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ABSTRACT 
 
Objective To explore levels of astrocytopathy in neuromyelitis optica spectrum disorder 
(NMOSD) by measuring levels of the astrocytic enzyme glutamine synthetase (GS) and glial 
fibrillary acidic protein (GFAP), an established astrocytic biomarker known to be associated 
with disease activity in multiple sclerosis.  
 
Methods Cerebrospinal fluid concentrations of GS and GFAP were measured by ELISA in 
patients with NMOSD (n=39, 28 aquaporin-4 (AQP4)-Ab-seropositive, 3 double-Ab-
seronegative, 4 myelin oligodendrocyte glycoprotein (MOG)-Ab-seropositive and 4 AQP4--
Abseronegative with unknown MOG-Ab-serostatus), multiple sclerosis (MS) (n=69), optic 
neuritis (n=5) and non-neurological controls (n=37).  
 
Results GFAP and GS concentrations differed significantly across groups (both p<0.001), 
showing a similar pattern of elevation in patients with AQP4-Ab-seropositive NMOSD. GS and 
GFAP were significantly correlated, particularly in patients with AQP4-Ab-seropositive NMOSD 
(rs=0.70, p<0.001). Interestingly, GFAP levels in some patients with double-Ab-seronegative 
NMOSD were markedly increased. 
 
Conclusions Our data indicate astrocytic injury occurs in some patients with double-Ab-
seronegative NMOSD, which hints at the possible existence of yet undiscovered astrocytic 
autoimmune targets. We hypothesise that elevated GS and GFAP levels could identify those 
double-Ab-seronegative patients suitable to undergo in-depth autoimmune screening for 
astrocytic antibodies. 
 
INTRODUCTION 
 
Neuromyelitis optica spectrum disorder (NMOSD) refers to a heterogenous group of immune 
mediated CNS diseases that share optic neuritis, transverse myelitis and area postrema 
syndrome as key clinical features[1].  
 
In recent years understanding of NMOSD has considerably advanced through the 
identification of two autoimmune targets. The first auto-antibody that was recognised targets 
aquaporin-4 (AQP4), a water channel which is expressed in astrocytic foot processes[2]. 
Accordingly, AQP4 targeted autoimmune activity results in profound astrocytopathy, a feature 
that is distinct from multiple sclerosis (MS)[3,4]. The subsequently identified myelin-
oligodendrocyte glycoprotein (MOG) auto-antibodies are associated with damaged 
oligodendrocytes and myelin, but do not cause astrocytic injury[5–8].  
 
Identification of these antibodies has facilitated diagnostic procedures, broadened the clinical 
spectrum and helps guide treatment decisions in NMOSD[9,10]. However, some patients 
present with a clinical phenotype that is consistent with NMOSD, but do not express AQP4 or 
MOG antibodies (Ab)[11]. The response to immunosuppression in these patients suggests a 
possible autoimmune pathology, but the autoimmune target remains unknown[12]. Here, we 
aim to investigate astrocytopathy across the full NMOSD spectrum, including double-Ab-
seronegative patients, to gain insight into the pathophysiological processes at play. 
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Glial Fibrillary Acidic Protein (GFAP), a part of the astrocyte cytoskeleton, is a very useful 
biomarker when investigating astrocytic damage[13]. A very substantial increase in 
cerebrospinal fluid (CSF) GFAP levels during AQP4-Ab-seropositive NMOSD relapses has 
consistently been reported, and some reports also show low levels of GFAP in MOG-Ab-
seropositive disease[4,6,7,14–18].  
 
One disadvantage of using GFAP as a biomarker, however, is its poor solubility which limits 
the sensitivity of the test[13]. In order to strengthen the laboratory approach for 
characterising the widening spectrum of autoimmune astrocytopathies, we have developed a 
novel assay to detect the predominantly astrocytic enzyme glutamine synthetase (GS)[19]. In 
contrast to GFAP, GS is highly soluble, facilitating detection[20,21]. We hypothesised that 
complement mediated damage to astrocytes would not only release GFAP but also GS. 
Therefore, CSF levels of GS in NMOSD should reveal a similar pattern to what is observed for 
GFAP[13,22].  
 
In this international multi-centre collaborative study, we used these two astrocytic biomarkers 
to explore levels of astrocytopathy across the different subgroups of NMOSD. We 
demonstrate that both GS and GFAP are elevated in AQP4-Ab-seropositive NMOSD and 
double-Ab-seronegative NMOSD. These data hint at the existence of a yet unidentified 
astrocytic autoimmune target in a subset of double-Ab-seronegative NMOSD patients.  
 
METHODS 
 
Patients and non-neurological controls 
This retrospective study included patients with NMOSD, MS and optic neuritis (ON) from five 
centres (Table S1). Diagnosis of NMOSD was made according to criteria published by 
Wingerchuk et al. (2015)[1]. We recruited MS patients that had undergone lumbar puncture 
as part of diagnostic procedure. MS patients were diagnosed according to criteria published 
by Polman et al. (2005) and all had a long clinical follow-up, during which they displayed a 
typical disease phenotype[23]. ON patients were diagnosed according to criteria published by 
Petzold et al.[24] and did not fulfil diagnostic criteria for NMOSD or MS. 
 
Age-matched non-neurological controls were selected from a database of patients referred to 
the Neurology department in the Radboud University Medical Centre in Nijmegen during the 
period 2001 to 2009, who underwent lumbar puncture as part of the diagnostic work-up and 
were confirmed to not have neurological disease. For these patients all routine CSF 
parameters were normal.   
 
Approvals and consents 
The CSF samples were collected according to standard protocols with local ethics 
approval[25]. At the time of collection all patients from the Nijmegen centre gave informed 
consent to lumbar punctures, including later use for scientific purposes but written consent 
from the patients was legally not required for our analyses. Written informed consent was 
obtained from all patients from other participating centres. 
 
CSF samples 
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CSF samples were collected in polystyrene or polypropylene tubes, centrifuged (5 minutes, 
860 g at room temperature), and stored at -80 °C. For storage purposes, 20 MS samples had 
been moved to storage at -20°C, but not more than six months prior to analysis. Patient 
information was encoded to maintain confidentiality. 
  
GFAP ELISA 
GFAP levels were measured using a home-made sandwich ELISA (linear up to 250µg/L; inter-
assay variation coefficient <14%) as previously described[26].  
For six French patients with NMOSD, GFAP levels have been published previously and sample 
volumes were too small to repeat the test[27]. Although we excluded these data from analysis, 
because these data were based on a different method and GFAP levels were not directly 
comparable, we have displayed these results in Supplementary Figure 1. Because of 
insufficient CSF material GFAP measurements could not be performed for nine additional 
subjects (2 AQP4-Ab-seropositive, 2 MOG-Ab-seropositive, 1 double-Ab-seronegative 
NMOSD, 2 MS patients and 2 controls).  
 
GS ELISA 
GS levels in CSF were measured using our previously published home-made sandwich ELISA 
incorporating an acidification and neutralisation step for enhanced detection[19]. 
 
AQP4-IgG antibody assay 
State of the art cell-based assays were used for AQP4-Ab in the French[28], German[29], 
Brazilian[30] and Spanish cohorts[31,32].  
 
MOG-IgG antibody assay 
MOG-Ab-serostatus was retrospectively identified from chart study. MOG-IgG Ab status was 
assessed in local laboratories by cell-based assay.  
 
Statistical analysis 
Categorical variables were described by counts and percentages, and continuous variables by 
median and interquartile ranges (IQRs). Data were analysed using R and RStudio. Distribution 
of age and gender was tested with the Kruskal-Wallis test and Fisher exact test respectively. 
GS and GFAP levels were compared across groups by the Kruskal-Wallis test. Post-hoc analysis 
was performed with Dunn Test, with p-values adjusted for multiple comparisons with the 
Benjamini-Hochberg method. Correlations were performed by Spearman’s rank analysis (rs = 
Spearman’s rho). Multivariate logistic regressions were used to check for distributions of CSF 
GS and GFAP across groups with two potential confounding factors, age and gender. In the 
figures GFAP has been log transformed after adding 1 (log10(GFAP+1)) for visualisation 
purposes. Performance of GFAP and GS in discriminating for both NMOSD status and AQP4-
Ab-seropositive NMOSD status were analysed by plotting receiver operating characteristics 
(ROC) curves and calculating associated area under curve (AUC) with corresponding 95% 
confidence interval (CI). Optimally effective cut-off values were calculated using the Youden 
Index.  
 
RESULTS 
 
Subject characteristics 
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We included 39 patients with NMOSD, of which 28 were AQP4-Ab-seropositive, four were 
MOG-Ab-seropositive, three were double-Ab-seronegative and four were AQP4-Ab-
seronegative but had an unknown MOG-Ab-serostatus. Additionally, 69 patients with MS, five 
patients with ON and 37 non-neurological control subjects were included (Table 1). The 
baseline characteristics are summarised in Table 1. Mean age was comparable between 
groups (p=0.057). There was a female predominance in the MS and NMOSD groups compared 
to controls, as is demographically expected, but this difference did not reach significance 
(p=0.051). For all NMOSD patients, and for most MS and ON patients, CSF was obtained 
acutely during a clinical relapse without concomitant treatment. Detailed CSF and clinical data 
of the double-Ab-seronegative NMOSD subgroup is given in Table S2.  
 

 
 
Table 1. Patient demographics and CSF parameters. 
a Fisher exact test. b Kruskall-Wallis test for non-parametric data. * Gender data missing for 1 
AQP4-Ab-seropositive NMOSD patient. GFAP: Glial Fibrillary Acidic Protein; GS: Glutamine 
Synthetase; MS: multiple sclerosis; NMO+: AQP4-Ab-seropositive NMOSD; NMO-: AQP4-Ab-
seronegative NMOSD; ON: optic neuritis; IQR: interquartile range.  
 
 
Protein biomarkers 
Neither GS nor GFAP levels were influenced by the storage conditions (-20⁰C versus -80⁰C; 
p>0.05). 
 
CSF GFAP levels 

 
Controls MS Optic 

Neuritis 
AQP+ 
NMOSD 

MOG+ 
disease 

Double-
Ab neg 
NMOSD 

Unknown 
MOG 
NMOSD 

 
p-value 

N 37 69 5 28 4 3 4  

Gender 
F/M 
(%F) 

19/18 
(51%) 

52/17 
(75%) 

4/1 
(80%) 

22/5 
(81%*) 

3/1  
75% 

1/2 
(33%) 

2/2      
50% 

>0.05a 

Mean 
age 
(sd) 

43.2 
(11.1) 

42.1 
(10.6) 

39.8 
(9.5) 

48.11 
(17.5) 

25.0 
(24.1) 

56.0  
(4.4) 

37.3   
(14.0) 

>0.05b 

GFAP 
ng/mL 
median 
(IQR)  

0.500 
(0.825) 

0.60 
(0.750) 

0.20 
(0.40) 

5.40 
(37.85) 

0.00 
(0.00) 

76.7   
(46.85) 

0.68 
(0.08) 

<0.001b 

GS  
µg/L 
median 
(IQR) 

235.4 
(249.0) 

329.4 
(315.0) 

223.4 
(131.0) 

490.7 
(407.2) 

246.4 
(74.0) 

452.0 
(309.0) 

487.2 
(221.2) 

<0.001b 
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Distribution of GFAP levels differed significantly across groups (p<0.001). Median GFAP levels 
were significantly higher for patients with AQP4-Ab-seropositive NMOSD (5.40 ng/mL) 
compared with MS patients (0.60 ng/mL, p=0.010), ON patients (0.20 ng/mL, p=0.014) and 
non-neurological controls (0.50 ng/mL, p=0.007).  
 

 
Figure 1. GFAP and GS levels in CSF of controls, MS, ON and NMOSD. 

A: CSF GFAP levels in ng/mL of non-neurological control subjects, patients with MS, ON and NMOSD (sub-grouped into AQP4-
Ab-seropositive, MOG-Ab-seropositive, double-Ab-seronegative and AQP4-Ab-seronegative with unknown MOG-Ab 
serostatus). The Kruskal-Wallis test showed that there was a statistically significant difference of GFAP levels between groups 
(p<0.01). The grey dotted line represents the highest measured GFAP concentration in non-neurological control subjects. 
GFAP has been log transformed after adding 1 (log10(GFAP+1)) for visualisation purposes.  

B: CSF GS levels in µg/L of non-neurological control subjects, patients with MS, ON and NMOSD (sub-grouped into AQP4-Ab-
seropositive, MOG-Ab-seropositive, double-Ab-seronegative and AQP4-Ab-seronegative with unknown MOG-Ab serostatus). 
The Kruskal-Wallis test showed that there was a statistically significant difference of GS between groups (p<0.001). The grey 
dotted line represents the highest measured GS concentration in non-neurological control subjects. 
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* = p<0.05; ** = p<0.01; *** = p<0.001; Controls = non-neurological control subjects; MS = Multiple Sclerosis; NMOSD = 
neuromyelitis optica spectrum disease; NMO+ = AQP4-Ab-seropositive NMOSD, NMO- = AQP4-Ab-seronegative NMOSD; ON 
= optic neuritis. 

 

 
Figure 2. Correlations GFAP and GS. 

A. linear regression showing significant positive relationship of GFAP and GS in the entire cohort with colour coding of the dots 
for the different subgroups (AQP4-Ab-seropositive NMOSD, AQP4-Ab-seronegative NMOSD, multiple sclerosis (MS), optic 
neuritis (ON) and non-neurological controls. B. scatter plot with linear regression line showing the particularly strong positive 
relationship of GFAP and GS in the AQP4-Ab seropositive NMOSD group. C. colour coded scatter plot of GFAP versus GS levels 
in the double-Ab-seronegative NMOSD, MOG-Ab-seropositive NMOSD and AQP4-Ab-seronegative with unknown MOG-status 
cases. This plot is shown for visualisation purposes, even though group sizes are too small to draw conclusions or perform 
correlation analysis. D. non-significant relationship between GFAP and GS in the multiple sclerosis (MS) cohort. E. non-
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significant relationship between GFAP and GS in the non-neurological control cohort. For all plots GFAP + 1 was log 
transformed for visualisation purposes.  

Interestingly, all GFAP concentrations that were substantially higher than the highest 
measured in non-neurological controls (2.30 ng/mL) were observed exclusively in AQP4-Ab-
seropositive NMOSD and double-Ab-seronegative NMOSD (Figure 1), although there were six 
MS patients with a slightly higher GFAP concentration. Furthermore, median GFAP levels for 
double-Ab-seronegative patients were significantly increased compared with ON patients 
(p=0.046).  
 
Multivariate logistic regression showed that GFAP levels predicted diagnosis of NMOSD 
(Beta=0.461; p=0.0257) independent of age and gender (Beta=-0.011; p=0.657 and Beta=-
0.238; p=0.704). Additionally, prediction of AQP4-Ab-seropositive NMOSD specifically was 
nearly significant (Beta=0.033; p=0.060) independent of age and gender (Beta=0.034; p=0.163 
and Beta=-1.309; p=0.096) 
 
CSF GS levels 
Like GFAP, distribution of GS levels differed significantly across groups (p<0.001). GS levels 
were significantly higher for patients with AQP4-Ab-seropositive NMOSD (median 490.7 µg/L; 
p<0.001) and MS (median 329.4 µg/L, p=0.003) compared with non-neurological controls 
(median 235.4 µg/L).  
 
Multivariate logistic regression showed that GS levels predicted diagnosis of NMOSD 
(Beta=0.002; p=0.003) independent of age and gender (Beta=0.025; p=0.098 and Beta=-0.034; 
p=0.939). Furthermore, GS was a significant predictor of AQP4-Ab-seropositive NMOSD 
(Beta=0.003; p<0.001) specifically, alongside age (Beta=0.052; p=0.006) but independent of 
gender (Beta=-0.436; p=0.442).  
 
Interestingly, we observed an overall positive correlation between GS and GFAP levels 
(rs=0.23, p<0.001), which was particularly strong in AQP4-Ab-seropositive NMOSD (rs=0.70, 
p<0.001) but absent for the MS group (rs=-0.02, p=097) and controls (rs=0.07, p=0.48) (Figure 
2.)   
 
Diagnostic performance for astrocytopathy 
The AUC of the ROC curves in discriminating for AQP4-Ab-seropositive NMOSD status was 0.75 
(95% CI: 0.61-0.89) for GFAP and 0.77 (95% CI: 0.67-0.86) for GS. The AUC of the ROC curves 
for identifying all types of NMOSD were slightly lower for both GFAP (0.74; 95% CI: 0.61-0.86) 
and GS (0.72; 95% CI: 0.63-0.82) (Figure 3.). The optimally effective cut-off of GFAP 
concentration to identify AQP4-Ab-seropositive NMOSD was 4.0 ng/mL, with an associated 
specificity of 97% and sensitivity of 57%. The optimally effective cut-off for GS was 268.4 µg/L, 
with an associated sensitivity of 89% and specificity of 41%. The negative predictive value of 
a GS level lower than 268.4 µg/L was 94%. So, GS can achieve a substantially higher sensitivity 
but a lower specificity for AQP4-Ab-seropositivity compared with GFAP. This is in line with the 
observation that all of the 10 AQP4-Ab-seropositive NMOSD patients that had GFAP levels 
below the identified threshold of 4.0 ng/mL, did have GS levels higher than the threshold of 
268.4 µg/L.  
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Figure 3. ROC curves GS and GFAP 

A. Receiver operating characteristic (ROC) curve of the discriminative performance for the astrocytopathy AQP4-Ab-
seropositive NMOSD of GFAP (blue line) and GS (green line). B. ROC curve of the discriminative performance for NMOSD of 
GFAP (blue line) and GS (green line).  

 
DISCUSSION 
Here, we report CSF levels of astrocytic biomarkers GS and GFAP in NMOSD, MS, ON and non-
neurological controls. Levels of both biomarkers were highest in AQP4-Ab-seropositive 
NMOSD. The strong correlation between GS and GFAP in AQP4-Ab-seropositive NMOSD 
suggests that GS is released as a result of astrocytic injury in these patients. GS has a higher 
sensitivity, but a lower specificity, to astrocytopathy compared with GFAP. Additionally, a 
subset of double-Ab-seronegative NMOSD cases had substantially increased GFAP levels. This 
observation suggests astrocytic damage in some double-Ab-seronegative NMOSD patients 
and hints at the existence of a yet unidentified astrocytic autoimmune target in this group. 
 
Our data replicate prior reports showing that CSF GFAP is increased in AQP4-Ab-seropositive 
NMOSD but not in MOG-Ab-seropositive NMOSD[4,6,7,14–17,33]. These results are in line 
with current understanding of NMOSD pathophysiology, as AQP4-Ab-seropositive NMOSD is 
an autoimmune astrocytopathy, while MOG-Ab-mediated disease results in oligodendrocytic 
injury but no astrocytopathy[3,9]. Interestingly, we show that very substantial increases of 
GFAP are not exclusive to AQP4-Ab-seropositive NMOSD, but also occur in double-Ab-
seronegative NMOSD. This observation appears robust as it has been described before[4] and 
we hypothesise that it hints at the existence of one or more yet unidentified auto-antibodies 
targeting astrocytes in a subset of double-Ab-seronegative NMOSD patients. A high CSF GFAP 
concentration may be used to identify those double-Ab-seronegative NMOSD patients with 
evidence of astrocytopathy that are suitable for in-depth autoimmune screening using labour 
intensive clonal expansion techniques. Furthermore, double Ab-seronegative NMOSD 
patients pose a substantial diagnostic challenge, given the lack of a reassuring immunological 
marker[1]. Diagnosis is based solely on clinical and radiological features, resulting in 
uncertainty when making treatment decisions. A substantially elevated GFAP in these double-
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Ab negative patients might reinforce diagnosis of NMO and help guide clinical decision making 
in some patients. 
 
This is the first study to report on GS levels in NMOSD and related disorders. We showed that 
CSF levels of this astrocytic enzyme correlate with GFAP levels, especially in AQP4-Ab-
seropositive NMOSD, indicating CSF GS may rise as a result of astrocytic damage, as has been 
suggested previously[22]. Furthermore, GS and GFAP levels showed a similar pattern of 
elevation in AQP4-Ab-seropositive NMOSD, while levels in MOG-Ab-seropositive disease 
appeared to be generally low. However, in contrast to GFAP, GS levels were elevated in MS 
compared with control subjects as well. This might be because GS, although primarily an 
astrocytic enzyme, is expressed by oligodendrocytes to some degree as well[34]. 
Oligodendrocytes are severely damaged in MS and GS immunoreactivity is reduced in MS 
brain lesions compared with unaffected and control tissues[35]. Additionally, the observed 
increases of GS in MS and NMOSD patients could partly arise due to leakage of systemic GS 
across the blood-brain barrier into the CSF, as the blood-brain-barrier is compromised in both 
disorders. ROC curves of GS and GFAP levels had similar AUCs when testing discriminative 
performance for AQP4-Ab-seropositive NMOSD. GS provides higher sensitivity compared with 
GFAP, although specificity for astrocytopathy is relatively low. As GS is elevated more 
generally in neuroinflammatory disease, it is not a more advantageous diagnostic test for 
NMOSD compared with GFAP. However, GS appears to be a more sensitive marker of 
astrocytopathy that could be useful to identify astrocytic injury in seronegative NMOSD 
patients that fulfil the stringent diagnostic criteria. The high negative predictive value of 94% 
associated with GS, suggests that a level below the threshold predicts the absence of 
astrocytopathy with high accuracy. 
 
The recently described disease entity GFAP autoimmune astrocytopathy may represent the 
underlying pathophysiologic mechanism in some of the double-Ab-seronegative NMOSD with 
signs of astrocytopathy[36]. However, currently there is still some uncertainty if GFAP 
autoimmunity is a primary disease process or a downstream effect of some forms of astrocytic 
injury[37]. In the future measuring GFAP in the serum may be a less invasive alternative to CSF 
measurements, as serum GFAP levels have been shown to be increased in NMOSD as well[18]. 
An important consideration when talking about double-Ab-seronegative NMOSD diagnosis is 
the possibility of false-negative AQP4- or MOG-Ab results. In this study all antibody 
assessments were based on highly sensitive cell-based assays, minimising risk of false-
negatives[11].  
 
A limitation of this study was the limited available clinical data, especially regarding details on 
timing of symptom onset relative to CSF acquisition and disability severity, which we know 
influences GFAP levels[13]. Furthermore, because CSF volume was limited not all GFAP 
measurements could be repeated for all patients with the same immunoassay resulting in 
missing data. Future immunohistochemical analysis of GS and GFAP in NMOSD patients is 
needed to confirm the potential role of GS as a CSF biomarker for astrocyte injury 
 
In conclusion, our results indicate there may be one or more yet unidentified astrocytic 
autoimmune targets in double-Ab-seronegative NMOSD patients. We propose that screening 
of double-Ab-seronegative NMOSD patients for GFAP and GS will identify a subgroup of 
patients with evidence of astrocytopathy that are suitable for in-depth autoimmune screening 
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to identify a possible new astrocytic immune target. GS has suitable properties for screening 
purposes, while GFAP can be used as a confirmatory test. 
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