the predictive power of the system to determine the
likelihood of success of a rhythm control strategy, which
could then be readily deployed through an ECG.
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