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Abstract

We consider a dynamic model of Bayesian persuasion in which information takes

time and is costly for the sender to generate and for the receiver to process, and

neither player can commit to their future actions. Persuasion may totally collapse

in a Markov perfect equilibrium (MPE) of this game. However, for persuasion costs

sufficiently small, a version of a folk theorem holds: outcomes that approximate

Kamenica and Gentzkow (2011)’s sender-optimal persuasion as well as full revela-

tion and everything in between are obtained in MPE, as the cost vanishes.

Keywords: Bayesian persuasion, general Poisson experiments, Markov perfect

equilibria, folk theorem.
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1 Introduction

Persuasion is a quintessential form of communication in which one individual (the sender)

pitches an idea, a product, a political candidate, a point of view, or a course of action, to

another individual (the receiver). Whether the receiver ultimately accepts that pitch—or

is “persuaded”—depends on the underlying truth (the state of the world) but importantly,
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also on the information the sender manages to communicate. In remarkable elegance

and generality, Kamenica and Gentzkow (2011, henceforth KG) show how the sender

should communicate information in such a setting, when she can perform any (Blackwell)

experiment instantaneously, without any cost incurred by her or by the receiver. This

frictionlessness gives full commitment power to the sender, as she can publicly choose any

experiment and reveal its outcome, all before the receiver can act.

In practice, however, persuasion is rarely frictionless. Imagine a salesperson pitching a

product to a potential buyer. The buyer may have an interest in buying the product but

requires some evidence that it matches his needs. To convince the buyer, the salesperson

might demonstrate certain features of the product, or marshal customer testimonies and

sales records, any of which takes real time and effort. Likewise, to process information,

the buyer must pay attention, which is costly. Clearly, these features are present in other

persuasion contexts, such as a prosecutor seeking to convince juries or a politician trying

to persuade voters.

In this paper, we study the implications of these realistic frictions. Importantly, with

the friction that real information takes time to generate, the sender no longer automati-

cally enjoys full commitment power. Specifically, she cannot promise to the receiver what

experiments she will perform in the future, effectively reducing her commitment power to

a current “flow” experiment. Given the lack of commitment by the sender, the receiver

may stop listening and take an action at any time if he does not believe that the sender’s

future experiments are worth waiting for. The buyer in the example above may walk

away at any time when he becomes sufficiently pessimistic about the product or about

the prospect of the salesperson eventually persuading him. We will examine to what ex-

tent and in what manner the sender can persuade the receiver in this environment with

limited commitment. As we will demonstrate, the key challenge facing the sender is to

instill the belief that she is worth listening to, namely, to keep the receiver engaged.

We develop a dynamic version of the canonical persuasion model: the state is binary,

L or R, and the receiver can take a binary action, ℓ or r. The receiver prefers to match

the state by taking action ℓ in state L and r in state R, while the sender prefers action

r regardless of the state. Time is continuous and the horizon is infinite. At each point

in time, unless the game has ended, the sender may perform some “flow” experiment.

In response, the receiver either takes an action and ends the game, or simply waits and

continues the game. Both the sender’s choice of experiment and its outcome are publicly

observable. Therefore, the two players always share a common belief about the state.

The sender has a rich class of Poisson experiments at her disposal. Specifically, we

assume that at each instant the sender can generate a collection of Poisson signals. The

possible signals are flexible in their directionalities : a signal can be either good-news

(inducing a posterior above the current belief), or bad-news (inducing a posterior below

the current belief), and the news can be of arbitrary accuracy : the sender can choose any
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target posterior, although more accurate signals (with targets closer to 0 or 1) arrive at

a lower rate. Our model generalizes the existing Poisson models in the literature which

considered either a good-news or bad-news Poisson experiment of given accuracy (see,

e.g., Keller, Rady, and Cripps, 2005; Keller and Rady, 2015; Che and Mierendorff, 2019).

Any experiment, regardless of its accuracy, requires a flow cost c > 0 (per unit of time)

for the sender to perform and for the receiver to process. That the cost is the same for both

players is a convenient normalization, with no material consequence (see Footnote 9). Our

model of information allows for the flexibility and richness of Kamenica and Gentzkow

(2011), but adds the friction that information takes time to generate. This serves to

isolate the effects of the friction.

We may interpret the model in the canonical communication context, such as a sales-

person pitching a product to a buyer. The former is trying to persuade the latter that the

product fits his needs, an event denoted by R. Once inside the store, the buyer is deciding

whether to listen to the pitch (“wait”), leave the store (action ℓ), or purchase the product

(action r). We interpret the series of pitches made by the salesperson as experiments.1

As in our model, the key issue is whether the buyer believes the salesperson’s pitches to

be worth listening to. Our analysis will focus on this issue.

We study Markov perfect equilibria (MPE) of this game, that is, subgame perfect

equilibrium strategy profiles that prescribe the sender’s flow experiment and the receiver’s

action (ℓ, r, or “wait”) at each belief p—the probability that the state is R. We are

particularly interested in the equilibrium outcomes when the frictions are sufficiently

small (i.e., in the limit as the flow cost c converges to zero). In addition, we investigate

the persuasion dynamics or the “type of pitch” the sender uses to persuade the receiver

in equilibria of this game.

Is persuasion possible? If so, to what extent? Whether the sender can persuade

the receiver depends on whether the receiver finds her worth listening to, or more pre-

cisely, on his belief that the sender will provide enough information to justify his listening

costs. This belief depends on the sender’s future experimentation strategy, which in turn

rests on what the receiver will do if the sender betrays her trust and reneges on her

information provision. The multitude of ways in which the players can coordinate on

these choices yields a version of a folk theorem. There is an MPE in which no persua-

sion occurs. When the cost c becomes arbitrarily small, however, we also obtain a set of

“persuasion” equilibria that ranges from ones that approximate Kamenica and Gentzkow

(2011)’s sender-optimal persuasion, to ones that approximate full revelation, and covers

1A salesperson’s pitches, which include her manner, tones, and body languages, not just her messages,
can reveal a lot about what she is “intending” to say, not just what she is saying. At the same time,
whether the pitches succeed depends on the buyer’s specific needs, and is uncertain from the salesperson’s
perspective. It is also reasonable that an experienced salesperson could tell the outcome of her pitches
from the buyer’s reactions.
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everything in between.

In the “persuasion failure” equilibrium, the receiver is pessimistic about the sender

generating sufficient information, so he simply takes an action without waiting for infor-

mation. Facing this pessimism, the sender becomes desperate and maximizes her chance of

once-and-for-all persuasion involving minimal information, which turns out to be the sort

of strategy that the receiver would not find worth waiting for, justifying his pessimism.

In a persuasion equilibrium, by contrast, the receiver expects the sender to deliver

sufficient information to compensate his listening costs. This optimism in turn motivates

the sender to deliver on her “promise” of informative experimentation; if she reneges on

her experimentation, the ever optimistic receiver would simply wait for experimentation to

resume an instant later, instead of taking the action that the sender would like him to take.

In short, the receiver’s optimism fosters the sender’s generosity in information provision,

which in turn justifies this optimism. As we will show, equilibria with this “virtuous

cycle” of beliefs can support outcomes that approximate KG’s optimal persuasion, full

revelation, and anything in between, as the flow cost c tends to 0.2

Persuasion dynamics. Our model informs us what kind of pitch the sender should

make at each point in time, how long it takes for the sender to persuade the receiver, if

ever, and how long the receiver listens to the sender before taking an action. The dynamics

of the persuasion strategy adopted in equilibrium unpacks rich behavioral implications

that are absent in the static persuasion model.

In our MPEs, the sender optimally makes use of the following three strategies: (i)

confidence-building, (ii) confidence-spending, and (iii) confidence-preserving. The confidence-

building strategy involves a bad-news Poisson experiment that induces the receiver’s belief

(that the state is R) to either drift upward or jump to zero. This strategy triggers upward

movement of the belief when the state is R but quite likely even when it is L; in fact,

it minimizes the probability of bad news, by insisting that the news be conclusive.3 The

sender finds it optimal to use this strategy when the receiver’s belief is already close to

the persuasion target (i.e., the belief that will trigger him to choose r).

The confidence-spending strategy involves a good-news Poisson experiment that gen-

erates an upward jump to some target belief, either one inducing the receiver to choose r,

or at least one inducing him to listen to the sender. Such a jump arises rarely, however,

2The mechanism using a virtuous cycle of beliefs to support cooperative behavior in a dynamic envi-
ronment has been utilized in other economic contexts. Among others, Che and Sákovics (2004) show how
this mechanism can be used to overcome the hold-up problem. In fact, the main tension in our dynamic
persuasion problem can be interpreted as a hold-up problem: the receiver wants to avoid incurring lis-
tening costs if the sender will behave opportunistically and not provide sufficient information. However,
the current paper differs in other crucial aspects; in particular, the rich choice of information structures
is unique here and has no analogue in Che and Sákovics (2004).

3In the salesperson context, this may correspond to explaining a possible harm or a side-effect of a
product that does not apply to most buyers, and to rule it out for a buyer, a likely event, can improve
her odds of eventual persuasion.
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and absent this jump, the receiver’s belief drifts downward. In this sense, this strategy is

a risky one that “spends” the receiver’s confidence over time.4 This strategy is used when

the receiver is already quite pessimistic about R, so that either the confidence-building

strategy would take too long, or the receiver would simply not listen. In particular, it is

used as a “last ditch” effort, when the sender is close to giving up on persuasion or when

the receiver is about to choose ℓ.

The confidence-preserving strategy combines the above two strategies—namely, a

good-news Poisson experiment inducing the belief to jump to a persuasion target, and

a bad-news Poisson experiment inducing the belief to jump to zero. This strategy is ef-

fective if the receiver is sufficiently skeptical relative to the persuasion target so that the

confidence-building strategy will take too long. Confidence spending could also accom-

plish persuasion fast and thus can be used for a range of beliefs, but the sender would be

running down the receiver’s confidence in the process. Hence, at some point the sender

finds it optimal to switch to the confidence-preserving strategy, which prevents the re-

ceiver’s belief from deteriorating further. The belief where the sender switches to this

strategy constitutes an absorbing point of the belief dynamics; from then on, the belief

does not move, unless either a sudden persuasion breakthrough or breakdown occurs.

The equilibrium strategy of the sender combines these three strategies in different

ways under different economic conditions, thereby exhibiting rich and novel persuasion

dynamics. Our characterization in Section 5 describes precisely how the sender uses them

in different equilibria.

Related literature. This paper relates to several strands of literature. First, it con-

tributes to the Bayesian persuasion literature that began with Kamenica and Gentzkow

(2011), by studying the problem in a dynamic environment. Several recent papers also

consider dynamic models (e.g., Brocas and Carrillo, 2007; Kremer, Mansour, and Perry,

2014; Au, 2015; Ely, 2017; Renault, Solan, and Vieille, 2017; Che and Hörner, 2018; Henry and Ottaviani,

2019; Ely and Szydlowski, 2020; Bizzotto, Rüdiger, and Vigier, 2020; Orlov, Skrzypacz, and Zryumov,

2020). Our focus is different from most of these papers since we consider gradual produc-

tion of information and assume that there is no commitment.

Two papers closest to ours in this regard are Brocas and Carrillo (2007) and Henry and Ottaviani

(2019), who restrict the set of feasible experiments so that information arrives gradually.

The former considers a binary signal in a discrete-time setting, and the latter adopts

a drift-diffusion model in a continuous-time setting. Unlike our model, the receiver in

their models cannot stop listening and take an action at any time: he can move only

after the sender stops experimenting (Brocas and Carrillo, 2007) or applies for approval

(Henry and Ottaviani, 2019). This modeling difference reflects interests in different eco-

4In the salesperson context, this may correspond to touting a virtue of a product irrelevant for most
buyers, and for it not to pan out, a likely event, deteriorates the odds of eventual persuasion.
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nomic problems/contexts; for example, Henry and Ottaviani (2019) focus on regulatory

approval, while we study persuasive communication. However, it leads to very differ-

ent persuasion outcomes: in their models, complete persuasion failure never occurs, and

there exists a unique equilibrium.5 Another important difference is that the sender in

their models does not enjoy the richness and control of information structures: in both

papers, the sender decides simply whether to continue or not, and has no influence over

the type of information generated.

The receiver’s problem in our paper involves a stopping problem, which has been stud-

ied extensively in the single agent context, beginning withWald (1947) and Arrow, Blackwell, and Girshick

(1949). In particular, Nikandrova and Pancs (2018), Che and Mierendorff (2019) and

Mayskaya (2019) study an agent’s stopping problem when she acquires information through

Poisson experiments.6 Che and Mierendorff (2019) introduced the general class of Poisson

experiments adopted in this paper. However, the generality is irrelevant in their model,

because unlike here, the decision maker optimally chooses only between two conclusive

experiments (i.e., never chooses a non-conclusive experiment).

Finally, the current paper is closely related to repeated/dynamic communication mod-

els. Margaria and Smolin (2018), Best and Quigley (2020), and Mathevet, Pearce, and Stachetti

(2019) study repeated cheap-talk communication, and some of them establish versions of

folk theorems. Their models consider repeated actions by receiver(s), serially independent

states, and feedback on the veracity of the sender’s communication, based on which non-

Markovian punishment can be inflicted to support a cooperative outcome. By contrast,

the current model considers a fixed state, once-and-for-all action by the receiver (and

hence no feedback), and Markov perfect equilibria.

The paper is organized as follows. Section 2 introduces the model. Section 3 illustrates

the main ideas of our equilibria. Section 4 states our folk theorem. Section 5 explores the

dynamics of our MPE strategies and their implications. Section 6 concludes.

5Henry and Ottaviani (2019) consider three regimes that differ in the players’ commitment power.
Their informer-authority regime corresponds to the sender-optimal dynamic outcome, in that the sender
stops as soon as the belief reaches the minimal point at which the receiver is willing to take action r
(approves the project). It is easy to show that in this case, if the receiver could reject/accept the project
unilaterally at any time, and discounted his future payoff or incurred a flow cost as in our model, he
would take an action immediately without listening, and persuasion would fail completely. Their “no-
commitment” regime is similar to our model, but with the crucial difference that the sender does not
have the option to “pass,” that is, to stop experimenting without abandoning the project. This feature
allows the receiver (e.g., a drug approver) to force the sender to keep experimenting, resulting in the
“receiver-optimal” persuasion as the unique equilibrium outcome. If “passing” were an available option
as we assume in our model, multiple equilibria supported by “virtuous cycles” of beliefs would arise even
in their drift-diffusion model, producing a range of persuasion outcomes and ultimately leading to the
same kind of folk theorem as in our paper (see Footnote 24 below). Finally, their evaluator-authority
case is obtained when the receiver can commit to an acceptance threshold.

6The Wald stopping problem has also been studied with drift-diffusion learning (e.g.,
Moscarini and Smith, 2001; Ke and Villas-Boas, 2019; Fudenberg, Strack, and Strzalecki, 2018), and in
a model that allows for general endogenous experimentation (see Zhong, 2019).
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2 Model

We consider a game in which a Sender (“she”) wishes to persuade a Receiver (“he”).

There is an unknown state ω which can be either L (“left”) or R (“right”). The receiver

ultimately takes a binary action ℓ or r, which yields the following payoffs:

Payoffs for the sender and the receiver

states/actions ℓ r

L (0, uL
ℓ ) (v, uL

r )

R (0, uR
ℓ ) (v, uR

r )

The receiver gets uω
a if he takes action a ∈ {ℓ, r} when the state is ω ∈ {L,R}. The

sender’s payoff depends only on the receiver’s action: she gets v if the receiver takes r and

zero otherwise. We assume uL
ℓ > max{uL

r , 0} and uR
r > max{uR

ℓ , 0}, so that the receiver

prefers to match the action with the state, and also v > 0, so that the sender prefers

action r to action ℓ. Both players begin with a common prior p0 that the state is R, and

use Bayes rule to update their beliefs.

KG Benchmark. By now, it is well understood how the sender optimally persuades the

receiver if she can commit to an experiment without any restrictions. For each a ∈ {ℓ, r},

let Ua(p) denote the receiver’s expected payoff when he takes action a with belief p. In

addition, let p̂ denote the belief at which the receiver is indifferent between actions ℓ and

r, that is, Uℓ(p̂) = Ur(p̂).
7

If the sender provides no information, then the receiver takes action r when p0 ≥ p̂.

Therefore, persuasion is necessary only when p0 < p̂. In this case, the KG solution

prescribes an experiment that induces only two posteriors, q− = 0 and q+ = p̂. The former

leads to action ℓ, while the latter results in action r. This experiment is optimal for the

sender, because p̂ is the minimum belief necessary to trigger action r, and setting q− = 0

maximizes the probability of generating p̂, and thus action r. The resulting payoff for the

sender is p0v/p̂, as given by the dashed blue line in the left panel of Figure 1. The flip side is

that the receiver enjoys no rents from persuasion; his payoff is U(p) := max{Uℓ(p), Ur(p)},

the same as if no information were provided, as depicted in the right panel of Figure 1.

Dynamic model. We consider a dynamic version of the Bayesian persuasion problem.

Time flows continuously starting at 0. Unless the game has ended, at each point in time

t ≥ 0, the sender may perform an experiment from a feasible set at a flow cost. The set of

feasible experiments and cost structure are made precise below. Just as it is costly for the

sender to produce information, it is also costly for the receiver to process it. Specifically,

7Specifically, for each p ∈ [0, 1], Uℓ(p) := puR
ℓ + (1 − p)uL

ℓ and Ur(p) := puR
r + (1 − p)uL

r . Therefore,
p̂ =

(
uL
ℓ − uL

r

)
/
(
uR
r − uR

ℓ + uL
ℓ − uL

r

)
, which is well-defined in (0, 1) under our assumptions on the

receiver’s payoffs.
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0 p0 p̂ 1

v

Sender Receiver

0 p0 p̂ 1

uL
ℓ

uL
r

uR
ℓ

uR
r

Figure 1: Payoffs from static persuasion. Solid red curves: payoffs without persuasion
(information). Dashed blue curve: the sender’s expected payoff in the KG solution. Blue
dots: payoffs in the KG solution at prior p0. Dash-dotted brown curves: payoffs under a
fully revealing experiment.

if the sender experiments, then the receiver also pays the same flow cost and observes

the experiment and its outcome.8 After that, he decides whether to take an irreversible

action (ℓ or r), or to “wait” and listen to the information provided by the sender in the

next instant. The former ends the game, while the latter lets the game continue.

There are two notable modeling assumptions. First, the receiver can stop listening to

the sender and take a game-ending action at any point in time. This is the fundamental

difference from KG, wherein the receiver is allowed to take an action only after the sender

finishes her information provision. Second, the players’ flow (information) costs are as-

sumed to be the same. This is, however, just a normalization which allows us to directly

compare the players’ payoffs, and all subsequent results can be reinterpreted as relative

to each player’s individual information cost.9

Feasible experiments and flow costs. We endow the sender with a class of Poisson

experiments. While the main thrust of our results holds more generally, we adopt this class

since it allows us to capture many realistic and rich information processes. Specifically, at

each point in time, the sender has a unit capacity to allocate across different experiments

that generate Poisson signals. The experiments are indexed by i ∈ N.10 Each Poisson

experiment i ∈ N generates breakthrough news at rate λω in each state ω = L,R, where,

8In this sense, the flow cost is interpreted as a “listening cost” rather than a waiting cost. This
distinction does not matter in the continuous-time game; our analysis below will not change even if the
receiver incurs a flow waiting cost, regardless of the sender’s choice of experiment. However, it would be
relevant in a discrete-time version of our model. See the third paragraph of Section 6.

9Suppose that the sender’s cost is given by cs, while that of the receiver is cr. Such a model is
equivalent to our normalized one in which c′r = c′s = cr and v′ = v(cr/cs). When solving the model for a
fixed set of parameters (uω

a , v, c, λ), this normalization does not affect the results. If we let c tend to 0,
we are implicitly assuming that the sender’s and receiver’s (unnormalized) costs, cs and cr, converge to
zero at the same rate. See Footnote 33 for a relevant discussion.

10One can extend this to an uncountable set of experiments. However, in our model, the sender never
mixes over an infinite number of experiments, and thus such extra generality is unnecessary.
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λLλ
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λ+ µ1

µ2

λ+ µ2

Figure 2: Arrival rates of feasible Poisson experiments.

for some constant λ > 0,

(λL, λR) ∈ Λ := {(νL + µ, νR + µ) : 0 ≤ νL + νR ≤ λ, µ ≥ 0}.

In other words, the sender can split λ between the two states and also boost the arrival

rates for both states equally by µ.11 The component (νL, νR) produces real information

about the state if νL 6= νR, while (µ, µ) represents “noise.” See the shaded area of Figure

2 for a visual representation of the set Λ.

For instance, suppose the sender chooses (µ, λ + µ) for some µ ≥ 0. Breakthrough

news would then favor state R, but by how much depends on µ. If µ = 0, the news is

conclusive R-evidence. As µ rises, the news becomes less conclusive about R but arrives

with a higher rate, as depicted by different points on the dashed line in Figure 2. One can

interpret µ as a “dilution” of R-evidence. With µ > 0, the sender “overclaims” R-evidence

even in state L. The more she does this, the more diluted the information content of the

breakthrough news becomes, as depicted by the flattening of the associated ray from the

origin in Figure 2 as µ increases from 0 to µ1 to µ2. Indeed, the slope of the ray from

the origin passing through (λL, λR) corresponds to the likelihood ratio λR/λL associated

11One can interpret λ as the measure of maximal information that can be generated in a unit time. To
see this, consider an experiment with binary signals that occur with probabilities:

Binary-signal experiment i

states/signals L-signal R-signal
L x 1− x
R 1− y y

and let E(x, y) denote such a binary-signal experiment, with E denoting the set of all such experiments.
Assume 1 ≤ x + y ≤ 1 + λdt for a small interval of time dt > 0. Any feasible Poisson experiment we
consider can be obtained in the limit of such binary experiments as dt → 0. Observe that the quantity
x + y − 1 “measures” the informativeness of the experiment. Formally, this measure of information
induces an order on E that “completes” the Blackwell order: if E(x′, y′) Blackwell dominates E(x, y),
then x′ + y′ ≥ x+ y. In this sense, our model caps the “amount” of information the sender may generate
per unit of time (from an experiment in E) by λ.

9



with the news. Meanwhile, the prevalence of the news increases with the distance from

the origin. Since for any likelihood ratio chosen, the sender will wish to maximize the

prevalence of that signal, it is routine to see that the sender will choose either νL = λ or

νR = λ so that (λL, λR) is on the boundary of the shaded area in Figure 2.

The set Λ is quite rich. Given any prior p, the sender can generate any posterior

qi ∈ [0, 1] by choosing arrival rates in Λ appropriately. Suppose qi > p. (The opposite

case is analogous.) Since the ratio of arrival rates equals the likelihood ratio, Bayes rule

implies that qi
1−qi

= λ+µi

µi

p
1−p

. Solving for µi, one can obtain the arrival rates of posterior

qi in states L and R, respectively:12

λL(qi) := λ
p(1− qi)

|qi − p|
and λR(qi) := λ

qi(1− p)

|qi − p|
.

Indeed, for our purpose it is more convenient to view the sender as choosing posterior qi

directly, and represent an experiment i by the posterior qi triggered by the corresponding

news. If the sender chooses αi ∈ [0, 1] units of experiment i with posterior qi, then the

news arrives at rate αiλ
ω(qi) in state ω = L,R, or unconditionally at rate:

(1− p)αiλ
L(qi) + pαiλ

R(qi) = αiλ
p(1− p)

|qi − p|
. (1)

We assume
∑∞

i=1 αi ≤ 1; namely, total quantity of experiments cannot exceed a unit. We

call a collection of experiments (αi, qi)i∈N an information structure.13

We assume that each Poisson experiment (αi, qi) requires a flow cost c > 0 per unit.

Specifically, if the sender chooses an information structure (αi, qi)i∈N, then both players

incur total flow cost
(∑

i:qi 6=p αi

)
c. In equilibrium, either the capacity constraint binds

with
∑

i αi = 1, in which case the associated flow cost is c, or no informative experiment

is chosen with αi = 0 for all i ∈ N, in which case the associated flow cost is 0. We refer

to the latter choice as the sender’s “passing.”

Our model generalizes Poisson models considered in the existing literature. To see

this, suppose that the sender allocates the entire unit capacity to one Poisson experi-

ment with jump target q. The jump to q then occurs at the rate of λp(1 − p)/|q − p|.

Conclusive R-evidence (q = 1) is obtained at the rate of λp, as is assumed in “good”

12If qi > p, these arrival rates are obtained by substituting µi required for qi into the arrival rates
(µi, λ+µi) of the news. The case of qi < p is analogous. If qi = p, then the news is uninformative; since,
as will be seen later, this is never an optimal choice, we leave this case unspecified.

13Even though we denote information in terms of the current belief p and jump-target beliefs qi,
recall that the feasible set of experiments is independent of beliefs. This feature distinguishes our ap-
proach from the rational inattention model and its generalizations (Sims, 2003; Matejka and McKay,
2015; Caplin, Dean, and Leahy, 2013), in which costs or constraints depend on the current belief, not
just on the experiment. More generally, they consider cost functions that are posterior separable and
based on a measure of information that quantifies the uncertainty in the posterior beliefs induced by
an information structure (see also Frankel and Kamenica, 2019). One can show that the information
measure discussed in Footnote 11 cannot be obtained from a posterior separable cost function.
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news models (see, e.g., Keller, Rady, and Cripps, 2005). Likewise, conclusive L-evidence

(q = 0) is obtained at the rate of λ(1− p), as is assumed in “bad” news models (see, e.g.,

Keller and Rady, 2015). Our model allows for such conclusive news, but it also allows

for arbitrary non-conclusive news with q ∈ (0, 1), as well as any arbitrary mixture among

such experiments. Further, our arrival rate assumption captures the intuitive idea that

more accurate information takes longer to generate. For example, assuming q > p, the

arrival rate increases as the news becomes less precise (q falls), and it approaches infinity

as the news becomes totally uninformative (i.e., in the limit as q tends to p). Lastly, lim-

ited arrival rates, together with the capacity constraint
∑

i αi ≤ 1, capture an important

feature of our model that any meaningful persuasion takes time and requires delay.

If no Poisson jump arrives when the sender uses the information structure (αi, qi)i∈N,

the belief drifts according to the following law of motion:14

ṗ = −

(
∑

i:qi>p

αi −
∑

i:qi<p

αi

)
λp(1− p). (2)

Note that the drift rate depends only on the difference between the fractions of the capacity

allocated to “right” versus “left” Poisson signals. In particular, the rate does not depend

on the precisions qi of the news in the individual experiments. The reason is that the

precision of news and its arrival rate offset each other, leaving the drift rate unaffected.15

This feature makes the analysis tractable while at the same time generalizing conclusive

Poisson models in an intuitive way.

Among many feasible experiments, the following three, visualized in Figure 3, will

prove particularly relevant for our purposes. They formalize the three modes of persuasion

discussed in the introduction:

• R-drifting experiment (confidence building): α1 = 1 with q1 = 0. The sender

devotes all her capacity to a Poisson experiment with the (posterior) jump target

q1 = 0. In the absence of a jump, the posterior drifts to the right, at rate ṗ =

λp(1− p).

• L-drifting experiment (confidence spending): α1 = 1 with q1 = q for some q > p.

The sender devotes all her capacity to a Poisson experiment with jumps targeting

14Since the belief is a martingale, we have

∞∑

i=1

qiαiλ
pt(1− pt)

|qi − pt|
dt+

(
1−

∞∑

i=1

αiλ
pt(1− pt)

|qi − pt|
dt

)
(pt + ṗtdt) = pt

⇐⇒

(
1−

∞∑

i=1

αiλ
pt(1− pt)

|qi − pt|
dt

)
ṗt =

(
∞∑

i=1

pt − qi
|qi − pt|

αi

)
λpt(1− pt).

Letting dt→ 0, we obtain the updating formula.
15Suppose qi > p. This means that the sender has chosen νR = λ for the informative signal and µ ≥ 0

for the noise. It is clear that µ does not affect the updating of the state since the noise arrives at the
same rate in both states.
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R-drifting, targeting 0:
0 1p

L-drifting, targeting q:
0 1p q

Stationary, targeting 0 or q:
0 1p q

Figure 3: Three prominent feasible experiments.

some posterior q > p. The precise jump target q will be specified in our equilibrium

construction. In the absence of a jump, the posterior drifts to the left, at rate

ṗ = −λp(1− p).

• Stationary experiment (confidence preserving): α1 = α2 = 1/2 with q1 = 0 and

q2 = q for some q > p. The sender assigns an equal share of her capacity to an

experiment targeting q1 = 0 and one targeting q2 = q. Absent jumps, the posterior

remains unchanged.

Solution concept. We study (pure-strategy) Markov Perfect equilibria (MPE, here-

after) of this dynamic game in which both players’ strategies depend only on the current

belief p.16 Formally, a profile of Markov strategies specifies for each belief p ∈ [0, 1], an in-

formation structure (αi, qi)i∈N chosen by the sender, and an action a ∈ {ℓ, r,wait} chosen

by the receiver.17 An MPE is a strategy profile that, starting from any belief p ∈ [0, 1],

forms a subgame perfect equilibrium.18 Naturally, this solution concept limits the use

of (punishment) strategies depending solely on the payoff-irrelevant part of the histories,

and serves to discipline strategies off the equilibrium path.

We impose a restriction that captures the spirit of “perfection” in our continuous time

framework. Suppose that for an interval around some low belief p, the receiver would

choose action ℓ immediately. In continuous time, this implies that the sender’s strategy

at p is inconsequential for the players’ payoffs—with probability one, the game ends with

the receiver taking action ℓ. Nevertheless, we require the sender to choose a strategy that

maximizes her flow payoff in such a situation. This can be seen as selecting an MPE

that is robust to a discrete-time approximation. In discrete time, when the belief is in

16For non-Markov equilibria, see our discussion in Section 6.
17Note that defining the strategies as functions of p fully determines behavior on and off the equilibrium

path; our Markovian restriction means that the same strategy is followed for each belief p regardless of
the history.

18There are well known technical issues in defining a game in continuous time (see
Simon and Stinchcombe, 1989; Bergin and MacLeod, 1993). In Online Appendix B, we formally define
admissible strategy profiles that guarantee a well defined outcome of the game and also define Markov
perfect equilibria.
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the region where the receiver stops, the sender has one period to generate information

that may change the receiver’s action or induce him to wait. Thus the sender’s strategy

has non-trivial payoff consequences. In the same spirit, our refinement requires that in

continuous time the sender choose the strategy that maximizes her flow payoff if she has

an infinitesimal amount of time to generate information. See Online Appendix B for a

formal definition. In what follows, we simply use MPE or equilibrium to refer to an MPE

with this refinement.

3 Illustration: Persuading the Receiver to Listen

We begin by illustrating the key issue facing the sender: persuading the receiver to listen.

To this end, consider any prior p0 < p̂, such that persuasion is not trivial, and suppose

that the sender repeatedly chooses R-drifting experiments with jumps targeting q = 0

until the posterior either jumps to 0 or drifts to p̂, as depicted on the horizontal axis in

Figure 4. This strategy exactly replicates the KG solution (in the sense that it yields

the same probabilities of reaching the two posteriors, 0 and p̂), provided that the receiver

listens to the sender for a sufficiently long time.

uL
ℓ

uL
r

uR
ℓ

uR
r

0 p0 p̂ 1

Uℓ(p0)

U(p0)

Figure 4: Replicating the KG outcome through R-drifting experiments.

But will the receiver wait until the belief reaches 0 or p̂? The answer is no. The KG

experiment leaves no rents for the receiver even without listening costs, and thus with

listening costs the receiver will be strictly worse off than if he picks ℓ immediately. In

Figure 4, the receiver’s expected gross payoff from the static KG experiment is Uℓ(p0).

Due to the listening costs, the receiver’s expected payoff under the dynamic KG strategy,

denoted here by U(p0), is strictly smaller than Uℓ(p0). In other words, the dynamic

strategy implementing the KG solution cannot persuade the receiver to wait and listen,

so it does not permit any persuasion.19 Indeed, this problem leads to the existence of a

19The KG outcome can also be replicated by other dynamic strategies. For instance, the sender could
repeatedly choose a stationary strategy with jumps targeting q1 = p̂ and q2 = 0 until either jump occurs.
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no-persuasion MPE, regardless of the listening cost.

Theorem 1 (Persuasion Failure). For any c > 0, there exists an MPE in which no

persuasion occurs, that is, for any p0, the receiver immediately takes either action ℓ or r.

Proof. Consider the following strategy profile: the receiver chooses ℓ for p < p̂ and r

for p ≥ p̂; and the sender chooses the L-drifting experiment with jump target p̂ for all

p ∈ [π̂ℓL, p̂) and passes for all p /∈ [π̂ℓL, p̂), where the cutoff π̂ℓL is the belief at which

the sender is indifferent between the L-drifting experiment and stopping (if the receiver

chooses ℓ).20

In order to show that this strategy profile is indeed an equilibrium, first consider the

receiver’s incentives given the sender’s strategy. If p 6∈ (π̂ℓL, p̂), then the sender never

provides information, so the receiver has no incentive to wait, and will take an action

immediately. If p ∈ (π̂ℓL, p̂), then the sender never moves the belief into the region where

the receiver strictly prefers to take action r (i.e., strictly above p̂). This implies that

the receiver’s expected payoff is equal to Uℓ(p0) minus any listening cost she may incur.

Therefore, again, it is optimal for the receiver to take an action immediately.

Now consider the sender’s incentives given the receiver’s strategy. If p ≥ p̂, then

it is trivially optimal for the sender to pass. Now suppose that p < p̂. Our refinement,

discussed at the end of Section 2, requires that the sender choose an information structure

that maximizes her flow payoff, which is given by21

max
(αi,qi)i∈N

∑

qi 6=p

αi

(
λ
p(1− p)

|qi − p|
1{qi≥p̂}v − c

)
subject to

∑

αi

αi ≤ 1.

If the sender chooses any nontrivial experiment, its jump target must be qi = p̂. Hence

the optimal information structure is either (α1 = 1, q1 = p̂) or αi = 0 for all i. The former

is optimal if and only if λp(1−p)
p̂−p

v ≥ c, or equivalently p ≥ π̂ℓL.

The no-persuasion equilibrium constructed in the proof showcases a total collapse of

trust between the two players. The receiver does not trust the sender to convey valuable

However, this (and in fact, any other) strategy would not incentivize the receiver to listen, for the same
reason as in the case of repeating R-drifting experiments.

20Specifically, π̂ℓL equates the sender’s flow cost c to the flow benefit from the L-drifting experiment:

c =
λπ̂ℓL(1− π̂ℓL)

p̂− π̂ℓL

v,

where the right-hand side is the sender’s benefit v from persuasion multiplied by the rate at which the
rightward jump to p̂ occurs (under the L-drifting experiment) at belief π̂ℓL (as given by (1)). Solving the
equation yields

π̂ℓL =
1

2
+

c

2λv
−

√(
1

2
+

c

2λv

)2

−
cp̂

λv
.

21The objective function follows from the fact that under the given strategy profile, the sender’s value
function is V (p) = v if p ≥ p̂ and V (p) = 0 otherwise; and when the target posterior is qi, a Poisson jump
occurs at rate λp(1− p)/|qi − p|.
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information (i.e., to choose an experiment targeting q > p̂), so he refuses to listen to her.

This attitude makes the sender desperate for a quick breakthrough; she tries to achieve

persuasion by targeting just p̂, which is indeed not enough for the receiver to be willing

to wait.

Can trust be restored? In other words, can the sender ever persuade the receiver to

listen to her? She certainly can, if she can commit to a dynamic strategy, that is, if she

can credibly promise to provide more information in the future. Consider the following

modification of the dynamic KG strategy discussed above: the sender repeatedly chooses

R-drifting experiments with jumps targeting zero, until either the jump occurs or the

belief reaches p∗ > p̂. If the receiver waits until the belief either jumps to 0 or reaches p∗,

then her expected payoff is equal to22

UR(p) =
p∗ − p

p∗
uL
ℓ +

p

p∗
Ur(p

∗)−

(
p log

(
p∗

1− p∗
1− p

p

)
+ 1−

p

p∗

)
c

λ
.

Importantly, if p∗ is sufficiently large (and c is sufficiently small), then UR(p) (the dashed

curve in Figure 5) stays above max{Uℓ(p), Ur(p)} (the black kinked curve) while p drifts

toward p∗, so the receiver prefers to wait. Intuitively, unlike in the KG solution, this

“more generous” persuasion scheme promises the receiver enough rents that make it worth

listening to.

If c is sufficiently small, the required belief target p∗ need not exceed p̂ by much. In

fact, p∗ can be chosen to converge to p̂ as c → 0. In this fashion, a dynamic persuasion

strategy can be constructed to virtually implement the KG solution when c is sufficiently

small.

At first glance, this strategy seems unlikely to work without the sender’s commitment

power. How can she credibly continue her experiment even after the posterior has risen

past p̂? Why not simply stop at the posterior p̂—the belief that should have convinced the

receiver to choose r? Surprisingly, however, the strategy works even without commitment.

This is because the equilibrium beliefs generated by the Markov strategies themselves can

provide a sufficient incentive for the sender to continue beyond p̂. We already argued

that, with a suitably chosen p∗ > p̂, the receiver is incentivized to wait past p̂, due to

22To understand this explicit solution, first notice that under the prescribed strategy profile, the receiver
takes action ℓ when p jumps to 0, which occurs with probability (p∗−p)/p∗, and action r when p reaches
to p∗, which occurs with probability p/p∗. The last term captures the total expected listening cost. The
length of time τ it takes for p to reach p∗ absent jumps is derived as follows:

p∗ =
p

p+ (1− p)e−λτ
⇔ τ =

1

λ
log

(
p∗

1− p∗
1− p

p

)
.

Hence, the total listening cost is equal to

(1− p)

∫ τ

0

ctd
(
1− e−λt

)
+
(
p+ (1 − p)e−λτ

)
cτ =

(
p log

(
p∗

1− p∗
1− p

p

)
+ 1−

p

p∗

)
c

λ
.
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Uℓ(p0) = UR(p0)

Figure 5: Persuasive R-drifting experiments

the “optimistic” equilibrium belief that the sender will continue to experiment until a

much higher belief p∗ is reached. Crucially, this optimism in turn incentivizes the sender

to carry out her strategy:23 were she to deviate and, say, “pass” at q = p̂, the receiver

would simply wait (instead of choosing r), believing that the sender will shortly resume

her R-drifting experiments after the “unexpected” pause. Given this response, the sender

cannot gain from deviating: she cannot convince the receiver to “prematurely” choose r.

To summarize, the sender’s strategy instills optimism in the receiver that makes him wait

and listen, and this optimism, or the power of beliefs, in turn incentivizes the sender to

carry out the strategy.24

4 Folk Theorem

The equilibrium logic outlined in the previous section applies not just to strategy profiles

that approximate the KG solution, but also to other strategy profiles with a persuasion

target p∗ ∈ (p̂, 1). Building upon this observation, we establish a version of a folk theorem:

any payoff for the sender between her payoff under the KG solution and her payoff from

full revelation can be virtually supported as an MPE payoff.

23We will show in Section 5.2 that under certain conditions, using R-drifting experiments is not just
better than passing but also the optimal strategy (best response), given that the receiver waits. Here,
we illustrate the possibility of persuasion for this case. The logic extends to other cases where the sender
optimally uses different experiments to persuade the receiver.

24It is clear that this logic extends beyond the Poisson model we employ here. Consider
Henry and Ottaviani (2019)’s model in which the belief, as expressed by the log likelihood ratio
s = ln(p/(1 − p)), follows a Brownian motion with a drift given by the state. In keeping with our
model, suppose at each point in time the sender either experiments or “passes,” and the receiver chooses
ℓ, r, or “wait,” with the flow cost c incurred on both sides if the sender experiments and the receiver
waits. As noted in Footnote 5, this model is similar to Henry and Ottaviani (2019)’s no-commitment
regime, except that our sender has the option to “pass” without ending the game and the receiver incurs
a flow cost. A simple MPE is then characterized by two stopping bounds, s∗ ≤ ŝ := ln(p̂/(1 − p̂)) and
s∗ ≥ ŝ, such that the sender experiments and the receiver waits if and only if s ∈ (s∗, s

∗). Our “power
of beliefs” argument would imply that a range of persuasion targets s∗ are supported as MPE for c > 0
sufficiently low, and that range would span the entire (ŝ,∞) as c→ 0.
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Figure 6: Implementable payoff set for each player at each p0.

Theorem 2 (Folk theorem). Fix any prior p0 ∈ (0, 1).

(a) For any sender payoff V ∈ (p0v,min{p0/p̂, 1}v), if c is sufficiently small, there exists

an MPE (with our refinement) in which the sender obtains V .

(b) For any receiver payoff U ∈
(
U(p0), p0u

R
r + (1− p0)u

L
ℓ

)
, if c is sufficiently small,

there exists an MPE in which the receiver achieves U .

The proof of Theorem 2 follows from the equilibrium constructions of Propositions 2

and 3 in Section 5.2. The main argument for the proof is outlined below.

Figure 6 depicts how the set of implementable payoffs for each player varies according

to p0 in the limit as c tends to 0. Theorem 2 states that any payoffs in the green and

red shaded areas can be implemented in an MPE, provided that c is sufficiently small. In

the left panel, the upper bound for the sender’s payoff is given by the KG-optimal payoff

min{p0/p̂, 1}v, and the lower bound is given by the sender’s payoff from full revelation p0v.

For the receiver, by contrast, full revelation defines the upper bound p0u
R
r + (1 − p0)u

L
ℓ ,

whereas the KG-payoff, which leaves no rent for the receiver, is given by U(p0). In

both panels, the thick blue lines correspond to the players’ payoffs in the no-persuasion

equilibrium of Theorem 1.

Note that Theorem 2 is silent about payoffs in the gray shaded region. In the static

KG environment, these payoffs can be achieved by the (sender-pessimal) experiment that

splits the prior p into two posteriors, 1 and q ∈ (0, p̂). The following theorem shows that

the sender’s payoffs in this region cannot be supported as an MPE payoff for a sufficiently

small c > 0 (even without invoking our refinement).

Theorem 3. If p0 ≤ p̂, then the sender’s payoff in any MPE is either equal to 0 or at

least p0v − 2c/λ. If p0 > p̂, then the sender’s payoff in any MPE is at least p0v − 2c/λ.

Proof. Fix p0 ≤ p̂, and consider any MPE. If the receiver’s strategy is to wait at p0, then

the sender can always adopt the stationary strategy with jump targets 0 and 1, which

will guarantee her a payoff of p0v− 2c/λ.25 If the receiver’s strategy is to stop at p0, then

25In order to understand this payoff, notice that the strategy fully reveals the state, and thus the
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the receiver takes action ℓ immediately, in which case the sender’s payoff is equal to 0.

Therefore, the sender’s expected payoff is either equal to 0 or above p0v − 2c/λ.

Now suppose p0 > p̂, and consider any MPE. As above, if p0 belongs to the waiting

region, then the sender’s payoff must exceed at least p0v − 2c/λ. If p belongs to the

stopping region, then the sender’s payoff is equal to v. In either case, the sender’s payoff

is at least p0v − 2c/λ.

We prove the folk theorem by constructing MPEs with a particularly simple structure:

Definition 1. A Markov perfect equilibrium is a simple MPE (henceforth, SMPE) if

there exist p∗ ∈ (0, p̂) and p∗ ∈ (p̂, 1) such that the receiver chooses action ℓ if p < p∗,

waits if p ∈ (p∗, p
∗), and chooses action r if p ≥ p∗.26

In other words, in an SMPE, the receiver waits for more information if p ∈ W and

takes an action, ℓ or r, otherwise, where W = (p∗, p
∗) or W = [p∗, p

∗) denotes the waiting

region:

|
p=0

ℓ︷ ︸︸ ︷
———————— p∗

“wait”︷ ︸︸ ︷
———————— p∗

r︷ ︸︸ ︷
—————— |

1

While this is the most natural equilibrium structure, we do not exclude possible MPEs

that violate this structure. Whether such non-simple MPEs exist or not is irrelevant for

our results. While we construct SMPEs to establish our folk theorem, Theorem 3 is valid

for all MPEs. Finally, we continue to require our refinement with SMPEs.

To prove the folk theorem, we begin by fixing p∗ ∈ (p̂, 1). Then, for each c sufficiently

small, we identify a unique value of p∗ for which an SMPE can be constructed. We then

show that as c → 0, p∗ approaches 0 as well (see Propositions 2 and 3 in Section 5.2).

This implies that given p∗, the limit SMPE spans the sender’s payoffs on the line segment

that connects (0, 0) and (p∗, v)—the dashed line in the left panel of Figure 6—and the

receiver’s payoffs on the line segment that connects (0, uL
ℓ ) and (p∗, Ur(p

∗)) in the right

panel. By varying p∗ from p̂ to 1, we can cover the entire shaded areas in Figure 6. Note

that with this construction and the uniqueness claims in Propositions 2 and 3, we also

obtain a characterization of feasible payoff vectors (V, U) for the sender and receiver that

can arise in an SMPE in the limit as c tends to 0. We state this in the following corollary.

Corollary 1. For any prior p0 ∈ [0, 1], in the limit as c tends to 0, the set of SMPE

payoff vectors (V, U) is given by

{
(V, U)

∣∣∣∣∃p
∗ ∈ [max {p0, p̂} , 1] : V =

p0
p∗
v, U =

p0
p∗
Ur(p

∗) +
p∗ − p0

p∗
uL
ℓ

}
,

sender gets v only in state R. In addition, in each state, a Poisson jump occurs at rate λ/2, and thus the
expected waiting time equals 2/λ, which is multiplied by c to obtain the expected cost.

26We do not restrict the receiver’s decision at the lower bound p∗, so that the waiting region can be
either W = (p∗, p

∗) or W = [p∗, p
∗). Requiring W = (p∗, p

∗) can lead to non-existence of an SMPE (see
Proposition 2 below). Requiring W = [p∗, p

∗) can lead to non-admissibility of the sender’s best response
in Proposition 3 (see the discussion of admissibility in Online Appendix B).
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with the addition of the no-persuasion payoff vector (0, U(p0)) for p0 < p̂.

5 Persuasion Dynamics

In this section, we provide a full description of SMPE strategy profiles and illustrate the

resulting equilibrium persuasion dynamics. We first explain why the sender optimally

uses the three modes of persuasion discussed in the Introduction and Section 2. Then,

using them as building blocks, we construct full SMPE strategy profiles and also discuss

several behavioral implications of the equilibrium persuasion dynamics.

5.1 Modes of Persuasion

Fix an SMPE with two threshold beliefs p∗ and p∗, where p∗ < p̂ < p∗. We investigate

the sender’s optimal persuasion/experimentation behavior at any belief p ∈ (0, 1) in that

equilibrium.

Suppose that the sender runs a flow experiment that targets qi 6= p when the current

belief is p. Then, the belief jumps to qi at rate λp(1− p)/|qi− p| (see (1)). Absent jumps,

it moves continuously according to (2). Therefore, her flow benefit is given by

v(p; qi) := λ
p(1− p)

|qi − p|
(V (qi)− V (p))− sgn(qi − p)λp(1− p)V ′(p),

where sgn(x) = x/|x|, and V (·) is the sender’s value of playing the candidate equilibrium

strategy.27 Specifically, for qi > p, the flow benefit consists of the value increase from a

breakthrough which arises at rate λp(1−p)
|qi−p|

(the first term) and the decay of value in its

absence (the second term). For qi < p, the first term captures the value decrease from a

breakdown, while the second term represents the gradual appreciation in its absence.

At each point in time, the sender can choose any countable mixture over experiments.

Therefore, at each p, her flow benefit from optimal persuasion is equal to

v(p) := max
(αi,qi)i

∑

qi 6=p

αiv(p; qi) subject to
∑

i∈N

αi ≤ 1. (3)

The function v(p) represents the gross flow value from experimentation. It plays an

important role in characterizing the sender’s strategy in the stopping region as well as

in the waiting region. If p ≥ p∗, then the receiver takes action r immediately, and thus

V (p) = v for all p ≥ p∗. It follows that v(p) = 0 < c, so it is optimal for the sender to

pass, which is intuitive. If p < p∗ then the sender has only one instant to persuade the

27Note that the sender’s value function may not be everywhere differentiable. We ignore this here to
give a simplified argument illustrating the properties of the optimal strategy for the sender. The formal
proofs can be found in Appendix A.
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receiver, and therefore she experiments only when v(p) ≥ c: if v(p) < c, persuasion is so

unlikely that she prefers to pass, or more intuitively, gives up on persuasion.

In the waiting region p ∈ (p∗, p
∗), the sender must have an incentive to experiment,

which suggests that v(p) ≥ c.28 In particular, when the sender’s equilibrium strategy

involves experimentation, her value function is characterized by the Hamilton-Jacobi-

Bellman (HJB) equation, which means that V (p) is adjusted so that v(p) = c holds.

The following proposition simplifies the potentially daunting task of characterizing the

sender’s optimal experiment at each belief in (3), to searching among a small subset of

all feasible experiments.

Proposition 1. Consider an SMPE where the receiver’s strategy is given by p∗ < p̂ < p∗.

(a) For all p ∈ (0, 1), there exists a best response that uses at most two experiments,

(α1, q1) and (α2, q2).

(b) Suppose that V (·) is nonnegative, increasing, and strictly convex over (p∗, p
∗], and

V (p∗)/p∗ ≤ V ′(p∗). Then, the best response in part (a) has

(i) for p ∈ (p∗, p
∗), α1 + α2 = 1 with q1 = p∗ and q2 = 0;

(ii) for p < p∗, either α1 = α2 = 0 (i.e., the sender passes), or α1 = 1 and q1 = p∗

or q1 = p∗;

(iii) for p > p∗, α1 = α2 = 0 (i.e., the sender passes).

For part (a) of Proposition 1, notice that the right-hand side in equation (3) is linear

in each αi and the constraint
∑

i∈N αi ≤ 1 is also linear. Therefore, by the standard linear

programming logic, there exists a solution that makes use of at most two experiments,

one below p and the other above p.29 This result implies that

v(p) = max
(α1,q1),(α2,q2)

λp(1−p)

[
α1

V (q1)− V (p)

q1 − p
− α2

V (p)− V (q2)

p− q2
− (α1 − α2)V

′(p)

]
, (4)

subject to α1 + α2 ≤ 1 and q2 < p < q1.

Part (b) of Proposition 1 states that if V (·) satisfies the stated properties, which will

be shown to hold in equilibrium later, then there are only three candidates for optimal

Poisson jump targets, 0, p∗, and p∗, regardless of p ∈ (0, p∗). As illustrated in Figure 7,

the RHS of (4) boils down to choosing q1 > p to maximize the slope of V between q1 and

p (i.e., the first fraction) or choosing q2 < p to minimize the slope of V between q2 and

p (i.e., the second fraction). In the waiting region, the former strategy leads to q1 = p∗

28Suppose that v(p) < c. Then, the sender strictly prefers passing forever to conducting any experiment
at p followed by the optimal continuation. This implies that the value function must be V (p) = 0—the
value of passing forever. Hence, we must have v(p) ≥ c whenever V (p) > 0, which holds if p ∈W .

29One may wonder why we allow for two experiments. In fact, linearity implies that there exists a
maximizer that puts all weight on a single experiment. But to obtain an admissible Markov strategy,
using two experiments is sometimes necessary. For example, if p is an absorbing belief, then admissibility
requires that the stationary strategy be used at that belief, requiring two experiments. See Online
Appendix B for details.
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Figure 7: Optimal Poisson jump targets for different values of p. The solid curve represents
the sender’s value function in an SMPE with p∗ and p∗.

whereas the latter strategy leads to q2 = 0 (see p3 and the dashed lines in Figure 7).30

Similarly, if p < p∗ then q2 = 0 is optimal and q1 is either p∗ (see p2 and the dotted line)

or p∗ (see p1 and the dash-dotted line).

Proposition 1 implies that the sender makes use of the following three modes of per-

suasion at each p < p∗.

R-drifting experiment (confidence building): This corresponds to choosing α2 =

1 and q2 = 0. The sender uses an experiment that generates Poisson jumps to 0 at

(unconditional) rate λ(1− p), upon which the receiver immediately takes action ℓ. In the

absence of Poisson jumps, p continuously drifts rightward at rate ṗ = λp(1−p). Targeting

q2 = 0 is explained by the same logic as selecting zero as the belief that induces action

ℓ in the static model: the jump to zero is less likely than a jump to any other q < p,

as the arrival rate λp(1 − p)/(p − q) is increasing in q. Intuitively, this experiment can

be interpreted as the strategy of building up the receiver’s confidence slowly but steadily

while minimizing the chance of a breakdown.

L-drifting experiment (confidence spending): This corresponds to choosing α1 = 1

and q1 = p∗ or possibly q1 = p∗ if p < p∗. The sender generates rightward Poisson jumps

that lead to either p∗ or p
∗. In the absence of Poisson jumps, the belief continuously drifts

leftward at rate ṗ = −λp(1 − p). This strategy is the polar opposite of the R-drifting

experiment. It can yield fast success, but success is unlikely to happen. In addition, when

there is no success, the receiver’s confidence diminishes—the sender “spends the receiver’s

confidence.”

30Note that q1 > p∗ yields a lower slope than q1 = p∗; intuitively, the sender would be wasting her
persuasion rate if she targets above p∗. Meanwhile, when p ∈ (p∗, p

∗), q2 = p∗ yields a higher slope than
q2 = 0, given V (p∗)/p∗ ≤ V ′(p∗).
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Stationary experiment (confidence preserving): This arises when the sender tar-

gets two beliefs, q1 = p∗ and q2 = 0, with equal weights (α1 = α2).
31 In this case, unless

the belief jumps to 0 or p∗, it stays constant (thus, “stationary”). This can be interpreted

as a mixture between R-drifting and L-drifting experiments. It can lead to immediate

persuasion via a jump to p∗, while not eroding the receiver’s confidence.

Two aspects determine the sender’s choice over these experiments in her optimal strat-

egy. First, strategies may differ in the distributions over final posteriors they induce. In

particular, they may differ in the probability of persuasion (i.e., of the belief reaching

p∗). Second, and more interestingly, they may differ in the time it takes for the sender to

conclude persuasion. While the former feature has been studied extensively by the static

persuasion models, the latter feature is novel here and is crucial for shaping the precise

persuasion dynamics.

To be concrete, compare the confidence-building strategy that uses the R-drifting

experiment (with jump target 0) until the belief reaches p∗, with the confidence-preserving

strategy that uses the stationary experiment (with jump targets q1 = p∗ and q2 = 0) until

a jump occurs. Starting from any belief p ∈ (p∗, p
∗), both strategies eventually lead to

a posterior of 0 or p∗, with identical probabilities. Hence they yield the same outcome

for the two players, except for the time it takes for the persuasion process to conclude.

Clearly, the sender wishes to minimize that time, which explains her choice between the

two modes of persuasion. Intuitively, if the current belief is close to the persuasion target

p∗, then confidence building (i.e., right-drifting) takes less time on average than confidence

preserving (i.e., stationary), since the former concludes persuasion within a short period

of time, whereas the latter may take a long time and thus proves costly.32 The opposite

is true, however, if the current belief is significantly away from the persuasion target p∗.

Intuitively, seeking persuasion by an immediate success is more useful than slowly building

up the receiver’s confidence in that case.

The confidence-spending strategy (which uses the L-drifting experiment with jumps

to p∗ until the belief reaches p∗) offers a similar tradeoff as confidence preserving vis-a-

vis confidence building. If the current belief is far away from the persuasion target p∗,

confidence spending involves less time than confidence building. However, there is another

difference. If a success does not arise before the belief falls to p∗, persuasion stops and

the receiver chooses ℓ, before the belief reaches zero. By the familiar logic from (static)

Bayesian persuasion, this leads to a suboptimal distribution over posteriors. To avoid

this, the sender may in some cases prefer the confidence-building strategy, or in other

cases switch from the L-drifting experiment to the confidence-preserving strategy before

31We will show that any other mixture (in which α1 6= α2) never arises in equilibrium.
32As p tends to p∗, the expected waiting time shrinks to zero under both strategies: under R-drifting,

the drift time goes to zero whereas under stationary strategy, the arrival rate of belief p∗ goes to infinity.
Yet, given our arrival rate specification, the expected waiting time converges to zero faster under the
former strategy.

22



reaching p∗. As will be seen, the confidence-spending strategy is also used in the stopping

region p < p∗ as a “Hail Mary pitch” when the receiver is about to choose ℓ an instant

later.

5.2 Equilibrium Characterization

We now explain how the sender’s equilibrium strategy deploys the three modes of persua-

sion introduced in Section 5.1, and provide a full description of the unique SMPE strategy

profile for each set of parameter values and persuasion target p∗.

The structure of SMPE depends on two conditions. The first condition concerns how

demanding the persuasion target p∗ is:

p∗ ≤ η ≈ 0.943. (C1)

This condition determines whether the sender always prefers the R-drifting strategy to

the stationary strategy or not. The constant η is the largest value of p∗ such that the

sender prefers the former strategy to the latter for all p < p∗ (see Appendix A.1 for the

formal definition). Notice that this condition holds for p∗ not too large relative to p̂; for

instance, this is the case when the sender’s equilibrium strategy approximates the KG

solution (as long as p̂ ≤ η).

The structure of the sender’s equilibrium strategy also depends on the following con-

dition:

v > Ur(p
∗)− Uℓ(p

∗). (C2)

The left-hand side quantifies the sender’s gains when she successfully persuades the re-

ceiver and induces action r, while the right-hand side represents the corresponding gains

for the receiver.33 If (C2) holds, then the sender has a stronger incentive to experiment

than the receiver has to listen, so the belief p∗ below which some player wishes to stop is

determined by the receiver’s incentives. Conversely, if (C2) fails, then the sender is less

eager to experiment, and thus p∗ is determined by the sender’s incentives.

We first provide an equilibrium characterization for the case where (C2) is satisfied.

Proposition 2. Fix p∗ ∈ (p̂, 1) and suppose that v > Ur(p
∗) − Uℓ(p

∗). For each c > 0

sufficiently small, there exists a unique SMPE such that the waiting region has upper bound

p∗. The waiting region is W = [p∗, p
∗) for some p∗ < p̂, and the sender’s equilibrium

33As explained in Section 2 (see Footnote 9), the payoffs of the two players are directly comparable,
because their information cost c is normalized to be the same. With different information costs, (C2)
has to be stated using each player’s payoff relative to their information cost. In the extreme case when
the sender’s cost is zero but the receiver’s is not, (C2) necessarily holds, and the equilibria characterized
in Proposition 2 below always exist. However, the sender is indifferent over all strategies that yield the
same (ex post) distribution of posteriors. Therefore, the claim of uniqueness in Proposition 2 no longer
holds.
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strategy is as follows:34

(a) Suppose the belief is in the waiting region with p ∈ [p∗, p
∗).

(i) If p∗ ∈ (p̂, η), then the sender plays the R-drifting strategy with left-jumps to 0

for all p ∈ [p∗, p
∗).

(ii) If p∗ ∈ (η, 1),35 then there exist cutoffs p∗ < ξ < πLR < p∗ such that for

p ∈ [p∗, ξ) ∪ (πLR, p
∗), the sender plays the R-drifting strategy with left-jumps

to 0; for p = ξ, she uses the stationary strategy with jumps to 0 and p∗; and

for p ∈ (ξ, πLR], she adopts the L-drifting strategy with right-jumps to p∗.

(b) Suppose the belief is outside the waiting region with p < p∗. There exist cutoffs

0 < πℓL < π0 < p∗ such that for p ≤ πℓL, the sender passes; for p ∈ (πℓL, π0), she

uses the L-drifting strategy with jumps to q = p∗; and for p ∈ [π0, p∗), she uses the

L-drifting strategy with jumps to q = p∗.

The lower bound p∗ of the waiting region converges to zero as c→ 0.

Figure 8 below summarizes the sender’s SMPE strategy in Proposition 2, depending

on whether p∗ < η or not. If p∗ ∈ (p̂, η), then the sender uses only R-drifting experiments

in the waiting region [p∗, p
∗), as depicted in the top panel of the figure. If p∗ > η, then the

sender employs other strategies as well, as described in the bottom panel of Figure 8. For

low beliefs close to p∗, she starts with R-drifting (confindence-building) experiments but

switches to the stationary experiment when the belief reaches ξ. For beliefs above ξ, but

below πLR, she employs L-drifting (confidence-spending) experiments and also switches

to the stationary experiment when the belief reaches ξ.

p∗ ∈ (p̂, η) : |
0
——︸︷︷︸
pass

πℓL←−←−︸ ︷︷ ︸
jump:p∗

π0←−←−︸ ︷︷ ︸
jump:p∗

p∗−→−→−→−→−→−→−→−→−→︸ ︷︷ ︸
R-drifting, jump to:0

p∗——————————︸ ︷︷ ︸
pass

|
1

p∗ ∈ (η, 1) : |
0
——︸︷︷︸
pass

πℓL←−←−︸ ︷︷ ︸
jump:p∗

π0←−←−︸ ︷︷ ︸
jump:p∗

p∗−→−→−→−→︸ ︷︷ ︸
jump:0

ξ︸︷︷︸
stationary

←−←−←−︸ ︷︷ ︸
jump:p∗

πLR−→−→−→−→︸ ︷︷ ︸
jump:0

p∗———︸ ︷︷ ︸
pass

|
1

Figure 8: The sender’s SMPE strategies in Proposition 2, that is, when v > Ur(p
∗)−Uℓ(p

∗).

To understand these different patterns, recall from Section 5.1 that the R-drifting

experiment is particularly useful if it does not take too long to build the receiver’s con-

fidence and move the belief to p∗. This explains the use of R-drifting experiment when

p is rather close to p∗, in fact for all p in the waiting region if p∗ < η, but only for p in

[πLR, p
∗) if p∗ ≥ η. If p∗ is above η, then for p below πLR, other experiments become op-

timal. For p < ξ, the sender starts by building confidence, but instead of continuing with

34We set W = [p∗, p
∗) to be a half-open interval, since for beliefs p < p∗ close to p∗, the sender’s best

response is to target q = p∗. Hence existence of the best response requires p∗ ∈W .
35Notice that in the knife-edge case when p∗ = η, there are two SMPEs, one as in (a.i) and another as

in (a.ii). In the latter, however, πLR = ξ and the L-drifting strategy is not used in the waiting region.
The two equilibria are payoff-equivalent but exhibit very different dynamic behavior when p0 ∈ [p∗, ξ].
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this strategy until p∗ is reached, she cuts it short and switches to the stationary strategy

when ξ is reached. At ξ, the arrival rate of a jump to p∗ in the stationary experiment is

sufficiently high to yield a faster persuasion (on average) than it would take to gradually

build confidence to p∗ using the R-drifting strategy. For beliefs p ∈ (ξ, πLR), a jump to p∗

arrives at a higher rate, so that it becomes optimal to spend confidence and use only the

L-drifting experiment, rather than preserving confidence with the stationary experiment.

For an economic intuition, consider a salesperson courting a potentially interested

buyer. If the buyer needs only a bit more reassurance to buy the product, then the

salesperson should carefully build up the buyer’s confidence until the belief reaches p∗.

The salesperson may still “slip off” and lose the buyer (i.e., p jumps down to 0). But most

likely, the salesperson “weathers” that risk and moves the buyer over the last hurdle (i.e.,

q = p∗ is reached). This is exactly what our equilibrium persuasion dynamics describes

when p0 is close to p∗. When the buyer does not require a high degree of confidence to

be persuaded (p∗ ≤ η), building up confidence is the optimal strategy for the salesperson

whenever the buyer is initially willing to listen (i.e., p0 is in the waiting region). By

contrast, when p∗ > η, the buyer requires a lot of convincing and there are beliefs where

the buyer is rather uninterested (as in a “cold call”). Then, the salesperson’s optimal

strategy depends on how skeptical the buyer is initially. If p0 ∈ [πLR, p
∗), then it is still

an optimal strategy for the salesperson to build up the buyer’s confidence until p∗. If

p0 ∈ (p∗, ξ), the salesperson first tries to build confidence. If the buyer is still listening

when the belief reaches ξ, the seller becomes more convinced that the buyer can be

persuaded, and she starts using a big pitch that would move the belief to p∗. For higher

beliefs, she is even more convinced that the buyer can be persuaded quickly, so she “spends

confidence” and concentrates all her efforts on quickly persuading the receiver.

Condition (C2) means that the lower bound p∗ of the waiting region is determined by

the receiver’s incentive: p∗ is the point at which the receiver is indifferent between taking

action ℓ immediately and waiting (i.e., Uℓ(p∗) = U(p∗), where U(p) is the receiver’s

payoff from experimentation). Intuitively, (C2) suggests that the receiver gains less from

experimentation, and is thus less willing to continue, than the sender. Therefore, at the

lower bound p∗, the receiver wants to stop, even though the sender wants to continue

persuading the receiver (i.e., V (p∗) > 0).

When p < p∗, the sender plays only L-drifting experiments, unless she prefers to pass

(i.e., when p < πℓL). This is intuitive, because the receiver takes action ℓ immediately

unless the sender generates an instantaneous jump, forcing the sender to effectively make

a “Hail Mary” pitch. It is intriguing, though, that the sender’s target posterior can be

either p∗ or p∗, depending on how close p is to p∗: in the sales context used above, if the

buyer is fairly skeptical, then the salesperson needs to use a big pitch. But, depending

on how skeptical the buyer is, she may try to get enough attention only for the buyer to

stay engaged (targeting q = p∗) or use an even bigger pitch to convince the buyer to buy
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outright (targeting q = p∗). If p is just below p∗ (see p2 in Figure 7), then the sender

can jump into the waiting region at a high rate: recall that the arrival rate of a jump

to p∗ grows to infinity as p tends to p∗. In this case, it is optimal to target p∗, thereby

maximizing the arrival rate of Poisson jumps: the salesperson is sufficiently optimistic

about her chance of grabbing the buyer’s attention, so she only aims to make the buyer

stay. If p is rather far away from p∗ (below π0 such as p1 in Figure 7), then the sender

does not enjoy a high arrival rate. In this case, it is optimal to maximize the sender’s

payoff conditional on Poisson jumps, which she gets by targeting p∗: the salesperson tries

to sell her product right away and if it does not succeed, then she just lets it go.

Next, we provide an equilibrium characterization for the case when (C2) is violated.

Proposition 3. Fix p∗ ∈ (p̂, 1) and assume that v ≤ Ur(p
∗) − Uℓ(p

∗). For each c > 0

sufficiently small, there exists a unique SMPE such that the waiting region has upper bound

p∗. The waiting region is W = (p∗, p
∗) for some p∗ < p̂, and the sender’s equilibrium

strategy is as follows:36

(a) Suppose the belief is in the waiting region with p ∈ (p∗, p
∗).

(i) If p∗ ∈ (p̂, η), then there exists a cutoff πLR ∈ W such that for p ∈ (πLR, p
∗), the

sender uses the R-drifting strategy with left-jumps to 0; and for p ∈ (p∗, πLR),

she uses the L-drifting strategy with right-jumps to p∗.

(ii) If p∗ ∈ (η, 1), then there exist cutoffs p∗ < πLR < ξ < πLR < p∗ such that for

p ∈ [πLR, ξ)∪ [πLR, p
∗), the sender plays the R-drifting strategy with left-jumps

to 0; for p = ξ, she adopts the stationary strategy with jumps to 0 or p∗; and

for p ∈ (p∗, πLR) ∪ (ξ, πLR), she uses the L-drifting strategy with right-jumps

to p∗.

(b) If the belief is outside the waiting region, the sender passes.

The lower bound of the waiting region p∗ converges to zero as c tends to 0.

Figure 9 describes the persuasion dynamics in Proposition 3.

p∗ ∈ (p̂, η) : |
0
———︸ ︷︷ ︸

pass

p∗←−←−←−←−←−︸ ︷︷ ︸
L-drifting, jump:p∗

πLR−→−→−→−→−→−→−→−→︸ ︷︷ ︸
R-drifting, jump:0

p∗ ——————————︸ ︷︷ ︸
pass

|
1

p∗ ∈ (η, 1) : |
0
———︸ ︷︷ ︸

pass

p∗←−←−←−︸ ︷︷ ︸
jump:p∗

πLR−→−→−→−→︸ ︷︷ ︸
jump:0

ξ︸︷︷︸
stationary

←−←−←−←−︸ ︷︷ ︸
jump:p∗

πLR−→−→−→−→︸ ︷︷ ︸
jump: 0

p∗ ———︸ ︷︷ ︸
pass

|
1

Figure 9: The sender’s SMPE strategy in Proposition 3, that is, when v ≤ Ur(p
∗)−Uℓ(p

∗).

There are two main differences from Proposition 2. First, if p < p∗ then the sender

simply passes, whereas in Proposition 2, the sender uses L-drifting experiments when

36We set W = (p∗, p
∗) to be an open interval, since the sender uses the L-drifting strategy for beliefs

close to p∗. Including p∗ would not lead to a well-defined stopping time and therefore violates admissibility.
See Online Appendix B.
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p ∈ (πℓL, p∗). Second, when p is just above p∗, the sender adopts L-drifting experiments,

and thus the game may stop at p∗. By contrast, in Proposition 2, the sender always plays

R-drifting experiments just above p∗, and the game never ends with the belief reaching

p∗. Both of these differences are precisely due to the failure of (C2): if v ≤ Ur(p
∗)−Uℓ(p

∗)

then the sender is less willing to continue than the receiver, and thus p∗ is determined

by the sender’s participation constraint (i.e., V (p∗) = 0). Therefore, the sender has no

incentive to experiment once p falls below p∗.

When p is just above p∗, the sender goes for a big pitch by targeting p∗ with L-drifting

experiments. The sender does not mind losing the buyer’s confidence in the process, since

the violation of (C2) means that, as the belief nears p∗, she has very little motivation left

for persuading the receiver even though the latter remains willing to listen. By contrast,

when (C2) holds (as in Proposition 2), as the belief nears p∗, the receiver loses interest

in listening, but the sender still sees a significant value in staying “in the game.” Hence,

the sender tries to build, instead of running down, the receiver’s confidence in that case.

5.3 Behavioral Implications

Propositions 2 and 3 fully describe equilibrium persuasion dynamics that arise in SMPEs.

Here, we explore their implications for several outcome variables. For this purpose, we

consider SMPEs with arbitrary persuasion targets p∗ > p̂, and assume that for each p∗, c

is low enough for a unique SMPE to exist.

Persuasion, accuracy, and waiting time. Of particular interest are the sender’s

persuasion probability, the accuracy of the action taken by the receiver, and the time it

takes for the latter to take an action. The results are summarized in the next proposition.

Proposition 4. Consider the SMPE for any persuasion target p∗ ∈ (p̂, 1).

(a) If (C2) holds or if p0 ≥ πLR, then the posteriors take values in {0, p∗}, resulting in

persuasion with probability p0/p
∗, and the expected waiting time is strictly concave

in p0 for p0 ∈ [πLR, p
∗], attaining an interior maximum.

(b) If (C2) fails and p0 < πLR, then the posteriors take values in {p∗, p
∗}, with per-

suasion succeeding with probability p0−p∗
p∗−p∗

. If (C2) fails, the expected waiting time is

quasi-concave in p0 for p0 ∈ [p∗, p
∗] and involves a discontinuous jump at p0 = πLR.

Suppose (C2) holds so that part (a) applies. For any prior p0 ∈ (p∗, p
∗), the sender

generates posteriors 0 and p∗, and enjoys persuasion with probability p0/p
∗, as depicted

in Panel (a) of Figure 10 below. From the receiver’s perspective, this means that his

choice of ℓ is perfectly accurate but his choice of r is less accurate. As mentioned earlier,

this pattern conforms to the familiar logic of Bayesian persuasion, according to which the

sender limits unfavorable information to be sent only when it is perfectly accurate so as

to minimize its frequency. In fact, the receiver would have preferred the opposite type
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(a) Persuasion Probability: (C2) holds (b) Persuasion Probability: (C2) fails

(c) Expected Waiting Time: (C2) holds (d) Expected Waiting Time: (C2) fails

0 p∗ ξ πLR p∗ 1

1

p0
0 p∗ πLR ξ πLR p∗ 1

p0

1

0 p∗ ξ πLR p∗ 1

E[τ ]

p0
0 p∗ πLR ξ πLR p∗ 1

E[τ ]

p0p0

Figure 10: Persuasion and waiting time. In this figure, p∗ = 0.95 > η.
Note: The parameter values used for all panels are uL

ℓ = uR
r = 1, uR

ℓ = uL
r = 0, λ = 1, and c = 0.035. In

the left panels, v = 1, while v = 0.3 in the right panels.

of information when R is unlikely (i.e., when p0 were low): if the receiver had chosen

information himself, he would have settled for less accurate information for L in exchange

for more accurate information for R (see Theorem 1 of Che and Mierendorff, 2019).37

Another interesting observation is that even though the persuasion dynamics the

sender employs do vary with p0 to minimize persuasion cost, this does not alter the

support of the posterior distribution chosen by the sender. Consequently, a decision takes

a longer time, the more uncertain the prior is. This can be seen by the inverse “U”-shaped

expected waiting time in Panel (c) of Figure 10.38

Part (b) of the proposition, where (C2) fails, is similar to Part (a), except for one

crucial difference. When (C2) fails, the persuasion dynamics “interfere” with the posterior

distribution chosen by the sender: for a low range of priors p0, the sender generates

less efficient beliefs {p∗, p
∗} than {0, p∗}. See Panel (b) of Figure 10. If (C2) fails, the

37Specifically, when p0 is low, a decision maker requires beliefs p ∈ (0, p̂) and 1 for choosing ℓ and r,
respectively; likewise, when p0 is large, he requires beliefs 0 and p ∈ (p̂, 1) for choosing ℓ and r, respectively.
Intuitively, he “demands” stronger evidence to justify an action that is unlikely to be optimal. While their
model assumes conclusive Poisson signals, their result remains valid within the current class of Poisson
signals, as noted in Proposition 6 of Che and Mierendorff (2019).

38This feature is similar to the quasi-concavity of “delay” exhibited by the decision maker in the Wald
problem (see Proposition 1 of Che and Mierendorff, 2019). It is also useful to note that the waiting time is
proportional to the persuasion costs incurred by the sender. More precisely, V (p) = v ·[Persuasion prob]−
c · [Expected waiting time]. The concavity of the waiting time then follows from the convexity of the value
function.
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p0 = (p∗ + πLR)/2
p0 = (πLR + ξ)/2
p0 = (ξ + πLR)/2
p0 = (πLR + p∗)/2

Figure 11: The conditional distribution of the persuasion time. The parameter values
used for this figure are identical to those of Figure 10 (with v = 0.3).

persuasion cost “looms” large in the mind of the sender, so she sacrifices the persuasion

probability to reduce her persuasion costs; this is seen by the discontinuous drop as p0 falls

below πLR in Panel (d) of Figure 10. This means that as p0 falls below πLR, the accuracy of

action ℓ suffers from the receiver’s perspective. Indeed, the receiver would have preferred

that switch to occur at a lower belief, if at all. That is, a speed-accuracy substitution

occurs at πLR, not for the reason familiar from a single-person decision context,39 but for

the speed-persuasion tradeoff that motivates the sender’s information choice.

Persuasion time. A novel feature of our dynamic model is a rich prediction it yields for

the persuasion time (i.e, how long it takes for the sender to persuade the receiver). Figure

11 shows the distribution of the persuasion time conditional on the sender successfully

persuading the receiver, for four different priors.40

As evident in the figure, the distribution of the persuasion time varies with prior p0.

If p0 is close to p∗ (the red curve), the persuasion time is deterministic; it is also back-

loaded with the receiver never persuaded before the deterministic time. This pattern is

a consequence of the sender adopting the confidence-building strategy that repeats R-

drifting experiments. If p0 ∈ (ξ, πLR) (the green case), persuasion time is dispersed over

time. In fact, the rate of persuasion is high initially but drops at a certain point. This

is because the sender initially employs the confidence-spending strategy which repeats

L-drifting experiments, but switches to the stationary experiment at ξ. If p0 ∈ (πLR, ξ)

(the blue case), then no persuasion occurs for a period of time as the sender repeats R-

drifting experiments until the belief reaches ξ; thereafter persuasion occurs at a certain

rate as stationary experiments commence. Finally, if p0 is close to p∗ (the brown case),

39See Ratcliff and McKoon (2008) for a standard explanation and Che and Mierendorff (2019) and
Zhong (2019) for the Poisson signal models.

40Figure 11 depicts the most sophisticated and comprehensive case where p∗ > η and (C2) fails. For
the other cases, it suffices to consider the relevant subset of four different priors. For example, if p∗ > η
and (C2) holds, then the case when p0 = (p∗ + πLR)/2 (the brown curve) is not relevant, while the other
three cases effectively stay unchanged.
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then persuasion is unlikely to succeed, but when it does, it is relatively front-loaded: the

sender plays L-drifting experiments until the belief reaches p∗.

6 Concluding Discussions

We have restricted attention to Markov perfect equilibria, which by definition do not rely

on incentives provided by off-path equilibria. Certainly, other (non-Markov) equilibria

could be used so as to enlarge the set of sustainable payoffs.41 Then, it seems plausible

that as the players’ persuasion costs vanish, one could implement all individually rational

payoffs, including the gray region in Figure 6. For prior beliefs p0 < p̂, this is indeed the

case, because the no-persuasion equilibrium in Theorem 1 can be used to most effectively

control the sender’s incentives. For prior beliefs p0 > p̂, however, no clear punishment

equilibrium is available; note that for p0 > p̂, the no-persuasion equilibrium maximizes

the sender’s payoff. This suggests that our construction of MPEs cannot be replaced by

arguably simpler constructions that rely on off-path punishments. Indeed, we conjecture

that for p0 > p̂, Theorem 2 and Corollary 1 characterize the full set of equilibrium payoffs.

Our model assumes flow persuasion costs rather than discounting. This assumption

simplifies the analysis, mainly by additively separating persuasion benefits from persua-

sion costs. Still, it has no qualitative impact on our main results. Specifically, if we

include both flow costs and discounting in the analysis, then the resulting SMPEs would

converge to those of our current model as discounting becomes negligible. If we consider

only discounting (without flow costs), then the persuasion dynamics needs some modifica-

tion. Among other things, the sender has no reason to voluntarily stop experimentation,

and thus the persuasion dynamics will be similar to that of Proposition 2 (as opposed to

that of Proposition 3).42 Still, our main economic lessons will continue to apply: all three

theorems in Section 4 would continue to hold.43 Furthermore, the relative advantages of

the three main modes of persuasion remain unchanged, so the persuasion dynamics are

in many cases similar to those described in Section 5.

Our continuous-time game has a straightforward discrete-time analogue and can be

interpreted as its limit. One important caveat is that the receiver’s per-period (flow)

listening cost should be proportional to the amount of information the sender generates,

41As is well known, it is technically challenging to define a game in continuous time without Markov
restrictions (see, e.g. Simon and Stinchcombe, 1989). Our subsequent discussion should be understood
as referring to the limit of discrete-time equilibria.

42Specifically, the lower bound p∗ of the waiting region will be determined by the receiver’s incentives.
In addition, at the lower bound p∗, so as to stay within the waiting region, the sender will play either
R-drifting experiments or the stationary strategy. This latter fact implies that if the game starts from
p0 ∈ [p∗, p

∗), then it will end only when the belief reaches either 0 or p∗, and thus the persuasion
probability will always be equal to p0/p

∗.
43The proofs of Theorems 1 and 3 can be readily modified. For Theorem 2, it is easy to show that the

main economic logic behind it (namely, “the power of beliefs” explained at the end of Section 3) holds
unchanged with discounting.
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as we model in Section 2. If the receiver’s listening cost is independent of the amount

of generated information, then our “power-of-beliefs” logic no longer holds in discrete

time: if the current belief p is just below the persuasion target p∗ then the receiver’s gains

from waiting one more period are close to 0, in which case she would prefer to stop at

p < p∗. Thus, any persuasion equilibrium with target p∗ > p̂ would unravel, leaving the

no-persuasion equilibrium in Theorem 1 as the unique MPE. If the receiver’s listening

cost is proportional to the amount of new information, however, he would still be willing

to wait, no matter how close p is to p∗. Then, all our analysis and results continue to

hold in the discrete-time analogue.44

Our model focuses on generalized Poisson experiments to accommodate rich and flex-

ible information choice. By contrast, an alternative such as the drift-diffusion model

does not allow for such richness. For example, in Henry and Ottaviani (2019), the sender

samples from a fixed exogenous process, without choosing the type of experiment. Nev-

ertheless, the logic that gives rise to the folk theorem—namely, the incentivizing power

of equilibrium beliefs—applies equally well to such models (see Footnote 24).

The key features of our model are that real information takes time to generate, and

that neither the sender nor the receiver has commitment power over future actions. There

are several avenues along which one could vary these features. For example, one may

consider a model in which the sender faces the same flow information constraint as in our

model but has full commitment power over her dynamic strategy: given our discussion

in Section 3, it is straightforward that the sender can approximately implement the KG

outcome. However, it is non-trivial to characterize the sender’s optimal dynamic strategy.

Alternatively, one could further relax the commitment power by allowing the receiver to

observe only the outcome of the flow experiment, but not the experiment itself.

More broadly, the rich persuasion dynamics found in our model owe a great deal to

the general class of Poisson experiments we allow for. At first glance, allowing for the

information to be chosen from such a rich class of experiments at each point in time might

appear extremely complex to analyze, and a clear analysis might seem unlikely. Yet, the

model produced a remarkably precise characterization of the sender’s optimal choice of

information—namely, not just when to stop acquiring information but more importantly

what type of information to search for. This modeling innovation may fruitfully apply to

other dynamic settings.

44The same logic applies when there is discounting in terms of the period length ∆. If ∆ is independent
of the sender’s information structure, then all persuasive SMPEs with p∗ > p̂ unravel. However, if ∆ is
proportional to the amount of information—a sensible assumption if ∆ describes information processing
time—, then such unraveling does not occur, and our analysis goes through unchanged.

31



Appendix A Proofs of Propositions 2 and 3

The proofs are presented in several sections. Throughout, we take p∗ ∈ (p̂, 1) as given

and construct the corresponding equilibria. Section A.1 constructs the value functions

that correspond to the equilibrium strategies in Propositions 2 and 3. Sections A.2 and

A.3 respectively verify the sender’s and the receiver’s incentives. Uniqueness of SMPE is

proven in Online Appendix C. A brief sketch is provided in Section A.4.

A.1 Constructing Equilibrium Value Functions

We first compute the players’ value functions under alternative persuasion strategies; they

will be used to compute the players’ equilibrium payoffs. In what follows, we take it for

granted that the receiver takes an action immediately if the belief reaches either 0 or p∗.

We also assume that the receiver waits while the sender plays each persuasion strategy in

this subsection.

ODEs for R-drifting and L-drifting. For any p ∈ (0, p∗), let Nε(p) denote a small

open neighborhood of p. Suppose that for any belief p in Nε(p), the sender plays the

R-drifting experiment with jump target 0. Then, the sender’s value function V+(p) and

the receiver’s value function U+(p) satisfy the following ODEs:45

c = λp(1− p)

(
−V+(p)

p
+ V ′

+(p)

)
and c = λp(1− p)

(
uL
ℓ − U+(p)

p
+ U ′

+(p)

)
. (5)

Similarly, suppose for any belief p in Nε(p) the sender plays the L-drifting experiment

with jump target p∗. Then, the players’ value functions, V−(p) and U−(p), satisfy

c = λp(1−p)

(
v − V−(p)

p∗ − p
− V ′

−(p)

)
and c = λp(1−p)

(
Ur(p

∗)− U−(p)

p∗ − p
− U ′

−(p)

)
. (6)

R-drifting strategy: Suppose the sender plays R-drifting experiments until the belief

reaches p∗. In this case, the players’ payoffs are obtained as the solutions to (5) with

boundary conditions V+(p
∗) = v and U+(p

∗) = Ur(p
∗), respectively. We obtain

VR(p) =
p

p∗
v − C+(p; p

∗) and UR(p) =
p∗ − p

p∗
uL
ℓ +

p

p∗
Ur(p

∗)− C+(p; p
∗),

where C+(p; q) :=
(
p log

(
q

1−q
1−p
p

)
+ 1− p

q

)
c
λ
represents the expected cost of using R-

drifting experiments until the belief moves from p to either 0 or q.

45The ODEs can be obtained heuristically in the same way as the Hamilton-Jacobi-Bellman equation.
The subscripts, “+” and “−”, represent the direction of belief drifting in the absence of Poisson jumps.
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Stationary strategy: Suppose the sender uses the stationary experiment with jump

targets 0 and p∗ at p. Then, the players’ value functions, VS(p) and US(p), are respectively

given by

VS(p) =
p

p∗
v − CS(p) and US(p) =

p∗ − p

p∗
uL
ℓ +

p

p∗
Ur(p

∗)− CS(p), (7)

where CS(p) :=
2c(p∗−p)
λp∗(1−p)

represents the expected cost of playing the stationary strategy.46

RS strategy (R-drifting followed by stationary): Suppose the sender plays the

R-drifting strategy until q(> p) and then switches to the stationary strategy. Then, the

players’ value functions solve (5) with boundary conditions V+(q) = VS(q) and U+(q) =

US(q), yielding

VRS(p; q) =
p

p∗
v−C+(p; q)−

p

q
CS(q) and URS(p; q) =

p∗ − p

p∗
uL
ℓ +

p

p∗
Ur(p

∗)−C+(p; q)−
p

q
CS(q).

Note that p/q is the probability that the belief moves from p to q (whereupon the sender

switches to the stationary strategy).

LS strategy (L-drifting followed by stationary): Suppose the sender plays the L-

drifting strategy until q(< p) and then switches to the stationary strategy. Then, the

players’ value functions solve (6) with boundary conditions V−(q) = VS(q) and U−(q) =

US(q), resulting in

VLS(p; q) =
p

p∗
v − C−(p; q)−

p∗ − p

p∗ − q
CS(q) and

ULS(p; q) =
p∗ − p

p∗
uL
ℓ +

p

p∗
Ur(p

∗)− C−(p; q)−
p∗ − p

p∗ − q
CS(q),

where C−(p; q) := −
p∗−p

p∗(1−p∗)

(
p∗ log 1−q

1−p
+ (1− p∗) log q

p
− log p∗−q

p∗−p

)
c
λ
denotes the expected

cost of playing L-drifting experiments until the belief drifts down from p to q(< p).

Crossing lemma. The following lemma provides potential crossing patterns among the

value functions and plays a crucial role in the subsequent analysis.

Lemma 1 (Crossing Lemma). Let V+(p) and V−(p) be solutions to (5) and (6), respec-

tively.

(a) Let p∗ < 8/9. For all p < p∗, if V+(p) = VS(p), then V ′
+(p) < V ′

S(p). Similarly, if

V−(p) = VS(p) then V ′
−(p) < V ′

S(p).

(b) Let p∗ ≥ 8/9, and define ξ1 :=
3p∗

4
−

√(
3p∗

4

)2
− p∗

2
, and ξ2 :=

3p∗

4
+

√(
3p∗

4

)2
− p∗

2
.

46Under the stationary strategy, the total arrival rate of Poisson jumps is equal to λS(p) =
λ
2 (1− p) +

λ
2
p(1−p)
p∗−p

= λ
2
p∗(1−p)
p∗−p

. CS(p) is equal to c times the expected arrival time 1/λS(p).
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(i) For all p < p∗, if V+(p) = VS(p), then V ′
+(p) = V ′

S(p) if and only if p ∈ {ξ1, ξ2},

and V ′
+(p) > V ′

S(p) if and only if p ∈ (ξ1, ξ2);

(ii) For all p < p∗, if V−(p) = VS(p), then V ′
−(p) = V ′

S(p) if and only if p ∈ {ξ1, ξ2},

and V ′
−(p) > V ′

S(p) if and only if p ∈ (ξ1, ξ2).

(c) For all p < p∗, if V+(p) = V−(p), then sign
(
V ′
+(p)− V ′

−(p)
)
= sign (V−(p)− VS(p)).

All parts also hold for the receiver’s value functions U+(·), U−(·), and US(·).

Proof. We focus on the sender’s value functions, as the same proofs apply to the receiver.

From (5), (6), and (7), we can obtain expressions for V ′
+(p), V

′
−(p), and V ′

S(p). Combining

these with V+(p) = VS(p) and V−(p) = VS(p), we obtain

V ′
+(p)− V ′

S(p) = V ′
−(p)− V ′

S(p) = −
c(2p2 − 3p∗p+ p∗)

λp∗p(1− p)2
T 0⇔ −2p2 + 3p∗p− p∗ T 0.

For p∗ < 8/9, the quadratic expression in the last inequality is always negative, which

proves part (a). For p∗ ≥ 8/9, the quadratic expression has two real roots, ξ1 and ξ2, and

is positive if and only if p ∈ (ξ1, ξ2). This proves (b).

Similarly, using V+(p) = V−(p), we have

V ′
+(p)− V ′

−(p) =
p∗

p(p∗ − p)
(V−(p)− VS(p)) ,

which leads to (c).

Construction of ξ. While ξ is part of the equilibrium only for p∗ > η, we define it

generally. For p∗ ≥ 8/9 we set ξ := ξ1 and for p∗ < 8/9 we set ξ := p∗. We define it in

this way to ensure that VRS(p; ξ) meets VS(p) from above at p = ξ (as p rises toward ξ).

In particular, together with the Crossing Lemma 1.(b), this means that for any p < ξ,

VRS(p; ξ) is above VS(p), and for p∗ ≥ 8/9, these two functions have the same slope at

p = ξ. This will play a crucial role later.

Construction of η. The parameter η is the value of p∗ ≥ 8/9 such that VR(ξ(p
∗)) =

VS(ξ(p
∗)).47 (We make the dependence of ξ on p∗ explicit here, and also note that the

functions VR(·) and VS(·) depend on p∗ directly.) Solving this equation yields p∗ = η ≈

0.943. We make the following observations for a later purpose:

Lemma 2.

(a) If p∗ < η then VR(p) > VS(p) for all p ∈ (0, p∗).

(b) If p∗ = η then VR(p) ≥ VS(p) for all p ∈ (0, p∗), with equality only when p = ξ.

(c) If p∗ > η then VR(ξ) < VS(ξ).

47 To show that η is well-defined, we can define a function g : (8/9, 1) → R by g(p∗) := VR(ξ(p
∗)) −

VS(ξ(p
∗)) so that g(η) = 0. It can be verified that g′(p∗) > 0 for all p∗ ∈ (8/9, 1).
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The same results hold for UR(·) and US(·).

Proof. We focus on the sender’s value functions, as the same proofs apply to the receiver.

Using the explicit solutions of VR(p) and VS(p), we can see that VS(0) < VR(0), VS(p
∗) =

VR(p
∗), and V ′

S(p
∗) > V ′

R(p
∗). Therefore, either VS(p) stays weakly below VR(p) for all

p < p∗, or VS(p) crosses VR(p) at least twice (from below and then from above). By

Lemma 1.(b), the latter occurs only if VS(p) crosses VR(p) from below at some p < ξ, and

then second time from above at some p′ ∈ (ξ, ξ2), which is equivalent to VR(ξ) < VS(ξ).

The desired result follows since VR(ξ(p
∗))−VS(ξ(p

∗)) changes the sign only once at p∗ = η

(see Footnote 47).

Pasted strategies. Given ξ, we combine alternative strategies as follows. For any

p ≤ p∗, we define

V̂ (p) :=





VRS(p; ξ) if p < ξ

VS(ξ) if p = ξ

VLS(p; ξ) if p ∈ [ξ, p∗],

and Û(p) :=





URS(p; ξ) if p < ξ

US(ξ) if p = ξ

ULS(p; ξ) if p ∈ [ξ, p∗].

We next define Ṽ (p) := max{VR(p), V̂ (p)} and Ũ(p) := max{UR(p), Û(p)}. We make

several useful observations in the following lemma.

Lemma 3.

(a) Both Ṽ (p) and Ũ(p) are strictly convex in p over [0, p∗].

(b) If p∗ ≤ η then Ṽ (p) = VR(p) and Ũ(p) = UR(p) for all p ∈ [0, p∗].

(c) If p∗ > η then there exists πLR ∈ (ξ, p∗) such that Ṽ (p) = V̂ (p) and Ũ(p) = Û(p)

for p ≤ πLR and Ṽ (p) = VR(p) and Ũ(p) = UR(p) for p ∈ [πLR, p
∗].

(d) Ṽ (p) ≥ VS(p) for all p < p∗, and the inequality is strict for p 6= ξ.

Proof. The same proof applies to both players, so we focus on the sender’s value functions.

Recall that for p∗ < 8/9 we have ξ = p∗ so that V̂ (p) = VRS(p; p
∗) = VR(p), which implies

(b). Since VR(p) is strictly convex, (a) holds as well. In what follows, we consider p∗ ≥ 8/9,

in which case V̂ (p) 6= VR(p).

(a) Since Ṽ (p) is the upper envelope of two functions and VR(p) is strictly convex over

[0, p∗], it suffices to prove that V̂ (p) is also strictly convex over [0, p∗]. Both VRS(p; ξ)

and VLS(p; ξ) are strictly convex over their respective supports, and V̂ (p) is continuously

differentiable at the pasting point ξ. The latter holds because VRS(ξ; ξ) = VLS(ξ; ξ) =

VS(ξ) implies V ′
RS(ξ; ξ) = V ′

LS(ξ; ξ) by Lemma 1.(c).

(b) If p∗ < η, VRS(ξ; ξ) = VS(ξ) < VR(ξ) by Lemma 2.(a). Together with the fact that

both VRS(p; ξ) and VR(p) satsify the ODE (5), this implies that V̂ (p) = VRS(p; ξ) < VR(p)

for all p ≤ ξ.48 For p ∈ (ξ, p∗], observe that VLS(ξ; ξ) = VS(ξ) < VR(ξ) (Lemma 2.(a)),

48It is easy to see that (5) satisfies the Lipschitz condition for uniqueness on (0, p∗).
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VLS(p
∗; ξ) = VR(p

∗), and V ′
LS(p

∗; ξ) > V ′
R(p

∗). Therefore, either V̂ (p) = VLS(p; ξ) < VR(p)

for all p ∈ (ξ, p∗), or VLS(·; ξ) crosses VR(·) from below at least once at some p ∈ (ξ, p∗).

In the latter case, we must have V ′
R(p) = V ′

+(p) < V ′
−(p) = V ′

LS(p; ξ). Then, by Lemma

1.(c), VR(p) = VLS(p; ξ) = V−(p) < VS(p), contradicting Lemma 2.(a).

The result for p∗ = η follows from a continuity argument: both V̂ (p) and VR(·) change

continuously in p∗. Since V̂ (p) < VR(p) for all p < p∗ whenever p∗ < η, it must be that

V̂ (p) ≤ VR(p) for all p < p∗ when p∗ = η. This concludes the proof for part (b).

For parts (c) and (d), the following claim is useful:

Claim 1. Suppose p∗ ≥ 8/9.

(i) V̂ (p) ≥ VS(p) for all p ∈ (0, ξ2], with strict inequality for p 6= ξ.

(ii) VR(p) > VS(p) for all p ∈ [ξ2, p
∗).

Proof. (i) Consider first p < ξ(= ξ1). We have to show that V̂ (p) = VRS(p; ξ) > VS(p).

To see this, pick q < ξ. Then by Lemma 1.(b).(i), VRS(p; q) stays above VS(p) for p < q

and VRS(p; ξ) > VRS(p; q) for all q < ξ. The same logic applies to VLS(p; ξ) for p ∈ (ξ, ξ2].

For part (ii), we check that VR(p
∗) = VS(p

∗) and V ′
R(p

∗) < V ′
S(p

∗). Lemma 1.(b).(i) then

implies that VR(p) and VS(p) cannot intersect at p ≥ ξ2.

For part (c), we first show that VRS(p; ξ) > VR(p) for p ≤ ξ. If p∗ > η then VRS(ξ; ξ) =

VS(ξ) > VR(ξ) (Lemma 2.(c)), which immediately implies that V̂ (p) = VRS(p; ξ) > VR(p)

for all p ≤ ξ. Next, for p ∈ (ξ, p∗], observe that VLS(ξ; ξ) = VS(ξ) > VR(ξ); and VLS(p; ξ) <

VR(p) for p = p∗− ε, since VLS(p
∗; ξ) = VR(p

∗), and V ′
LS(p

∗; ξ) > V ′
R(p

∗). This means that

VLS(·; ξ) crosses VR(·) at least once in (ξ, p∗). To show that there is a unique crossing

point πLR, note that Claim 1 implies that at any crossing point p ∈ (ξ, p∗), VLS(p; ξ) =

V̂ (p) = VR(p) > VS(p), and hence by Lemma 1.(c), VLS(p; ξ) can cross VR(p) only from

above. Therefore, there is a unique crossing point.

(d) If p∗ ≤ η, then the result is immediate from Lemmas 2.(a) and 3.(b). If p∗ > η the

result is immediate from Lemma 3.(c) and Claim 1.

A.1.1 Equilibrium payoffs and construction of p∗ in Proposition 2

When (C2) holds, we define p∗ as the belief φℓR at which the receiver is indifferent between

waiting and stopping with action ℓ; that is, we set p∗ := φℓR where φℓR is defined by49

Uℓ(φℓR) = Ũ(φℓR). (8)

We focus on the case in which c is sufficiently small. In the limit as c → 0, Ũ(p) =
p∗−p
p∗

uL
ℓ +

p
p∗
Ur(p

∗) > Ur(p) for all p. Therefore, there exists c1 > 0 such that p∗ = φℓR < p̂

49To see that φℓR is well defined, observe that, whether p∗ ≤ η or p∗ > η, limp→0 Ũ(p) = uL
ℓ −

c
λ
<

uL
ℓ = Uℓ(0), while Ũ(p∗) = Ur(p

∗) > Uℓ(p
∗) (because p∗ > p̂). In addition, Ũ(p) is strictly convex over

[0, p∗] (Lemma 3.(a)), while Uℓ(p) is linear. Therefore, Ũ(p) crosses Uℓ(p) from below only once.
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for all c ≤ c1. We assume that c ≤ c1 in the sequel. The following Lemma shows that the

sender’s payoff is positive at p∗ if Condition (C2) holds.

Lemma 4. Ṽ (φℓR) > 0 if and only if Condition (C2) holds.

Proof. By (8), we have

Ṽ (φℓR) =
φℓR

p∗
v + Ũ(φℓR)−

(
p∗ − φℓR

p∗
uL
ℓ +

φℓR

p∗
Ur(p

∗)

)
(8)
=

φℓR

p∗
(v − (Ur(p

∗)− Uℓ(p
∗)) ,

where the first equality holds because both players incur the same costs, so that Ṽ (p)−
p
p∗
v = Ũ(p)−

(
p∗−p
p∗

uL
ℓ + p

p∗
Ur(p

∗)
)
whenever p ∈ (0, p∗]. The last expression is positive if

and only if (C2) holds.

We set the players’ value functions as follows:

V (p) :=





0 if p ∈ [0, p∗)

Ṽ (p) if p ∈ [p∗, p
∗)

v if p ≥ p∗,

and U(p) :=





Uℓ(p) if p ∈ [0, p∗)

Ũ(p) if p ∈ [p∗, p
∗)

Ur(p) if p ≥ p∗.

Lemma 5. When (C2) holds, V (p) is nonnegative and nondecreasing for all p ∈ [0, 1].

Proof. Since Ṽ (·) is convex on [0, p∗], Ṽ (0) = −c/λ, and Ṽ (p∗) ≥ 0 by Lemma 4, Ṽ (·)

is increasing on [p∗, p
∗]. Hence V (·) is nondecreasing on [0, 1], and nonnegative since

V (0) = 0.

A.1.2 Equilibrium payoffs and construction of p∗ in Proposition 3

When (C2) fails, the same construction as above does not work; for example, Ṽ (p∗) < 0

by Lemma 4. The right construction requires us to consider another L-drifting strategy.

L0 strategy (L-drifting followed by passing): Suppose the sender continues to play

the L-drifting experiment until the belief reaches q(< p) and then she stops experimenting

altogether (“passes”). The resulting value functions are the solutions to (6) with boundary

conditions V−(q) = 0 and U−(q) = Uℓ(q), which yields

VL0(p; q) :=
p− q

p∗ − q
v − C−(p; q) and UL0(p; q) :=

p∗ − p

p∗ − q
Uℓ(q) +

p− q

p∗ − q
Ur(p

∗)− C−(p; q).

Note that this strategy leads to q with probability p∗−p
p∗−q

and p∗ with probability p−q
p∗−q

.

Construction of p∗. Let πℓL denote the lowest value of q ∈ (0, p̂) such that

V ′
L0(q; q) ≥ 0⇔

λq(1− q)

p∗ − q
v ≥ c⇔ q ≥ πℓL :=

1

2
+

c

2λv
−

√(
1

2
+

c

2λv

)2

−
cp∗

λv
. (9)

37



In words, πℓL is the lowest belief at which the sender is willing to play the L0 strategy

even for an instance. When (C2) fails, we set p∗ := πℓL. Clearly, limc→0 p∗ = 0. We set

c2 > 0 such that p∗ = πℓL < p̂ for all c ≤ c2 and assume c ≤ c2 hereafter.

Lemma 6. Suppose (C2) fails, and p∗ = πℓL. There exists c3 > 0 such that for all c ≤ c3:

(a) Ṽ (p∗) < 0;

(b) There exists πLR ∈ (p∗,min{p̂, ξ}) such that VL0(p; p∗) ≥ Ṽ (p) if and only if p ≤

πLR.

Proof. For each p∗, there exists c13 > 0 such that p∗ < ξ and VS(ξ) > 0 for all c ≤ c13. In

the sequel, we assume that c < c3 := min{c13, c
2
3}, where c23 is defined in the proof for (b).

(a) Suppose p∗ ≤ η so that Ṽ (p) = VR(p) for all p ≤ p∗. Since (9) holds with equality

at q = πℓL = p∗, we can substitute λv/c in the explicit solution for VR(p∗) and get

Ṽ (p∗) = VR(p∗) < 0⇔ log

(
p∗

1− p∗
1− p∗
p∗

)
>

p∗ − p∗
p∗(1− p∗)

.

Define f1(p) := log
(

p∗

1−p∗
1−p
p

)
− p∗−p

p∗(1−p)
. The above inequality holds since f1(p

∗) = 0 and

f ′
1(p) < 0 for all p < p∗. If p∗ > η, then Ṽ (p) = VRS(p; ξ) for all p ≤ ξ. In this case,

Ṽ (p∗) < 0⇔
2p∗(p

∗ − ξ)

p∗ξ(1− ξ)
+ p∗ log

(
ξ

1− ξ

1− p∗
p∗

)
+ 1−

p∗
ξ

>
p∗ − p∗

p∗(1− p∗)
.

Define f2(p) :=
2p(p∗−ξ)
p∗ξ(1−ξ)

+ p log
(

ξ
1−ξ

1−p
p

)
+1− p

ξ
− p∗−p

p∗(1−p)
. The desired result (f2(p∗) > 0)

holds, because f2(0) = 0, f2(ξ) > 0, and f2 is concave over p ∈ (0, ξ].

(b) We begin by showing that there exists c23 > 0 such that for c < c23, VL0(x; p∗) <

Ṽ (x), where x ∈ {p̂, ξ}. Since Ṽ (p) ≥ VS(p) (Lemma 3.(d)), it suffices to show VL0(x; p∗) <

VS(x). Indeed, we have VL0(x; p∗) − VS(x) =
(

x−p∗
p∗−p∗

− x
p∗

)
v + CS(x) − C−(x; p∗) <

CS(x)− C−(x; p∗), since CS(x)/c is independent of c and C−(x; p∗)/c→∞ as c→ 0.50

By Lemma 6.(a) we have VL0(p∗; p∗) = 0 > Ṽ (p∗). Since for c < c23, VL0(min{p̂, ξ}; p∗) <

Ṽ (min{p̂, ξ}), there exists an intersection of VL0(p; p∗) and Ṽ (p) at some p ∈ (p∗,min{p̂, ξ}).

In the remainder of the proof we show that VL0(·; p∗) can cross Ṽ (·) only from above, which

establishes uniqueness of the intersection on the whole interval (p∗, p
∗).

We first consider p∗ < η. In this case Ṽ (p) = VR(p) and Lemma 2 implies that

VR(p) > VS(p). Then, by Lemma 1.(c), VL0(p; p∗) can cross Ṽ (p) only from above.

Second, consider p∗ ≥ η. Since Ṽ (p) = VLS(p; ξ) for p ∈ [ξ, πLR] and both VL0 and VLS

satisfy (6), no intersection can occur in the interval [ξ, πLR]. Outside this interval Ṽ (p)

satisfies (5) and Ṽ (p) > VS(p) by Lemma 3.(d). Therefore, again Lemma 1.(c) implies

that VL0(p; p∗) can cross Ṽ (p) only from above.

50This is because p∗ → 0 as c → 0 so that for the L0 strategy the expected waiting time from any
starting point x becomes infinite if the state is L.
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A.1.2.1 Equilibrium payoffs. The equilibrium value functions are given as follows:

V (p) :=





0 if p ∈ [0, p∗),

VL0(p; p∗) if p ∈ [p∗, πLR)

Ṽ (p) if p ∈ [πLR, p
∗)

v if p ≥ p∗,

and U(p) :=





Uℓ(p) if p ∈ [0, p∗)

UL0(p; p∗) if p ∈ [p∗, πLR)

Ũ(p) if p ∈ [πLR, p
∗)

Ur(p) if p ≥ p∗.

Lemma 7. When (C2) fails, V (·) is nonnegative and nondecreasing on [0, p∗], and strictly

convex on [p∗, p
∗]

Proof. Lemma 6.(b) implies that V (p) = max{VL0(p; p∗), Ṽ (p)} over [p∗, p
∗]. This is

strictly convex since it is the maximum of two strictly convex functions. Strict convexity

of VL0(·) on [p∗, p
∗] is routine to verify; we had already shown convexity of Ṽ (p) in Lemma

3.(a). Finally, by (9), V (p) is continuously differentiable at p∗ = πℓL and therefore convex

on [0, p∗]. This also implies that V (p) is nondecreasing.

A.2 Verifying the Sender’s Incentives

We show that for each p∗, the sender’s strategy is a best response if the buyer waits if

and only if p ∈ W .51 To this end, we must show that in the waiting region the sender’s

equilibrium value function solves the Hamilton-Jacobi-Bellmann (HJB) equation:52

max
(αi,qi)i∈N∈I

∑

qi 6=p

αiv(p; qi) = c, (HJB)

where I := {(αi, qi)i∈N|αi ≥ 0;
∑∞

i=1 αi ≤ 1; qi ∈ [0, 1]} denotes the set of feasible infor-

mation structures and v(p; qi) is as defined in Section 5.1. Outside the waiting region,

the sender’s value is independent of her strategy. Still, our refinement requires that her

strategy maximize her flow payoff; that is, her choice of experiment should solve

max
(αi,qi)i∈N∈I

∑

qi 6=p

αi (v(p; qi)− c) . (Ref)

Proposition 1.(b) implies that if V (p) meets certain conditions, then we can restrict

attention to Poisson experiments with jump targets, 0, p∗, and p∗, which greatly simplifies

both (HJB) and (Ref). Here, we show that our equilibrium value function V (·) satisfies

all properties required by Proposition 1.(b), namely that it is nonnegative, increasing,

and strictly convex on (p∗, p
∗], and V (p∗)/p∗ ≤ V ′(p∗). If (C2) holds, the first two

51Recall that W = [p∗, p
∗) in Proposition 2, and W = (p∗, p

∗) in Proposition 3.
52More formally, since V (p) has kinks, we show that it is a viscosity solution of (HJB). Together

with V (p) > 0, this is necessary and sufficient for optimality of the sender’s strategy. For necessity see
Theorem 10.8 in Oksendal and Sulem (2009). While we are not aware of a statement of sufficiency that
covers precisely our model, the arguments in Soner (1986) can be easily extended to show sufficiency.
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properties hold by Lemma 5, strict convexity of V (p) follows from Lemma 3.(a) and

V (p) = Ṽ (p) for p ∈ [p∗, p
∗]. The last property also holds because Ṽ (p) is convex and

limp→0 Ṽ (p) = −c/λ < 0. If (C2) fails, the first three properties follow from Lemma 7

and V (p∗)/p∗ ≤ V ′(p∗) also holds, because p∗ = πℓL > 0 and V (πℓL) = V ′(πℓL) = 0.

Stopping region. We first apply Proposition 1.(b) to the stopping region and verify

(Ref). For p ≥ p∗, the result is immediate from Proposition 1.(b).(iii). Now consider p

below p∗. Proposition 1.(b).(ii) implies that the sender has three choices: two L-drifting

experiments with jump target p∗ or p∗, and simply passing. This reduces (Ref) to

max
α∗,α∗≥0

λp(1− p)

[
α∗

V (p∗)

p∗ − p
+ α∗ v

p∗ − p

]
− c(α∗ + α∗) subject to α∗ + α∗ ≤ 1.

(i) Proposition 3: If (C2) fails, then V (p∗) = 0 so that α∗ = 0 is optimal. The

coefficient of α∗ is λvp(1− p)/(p∗− p)− c. By (9), this is negative for all p < p∗ = πℓL, so

α∗ = 0 is optimal. Therefore, for all p ∈ [0, p∗], passing—the sender’s strategy as specified

in Proposition 3—satisfies (Ref).

(ii) Proposition 2: If (C2) holds, then as discussed in Section 5.1 and depicted in Figure

7 there exists a cutoff π0 < p∗ such the coefficient of α∗ is greater than the coefficient of

α∗ if and only if p > π0.
53 The following Lemma shows that πℓL < π0.

Lemma 8. If (C2) holds, then πℓL < π0.

Proof. Let πℓR be the value of p such that Ṽ (p) = 0. We show that πℓL < πℓR < π0. The

latter inequality is immediate from the strict convexity of V̂ (·) on [0, p∗] (Lemma 3.(a))

and the definition of π0. For the former inequality, it suffices to show that Ṽ (πℓL) < 0,

which is shown as in the proof of Lemma 6.(a).

As in the case of Proposition 3, passing satisfies (Ref) for p ≤ πℓL. Moreover, we have

shown that α∗ = 1 satisfies (Ref) for p ∈ (πℓL, π0) and α∗ = 1 satisfies it for p ∈ [π0, p∗).

Therefore, the sender’s strategy in Proposition 2 satisfied (Ref) for all p < p∗.

Waiting region. Applying Proposition 1.(b).(i) to p ∈ W , (HJB) simplifies to

c = λp(1− p) max
α∈[0,1]

[
α
v − V (p)

p∗ − p
− (1− α)

V (p)

p
− (2α− 1)V ′(p)

]
. (HJB-S)

Our goal is to show that the value function V (p) satisfies this equation at every p ∈ W .

The key argument is the following unimprovability lemma:

53Specifically π0 satisfies

V (p∗)− V (π0)

p∗ − π0
=

V (p∗)− V (π0)

p∗ − π0
⇔

V (p∗)

p∗ − π0
=

v

p∗ − π0
⇔ π0 =

p∗v − p∗V (p∗)

v − V (p∗)
.
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Lemma 9 (Unimprovability).

(a) If V+(p) satisfies (5) and V+(p) ≥ VS(p) at p ∈ [0, p∗), then V+(p) satisfies (HJB-S)

at p. If V+(p) > VS(p), then α = 0 is the unique maximizer in (HJB-S).

(b) If V−(p) satisfies (6) and V−(p) ≥ VS(p) at p ∈ [0, p∗), then V−(p) satisfies (HJB-S)

at p. If V−(p) > VS(p), then α = 1 is the unique maximizer in (HJB-S).

Proof. (a) Substituting V ′(p) = V ′
+(p) from (5), (HJB-S) simplifies to

max
α∈[0,1]

[
−

p∗

(p∗ − p)p
(V (p)− VS(p))

]
α = 0.

If V (p) − VS(p) ≥ 0, α = 0 is a maximizer, so the above condition holds. Further, if

V (p) > VS(p), then α = 0 is the unique maximizer. The proof for (b) is similar.

By Lemmas 3.(d) and 6.(b), V (p) ≥ VS(p) holds for all p ∈ (p∗, p
∗). Therefore, the

Unimprovability Lemma 9 implies that V (p) satisfies (HJB) for all points where it is

differentiable. At the remaining points πLR, and πLR, the value function satisfies (5) and

(6), respectively, if we replace V ′
+ by the right derivative and V ′

− by the left derivative. As

in the proof of the Unimprovability Lemma 9 this implies that (HJB) continues to hold

if we insert directional derivatives. Using this observation, together with the fact V (p)

is convex at the points πLR and πLR where it has kinks, it can be shown that V (p) is a

viscosity solution of (HJB), which is sufficient for optimality of the sender’s strategy in

the waiting region (see Footnote 52 above).

A.3 Verifying the Receiver’s Incentives

We now prove the optimality of the receiver’s strategy for each belief p, taking as given

the sender’s strategy. If the sender passes, which occurs when p ≤ πℓL or p ≥ p∗, then

the receiver gains nothing from waiting. Since πℓL ≤ p∗ < p̂ (assuming c ≤ min{c1, c2})

and p∗ > p̂, the receiver chooses ℓ if p ≤ πℓL and r if p ≥ p∗.

Consider next the region (πℓL, p
∗) on which the sender does not pass. For this region,

we prove that given the sender’s strategy, the receiver’s strategy solves her optimal stop-

ping problem in the dynamic programming sense. By standard verification theorems, it is

sufficient for optimality that the receiver’s equilibrium payoff U(p) satisfies the following
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HJB conditions for all p:54

c ≥ λp(1− p)

[
α(p)

U(q(p))− U(p)

q(p)− p
+ (1− α(p))

uL
ℓ − U(p)

p
− (2α(p)− 1)U ′(p)

]
, (R1)

and

U(p) ≥ max{Uℓ(p), Ur(p)}, (R2)

and at least one condition holds with equality. Here, (α(p), q(p)) represents the sender’s

strategy as specified in Propositions 2 and 3, respectively.55

Waiting region. Suppose p ∈ W . For all points where the receiver’s equilibrium payoff

function U(p) is differentiable, by construction, it satisfies (R1) with equality.56 Hence,

it suffices to prove (R2). We first show that at p∗ the slope of U(p) is less than or equal

to the slope of Ur(p). To this end, observe

U ′(p∗) = U ′
R(p

∗) =
Ur(p

∗)− uL
ℓ

p∗
+

c

λp∗(1− p∗)
= U ′

r(p
∗)−

uL
ℓ − uL

r

p∗
+

c

λp∗(1− p∗)
.

Since uL
ℓ > uL

r , we have U ′(p∗) ≤ U ′
r(p

∗) whenever c ≤ c4 := (1− p∗)(uL
ℓ − uL

r ).

(i) Proposition 2: When (C2) holds, U(·) is convex on [p∗, p
∗] since U(p) = Ũ(p) for

p ∈ [p∗, p
∗) and Ũ(·) is convex on [0, p∗] (Lemma 3.(a)). Together with U ′(p∗) ≤ U ′

r(p
∗),

this implies that U(p) ≥ Ur(p) for all p ∈ [p∗, p
∗], provided that c ≤ c4. We have argued in

Footnote 49 that U(p) ≥ Uℓ(p) for all p ∈ [p∗, p
∗]. Therefore (R2) holds for all p ∈ [p∗, p

∗).

(ii) Proposition 3: We begin by showing that UL0(p, p∗) > Uℓ(p) for all p ∈ (p∗, p
∗).

Since UL0(p∗, p∗) = Uℓ(p∗), we have

U ′
L0(p∗; p∗) =

Ur(p
∗)− Uℓ(p∗)

p∗ − p∗
−

c

λp∗(1− p∗)
≥

Uℓ(p
∗)− Uℓ(p∗)

p∗ − p∗
+

v

p∗ − p∗
−

c

λp∗(1− p∗)

=
Uℓ(p

∗)− Uℓ(p∗)

p∗ − p∗
= uR

ℓ − uL
ℓ = U ′

ℓ(p∗),

54The receiver’s value function U(p) is not continuously differentiable at p∗ (in case (C2) holds), πLR,
and πLR. At these non-smooth points, we replace U ′(p) in (R1) by the right derivative U ′(p+), which is
the directional derivative in the direction of the belief dynamics given by the sender’s strategy. With this
modification, (R1) is well defined for all p.
By standard verification theorems, the conditions (R1) and (R2) are sufficient for optimality if U(p)

is continuously differentiable. To see that sufficiency also holds for the receiver’s problem, note that
we can verify the receiver’s strategy separately for intervals which are closed under the belief dynamics
given by the sender’s strategy. For example if (C2) holds and p∗ ≥ η, we can partition (πℓL, p

∗) into
P = {(πℓL, p∗), [p∗, πLR), [πLR, p

∗)}. If the prior belief is in one of these intervals, the posterior will never
leave it unless a Poisson jump occurs, and the continuation value after a jump can be taken as fixed.
This means that we can verify the optimality of the receiver’s strategy separately for each interval; since
U(p) is continuously differentiable on each of the intervals, the standard verification theorems apply.

55Specifically, α(p) = 0 if the sender plays the R-drifting experiment; (α(p), q(p)) = (1, q) if she plays
the L-drifting experiment with jump target q; and (α(p), q(p)) = (1/2, p∗) if she plays the stationary
strategy.

56At kinks, U(p) satisfies (R1) if U ′(p) is replaced by U ′(p+) (see footnote 54).
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where the inequality holds since (C2) fails, and the second equality follows from (9) and

p∗ = πℓL. Together with the fact that UL0(·; p∗) is convex on [p∗, p
∗], this implies that

UL0(p, p∗) > Uℓ(p) for all p ∈ (p∗, p
∗).

For p ∈ (p∗, πLR), U(p) = UL0(p, p∗). By Lemma 6.(b), πLR ≤ p̂, provided that c ≤ c3.

Hence Ur(p) < Uℓ(p) for p < πLR, and (R2) holds since U(p) = UL0(p, p∗) > Uℓ(p) for

p ∈ (p∗, πLR).

Next suppose p ∈ [πLR, p
∗). Here U(p) = Ũ(p) and by the same arguments as in (i) we

have Ũ(p) > Ur(p). To show that Ũ(p) > Uℓ(p) it suffices to show that Ũ(p)−UL0(p; p∗) >

0. Since the sender and the receiver incur the same cost for each strategy, we can rewrite

this difference as

Ũ(p)− UL0(p; p∗) = Ṽ (p)− VL0(p; p∗) +
p∗(p

∗ − p)

p∗(p∗ − p∗)
(Ur(p

∗)− Uℓ(p
∗)− v) > 0

The inequality holds since by Lemma 6.(b), Ṽ (p) − VL0(p; p∗) ≥ 0 for p ≥ πLR; and

Ur(p
∗)− Uℓ(p

∗)− v > 0 if (C2) is violated.

The stopping region with p ∈ (πℓL, p∗). If (C2) fails, then p∗ = πℓL, so this case does

not arise. The proof of Proposition 3 is thus complete.

Now suppose that (C2) holds and p ∈ (πℓL, p∗). In this case, U(p) satisfies (R2)

with equality, so it suffices to show (R1). Consider first p ∈ [π0, p∗). For these beliefs, the

sender adopts the L-drifting experiment with jump target p∗, that is, (α(p), q(p)) = (1, p∗).

Plugging this into (R1) and using the fact that U(p) = Uℓ(p) for all p ≤ p∗, the right-hand

side of (R1) is equal to zero so that (R1) is satisfied.

Finally, consider p ∈ [πℓL, π0), at which the sender plays the L-drifting experiment

with jump target p∗, so (α(p), q(p)) = (1, p∗). Since U(p) = Uℓ(p) for all p ≤ p∗, (R1)

reduces to

λp(1− p)

[
Ur(p

∗)− Uℓ(p)

p∗ − p
− U ′

ℓ(p)

]
=

λp(1− p)

p∗ − p
(Ur(p

∗)− Uℓ(p
∗)) ≤ c,

which is equivalent to p ≤ φℓL, where φℓL is the unique value of p such that

λp(1− p)

p∗ − p
(Ur(p

∗)− Uℓ(p
∗)) = c.

The following lemma shows that that φℓL ≥ π0 if c ≤ c5 for some c5 > 0. It then follows

that if c ≤ min{c1, . . . , c5}, the receiver has no incentive to deviate from his prescribed

strategy in Proposition 2, completing the proof.

Lemma 10. Suppose (C2) holds. There exists c5 > 0 such that if c ≤ c5 then φℓL ≥ π0.
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Proof. Let ∆U := Ur(p
∗)− Uℓ(p

∗). Since φℓL is the lowest p such that p(1−p)λ∆U
p∗−p

≥ c,

π0 ≤ φℓL ⇐⇒
π0(1− π0)

p∗ − π0

λ

c
∆U < 1. (10)

It suffices to show that this inequality holds in the limit as c→ 0. Recall that

V (p∗)

p∗ − π0
=

v

p∗ − π0
⇐⇒ π0 =

p∗

v − V (p∗)

(
p∗
p∗
v − V (p∗)

)
=

p∗

v − V (p∗)
C̃(p∗),

where C̃(p∗) =
p∗
p∗
v− Ṽ (p∗) denotes the total persuasion costs incurred when p = p∗ = φℓR

and (C2) holds. By the definition of Ṽ (p∗), C̃(p∗) can be written as

C̃(p∗) = C+(p∗; qR)+
p∗
qR

CS(qR) =

(
p∗ log

(
qR

1− qR

1− p∗
p∗

)
+ 1−

p∗
qR

+
p∗
qR

2(p∗ − qR)

p∗(1− qR)

)
c

λ
,

where qR := p∗ if p∗ ≤ η and qR := ξ if p∗ > η. Importantly, as c → 0, we have p∗ → 0,

C̃(p∗)→ 0 and C̃(p∗)
λ
c
→ 1. It follows that π0 → 0 and π0

λ
c
→ p∗

v
, so

π0(1− π0)

p∗ − π0

λ

c
∆U →

∆U

v
< 1,

where the inequality is due to (C2). This completes the proof.

A.4 SMPE Uniqueness given p∗

Fix any p∗. To show that for c sufficiently small, the strategy profiles in Propositions 2 and

3 are the unique SMPEs, we prove that any other choice of p∗ than specified in A.1.1 and

A.1.2 (i.e., p∗ 6= φℓR if (C2) holds and p∗ 6= πℓL if (C2) fails) cannot yield an SMPE. This

requires a full characterization of the sender’s optimal dynamic strategy given any lower

bound p∗ and upper bound p∗, and a thorough examination of the receiver’s incentives

in the stopping region as well as in the waiting region. The former closely follows our

construction and analysis of the equilibrium value functions in A.1 and A.2, and the latter

follows closely A.3. We relegate the full proof to the Online Appendix C.

References

Arrow, K. J., D. Blackwell, and M. A. Girshick (1949): “Bayes and Minimax
Solutions of Sequential Decision Problems,” Econometrica, pp. 213–244. 6

Au, P. H. (2015): “Dynamic Information Disclosure,” RAND Journal of Economics, 46,
791–823. 5

Bergin, J., and W. B. MacLeod (1993): “Continuous Time Repeated Games,” In-
ternational Economic Review, 34(1), 21–27. 12

Best, J., and D. Quigley (2020): “Persuasion for the Long Run,” unpublished
manuscript, University of Oxford. 6

44
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Supplemental Material
(for online publication)

Appendix B Formal Description of the Game in Con-

tinuous Time

An information structure was defined as a collection (αi, qi)i∈N of experiments, where each

(αi, qi) specifies a Poisson experiment with jump-targets qi and associated weight αi. The

set of feasible information structures is thus given by

I =

{
(αi, qi)i∈N

∣∣∣∣∣αi ≥ 0;

∞∑

i=1

αi ≤ 1; qi ∈ [0, 1]

}
.

We define a game in Markov strategies. The sender’s strategy is a measurable function

σS : [0, 1]→ I that maps the belief p to an information structure σS(p).57 The receiver’s

strategy is a measurable function σR : [0, 1] → A, that maps the belief p to an action

σR(p) ∈ A := {ℓ, r, w}. We impose the following admissibility restrictions in order to

ensure that a strategy profile σ = (σS, σR) yields a well defined outcome.

Admissible Strategies for the Sender. Our first restriction ensures that σS gives

rise to a well-defined evolution of the (common) belief about the state.58 For a Markov

strategy σS(p), with experiments (αi(p; σ
S), qi(p; σ

S))i∈N, Bayesian updating leads to the

following integral equation for the belief pt (conditional on non-arrival):59

pt =
p0e

−λ
∫
t

0
(α+

s −α−
s )ds

p0e
−λ

∫
t

0
(α+

s −α−
s )ds + (1− p0)

, (11)

where α+
t =

∑
i:qi(pt;σS)>pt

αi(pt; σ
S) is the total weight on upward jumps at time t, and

α−
t =

∑
i:qi(pt;σS)<pt

αi(pt; σ
S) is the total weight on downward jumps at time t. To define

admissibility formally, we also introduce the following discrete time approximation. For

57We can take I to be a subset of R2N, the set of sequences (α1, q1), (α2, q2), . . . in R
2, with the product

σ-algebra B(R2N) = B(R2)⊗ B(R2)⊗ . . ., where B(R2) is the Borel σ-algebra on R
2.

58In this part, we follow Klein and Rady (2011), with the difference that in their model, the evolution
of beliefs is jointly controlled by two players. Given that in our model, only the sender controls the
information structures, we can dispense with their assumption that Markov strategies are constant on
the elements of a finite interval partition of the state space.

59The corresponding differential equation is given by ṗt = −
(
α+
t − α−

t

)
λpt(1− pt).
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period length ∆ > 0, let

p̃(k+1)∆ =
p̃ke

−λ∆(α+

k∆
−α−

k∆
)

p̃ke
−λ∆(α+

k∆
−α−

k∆
) + (1− p̃k)

.

This can be used to define p̃k∆ recursively for each p̃0 = p0, and yields a step-function

p∆t := p̃⌊t/∆⌋∆.

Definition 2. A measurable function σS : [0, 1] → I is an admissible strategy for the

sender if for all p0 ∈ [0, 1],

(a) there exists a solution to (11), and

(b) if there are multiple solutions to (11), then the pointwise limit lim∆→0 p
∆
t exists and

solves (11).

This definition imposes two restrictions on Markov strategies. First, there must be

a solution to (11). Indeed, there are Markov strategies for which no solution exists.

Consider, for example, a strategy of the following form:

σS(p) =




(α = 1, q = 1), if p ≥ p′,

(α = 1, q = 0), if p < p′.

This strategy does not lead to a well-defined evolution of the belief if p0 is given by the

“absorbing belief” p0 = p′. To satisfy admissibility, we can set σS(p′) = ((α1 = 1/2, q1 =

1), (α2 = 1/2, q1 = 0)), while keeping the strategy otherwise unchanged.

The second restriction guarantees that if there are multiple solutions, we can select

one of them by taking the pointwise limit of the discrete time approximation. Consider,

for example, the following strategy:

σS(p) =




(α = 1, q = 0), if p ≥ p′,

(α = 1, q = 1), if p < p′.
(12)

If p0 = p′, then there is an “obvious” solution p1t = p′eλt

p′eλt+(1−p′)
> p′ for t > 0. However,

there exists another solution p2t = p′e−λt

p′e−λt+(1−p′)
consistent with p0 = p′. But, in discrete

time, p̃∆ > p′ for any ∆ > 0, and thus lim∆→0 p
∆
t = p1t . This means that the strategy

in (12) is admissible, while the latter strategy with p2t is not. In general, when there

are multiple solutions, admissibility enables us to select the “obvious” one that would be

obtained from the discrete time approximation. With this selection, admissibility of the

sender’s strategy guarantees a well defined belief for all t > 0 and all prior beliefs p0.

Admissible Strategy Profiles. In addition to a well defined evolution of beliefs, we

need to ensure that a strategy profile σ = (σS, σR) leads to a well defined stopping time
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for any initial belief p0. Consider for example the function

σR(p) =




w if p ≤ p′,

r if p > p′.

If the sender uses the (admissible) Markov strategy given by σS(p) = (α = 1, q = 0) for all

p, and the prior belief is p0 < p′, then the function σR(p) does not lead to a well-defined

stopping time. To be concrete, suppose that the true state is ω = R. In this case, no

Poisson jumps occur, and the belief drifts upwards. Let t′ denote the time at which the

belief reaches p′. The receiver’s strategy implies that for any t ≤ t′, the receiver plays w

and for any t > t′, the receiver has stopped before t. Hence, the stopping time is not well

defined. Clearly, the following modified strategy fixes the problem:

σ̂R′(p) =




w if p < p′,

r if p ≥ p′.

This example demonstrates that we need a joint restriction on the sender’s and the re-

ceiver’s strategies to ensure a well defined outcome.

To formally define admissibility, we need the following notation: for a given strategy

of the receiver σR, let W =
{
p ∈ [0, 1]

∣∣σR(p) = w
}
and S = [0, 1] \W be the receiver’s

waiting region and stopping region, respectively, and denote the closures of these sets by

W and S.

Definition 3. A strategy profile σ = (σS, σR) is admissible if (i) σS is an admissible

strategy for the sender, and (ii) for each p ∈ W ∩ S, either p ∈ S, or if p /∈ S, then there

exits ε > 0 such that pt(p) ∈ W for all t < ε, where pt(p) = lim∆→0 p
∆
t is the selected

solution to (11) with p0 = p.

Requirement (i) guarantees that the sender’s strategy gives rise to a well defined belief

at all t > 0 for all prior beliefs regardless of the receiver’s strategy. Requirement (ii)

ensures that for any belief p ∈ W , the belief evolution is such that absent jumps the belief

remains in the waiting region.

One may wonder why we do not simply require that the stopping region is a closed

set. This is stronger than requirement (ii) and it turns out that in some cases it can lead

to non-existence of an equilibrium.60

Payoffs and Equilibrium. Let σ = (σS, σR) be a profile of strategies. If σ is not admis-

sible, then both players receive −∞ from playing the strategy profile. If σ is admissible,

60For example, in the equilibrium characterized in Proposition 2, we have S = [0, p∗) ∪ [p∗, 1]. If we
require S to be closed and set S = [0, p∗] ∪ [p∗, 1] instead, the sender does not have a best response for
p ∈ (π0, p∗) since v(p; qi) fails to be upper semi-continuous in qi at qi = p∗.
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then for each prior belief p0, both players’ expected payoffs are well defined:

V σ(p0) = v P
[
σR(pτ ) = r

∣∣p0
]
− cE

[∫ τ

0

1{
∑

αi(pt)6=0}dt

∣∣∣∣p0
]

for the sender, and

Uσ(p0) = E

[
UσR(pτ )(pτ )− c

∫ τ

0

1{
∑

αi(pt)6=0}dt

∣∣∣∣p0
]

for the receiver, where τ is the stopping time defined by the strategy profile and pτ is the

belief when the receiver stops.

Definition 4 (Markov Perfect Equilibrium). An admissible strategy profile σ = (σS, σR)

is a Markov perfect equilibrium (MPE), if

(i) for any p0 ∈ [0, 1] and any admissible strategy profile σ̂ = (σ̂S, σR), V σ̂(p0) ≤ V σ(p0),

(ii) for any p0 ∈ [0, 1] and any admissible strategy profile σ̂ = (σS, σ̂R), U σ̂(p0) ≤ Uσ(p0),

and

(iii) for any p ∈ S: (refinement)

σS(p) ∈ arg max
(αi,qi)∈I

∑

i:qi 6=p

αi
λp(1− p)

|qi − p|

(
V σ(qi)− 1{σR(p)=r}v

)
− 1{

∑
αi 6=0}c.

Parts (i) and (ii) in this definition require that no player have a profitable deviation

to a Markov strategy that, together with the opponent’s strategy, forms an admissible

strategy profile. Part (iii) formalizes our refinement. We do not explicitly require that

deviations to non-Markov strategies should not be profitable. This requirement is in fact

hard to formulate since we do not define a game that allows for non-Markov strategies.

However, given the opponent’s strategy, each player faces a Markov decision problem.

Therefore, if there is a policy in this decision problem that yields a higher payoff than the

candidate equilibrium strategy, then there is also a profitable deviation that is Markov.

Appendix C Uniqueness of SMPE for given p∗

We prove that for each fixed p∗ ∈ (p̂, 1), the equilibrium in Propositions 2 and 3 is the

unique SMPE in each case, provided that c is sufficiently small (i.e., c ≤ min{c1, . . . , c5}).

We first characterize the sender’s best response given any lower bound p∗ of the waiting

region and then show that it can be part of an equilibrium if and only if it is as specified

in Propositions 2 and 3, respectively.

In the following we use p∗ to denote an exogenously given lower bound of W , which

may be different from the lower bound φℓR in Proposition 2 or πℓL in Proposition 3. We

will also use V (p) and U(p) to denote generic value functions for the sender and receiver
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that are obtained from the sender’s best response to a given waiting region with bounds

p∗ and p∗. Hence in the following V (p) and U(p) may be different from the functions

defined in Sections A.1.1 and A.1.2. Throughout we assume that c ≤ min{c1, . . . , c5}.

A necessary condition. One crucial observation is that at p∗, either V (p∗) = 0 or

U(p∗) = Uℓ(p∗)—that is, at least one player should not expect a strictly positive net

expected payoff from continuing. Toward a contradiction, suppose that V (p∗) > 0 and

U(p∗) > Uℓ(p∗).
61 In this case, if p is just below p∗ then, as when p ∈ (π0, φℓR) in Propo-

sition 2, the sender’s flow payoff is maximized by her playing the L-drifting experiment

with jump target p∗. But then, since U(p∗) > Uℓ(p∗), the sender has no incentive to stop

at p, contradicting that p < p∗ is not in the waiting region.

Now we proceed by characterizing the sender’s value V (p) and the receiver’s value

U(p), if the sender plays a best response. In particular we characterize V (p∗) and U(p∗)

which will enable us to use the necessary condition to narrow down possible equilibrium

values of p∗.

The sender’s best response in the waiting given (any) p∗. Let V (·) and U(·)

denote the value functions given in Section A.1.2; that is, V (·) and U(·) represent the

equilibrium value functions for Proposition 3. They play an important role in the subse-

quent analysis, because they coincide with the players’ payoffs in a hypothetical situation

where given p∗, the sender chooses both her dynamic strategy and the boundary of the

waiting region p∗, ignoring the receiver’s incentives.62 This implies that in any SMPE

with fixed upper bound p∗, the sender’s payoff can never exceed V (p). The following

result is then immediate.

Lemma 11. Fix p∗. Then in any SMPE p∗ ≥ πℓL.

61Note that in equilibrium, V (p) must be right-continuous at p∗, i.e., V (p∗) = V (p∗+) = limp↓p∗
V (p).

If V (p∗+) = 0 this is obvious. Next suppose V (p∗+) > 0. For p ∈ W , the value of any strategy of the
sender is continuous in p and hence V (p) must be continuous in the waiting region. Therefore, a lack of
right continuity at p∗ can only arise if p∗ /∈W , so that V (p∗) = 0. But if V (p∗+) > 0 and V (p∗) = 0, then
for p < p∗ close to p∗, there is no strategy for the sender that satisfies (Ref), hence such a discontinuity
cannot arise in equilibrium. We thus conclude that either V (p∗) = V (p∗+) = 0, or V (p∗) = V (p∗+) > 0
and in the latter case p∗ ∈W . Noting right-continuity at p∗ makes the necessary condition much stronger
and is key to the arguments below.

62If the sender controls both the information structure, and the stopping decision, her value function
is given by the viscosity solution of:

max



 max

(αi,qi)i∈N∈I

∑

qi 6=p

αi (v(p; qi)− c) ,−V (p)



 = 0. (13)

It is easily verified that V (·) satisfies this condition. For p > πℓL, V (·) is a viscosity solution of (HJB)
and V (p) > 0 so that (13) holds. For p ≤ πℓL, V (p) = 0 and (Ref) holds with αi = 0 for all i ∈ N, so
that the first term in the outer max { · · · } in (13) is equal to zero.
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Proof. Suppose instead that p∗ < πℓL. Then the sender’s value is V (p) = V (p) = 0 for

p ∈ (p∗, πℓL) which is achieved by passing. Any other strategy leads to a negative value,

so passing is the unique best response. Given this, the receiver’s best response is to take

action ℓ for p ∈ (p∗, πℓL), contradicting the hypothesis that the infimum of the waiting

region is p∗ < πℓL.

Next we characterize the sender’s best response if p∗ > πℓL. We begin with cases

where it coincides with the strategy prescribed in Proposition 3

Lemma 12. Fix p∗ and suppose that p∗ lies in the region where the sender either plays

the stationary strategy (ξ for p∗ > η), or plays the R-drifting experiment in Proposition

3. Then, the sender’s value over W of her best response to p∗ is given by V (p) and the

receiver’s value is given by U(p).

Proof. If the prior is p0 ∈ (p∗, p
∗] and the sender mimics her equilibrium strategy from

Proposition 3, then the receiver will stop at the same time as if p∗ = πℓL. Therefore

the sender’s payoff is equal to V (p0) which is an upper bound for her optimal payoff.

Hence the strategy remains a best response. To show that the receiver’s value is given

by U(p∗) we must also characterize the sender’s best response (and not just her value).

For p /∈ {ξ, πLR, πL} the Unimprovability Lemma 9 implies that the sender has a unique

best response in Proposition 3, since by Lemmas 2 and 3.(c), V (p) > VS(p) for p 6= ξ,

hence we get uniqueness also if p∗ /∈ {ξ, πLR, πL}. For p∗ = ξ uniqueness of the sender’s

best response follows since choosing α > 1/2 at p∗ yields a value of zero for the sender,

and α < 1/2 violates admissibility since the sender uses the L-drifting experiment for

p > ξ. If p∗ ∈ {πLR, πLR}, non-uniqueness in Proposition 3 arises because the sender is

indifferent between the L0 and RS strategies (or LS and R at πLR). This is no longer

the case if p∗ ∈ {πLR, πLR} since the L0 or LS strategies are no longer feasible, so that

uniqueness obtains. Since the sender has a unique best response given by the strategy from

Proposition 3, the receiver’s value from the sender’s best response is given by U(p∗).

This Lemma immediately allows us to apply the necessary condition. Recall that

V (p) > 0 and U(p) > U(p) for all p ∈ (πℓL, p
∗]. Hence if p∗ is in the region where

the sender either plays the stationary strategy (ξ for p∗ > η), or plays the R-drifting

experiment in Proposition 3, V (p∗) > 0 and U(p∗) > Uℓ(p∗).
63 Therefore p∗ in this region

leads to a violation of the necessary condition.

Next we consider the case where p∗ lies in the region where the sender plays an L-

drifting experiment in Proposition 3. This is the case if p∗ ∈ (πℓL, πLR); and when p∗ ≥ η

also if p∗ ∈ (ξ, πLR). In this case, the sender cannot simply replicate her strategy in

Proposition 3. For example, suppose p∗ ∈ (πℓL, πLR) and p0 ∈ (p∗, πLR). If the sender used

63As argued in Footnote 61, we must have p∗ ∈ W since V (p∗+) > 0, and hence V (p∗) > 0 and
U(p∗) > Uℓ(p∗).
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the L0 strategy, the receiver would stop when the belief drifts to p∗ while in Proposition

3 he would wait until the belief reaches πℓL. Therefore, the sender’s best response may

be different from the strategy in Proposition 3.

The following lemma reports a set of observations about the best response that will

allow us to use the necessary condition for an SMPE. To state this precisely, let πℓR be

the unique value such that Ṽ (πℓR) = 0.64

Lemma 13. Let V (p) and U(p) denote the players’ expected payoffs from the sender’s

best response to a fixed lower bound p∗ of the waiting region. Then there exists c6 > 0

such that for all c ≤ c6:

(a) If p∗ ≥ η and p∗ ∈ (ξ, p̂), then V (p∗) ≥ VS(p∗) > 0 and U(p∗) ≥ US(p∗) > Uℓ(p∗).

(b) If p∗ ∈ (πℓL, πℓR) then V (p) = VL0(p; p∗) and U(p) = VL0(p; p∗) for all p ∈ [p∗, πℓR).

(c) If p∗ ∈ [πℓR, πLR) then V (p∗) = Ṽ (p∗) and U(p∗) = Ũ(p∗).

Proof. If p∗ > ξ, let c6 > 0 be chosen such that for all c ≤ c6, VS(p) > 0 for all p ∈ [p∗, p
∗),

and US(p∗) > max{Uℓ(p∗), Ur(p∗)} .

The sender’s best response can be constructed in a similar way as in Section A.1,

taking the lower bound p∗ as a constraint. If p∗ ∈ (πℓL, ξ), the L0 strategy now uses

p∗ 6= πℓL as a stopping bound and the value is given by VL0(p; p∗) as before. No further

modifications are needed in this case. If p∗ > ξ, we replace the LS strategy by a modified

version which we denote LS∗. According to this strategy, the sender uses the L-drifting

experiment for p > p∗ and switches to the stationary strategy when the belief drifts to

p∗. The value of this strategy is given by VLS(p; p∗). We also set V̂∗(p) = VLS(p; p∗) if

p∗ > ξ. With this we can then characterize the value of the sender’s best response as

Ṽ∗(p) = max{VR(p), V̂∗(p)} = max{VR(p), VLS(p; p∗)}. Verification of the sender’s best

response proceeds using similar steps to those in Section A.2.

(a) The value of the sender’s best response in this case is given by V (p) = max{VLS(p; p∗), VR(p)}.

If VR(p∗) > VS(p∗) this implies V (p) = VR(p) since VR(p) > VS(p) by Lemma 1.(b) and

therefore VLS(p; p∗) cannot cross VS(p) from below by Lemma 1.(c). With V (p) = VR(p) >

VS(p), the Unimprovability Lemma 9 implies that there is a unique best response, the R-

drifting strategy, and therefore U(p∗) = UR(p∗) > US(p∗) > Uℓ(p∗)

If VR(p∗) ≤ VS(p∗), we must have p∗ < ξ2 since VR(p) > VS(p) for p ∈ [ξ2, p
∗) by Lemma

1.(b). Also by Lemma 1.(b), VLS(p; p∗) > VS(p) for p ∈ (p∗, ξ2]. Hence V (p) > VS(p) for

all p ∈ (p∗, p
∗). By the Unimprovability Lemma 9 this implies that there is a unique

best response for all p ∈ [p∗, p
∗] except at the belief where VLS(p; p∗) and VR(p) intersect

(which could occur at p∗), and in the latter case ULS(p; p∗) = UR(p) since the sender and

the receiver incur the same cost. Hence U(p∗) = ULS(p∗; p∗) = US(p∗) > Uℓ(p∗),

(b) In this case, V (p) = VL0(p; p∗) > 0 > Ṽ (p) > VS(p) for p ∈ (πℓL, πℓR). There-

fore, the Unimprovability Lemma 9 implies that there is a unique best response for

64From our previous results, we know (i) πℓR ∈ (πℓL, πLR) (Lemma 6.(b)); (ii) if (C2) holds, then
πℓR < φℓR (Lemma 4) and πℓR < π0 (Lemma 3.(a)); and (iii) if (C2) fails, then πℓR ≥ φℓR (Lemma 4).
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p ∈ (πℓL, πℓR) and the the sender uses the L0 strategy with stopping bound p∗. Therefore

we have U(p) = VL0(p; p∗) for all p ∈ [p∗, πℓR).

(c) In this case V (p) = Ṽ (p) > VS(p) for p ∈ [p∗, ξ),
65 and the Unimprovability Lemma

9 implies that there is a unique best response: the sender uses the RS-strategy if p∗ > η

and the R-drifting strategy if p∗ < η.66 Therefore we have U(p∗) = Ũ(p∗)

By Lemmas 11, 12, and 13.(a), we must have πℓL ≤ p∗ < πLR if c < min{c1, . . . , c6}.

Now we further narrow down possible equilibrium values of p∗ and show that in Proposi-

tion 2 we must have p∗ = φℓR, and in Proposition 3 we must have p∗ = πℓL. With that it

only remains to show uniqueness of the sender’s equilibrium strategy which follows from

the Unimprovability Lemma.

Proposition 2. Proposition 2 concerns the case where (C2) holds. First we rule out

p∗ ∈ (πℓR, πLR) \ {φℓR}. If p∗ ∈ (πℓR, πLR), V (p∗) = Ṽ (p∗) and U(p∗) = Ũ(p∗) by Lemma

13.(c). Since p∗ > πℓR, V (p∗) = Ṽ (p∗) > 0 and hence the necessary condition for an SMPE

implies that U(p∗) = Ũ(p∗) = Uℓ(p∗). But this condition only holds when p∗ = φℓR, in

which case the equilibrium is as specified in the Proposition 2.

Next, we rule out p∗ ∈ (πℓL, πℓR). We begin by showing that p∗ < πℓR implies p∗ < φℓL

if c ≤ c5. To see this, recall that by Lemma 8, π0 < φℓL if c ≤ c5. Since Ṽ (p) is convex,

the construction of π0 therefore implies Ṽ (φℓL) > 0. On the other hand Ṽ (p∗) < 0 if

p∗ < πℓR. Therefore p∗ < πℓR implies p∗ < φℓL.

Now we proceed given that p∗ < φℓL: By Lemma 13.(b), p∗ ∈ (πℓL, πℓR) implies that

U(p) = UL0(p; p∗) for all p ∈ [p∗, πℓR). Therefore, U(p) = UL0(p; p∗) < max{Uℓ(p), Ur(p)}

for p ∈ (p∗, φℓL) which means that it is not optimal for the receiver to wait for beliefs

p ∈ (p∗, φℓL) in the waiting region. Therefore p∗ ∈ (πℓL, φℓL) cannot arise in equilibrium.

Proposition 3. Suppose (C2) fails. We first rule out p∗ ∈ (πℓR, πLR). If p∗ ∈ (πℓR, πLR),

then Lemma 13.(c) implies V (p∗) = Ṽ (p∗) > 0 and with (C2) failing, this implies U(p∗) >

Uℓ(p∗). Hence, p∗ ∈ (πℓR, πLR) leads to a violation of the above necessary condition.

Next we rule out p∗ ∈ (πℓL, πℓR]. If p∗ ∈ (πℓL, πℓR], then by Lemma 13.(b) and (c),

V (p∗) = 0. Hence, for any p ∈ (πℓL, p∗), by the refinement, the sender uses the L-drifting

experiment with jumps to p∗. Since (C2) fails, by the same argument as in the analysis

of the waiting region in Section A.3, the receiver prefers to wait. This contradicts p < p∗.

We have ruled out all values for p∗ except p∗ = πℓL. Hence, the equilibrium specified

in Proposition 3 is unique (up to tie breaking at πLR and πLR, and if p∗ = η). Uniqueness

follows from the Unimprovability Lemma 9 since V (p) > VS(p) for all p ∈ [p∗, p
∗).

65To see this note that Ṽ (p∗) ≥ VL0(p∗; p∗) = 0 and Ṽ (p) > VS(p) for p ∈ [p∗, ξ). Hence by the

Crossing Lemma 1.(d), VL0(p; p∗) < Ṽ (p) for all p ∈ (p∗, ξ).
66In the case p∗ = η, both the sender and the receiver are indifferent between the RS-strategy and the

R-drifting strategy.
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