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Impact Statement

In a nutshell, the current body of work has focused on the problem of a learning agent sit-
uated in a environment, trying to learn behaviour policies that maximise different reward
signals, corresponding to different tasks in this environment. We would argue that this is
a common scenario for many decision making systems in the real world. Reinforcement
learning, as a modelling paradigm, has already been shown to successfully tackle complex
decision making problems. Our contributions here stem from two key observations: a)
in general, we would like our agents to achieve more than one goal in a given environ-
ment; b) a lot of the methods underlying even the single task setting, involve building,
incrementally, multiple prediction problems that enable improvements in the agent’s be-
haviour. Thus, an agent’s journey to an optimal value function, can naturally be cast as a
multitask prediction problem. The only difference between a) and b) is whether or not,
one varies both the policy and the reward structure. In this work, we have focused on the
more general scenario where both of these dimensions vary. In this setting we have shown
the benefits of treating the above as a multitask problem and learning common represen-
tations to enable transfer between the many prediction problems encountered. Given the
generality of the setup and the organic nature of the assumptions imposed, we believe the
scope and applicability of this work to be quite board.

Moreover, the first part of this work has focused on an offline batch scenario, similar
to ones encountered in a real application domains, where the data was generated a priori
by a policy we might not have access to. Setups here might include recommender sys-
tems under multiple prediction metrics (engagement, retention, expenditure); medical
data collected under different protocols and different policies; energy management sys-
tems under different manual policies. Treating these problems and data sources indepen-
dently can be very expensive. In such restrictive settings, the encouraging results obtained
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by algorithms in Chapters 3 - 4 suggest that modelling these problems jointly can signifi-
cantly improve the quality of the resulting policies and thus reduce the sample complexity
needed to achieve competitive performance.

The second part of this thesis investigates a different kind of representation, particularly
suitable for transferring knowledgewithin amore restricted set of tasks. This leads to a very
effective type of generalisation in the span of tasks considered. Outside its potential appli-
cations to a multitask RL agent, this line of research has already inspired studies in other
scientific fields. In particular in cognitive science and neuroscience, our colleagues have
argued similar representations are formed in the brain and they have found evidence for
this type of generalisation, via policy re-evaluation, being at the core of transfer behaviours
in several species (including humans).

Nevertheless, the above are really just scratching the surface of the potential benefits of
such representation learning in RL. Much more research is needed and we do hope that
some of the work presented here would inspired other researchers, across communities,
to investigate these paradigms further and improve on current solutions.
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Reinforcement Learning in Persistent Environments: Representation
Learning and Transfer

Abstract

Reinforcement learning (RL) provides a general framework for modelling and reason-

ing about agents capable of sequential decision making, with the goal of maximising a

reward signal. In this work, we focus on the study of situated agents designed to learn

autonomously through direct interaction with their environment, under limited or sparse

feedback. We consider an agent in a persistent environment. The dynamics of this ’world’

do not change over time, much like the laws of physics, and the agent would need to learn

to master a potentially vast set of tasks in this environment. To efficiently tackle learning

inmultiple tasks, with the ultimate goal of scaling to a life-long learning agent, we turn our

attention to transfer learning. Themain insight behind this paradigm is that generalisation

may occur not only within tasks, but also across them. The objective of transfer in RL is

to accelerate learning by building and reusing knowledge obtained in previously encoun-

tered tasks. This knowledge can be in the formof samples, value functions, policies, shared

features or other abstractions of the environment or behaviour.

In this thesis, we examine different ways of learning transferable representations for

value functions. We start by considering jointly learning value functions across multiple

reward signals. We explore doing this by leveraging knownmultitask techniques to learn a

shared set of features that cater to the intermediate solutions of popular iterative dynamic

learning processes – like value and policy iteration. This learnt representation evolves as

the individual value functions improve. At the end of this process, we obtain a shared basis

for (near) optimal value functions. We show that this process benefits the learning of good

policies for the tasks considered in this joint learning. This class of algorithms is potentially
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very general, but somewhat agnostic to the persistent environment assumption. Thus we

turn to ways of building this shared basis by leveraging more explicitly the rich structure

induced by this assumption. This leads to various extensions of least-squares Policy Itera-

tionmethods to themultitask scenario, under shared dynamics. Here we leverage transfer

of samples andmultitask regression to further improve sample efficiency in building these

shared representations, capturing commonalities across optimal value functions.

The second part of the thesis introduces a different way of representing knowledge via

successor features. In contrast to the representations learnt in the first part, these are policy

dependent and serve as a basis for policy evaluations, rather than directly building opti-

mal value functions. As such, the way to transfer knowledge to a new task changes as well.

We do this by first relating the new task to previous learnt ones. In particular, we try to

approximate the new reward signal as a linear combination of previous ones. Under this

approximation, we can obtain approximate evaluations of the quality of previously learnt

policies on the new task. This enables us to carry over knowledge about good or bad be-

haviour across tasks and strictly improve on previous behaviours. Here the transfer lever-

ages the structure in policy space, with the potential of re-using partial solutions learnt in

previous tasks. We show empirically that this leads to a scalable, online algorithm that can

successfully re-use the common structure, if present, between a set of training tasks and a

new one. Finally, we show that if one has further knowledge about the reward structure

an agent would encounter, one can leverage this to learn very effectively, in an off-policy

andoff-taskmanner, a parameterised collection of successor features. These correspond to

multiple (near) optimal policies for tasks hypothesized by the agent. This not only makes

very efficient use of the data but proposes a parametric solution to the behaviour basis

problem; namely which policies should one learn to enable transfer.
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The world we live in requires us to learn many things. These things obey the
same physical laws, derive from the same human culture, are preprocessed by
the same sensory hardware. . . . Perhaps it is the similarity of the many tasks
we learn that enables us to learn so much with so little experience.

Rich Caruana. Multitask Learning, 1997.

1
Introduction

Throughout their lifetime, human beings and other intelligent agents, are generally pre-
sented with a variety of tasks and challenges they ought to grasp. Due to the diversity of
scenarios and the sheer complexity of the world around us, the only scalable solution to
this daunting task rests on our ability to continuously learn, adapt and transfer knowledge
from one situation to another, incrementally building up expertise in both understanding
and behaving in the world. This learning can be passive by simply observing the environ-
ment and trying to make predictions regarding its current and/or future states. This type
of learning is mostly treated by the supervised (Vapnik, 2013) and unsupervised learning
paradigms (Hinton et al., 1999; Bishop, 2006). But arguably the more interesting setting
is when the agent can also meaningfully interact with the environment and take an active
role in shaping and modifying the state of its world. In this case, the agent cares not only
about learning about the environment, but it also needs to learn how to behave, how to act
to drive itself or the system towards a desiredoutcomeor avoid a negative one– sometimes
being faced with negotiating multiple of these objectives at the same time.

Learning through these experiences, humansgradually develop anunderstandingof the
world surrounding them: they are able to identify salient events, recognise which states
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are good or desirable, which of them might be rewarding and which should be avoided.
At the same time, they can assemble a rich repertoire of behaviours and skills, grounded
in this understanding of the world. Maybe most importantly, this set of behaviours can
potentially be reused in different but related, future contexts and tasks. Our capacity to
reason about similar tasks, reuse and adapt partial solutions and employpreviously learned
behaviours is an important part of our ability to generalise to new situations, re-assess and
re-plan efficiently. Wewouldwant our agents to possess similar aptitudes, aswe conjecture
thesewould improve their ability to scale tomore complex, longer-term learningproblems.

Overarching Long-termGoal

Todevelop reinforcement learning agents that can learn to achievemultiple objectives,
including answeringpredictive and control questions, andmeaningfully interactwith
their environment, generalising and reusing knowledge when appropriate.

In this work, we will focus on the second part of the learning problem outlined above:
learning how to behave in an environment. And in particular, in this thesis, we investi-
gate the problem of how to represent knowledge about an agent’s behaviours and their conse-
quences in the environment in such a way as to facilitate transfer between different tasks and
enable reusability of partial policies. To model this problem, we turn our attention to rein-
forcement learning (RL). RL provides a general framework to model this kind of sequen-
tial decision making that involves reasoning and planning over extended time horizons.
The usual RL setup involves an agent placed in an unknown environment; the agent re-
ceives observations from the environment and needs to act to maximise a given reward
signal. This reward signal defines the task of interest and induces a particular behaviour in
the agent trying to optimise it. This reward can be part of the environment (if the agent
bumps into a wall, it incurs some damage, modelled by a negative reward), can be speci-
fied by a task designer (picking up the trash, driving to a particular location), or can come
from the agent itself – curiosity (Pathak et al., 2017; Burda et al., 2018), intrinsic moti-
vation (Barto and Simsek, 2005; Singh et al., 2010; Achiam and Sastry, 2017). Given the
generality of this formulation, it comes as no surprise that theRL framework has beenused
to model a large variety of tasks, including robotics (Kober et al., 2013), radio-controlled
helicopters navigation (Kim et al., 2004), autonomous driving (Wang et al., 2018), ani-
mals behaviour (Schultz et al., 1997) andplayingboard (Tesauro, 1995; Silver et al., 2017),
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video (Mnih et al., 2015) or card (Bowling et al., 2015) games to cite just a few.
Most of the above applications and indeedmost of the recent successes inRLhave dealt

primarily with the single task scenario. In the following, we would argue that there are
many situations in which we want our agents to be able to learn to perform a variety of
tasks in their given environment, not just one. For example if the task designer would be
interested in multiple outcomes at different points in time: for instance, one would want
a house-robot to be able to clean a surface, locate or fetch an object, water the plants, take
out the rubbish ...etc. Moreover, most complex tasks, we would hope to tackle in RL, tend
to naturally decompose into smaller subparts that can be learnt more easily in isolation
and reused across contexts. In the above example, one could specify a more complex or
abstract task such as: ’take care of the apartment’, which will naturally require a collection
of specific behaviours: collecting the children’s toys, hoovering, taking out the trash, wa-
tering the plants, arming the alarm, securing the windows. This kind of decomposition
may enable our agents to tackle more complex tasks, as long as they are able to learn and
utilise this collection of behaviours appropriately. These subtasks can be modelled by dif-
ferent reward specifications in the same environment. Thus, as almost a prerequisite for
tackling the original problem, our agents should be able to learn how to optimise for a fam-
ily of reward signals. This scenario is a well-established paradigm in the literature known
as multitask reinforcement learning (Taylor and Stone, 2009; Teh et al., 2017).

The above is not only a requirement for our agents but often a desirable paradigm as
tasks can help each others’ learning. And this is precisely the thesis of our investigations:
that the learning of an RL task can be improved if we could somehow leverage the infor-
mation captured by related tasks. A particular dimension of improvement we will be con-
cerned with throughout this work is sample complexity. In the author’s opinion, this is one
of the main remaining challenges and bottlenecks facing our state-of-the-art RL agents
currently (Silver et al., 2016; Hessel et al., 2018; Kapturowski et al., 2019), rendering their
applicability outside simulated environments restricted at best. To give an idea, in order to
learn how to play one game of Atari (Bellemare et al., 2013), an agent typically consumes
an amount of data corresponding to several weeks of uninterrupted playing. In compari-
son, it has been shown that humans are able to reach the same performance level within 15
minutes of play (Tsividis et al., 2017).

We hypothesise that one of themain reason for this discrepancy is that, unlike humans,
RL agents usually learn to perform a task essentially from scratch. This suggests that the
range of problems our agents can tackle could be significantly extended if they were en-
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dowed with the appropriate mechanisms to leverage prior knowledge. In this work, we
are going to explore how to develop such mechanisms and analyse their properties. More
concretely, in the first part of thiswork, we are going to investigate theparadigmof transfer-
ring knowledge between tasks by jointly training a common representation of the world,
shared by all tasks. This was mainly motivated by the rich literature and encouraging re-
sults yielded by this approach in supervised learning (Caruana, 1997;Maurer et al., 2016;
Collobert and Weston, 2008). Here we consider an offline, batch learning scenario under
a restricted number of samples. This is akin to what one might encounter in a real-world
application, where we have access only to a relatively small set of experiences under a pre-
scribed behaviour policy that might not be optimal for any of the tasks we are interested
in pursuing (Panuccio et al., 2013; Koedinger et al., 2013; Thomas and Brunskill, 2016).

The second part of this work investigates a different paradigm of transfer. One in which
the agent is first exposed to a number of tasks and then asked to learn a new one. This
scenario simulates a transfer step in a more continual learning paradigm where an agent is
continually confronted with new tasks and needs to be able to learn and quickly comply.
In general, learning to solve a large collection of tasks, corresponding to a large collection
of policies and quickly adapt or generalise to unseen combinations of reward signals is an
extremely hard problem. If the tasks are unrelated and/or their number is very high, the
problem becomes intractable. Thus for this problem to become at all tractable, we require
some common structure amongst the tasks. In the next section, we will detail the type of
shared structure we assume in this study.

1.1 Problem Setting

In particular, we consider the case in which we have a single agent in a persistent environ-
ment (in the above case, the apartment), that will need, at different times, to perform a
series of tasks induced by a set of reward signals. As seen from the examples above, under
these assumptions, an agent can still exhibit a large collection of rich, modular behaviours,
which nevertheless share a common structure. An informal definition of what we will call
a persistent RL environment is outlined in Definition 1.1.
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Definition 1.1: Persistent RL environment

Apersistent RL environment is characterised by the family ofMarkovDecision Pro-
cesses that share the same state and action spaces, as well as the transition dynamics.

Now consider an RL agent in a persistent environment trying to master a number of
tasks. In order for this agent to benefit from its exposure to these many tasks, it needs
to be able to identify and exploit some common structure underlying these tasks. Two
possible sources of structure in this scenario are: i) some similarity between the solutions
of the tasks, either in the policy or in the associated value-function space, and ii) the shared
dynamics of the environment. In thiswork, wewill attempt to build an agent that canmake
use of both types of structure. And in particular, we would like to investigate and answer
the following research questions:

• Can joint learning across multiple tasks benefit the learning of an individual task
and improve its sample complexity? ([c1,2], Chapters 3-6)

• What structure is present in the value function space, under apersistentRLenviron-
ment? Can learning a shared representation via conventional supervised multitask
learningmethods be enough to induce positive transfer between tasks in this space?
(c[1,2], Chapters 3)

• What are ways of explicitly taking advantage of this structure in a persistent envi-
ronment? ([c3,4], Chapters 4-6)

• Canwe enable fast adaptation or even zero-shot generalisation to a different reward
signal within the same environment? What would be a good representation that
would enable this kind of transfer? ([c3,4], Chapters 5-6)

• Assuming additional structure across our reward family (linearity, compositional-
ity), can we improve our generalisation properties? Canwe characterise the quality
of a zero-shot policy for a new task in this family? ([c3,4], Chapters 5-6)

• Can learning about multiple things (many predictions) improve the learning and
generalisation abilities of an agent, even if the tasks share the samedata? Thiswould
open the door for training undermultiple auxiliary or fictitious tasks to improve the
generalisation properties of our systems. ([c4], Chapter 6)
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1.2 Structure of the Thesis

In this section, we include an overview of the structure of the thesis. In Chapter 2, we
review a set of preliminaries. This will include a brief introduction into reinforcement
learning and core concepts underlying the learning of value functions, like dynamic pro-
gramming, policy improvementmethods and sample-based approximations to these solu-
tions. The second part of this chapter should serve as a swift review of the transfer learning
paradigm, its potential benefits and different mechanisms of representing and transferring
knowledge in RL.We will then dive into the research part of this thesis which is organised
in two parts.

In the first part (Chapter 3-4) we study the problem of multitask learning optimal
action-value functions corresponding to different reward signals in a persistent environ-
ment. In this part, we opted for an offline setting where we only have access to a recorded
set of experiences collected under some shared behaviour policy. Under these conditions,
we wanted to see if the joint learning of the tasks can indeed lead to positive transfer be-
tween the tasks and improve the performance of the inferred control policies under re-
stricted sample budgets. To test this, we focus our attention on learning a shared linear
representation across tasks, as proposed in (Argyriou et al., 2008), to support the interme-
diate regressionproblems encounteredduring each iterationofmultitask fittedQ-iteration
(Chapter 3) and approximate policy iteration (Chapter 4) via residual methods.

In the second part (Chapter 5-6), we consider a different way of representing knowl-
edge in a Markov decision process via successor features. In this part, we consider a more
online scenario where the agent can interact with its environment and actively gather its
experience. Here, we also look at more challenging domains that require learning of more
powerful representations, beyond the linear approximators class considered previously.
Given the online setting, the more natural question here becomes assessing the ability of
the agent to (re)use information from the past in order to tackle more efficiently a new
task. In this setting, we will be primarily concerned with generalising to a new task and
speeding up the learning or adaptation phase to a new task.

Finally, Chapter 7 concludes this writeup with a summary of the work, discussing the
main takeaways, limitations and future research directions for this work. The appendices
are structured in two parts: one containing the derivation of some of the key results and
proofs that were omitted in the main body of the thesis and the second one containing
more detailed experimental outlines and additional results.
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2
Theoretical Preliminaries

The first part of this chapter is meant to provide a brief introduction to Markov Decision
Processes (MDPs) and the basics concepts in Reinforcement Learning (RL), the ones
most relevant to the methods we will be employing to learn value functions in the next
chapters. We shall start by stating the model assumptions and introducing the formalism.
We will then first consider MDPs with known transition dynamics and reward functions,
butwewill see how these general principles translate to algorithms that only require access
to samples from theseMDPs. In thiswork, wewill concern ourselves onlywithmodel-free
algorithms, which can learn (optimal) value functions without an explicit model of the
world, solely by interacting with the environment. Lastly, we introduce the idea of func-
tional approximation to represent the value-functions of interest. In this context, we de-
tail two well-known methods, Approximate Policy Iteration (API) and Fitted Q-Iteration
(FQI), that use such an approximation. These methods form the basis for algorithms in
Chapters 3-4. A more comprehensive overview of reinforcement learning methods and
algorithms can be found in (Sutton and Barto, 1998; Szepesvári, 2010) and references
therein. In the second part of this chapter, we formally introduce the paradigm of transfer
learning and review the different instances of transfer one could consider in the context of
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Reinforcement Learning System

AGENT
WORLDACTIONS

OBSERVATIONS

REWARD
(Feedback)

Figure 2.1.1: Depiction of a Reinforcement Learning (RL) system, describing the inter-
action between an agent and its environment (world).

the RL problems targeted throughout this thesis.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a general formalism for reasoningabout sequential decision-
making problems. As depicted in Figure 2.1.1, an RL system is made up of two compo-
nents: an agent and an environment. The interaction between these two components can
be described as follows: the agent can execute actions in the environment; once an ac-
tion is chosen, the system transitions into a new state, observable, sometimes partially, to
the agent. In addition, after each such transition, the agent receives a, potentially sparse,
reward signal quantifying the goodness of this transition.

2.1.1 Markov Decision Processes

More formally, in this work, we will use Markov Decision Processes (MDP-s) to describe
RL systems and the interaction between the environment and our learning agent(s). As
the name suggests, the common assumption in MDPs is that the environment dynamics
can be described by a Markov Process, i.e. the future is independent of the past given the
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present state (see formal description in Definition 2.1). In other words, we assume that the
current state of the system holds all the information regarding the future and knowing any
additional information about the history of the process will not add any knowledge.

Definition 2.1:Markov Process

AMarkov process, defined by a tuple ⟨S,P⟩whereS is a set of states,P : S×S →
[0, 1] is a state transition probability matrix describing the probability of transition-
ing to state s′ when starting in s, P(s′|s), is a memoryless random process. That is, for
any time step t:

P(st+1|st) = P(st+1|s1, · · · , st) , ∀si ∈ S (2.1)

We are interested in the interaction of the agent(s) with the environment and in most
problems, we aim to identify which actions/controls are good actions and which are bad.
We denote the set of all actions available to us asA and for now, we assumed this set to
be finite. Formally, ”the goodness” of an action is quantified by an (immediate) reward
signal, R, given by the environment after each action or each transition. This gives rise to
the reward function r : S × A → R, which assigns a value to every state indicating the
expected reward that can be achieved starting from this state, s and performing action a:

r(s, a) = E[R|s, a] (2.2)

Putting it all together,wenowhave almost all the ingredients to formallydefineaMarkov
Decision Process - see Definition 2.2 below:

Definition 2.2:MarkovDecision Process

A Markov Decision Process (MDP) is a tuple ⟨S,A,P, r, γ⟩ where S represents
the set of states,A is the set of actions the agent can take in the environment; P :

S ×A×S → [0, 1] denotes the state transition probability,P(s′|a, s), which fully
describes how the systemwill evolve; r : S×A → R is a reward function r(s, a) and
γ : S → [0, 1] is a continuation function (commonly known as discount factor).

Although in general γ : S → [0, 1] can be an arbitrary function of the state s, through-
out this work, we will consider a constant discount factor γ(s) = γ ∈ [0, 1],∀s ∈ S ,
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unless s is a terminal state where γ(sterminal) = 0. A terminal state marks the end of an
episode, in an episodic setting, and setting γ to 0 beyond this state simply implies that we
only care aboutwhat happenswithin the current episode and rewards are not accumulated
across episodes, just within episodes.

Based on the reward signal, we can define the return,Gt as the total discounted rewards
collected from time-step t onwards:

Gt = Rt+1 + γRt+2 + · · ·+ γT−tRT =
T∑

k=0

γkRt+k+1 (2.3)

where γ ∈ [0, 1] is thediscount factor¹ -which says immediate rewards aremore important
than rewards seen further in the future (which are discounted by a factor of γk, after k-
steps), and T→∞ for non-episodic or continuing environments.

In order to characterise the behaviour of an agent within a MDP, we will introduce a
function that for every state s ∈ S returns a distribution over actions, characterising the
likelihood of taking each action at a particular state s. We will call this function the policy
of an agent and we will denote it as π : S ×A → [0, 1]:

π(s, a) = P(a|s), ∀a ∈ A,∀s ∈ S (2.4)

Depending on the nature of the policy, π, we will use the following notational convention:

• Deterministic policies: π : S → A and π(s) denotes the action chosen on state s.
Note that in this case, the above probability distribution will concentrate all mass
on only one action a = π(s).

• Stochastic policies: π : S → Distr(A) and π(a|s) denotes the probability of taking
action a in state s, where Distr(A) denotes the set of distributions on the setA.

In most RL problems we are interested in either discovering a good (or even optimal)
such policy, π or simply to evaluate a particular behaviour, π, if one is already prescribed.
In the next section, we will show how one can build this type of evaluations.

¹Note that it is sometimes possible to use undiscountedMPDs, i.e. γ = 1, if all sequences terminate.
In general, we are going to work with discounted MDPs mainly for mathematical convenience, but
also in the financial setting the discount factor arises naturally because of the (risk-free) interest rates:
immediate rewards may earn more interest over the delayed rewards
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2.1.2 Value Functions

Given an MDP,M = ⟨S,A,P, r, γ⟩, and a policy π, we can define a value function,
V(s), quantifying how good a particular state s ∈ S , is in terms of potential future rewards
- in essence, this summarises the future expected interaction with the MDP, in terms of
the cumulative reward. Of course, the ’goodness’ of such state is at least partially related
to what our agent’s behaviour will be in the next steps. Thus formally we will define the
state-value function, Vπ , with respect to some policy π as the discounted return Gt that the
agent is expected to collect starting from state st = s and behaving according to π:

Vπ(s) = Eπ[Gt|st = s] = Eπ

[ ∞∑
k=0

γkRt+k+1|st = s

]
,∀s ∈ S. (2.5)

Note thatGt is a randomvariable, similar to {Rτ}τ=1,T and the above captures its expected
value under the randomprocess defined by theMDPand policy π. In a similarmanner, we
can define the action-value function, Qπ(s, a) with respected to a policy π as the expected
return an agent will gain starting from state st = s, taking action at = a in this state and
thereafter acting according to policy π:

Qπ(s, a) = Eπ[Gt|st = s, at = a] = Eπ

[ ∞∑
k=0

γkRt+k+1|st = s, at = a

]
,∀s ∈ S, a ∈ A.

(2.6)

Note that by definition, there exists a very close relationship between the two value
functions above, that ensure consistency. In particular, we can write:

Vπ(s) = Eπ[Gt|st = s] = Ea∼π(.|s)

Eπ[Gt|st = s, a = at]︸ ︷︷ ︸
Qπ(s,a)


= Ea∼π(.|s) [Qπ(s, a)] =

∑
a∈A

π(a|s)Qπ(s, a) (2.7)
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and respectively:

Qπ(s, a) = Eπ[Gt|st = s, at = a] = Eπ

[
Rt+1 +

∞∑
k=1

γkRt+k+1|st = s, at = a

]

= r(s, a) + γEπ


∞∑
k=0

γkrt+k+2︸ ︷︷ ︸
Gt+1

|st = s, at = a


= r(s, a) + γEst+1∼P(.|st=s,at=a) [Eπ [Gt+1|st+1]]︸ ︷︷ ︸

Vπ(st+1)

Moreover these lead to a recursive relationship for both value functions that will be at the
core of many of our optimisation techniques. These recurrences are commonly known as
the Bellman Expectation Equations (Definition 2.1) and are summarised below:

Theorem 2.1: Bellman Expectation Equations

Given an MDP,M = ⟨S,A,P, r, γ⟩, for any policy π, the value functions obey
the following expectation equations:

Vπ(s) =
∑

a

π(s, a)

[
r(s, a) + γ

∑
s′
P(s′|a, s)Vπ(s′)

]
(2.8)

Qπ(s, a) = r(s, a) + γ
∑
s′
P(s′|a, s)

∑
a′∈A

π(a′|s′)Qπ(s′, a′) (2.9)

Moreover, based on the above equations we can define an operator, Tπ , for each policy π
whose unique fixed point satisfy Theorem 2.1.
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Definition 2.3: Bellman ExpectationOperator

Given an MDP,M = ⟨S,A,P, r, γ⟩, let Q ≡ QS,A be the space of bounded
real-valued functions over S × A. Then for any policy π : S × A → [0, 1], we can
the define, point-wise, the Bellman Expectation operator Tπ

Q : Q → Q as:

(Tπ
Qf)(s, a) = r(s, a) + γ

∑
s′
P(s′|a, s)

∑
a′∈A

π(a′|s′)f(s′, a′) , ∀f ∈ Q (2.10)

This operator has one unique fixed point which corresponds to the action-value func-
tion Qπ in our MDPM. That is: Tπ

QQπ(s, a) = Qπ(s, a), ∀s ∈ S, a ∈ A.
Similarly, for the state-value functionVπ , we can define the BellmanExpectation op-
erator Tπ

V : V → V , where V is the space of bounded real-valued functions taking
values from S , as:

(Tπ
V f)(s) =

∑
a

π(s, a)

[
r(s, a) + γ

∑
s′
P(s′|a, s)f(s′)

]
,∀f ∈ V (2.11)

This operator as well has only one unique fixed point that corresponds to the state-
value function Vπ : (Tπ

VV
π)(s) = Vπ(s),∀s ∈ S .

Theproof of the above is omitted in this exposition but can be found in (Szepesvári, 2010).
Also in general, we will omit the indicesQ and respectively V when talking about these
operators, but it will be evident from the cardinality of the arguments the function is called
with, which of them we are referring to.

2.1.3 Greedy Policy Improvement

Given an MDPM, let Qπ be the action-value function for a stationary policy π. Now, let
us consider the greedy policy πgreedy with respect to this action-value function:

πgreedy(a|s) =

1, for a = argmaxb∈A Qπ(s, b)

0, otherwise

where we assume any ties in maxb∈A Qπ(s, b) are resolved deterministically. In this way,
we can obtain a deterministic policy πgreedy(s), which greedily chooses at each state, the
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most promising action – or one of these actions if multiple achieve the same value – under
policy π. This results in a policy that is guaranteed to improve the expected return at every
state. The proof of this result can be found in Appendix A.1.1 (or Puterman (1994)).

Theorem 2.2: Greedy Policy Improvement

Given anMDP,M = ⟨S,A,P, r, γ⟩, a policy π and its associated action-valueQπ ,
then if we consider the greedy policy πgreedy(s) = argmaxa Qπ(s, a)we have that:

Qπgreedy(s, a) ≥ Qπ(s, a),∀s ∈ S, a ∈ A

withequality satisfiedonlywhen π cannot be improvedanymore: π(s, a) ∈ argmaxμ Qμ(s, a),
∀s ∈ S, a ∈ A.

2.1.4 Optimality in MDPs

For control problems, we are interested in finding an optimal policy where we define an
optimal policy as the policy that achieves the greatest expected return. First let us define
the optimal expected return, or the optimal state-value function, V∗ as:

V∗(s) = max
π

[Vπ(s)], ∀s ∈ S (2.12)

That is, for each state s we define the optimal value function as the expected return if after
state s we were to act optimally. Likewise one can define the optimal action-value as:

Q∗(s, a) = max
π

[Qπ(s, a)], ∀(s, a) ∈ S ×A (2.13)

An optimal policy π∗, which might not be unique, is defined as any policy that attains this
optimal value function:

π∗ is optimal⇔ Vπ∗ = V∗ (⇔ Qπ∗ = Q∗) (2.14)

Note that such an optimal policy always exists for an given MDP. Moreover, given the
optimal action-value function Q∗, one can easily construct such an optimal policy by just
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acting greedily with respect to the action-value function.

π∗greedy(s) = argmax
a

Q∗(s, a)⇒ π∗greedy(s) is optimal. (2.15)

The above follows immediately from the Theorem 2.2 (Greedy Policy Improvement)
which states that the greedy policy on Q∗ = Qπ∗ will improve the value function unless
already at optimality, thus it follows that Qπgreedy = Q∗ – therefore πgreedy is an optimal
policy.

Theorem 2.3: BellmanOptimality Equations

The optimal value functions satisfy the following equations:

V∗(s) = max
a∈A

[
r(s, a) + γ

∑
s′
P(s′|a, s)Vπ(s′)

]
︸ ︷︷ ︸

Q∗(s,a)

(2.16)

Q∗(s, a) = r(s, a) + γ
∑
s′
P(s′|a, s) max

a′∈A

[
Q∗(s′, a′)

]
︸ ︷︷ ︸

V∗(s′)

(2.17)

for any s ∈ S , and any a ∈ A.

Naturally, there is a strong relationship between the optimal value function V∗ and the
optimal state-action value function Q∗. This can be derived by recalling the relation be-
tween the state-value function and the action-value function in Eq. 2.7 and applying it for
the optimal policy π = π∗greedy defined in Eq. 2.15. Using this relation in conjunction with
Bellman Expectation Equations we can derive the Bellman Optimality Equations (Theo-
rem 2.3). As we shall see later, these play an essential role in solving value-based control
problems.

As before, based on the above equations we can define an optimality operator , T∗,
whose unique fixed point satisfies Theorem 2.3 – see Definition 2.4 below.
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Definition 2.4: BellmanOptimality Operators

Given anMDP,M = ⟨S,A,P, r, γ⟩, letQ ≡ QS,A be the space of bounded real-
valued functions overS ×A, we can the define, point-wise, the Bellman Optimality
operator T∗Q : Q → Q as:

(T∗Qf)(s, a) = r(s, a) + γ
∑
s′
P(s′|a, s) max

a′∈A
f(s′, a′) , ∀f ∈ Q (2.18)

Thisoperator has one unique fixed pointwhich corresponds to the optimal action-value
function Q∗ in our MDPM. That is: T∗QQ∗(s, a) = Q∗(s, a),∀s ∈ S, a ∈ A.
Similarly, for the state-value function V∗, we can define the Bellman Optimality op-
erator T∗V : V → V , where V is the space of bounded real-valued functions taking
values from S , as:

(T∗V f)(s) = max
a

[
r(s, a) + γ

∑
s′
P(s′|a, s)f(s′)

]
,∀f ∈ V (2.19)

This operator as well has only one unique fixed point that corresponds to the optimal
state-value function V∗: (T∗VV

∗)(s) = V∗(s), ∀s ∈ S .

For convenience, moving forward, we will omit the index (V or Q) associated with the
space of functions over which this operator is defined and simply use the notation T∗.

2.1.5 Dynamic Programming (Perfect knowledge RL)

In the following section, we assume complete knowledge of the MDP in question and we
are going to explore how one can address twomajor classes of problems in RL: prediction
(or evaluation of a particular policy) and control (finding the optimal policy). In general,
please note that we usually only have access to (trajectory) samples R, S′ ∼ P(r, s′|s, a)
from the underlying MDP, but we will see that the principles highlighted in this section,
can be very naturally extended and adapted to work with sampled experience.

Underperfect knowledge– that is, wehave access toS,A,P, r, γ – the simplestwaywe
can perform both prediction and control is via dynamic programming. This follows imme-
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diately from the Bellman Equations which expose the compositional structure present in
the solutionswe are targeting. A simple closer inspectionof these equations reveal that one
can first solve sub-problems (likeV(s′)) and then put them together to gradually build the
overall solution in these optimisation problems. Note also that these sub-problems tend
to reoccur and thus these partial solutions, once found and cached in, can be easily reused.
This is a core principle in dynamic programming. This paired to the Markov assumption
which provides a simple, step-by-step decomposition, ensures a particularly rich structure
in the solution space that can be effectively exploited by RL algorithms.

2.1.5.1 Preliminaries

Most of the methods we are going to the discuss in this chapter, as well as the majority of
the methods in RL trying to estimate value functions, consist of an iterative procedure of
building and refining these values at every step. The convergence of these methods rely
heavily on the properties of the two operators introduced in the previous sections: the
expectation operator Tπ and respectively the optimality operator T∗.

Definition 2.5: Contractionmapping

Let B be a Banach space. An operator T : B → B is a contraction mapping if for
any u, v ∈ B,∃α ∈ [0, 1) such that:

∥Tv− Tu∥ ≤ α∥v− u∥

One can show that both of these (Tπ andT∗) are in fact contraction operators with the
contraction constant given by γ (see Definition 2.5). In the light of this fact, the conver-
gence if these iterative processes follows from the Banach’s Fixed Point Theorem (Theo-
rem 2.4). In a nutshell, the contraction property ensured that with each and every applica-
tion of these operators, we get closer and closer to their respective fixed points, and under
the right conditions, ultimately converging to them.
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Theorem 2.4: Banach Fixed PointTheorem

LetB be a Banach space and T : B → B a γ-contraction mapping, then:

1. T has a unique fixed point x ∈ B, s.t. ∃!x∗ ∈ B s.t. Tx∗ = x∗

2. ∀x0 ∈ B, the sequence xn+1 = Txn converges to T’s unique fixed point x∗ in
a geometric fashion:

∥xn − x∗∥ ≤ γn∥x0 − x∗∥ (2.20)

Thus limn→∞ ∥xn − x∗∥ ≤ limn→∞ (γn∥x0 − x∗∥) = 0.

2.1.5.2 Policy Evaluation

We begin by considering the prediction problem – that is the problem of evaluating how
good a particular policy is in our MDP. This is formally described as:

Problem1 (Prediction in a knownMDP). GivenanMDP ⟨S,A,P, r, γ⟩andapolicy π, or
alternatively a Markov Reward Process (MRP) ⟨S,Aπ,Pπ, rπ, γ⟩, compute the action-value
function Qπ(s, a) (or state-value function Vπ(s)).

A solution to the above problem is known as Policy Evaluation and involves using dy-
namic programming together with the Bellman Expectation equations with respect to the
policy π, we are trying to evaluate. A full description is provided in Algorithm 2.1 below.

Proof: Convergence of Iterative Policy Evaluation Vπ (Algorithm 2.1. )Theupdate equations
can be re-written using the Bellman expectation operator Tπ :

Tπ(V)(s) =
∑
a∈A

π(s, a)r(s, a) + γ
∑
a∈A

π(s, a)
∑
s′∈S

P(s′|s, a)V(s′)

= rπ(s) + γ
∑
s′∈S

Pπ(s′|s)V(s′)

⇒ Tπ(V) = rπ + γPπV

As a reminder, note that Vπ is a fixed point of Tπ . Moreover this fixed point turns out to
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Algorithm 2.1 Iterative Policy Evaluation

Require: MDPM = ⟨S,A,P, r, γ⟩ and policy π

Problem: Evaluate a given policy π
Solution: Iterative backups using the Bellman Expectation Eq. (Theorem 2.1)

Initialize: V(0) (or Q(0))

for each k ≤ MAX_ITERS and for each state s ∈ S do

V(k+1)(s) =
∑
a∈A

π(s, a)

(
R(s, a) + γ

∑
s′∈S

P(s′|s, a)V(k)(s′)

)
︸ ︷︷ ︸

Q(k)(s,a)

or if interested in the action-value function, for all (s, a) ∈ S ×A

Q(k+1)(s, a) = R(s, a) + γ
∑
s′∈S

P(s′|s, a)
∑
a′∈A

π(s′, a′)Q(k)(s′, a′)︸ ︷︷ ︸
V(k)(s′)

end for

return V(1) → V(2) → V(3) → · · · → Vπ (or Q(1) → Q(2) → Q(3) → · · · → Qπ)

be unique. This follows immediately from the fact that Tπ is the L∞-norm ² contraction
through the direct application of the Banach’s Fixed Point theorem (Theorem 2.4). All that
remains to be shown is that Tπ is indeed a γ-contraction, with respect to the∞-norm:

∥Tπ(V)− Tπ(V′)∥∞ = ∥(rπ + γPπV)− (rπ + γPπV′)∥∞
= ∥γPπ(V− V′)∥∞
≤ γ∥Pπ∥V− V′∥∞∥∞
≤ γ∥V− V′∥∞

Thus, repeated applications of the Bellman Expectation operator, Tπ , leads to:

∥(Tπ)k+1(V)− (Tπ)k+1(Vπ)∥∞ ≤ γ∥(Tπ)k(V)− (Tπ)k(Vπ)∥∞
≤ γ(k+1)∥V− Vπ∥∞

²Where the∞-norm is defined as: ∥V∥∞ = maxs∈S V(s)
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Now remember thatVπ is a fixed point forTπ , thus (Tπ)k+1(Vπ) = Vπ . Therefore we get:

∥(Tπ)k+1(V)− Vπ∥∞ ≤ γ(k+1)∥V− Vπ∥∞ (2.21)

Thus, as k → ∞, the repeated applications of the Bellman Expectation operator drives
the value function closer and closer to the unique fixed point, (Tπ)(k+1)(V)→ Vπ .

The proof for the action-values Q(s, a) rests on the same contraction-based argument
to show convergence to the fixed point Qπ(s, a), in a geometric fashion.

2.1.5.3 Value Iteration

Now we turn our attention to the harder problem of inferring how to optimally behave in
a known MDP. In this case we want to find the optimal way to act in this environment, in
order to maximise our expected return. The control problem can be formalise as follows:

Problem 2 (Control in a known MDP). Given an MDP ⟨S,A,P,R, γ⟩, compute an op-
timal policy π∗ (or its optimal value function V∗/Q∗).

Although one could try to optimise for the policy directly, this might be hard to do as
the ’goodness’ of the policy is assessed by its corresponding value function Qπ and as we
have seen in the last section computing this is not immediate – in fact this is a problem of
its own. An alternative way of approaching the control problem is to try to build the opti-
mal value function itself and then, as discussed previously, one can obtain an optimal be-
haviour policy by greedification. The advantage of such approach is that the optimal value
function is always unique – although this might correspond to multiple optimal policies.
Moreover, the Bellman optimality operator turns out to be also a contraction mapping.
Thus we can devise a similar procedure as in Algorithm 2.1, but now we will be using the
Bellman Optimality equations to gradually improve our value-function till we reach the
optimal value. A full description of this algorithm is provided in Algorithm 2.2, alongwith
a proof of convergence to the unique optimal V∗(resp. Q∗).

Proof: Convergence of Value Iteration to V∗ (Algorithm 2.2). Similar to the above proof, let
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Algorithm 2.2Value Iteration

Require: MDPM = ⟨S,A,P, r, γ⟩

Problem: Compute the optimal value function V∗ (or Q∗)
Solution: Iterative updates/backups using the Bellman Optimality Equation. (Theo-
rem 2.3)

Initialize: V(0) (or Q(0))

for each k ≤ MAX_ITERS and for each state s ∈ S do

V(k+1)(s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V(k)(s′)

)
︸ ︷︷ ︸

Q(k)(s,a)

or if interested in the action-value function, for all (s, a) ∈ S ×A:

Q(k+1)(s, a) =

r(s, a) + γ
∑
s′∈S

P(s′|s, a)
[
max
a′∈A

Q(k)(s′, a′)
]

︸ ︷︷ ︸
V(k)(s′)


end for

return V(1) → V(2) → V(3) → · · · → V∗ (or Q(1) → Q(2) → Q(3) → · · · → Q∗)

us recall the Bellman optimality operator T∗:

(T∗V)(s) = max
a∈A

Q(s, a)

= max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V(s′)

]
= max

a∈A
[ra + γPa

ss′V]
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First, we will prove that T∗ is a γ− contraction mapping:

∥T∗V− T∗U∥∞ =

∥∥∥∥max
a∈A

[ra + γPa
ss′V]−max

b∈A

[
rb + γPb

ss′U
]∥∥∥∥
∞

≤
∥∥∥∥max

a∈A
[(ra + γPa

ss′V)− (ra + γPa
ss′U)]

∥∥∥∥
∞

≤
∥∥∥∥max

a∈A
[γPa

ss′(V− U)]
∥∥∥∥
∞

= γ
∥∥∥∥max

a∈A
[Pa

ss′(V− U)]
∥∥∥∥
∞

≤ γ max
s′∈S
∥V(s′)− U(s′)∥ (as

∑
s′ P(s

′|s, a) = 1,∀a)

≤ γ ∥(V− U)∥∞

This implies via the Banach’s Fixed Point theorem, that T∗ has a unique fixed point and
that repeated applications of the operator induces a sequence that converges to its fixed
point, V∗:

V(k+1) = TV(k) ⇒ (V(k))k≥0 →∥.∥∞ V∗ (2.22)

at a geometric rate:

∥V(k+1) − V∗∥∞ = ∥(T∗)k+1V0 − (T∗)k+1V∗∥∞ ≤ γk+1∥V0 − V∗∥∞ (2.23)

Since this fixed point is unique, we can conclude that:

The sequence (V(k))k≥0 defined by V(k+1) = TV(k) converges in ∥.∥∞ to V∗,

for all starting points ∀V(0)as k→∞.

2.1.5.4 Generalised Policy Iteration

Wehave seen in the previous sectionhowone can construct an optimal policy by first com-
puting the optimal value function and then acting greedily based on this value. Although
convergence is guaranteed in the value function space, in practice the policy tends to con-
verge faster than the actual value-function. That is, we could have sought to act greedily
with respect to an intermediate valueQ(k)(s, a) and that could alreadyprovided anoptimal
policy even before the sequence of value-functions, (Q(k))k≥0, reaches optimality.

Buildingon this observation, one canconstruct a general procedure called (Generalised)
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Policy Iteration (Algorithm 2.3) where we evaluate our current policy, π, by building its
corresponding value function and then based on this value we seek to improve our be-
haviour (for instance by acting greedily with respect to the current value function Vπ)
leading to πnew. By iterating this procedure we continue to improve our policy and, at least
in the finite case, we are guaranteed to converge to both an optimal policy and the opti-
mal value-function. This principle actually results in a very general framework that we will
use abundantly for planning in control problems, with various instantiations of thePolicy
Evaluation and Policy Improvement steps in Algorithm 2.3 below.

Algorithm 2.3Generalised Policy Iteration

while (Not converged) do

(Policy Evaluation): Given policy π, estimate/evaluate Q = Qπ .
(e.g. by Iterative Policy Evaluation - see Algorithm 2.1)

(Policy Improvement): Generate πnew ≥ π.
(e.g. by Greedy Policy Improvement - see Section 2.1.3)

if Qπ == Qπnew then
We converged. TERMINATE

end if
This becomes the new policy for the evaluation step π = πnew.

end while

In principle, one can employ any method of improvement in the second step, but the
greedy alternative is both easy to implement and guaranteed to improve the value-function
point-wise. A slightly different improvement strategy, particular suitable for the multitask
scenario, is to apply a more general policy improvement step over a number of policies, if
we can obtain multiple of these evaluations. We will see that some of the methods pro-
posed here enable us to get, essentially for free, multiple evaluations of different policies
for the tasks of interest. This property also translates to a potentially better improvement
step for each task under consideration.

2.1.6 Sample-based Reinforcement Learning

In the previous section, we assumed full knowledge of the MDP at hand, but in practice
this is rarely the case. More commonly, we would have to interact with the environment
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and generate experiences from which to learn. In even more restrictive cases, we would
actually onlyhave access to recorded interactionswith theMDPinquestion. Thus,wehave
to either build an explicit model of the transitions’ distribution and reward function based
on the sampled episodes and then apply the above methodology to these approximations
or attempt to approximate the value functions of interest directly from the experience. The
second approach bypasses building a model explicitly and is thus refereed to in literature
as model-free reinforcement learning. Throughout this work, we will be taking this latter
approach to all control and prediction problems we are going to consider.

2.1.6.1 Monte Carlo (MC)

TheMonteCarlo (MC)procedure implementsprobably the simplest estimateof the value-
functions, approximating the expected return with the empirical mean return seen over
a set of samples. To ensure that well-defined returns are available, here we define Monte
Carlomethodsonly for episodic tasks. Thismeans thatour experiencewill consider episodes
of experience: D = {τ i}i=1,N, where τ i = {s1, a1, r2, s2, a2, · · · , sT}, at ∼ π(.|st), st+1 ∼
P(.|st, at), ∀t = 1,T is the trajectory of experience seen in episode i, by interacting with
an environmentP, r while following a behaviour policy π.

Vπ(s) = Eπ[Gt|St = s] ≈ 1
Ns

Ns∑
i=1

G(i)
s (2.24)

where G(i) is the return achieved in episode i, from state s onwards and Ns is the number
of visits wemade to state s in the trajectory sample setD. If state swas not encountered in
an episode i, then its corresponding return G(i)

s = 0. Moreover, there exists two versions
of this estimate: i) first-visit MC estimate, which takes the averages over returns starting
from s only in the first time s was visited in that episode and ii) every-visit MC estimate,
which takes the averaged over all future returns starting from s, for every visit to s. Both
of these estimates will converge asymptotically (as Ns → ∞) to Vπ (Singh and Sutton,
1996; Sutton and Barto, 1998). The resulting, episodic update is of the form:

V(St)← V(St) + α (Gt − V(St)) (2.25)

Thus, the above equation gives us a very simple model-free policy evaluation algorithm
that can be used directly for prediction or as the first step of the (generalised) policy iter-
ation procedure for control purposes.
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It is worth noting that in order to build the above MC estimate for the value function
Vπ , we need access to trajectories thatwere generated by acting according to the evaluated tar-
get policy π. This also means that for control purposes, whenever we switch the evaluation
target, from one policy iteration to the other, we would need to re-generate on-policy ex-
perience for our new target. Of course, one could use importance sampling corrections
to facilitate reuse of data collected under a different behaviour policy than the one we
are currently trying to evaluate. Nevertheless, the importance ratios here are considered
throughout a full trajectory, thus the feasibility of this approach depends quite highly on
the overlap between our behaviour policy and our target for the evaluation.

2.1.6.2 Temporal Difference (TD) Learning

AlthoughMCwill converge to the true value function given enough samples, the variance
of this estimator given a finite sample tends to be very high. Also note that we need to wait
till the end of episode to make any updates to our current estimate of the value function,
which again can be very (sample) inefficient. To address these issues we will introduce a
family of algorithms called temporal-difference (TD) algorithms that are able to learn con-
tinuously from incomplete episodes by bootstrapping.

TD learning methods are really a combination of Monte Carlo learning and dynamic
programming(DP) divide-and-conquer ideas explored before. Like MC methods, TD
methods can learn directly from sampled experience without a full model of the environ-
ment. And similar to DP, TD methods will update estimates based on partial (learnt)
solutions, without having to wait for the final outcome of an episode.

The simplest version of temporal-difference learning, TD(0), replaces the return Gt

with an estimate of it,Gt:t+1 ≈ Rt+1+ γV(St+1), given by the Bellman Expectation Equa-
tion. Consequently the update becomes:

V(St)← V(St) + α(Rt+1 + γV(St+1)︸ ︷︷ ︸
Gt:t+1

−V(St)) (2.26)

where we will commonly refer to Gt:t+1 = Rt+1 + γV(St+1) as the TD target and we can
define the TD error as the mismatch between this estimated target and our current value
function at this state:

δt := Gt:t+1 − V(St) = Rt+1 + γV(St+1)− V(St).
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It is important to note that by updating our value function towards the TD target, we will,
in general, be introducing some bias in our estimate of the value function. Nevertheless,
it was shown in (Dayan, 1992; Dayan and Sejnowski, 1994), that TD(0) does asymptoti-
cally converge to the true value function Vπ under a decaying learning rate, following the
Robbins–Monro conditions ³. In general, this estimate has a much lower variance as com-
pared to its Monte Carlo counterpart, but can introduce a bias that might be hard to un-
learn. In essence, a bad initialisation could considerably delay our convergence.

Something in-between the full history return used by the MC update and the one-step
TD target, is considering computing TD targets based on multiple steps returns. Let us
define the n-step return:

Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV(St+n) (2.27)

and making this our new TD target(n-step TD target) towards which we update our cur-
rent estimate of the value function, we obtain:

V(St)← V(St) + α(Gt:t+n − V(St)) (2.28)

Note that by setting n = 0, we recover TD(0) and if we set n =∞we recover the Monte
Carlo update in Eq. 2.25. Furthermore, we can think about combining these n-step targets
(which we use as a guess for V(St) = Eπ[Gt]) to get a new target. We define the λ-return,
Gλ

t as a linear combination of the n-step returns:

Gλ
t =

∞∑
n=1

anGt:t+n (2.29)

with an = (1− λ)λn, and where λ ∈ (0, 1)⁴ is the decaying factor across the n-step returns
Gt:t+n+1. Asdefinedabove, inorder to computeGλ

t wewouldneed towait till the endof the
episode in order to update our value function - same as forMC learning. Fortunately there
is a backward view of TD(λ) that provides us with an update rule that can be immediately
be applied after seeing just one additional transition, as we did in TD(0). For this, we
define the eligibility traces e(s) which, for each state s, will weight the corresponding TD

³This convergence holds for table-based representation of the value functions, but does not gener-
ally hold for arbitrary function approximation of the value functions (Dayan, 1992)

⁴Note that
∑∞

n=1 an =
∑∞

n=1 (1− λ)λn = (1− λ)
∑∞

n=1 λ
n = (1− λ) · 1

(1−λ) = 1. ThusGλ
t is actually

a convex combination of the n-step returns.

28



errors, as follows:

e0(s) = 0, et(s) = γλet−1(s) + I(St == s) (2.30)

In doing so, we can dynamically assign credit to themost recently and themost frequently
visited states. The resulting algorithm is described in Algorithm 2.4 below and relies on
re-writing the episode TD error, Gλ

t − V(St), in terms of the per-step TD errors, δt =

Rt+1 + γV(St+1) − V(St), and weighting them accordingly to these ”visit counts” im-
plemented by the eligibility traces. It has been shown that using eligibility traces, with

Algorithm 2.4TD(λ) for Policy Evaluation (Result: V→ Vπ)

Initialise V(s) = V0(s),∀s
for all episodes do

e0(s) = 0, ∀s ∈ S
Initialise s = s0 ∼ μ0 (starting state)
for all steps t = 0,T of an episode do

Select action at ∼ π(.|st)
Take action at and observe reward rt+1 and next state st+1

Update:
δt ← rt+1 + γV(st+1)− V(st)
et(st)← et−1(st) + 1
for all s ∈ S do

V(s)← V(s) + αδtet(s)
et(s)← γλet(s)

end for
end for

end for

an offline update at the end the episodes, the forward and backward view of TD(λ) are
equivalent - see (Sutton and Barto, 1998) and (Singh and Sutton, 1996) for details. More
recently, the same equivalence has been proven to be achieved for online updates, under a
slightly different definition of the eligibility trace - please consult (Seijen andSutton, 2014;
Sutton et al., 2014) and (van Hasselt et al., 2014) for full details.
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2.1.6.3 TD control

So far, we have looked at how one can approach the policy evaluation problem for an un-
known MDP, where we have access only to sampled trajectories. In this section, we will
revisit the control problem under the sample-based regime. As a reminder, the control
problem aims to learn the optimal policy or the optimal value function Q∗. Note that in
themodel-free control problemwe are interested in estimating the state-action value func-
tion,Q∗(s, a) rather thanV∗(s) as this will immediately give us greedily the optimal policy
without an explicit model of the immediate reward function. The simplest way to do this,
is to recall the framework of Generalised Policy Iteration (Algorithm 2.3) and simply plug
into the policy evaluation step, one of the model-free evaluation algorithms introduced in
the previous section (MC, TD(0), TD(λ)). The policy improvement step can remain the
same: greedy improvement (or ε− greedy⁵ to insure some exploration).

Another crucial observationwe need tomake is that in order to build the estimateQπ at
each policy evaluation step in amodel-free fashion, wewill need experience(samples) gen-
erated by acting out the policy we are trying to evaluate. This means that after each policy
improvement step, when our policy changes, we need to interact with the environment to
collect samples for the current evaluation step. This can be very sample-inefficient and in
caseswhere environment interactions are costly, a straightforward applicationof on-policy
TD might prove to be too expensive. An explicit focus of this work will be to increase the
sample efficiency of RL algorithms. As such, most of the time, we will be looking at off-
policy methods that would allow us to reuse transitions previously generated.

2.1.6.4 Q-Learning

Fortunately, it turns out that we can do model-free control without having to act out the
intermediate policies encountered throughout our optimisation. Instead we can use a be-
haviour policy that generates diverse experiences and then employ backups according to
the Bellman Optimality operator T∗ to achieve convergence to Q∗. This algorithm was
introduced in (Watkins and Dayan, 1992) and is commonly known under the name of
Q-learning. This has become one of the most popular control algorithms in RL and we
provide a full outline of this algorithm in Algorithm 2.5 below.

⁵An ε-greedy policy is the policy that follows the greedy policy with probability (1 − ε) and with
probability ε selects a random action fromA.
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Algorithm 2.5Q-Learning (Off-Policy TD Control)

Initialize Q(s, a) = Q0(s, a), ∀s ∈ S, a ∈ A
Consider b a behaviour policy
for all episodes do

Start at s0 ∈ μ0
for all steps t = 0,T of the episode do

Take action at ∼ b(.|st)
Observe reward rt+1 and next state st+1

Update (One-step update based onOptimality Eq.)
Q(s, a)← Q(st, at) + α[rt + γ maxa′ Q(st+1, a′)− Q(st, at)]

end for
end for

Under the assumption that every state-ation pair is visited infinitely often, it can be
shown that the expectation of the TD error, δt := [Rt + γ maxa′ Q(St+1, a′)−Q(St,At)]

converges to0. When theTDerror approaches0, this is equivalent to saying that (T∗Q(s, a)−
Q(s, a)) → 0, ∀s ∈ S, a ∈ A, which implies that the obtained Q-estimate satisfies the
Bellman Optimality Equation. Since this operator has an unique fixed point Q∗, the result-
ing function that obtains a zero TD-error across the state-action space, recovers the opti-
mal action-valueQ∗. Further details on the conditions and requirements of the behaviour
policy, as well as a detailed proof of convergence can be found in (Szepesvári, 2010).

2.1.7 Model-Free RL with Function Approximation

So far, all the algorithms presented here assumed a table-based representation of the value
functions – that is, we assumedwe can enumerate(S is finite) and treat each state(or state-
actionpair) separatelywhencomputing the value function. Nevertheless, this is not always
feasible and generalisation is required in problemswith very large state-action spaces. Nat-
urally, wewouldwant to extendourRLalgorithms todealwith these situations. Todo this,
we canuse a real function to approximate (as closely as possible)our target value functions,
instead of an exhausted enumeration of the values for V (or Q). For every state s:

V(s) ≈ fθ(s), ∀s ∈ S, fθ ∈ F (some parametrisation family) (2.31)
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Aswithmost problems in statistical learning, we will choose an appropriate function class
F , parametrised by a set of parameters θ and we will try to learn from samples which of
the functions inF most closely captures the value functions of interest. Such an example
of a widely-used and well-studied parametrisation class are linear approximations. Thus
one can consider:

V(s) ≈ θTφ(s) (or Q(s, a) ≈ θTφ(s, a)) (2.32)

where φ(s) is a feature space and θ is a real-value vector of parameters that weights the fea-
tures in φ(.). It is important to note that in general, this is just an approximation – in the
best-case scenario, we will recover the function f ∈ F , in our approximation class, that is
closest to our real target Vπ or V∗. Only if our true target belongs to the approximation
familyF , we can converge to the true value function, otherwise, we hope the approxima-
tion is close enough to still provide us with a close-to-optimal behaviour.

Approximate Policy Iteration (API) methods

In the following we are going to discuss Approximate Policy Iteration (API) methods. As
the name suggested, these methods will mimic a PI procedure, under approximation. As
a reminder, these are algorithms that alternate between a policy evaluation step and a pol-
icy improvement step. Given a current policy π, the evaluation step aims to compute (or
approximate) its corresponding value function Qπ . In most cases, this step will make use
of the Bellman expectation equation (Eq. 2.8-2.9). In the approximate case, at each itera-
tion, we aim to find the best approximation to one application of the Bellman expectation
operator Tπ f (Theorem 2.3). Other methods will use the fact the fixed point of this op-
erator is unique and thus will try to find directly the function f in the hypothesis class F
that most closely satisfied its fixed point equation (Definition 2.1). In both of these cases,
we end up with an approximate version of the policy evaluation step. After this step, as in
the exact case (Algorithm 2.3), we can do a greedy improvement step and then iterate the
alternation of these two steps. The convergence to the true value function Qπ has been
investigated under different functional approximations and different learning criteria. Ap-
proximative PI was shown to be particularly well-behaved under a least-square projection
criterion — see (Bertsekas et al., 1995; Bradtke and Barto, 1996; Bertsekas and Tsitsik-
lis, 1995; Lagoudakis et al., 2001), overcoming even unknown divergent cases of Fitted Q
Iterations (Lagoudakis and Parr, 2003). For a general survey on error bounds for approx-
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imative policy iteration please consult (Munos, 2003; Bertsekas, 2011; Scherrer, 2014).

Fitted Q-Iteration (FQI)

Fitted Q-Iteration(FQI) (Algorithm 2.6) is a general method of extendingQ-learning (Al-
gorithm 2.5) to the approximate case. This method was first introduced in (Ernst et al.,
2005; Riedmiller, 2005) and can, in principle, be used with any functional class approx-
imating the action-value functions. Popular choices include decision trees (Ernst et al.,
2005; Castelletti et al., 2012), linear approximations (Antos et al., 2007, 2008; Farahmand
et al., 2009) or (deep) neural networks (Riedmiller, 2005; Gabel et al., 2011; Mnih et al.,
2013, 2015); although convergence properties and training behaviour highly depend on
this choice. It is worth noting that, in general, FQI is not guaranteed to converge to the
best approximator in our approximation class andmoreover this best approximator might
not give rise to the optimal policy we are looking for. Nevertheless, in practice, it has been
shown that we can achieve convergence or at least a hovering behaviour around the opti-
mal value function and in many cases, this does indeed lead to a close-to-optimal policy.

Algorithm 2.6 Fitted Q-Iteration
Require: D ∼ π - set of experiences

Initialization: Q← Q0 (can be arbitrary)

for k = 1 : K do
(Compute targets): using the Bellman Equation(s): Y(k) ≈ T∗(Q(k))
for all (st, at, rt+1, st+1) ∈ D(k) do

y(k)t = rt+1 + γ maxa Q(k)(st+1, a) ( i.e. y(k)t ≈ Q(st, at) )
end for
(Q-Fitting)⁶: generate Q(k+1) = Regress(D(k), Y(k))

end for

Recently, (Mnih et al., 2015) introduced Deep Q-Network (DQN), which uses a neu-
ral network to implement an off-policy non-linear function approximation of the optimal
value function. The study of RL algorithms that use neural networks as function approx-
imators has since then been dubbed deep reinforcement learning. Deep RL removes the
requirement of a good handcrafted feature representation by requiring instead an effec-
tive network architecture and learning algorithm. Mnih et al. (2015) for example, when
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introducing DQN used a neural network composed of three hidden convolutional lay-
ers (LeCun et al., 1995, 2010) followed by a fully-connected hidden layer. These deep
learning-based representations (Bengio et al., 2017) have been shown to be extremely ef-
fective, allowing us to scale up tomore complex tasks and scenarios where coming upwith
good features is not trivial (Mnih et al., 2015; Silver et al., 2016, 2017). The network pa-
rameters are updated through gradient-descent with the following update rule:

θ′ ← θ + α
[
Rt+1 + γ max

a
Q(St+1, a|θ−)− Q(St,At|θ)

]
∇θQ(St,At|θ) (2.33)

where θ− denote the parameters of a target network, which is a duplicate network from a
past iteration that will be updated at a particular frequency, less often than the online net-
work, to improve stability (Mnih et al., 2015). An additional insight that aids the training
is the use of an experience replay buffer (Lin, 1993; Schaul et al., 2015b) to improve the
sample efficiency and decorrelate observations. Since its introduction, DQN has inspired
a great collection of follow-up work combining RL methods and deep neural networks
(VanHasselt et al., 2016;Horgan et al., 2018;Hessel et al., 2018;Kapturowski et al., 2019).

In this work we will investigate various instances of these algorithms, under a linear
function class, given a feature space φ(S) in Chapter 3 (FQI) and respectively Chapter 4
(API). And inChapters 5-6, wewill employ an n−step version of FQI (Peng andWilliams,
1994) to learn optimal value functions represented now by amuchmore flexible and pow-
erful class of approximators, deepneural networks (LeCunet al., 2015;Bengio et al., 2017)
when dealing with complex observational spaces like pixels, as in DQN.
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2.2 Transfer Learning

Traditional paradigms inmachine learning, suchas supervised learningand semi-supervised
learning, assume data distributions at training and testing time remain the same. In con-
trast, in transfer learning, we are concernedwith capturing the change, the shift in the data
distribution, in the domain or task at hand. A core assumption of this paradigm, even out-
side RL, is that something changes in the environment, but at the same time, something
remains the same: there is a connection between the previous tasks and the current task,
otherwise, there is no hope for generalisation. And the aspiration here is that this relation-
ship can be effectively exploited to aid the learning process in this new variation.

Empirical evidence suggests that even relatively small changes in the data distribution
can negatively impact the predictive performance of classifiers (Shimodaira, 2000), espe-
cially in the case of neural network based architectures that are more prone to overfitting
to the training data distribution due to over-parametrisation. There have beenmany stud-
ies showing just how fragile machine learning systems can be, when presented with data
just outside the trainingmanifold (Goodfellow et al., 2014;Gu andRigazio, 2014;Nguyen
et al., 2015). In reinforcement learning, the problem is aggravated by the fact that we are
effectively using these predictions to do (long-term) planning in the environment and in
this case even small errors can, over time, be amplified and policies can collapse under very
small variations in the input space, as noted in (Rusu et al., 2016; Huang et al., 2017). We
would like to avoid learning from scratch every time there is a change in the task conditions
or specification. We would like our representations and knowledge to be robust to these
shifts in the data distribution and our policy to have the ability to adapt to new scenarios.

What we are essentially saying is that i) we desire a stronger generalisation property be-
yond the training data distribution to a broader distribution over related tasks/domains,
and ii) the ability to rapidly adapt to variations of tasks sampled from this broader distribu-
tion. In other words, we would like to avoid re-learning the commonalities between these
tasks when trying to master multiple of them. Moreover, we would like to use the knowl-
edge already acquired to boost our learning for a new instance of a task. This is partially
motivated by the fact that people can intelligently reuse and apply previously accumulated
knowledge to solve new problems faster or find better solutions. Wewould like our agents
to display the same characteristics and flexibly adapt to newdemands in their environment
without completely re-learning/re-programming to account for these changes.

The field of transfer learning is quite broad as it aims to cover various ways in which the
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environment and/or the task might change. In this section, we will look at some of the
variations considered in the literature and for the rest of this work, we would focus on one
particular paradigm outlined in the introduction (Definition 1.1) that we believe to be the
most natural in studying the development of an RL agent.

When we think about transfer learning, there are three major research questions that
come up and one would need answering when developing a transfer learning algorithm.
Theanswers to thesemight bedependent on the applicationswe are targeting, the assump-
tions about the domains and the variations allowed (sharing the same input space, differ-
ent features, shared output space ...etc), as well as the properties of the true underlying
distribution over the tasks we would like to generalise over. Regardless, the thought pro-
cess and the resulting algorithm should aim to answer the following:

• What to transfer?
This question targets the process of identifying the subset of the knowledge ac-
quired, that is useful when the change in task occurs. In a sense, this is trying to
separate the parts that are tasks specific and the ones that are more general and are
invariant under changes observed, such as shifts in data-distribution. This is not
a trivial process as it is rooted in our assumptions of how the tasks/domains may
vary and ’forcing’ transfer outside those assumptionsmay hurt the learning process,
which leads us to the next question.

• When to transfer?
Thisquestion asks inwhich scenarios transfer canbedone and likewise, what are sit-
uations in which transfer is not desirable – when the change is too big and the tasks
become essentially unrelated. If we are considering a series of supervised learning
tasks – say sentiment analysis, cat pictures classification, cancer detection, language
translation, stock market prediction – this becomes a relevant question. Which
tasks are more similar to the one at hand and what we can use to map knowledge
from one domain to the other. A potential answer here might be the similarity in
the input domain: text (translation, sentiment analysis), pixel-based classification
(cats, cancer detection).

For an RL agent, we will usually assume some consistency in the environment it
operates in, the sensory information it gets, the range of movements it can exert
onto its environment. Thus in principle, most tasks will be related as they all ought
to reveal information about the environment and our agents’ interaction with it.
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Nevertheless, negative transfer can still happen depending on how we choose to in-
corporate previous knowledge into the new task or how we constrain the learning
problem on the new task to focus resources based on previous interactions. In this
case, we would like to identify the tasks that are indeed most relevant to the target
tasks and use information coming primarily from those.

• How to transfer?

This refers to exactly how algorithmically we incorporate previous acquired sam-
ples, solutions, abstract distilled knowledge into the learning process of a related
task. Although there are various ways of approaching this question and numerous
instantiations of these in the literature, we remark four prominent approaches out-
lined as such in (Pan and Yang, 2009):

– Instance Transfer. This is probably the most intuitive way of transferring in-
formation and relies on the assumption that, although the data distribution
might change between tasks, there is at least a part of the training data that
can be re-used for the current task.

– Transfer via Feature Representation. The feature-representation transfer ap-
proach aims at finding “good” feature representations to minimize domain
divergence and classification or regressionmodel error. This is similar to com-
mon feature learning in the field of multi-task learning (Argyriou et al., 2007).

– Transfer via Parameter Sharing. Most parameter-transfer approaches assume
that individual models for related tasks should share some parameters or a
prior distribution of hyper-parameters. Examples of this paradigm include
regularization frameworks, parametrised shared representations and hierar-
chical Bayesian frameworks.

– RelationalKnowledgeTransfer. Different fromother three contexts, the relational-
knowledge- transfer approach deals with transfer learning problems in rela-
tional domains, where the data are non-i.i.d. and can be represented by mul-
tiple relations, such as networked data or graph relations. This approach as-
sumes data drawn fromeach domain not to be independent and tries to trans-
fer the relationship among data from a source domain to a target domain.

In the following we would take a closer look at these ways of transferring information,
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but first we will introduce a formal definition of the transfer framework and some of the
desired objectives – aiming to measure benefit over learning each task in isolation.

2.2.1 Definitions and Taxonomy

In this section we will introduce a formal definition of transfer learning. Firstly we will
do this in the context of supervised learning, mainly as the literature is more abundant in
this setting and the terminology ismuchmore unified, with several surveys offering a good
overviewof thefield (Weiss et al., 2016;Pan andYang, 2009). Then,wewill extend this for-
malism to reinforcement learning. Although throughout the years there have been some
significant contributions in applying transfer to RL situations – a good overview of the
these can be found in (Taylor and Stone, 2009; Lazaric, 2012) – the literature is still signif-
icantly sparser when compared to the supervised scenarios, with transfer being recognised
as crucial problem and one of the next frontiers in machine learning and RL much more
so only in the recent years.

Let us define a domainD = (X , P(X)) as a tuple of an input spaceX and a marginal
probability distribution over this space P(X). For a given domain, we define a task T as
a tuple made up of the output space (or label space for classification problems) Y and a
predictive function f : X → Y , which in a supervised setting is to be learnt by pairs
(xi, yi) ∈ X × Y . We can define transfer learning as:

Definition 2.6: Transfer Learning

Given a source domainDS = (XS, PS(X)) and a corresponding task TS = (YS, fS),
and a target domainDT = (XT, PT(X)) with a desired target task TT = (YT, fT),
transfer learning is theprocess of improving the target predictive function fT byusing
the information fromDS, TS.

In the full generality of this framework the source and targetdomains, aswell as the tasks
can all be different – DS ̸= DT, TS ̸= TT – but some of the most interesting situations
arise when some of these components are shared. And the more they share, the more
information is potentially available for transfer.

For instance, one of the most natural scenarios encountered in the literature is to as-
sume that the input space stays the same XS = XT ⁷, but the marginal distribution over

⁷The case where XS = XT is referred to as homogeneous transfer learning, and when the input
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this shared input space changes, i.e. PS(X) ̸= PT(X). This is reflective of most systems
that evolve smoothly over time and it is one of the most relevant paradigm for practical
applications: where the data used for training is collected somewhat in the past and then
the trained classifier will be deployed at a later time into the futurewhen the processmight
have changed. An example of this would be recommender systems that have to account
for the ever-changing product/market conditions.

Another scenario that lends itself nicely to transfer is keeping the domains the same,
but having different tasks TS ̸= TT – and thus the prediction functions are different.
This might happen when the output spaces are different. For instance, consider as input
a dataset of pictures and based on this dataset we can formulate multiple tasks: classifi-
cation of objects (the output here is a probability distribution vector over the possible
classes), a caption describing what is happening in the picture (the output here is natural
language/text), a segmentation of the image into background and foreground (the output
space there is pixel space). Although these tasks might be quite different in their predic-
tions, it has been shown that learning jointly to predict multiple things about the same
instance can improve the performance on all tasks (Kokkinos, 2016; Zhang et al., 2017).

2.2.2 Objectives and Desiderata

Previously we have argued that we can use knowledge accumulated from previous tasks
to aid the learning of a new task. In this section, we aim to be more concrete about what
benefits one could expect to gain from transfer learning and formalise some measurable
objectives associated with these potential gains.

Wewill follow and adapt the formalismused in (Pan andYang, 2009;Weiss et al., 2016)
(supervised learning) and (Lazaric, 2012) (reinforcement learning). These transfer objec-
tives and potential gains equally apply to bothRL settings andmore traditional supervised
learning settings. Althoughwewill argue that RL scenarios pose additional challenges, but
alsomaybemore natural opportunities for transfer. Following (Lazaric, 2012) wewill dis-
cuss the threemajor potential improvements a transfer learning systemoffers over learning
from scratch:

• Improvement in learning speed on the new task. Depiction of learning curves are
displayed in Figures 2.2.1a, 2.2.1b. This criteria can be split into two different ob-

domain changes we refer to this as heterogeneous transfer (Weiss et al., 2016)
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jectives that could result in a speedup in learning:

– Reduction in sample complexity (Figure 2.2.1a). This objective says that by em-
ploying transfer we could get off the ground more quickly (with fewer sam-
ples) and achieve a certain performance without seeing a vast amount of ex-
perience in the new setting. This is particularly relevant when data in the tar-
get domain/task is limited or hard to obtain, but we have related (training)
tasks where data is more readily available. Sample complexity is something
many RL algorithms struggle with, especially under functional approxima-
tion. Thus this is an objective we would want to improve on. Moreover, in
RL the learning problem is compounded by the exploration problem. This
canmake the problemmore challenging, but in terms of transfer, this can also
be an additional opportunity. An RL system can benefit from transfer both
the learning process (in the value function/policy approximation), but also
to inform a better exploration in a new task.

– Speed-up in the training time of our algorithms. (Figure 2.2.1b). This can hap-
pen if one could make use of training tasks to inform a more effective search
in the space of solutions for the new task. Or alternatively, reduce the hy-
pothesis space of candidate functions to be considered for the new task. It is
important tonote that although thismight be a very effectiveway for speeding
up learning, we are usually in a situation where we cannot recover the target
function and the accuracy of our approximation is strictly dependent on the
structure of this hypothesis space. Thus restricting this space too much, can
lead to poor asymptotic performance and negative transfer.

Note that one criteria does not exclude the other and a speedup in learning can
come from making progress on either or both of these fronts.

• Jumpstart - a boost in the initial performance. (Figure 2.2.2a). This objective as-
sesses the initial, often zero-shot, performance on a target task. Without transfer,
the learning process usually starts with a random initialization of the parameters. If
our hypothesis space is generous enough to allow good approximations, this start-
ing point might be arbitrary bad and delay convergence. On the other hand, a good
initialization has been shown to greatly help speed up convergence in Value Itera-
tion/Policy Iteration based methods. Thus one can use the training tasks to build
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(b) Speed-up in the training time

Figure 2.2.1: Transfer learning objective 1: producing a speed up in the learning pro-
cess for a new task.

an informative prior to better initialize the learning process for the target task. This
is again a particularly important objective in an RL context, as a better initial per-
formance can have a huge impact on the quality of data we get during exploration,
which in turn has the potential of helping the learning problem itself.

A known potential caveat here is that initialisation, even one with good initial per-
formance, can sometimes have detrimental effects on the learning process, both
in terms of speed of learning and even asymptotic performance. For instance, ini-
tialising with the policy of another agent that was trained on a task that partially
overlaps with the target task, could quickly converge to a suboptimal performance
by exploiting only the common part of the two solutions. In order to converge to
an optimal performance two things must happen: i) the approximation can escape
this local (sub-optimal) solution, ii) exploration strategy will venture outside the
state-space around this suboptimal path and will produce informative enough data
to allow recovery of the optimal solution. Note that these two points are very dis-
tinctive in nature, one has to do with the way we are learning the target function
(value/policy for RL) and the optimisation surface in the chosen hypothesis space
and the second one is a bias introduced by this initial solution in thewaywe explore
the space.

Therefore, even if we are making progress on this objective, it is good to keep in
mind that this might hurt us in the long run, especially as the learning and explo-
ration processes are generally interlinked and will be biased by this initialisation.
Nevertheless, there might be situations where long-term optimal performance is
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Figure 2.2.2: Further transfer learning potential benefits and objectives

not as important as getting off the ground as quickly as possible and acting coher-
ently in a new domain. For instance, in robotics one caresmuchmore about having
an initialisation that has a better initial performance: a policy that canmove around
and respond to the change in the environment, safely exploring the new domain
and avoid cases where it might break the robot, even at the cost of asymptotic per-
formance. Learn from scratch, in this scenario might lead to a better solution in
the long run, but the time, effort and hardware to get there might far outweigh the
asymptotic performance gap. At the end of the day, it is a question of which objec-
tive ismore important tooptimise so thatwecanproperly safeguardagainst possible
negative effects of this initialisation.

• Asymptotic performance improvement. (Figure 2.2.2b)This says that the final perfor-
mance on the target task could be improved by transfer and we can measure this
gap at the end of the training process. The final performance is one we would ide-
ally want to optimise for – in supervised and reinforcement learning scenarios alike.
But, as highlighted previously, theremight be a trade-off between this objective and
other improvements we can get via transfer – like initial performance (jumpstart).

However, we would argue that in most practical applications we care more about
the sample complexity, and we will, realistically, never be in the asymptotic sce-
nario with respect to the experience seen, especially when operating in infinite state
spaces. Thus this criterion might be problematic to measure fairly, as intrinsically
this measure of performance disregards the time or number of samples required
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to reach convergence; two algorithmsmay eventually reach the same performance,
but do so in very different ways: time-wise and sample complexity-wise. Moreover,
the time to convergencemay be prohibitively long and in practice, we are back to ef-
fectively comparing performances on finite sample sizes and finite wall-clock. Thus
although this is a crucial objective for our transfer algorithms, setting up a ’fair’ com-
parison might be problematic.

2.2.3 Methods of Transferring Knowledge in RL

In this section, we will re-visit the last question we posed above: How to transfer? and we
will focus primarily on methods of transferring knowledge in reinforcement learning set-
tings. Moreover we will focus our attention to the particular case where the source and
target MDP-s share the same state and action space, as well as the dynamics –MS =

(S,A,P,RS, γ),MT = (S,A,P,RT, γ). Thus the difference in the tasks is incor-
porate in the reward. Note that this is the scenario proposed in the introduction as the
persistent environment assumption.

2.2.3.1 Instance Transfer

Considering that our tasks share the same state and action space, a natural way of trans-
ferring information is using samples from the source task(s) to improve performance on
the target task. Note that most RL algorithm would require full transitions (st, at, rt, st+1)

which are not necessarily transferable unless we assume some common structure in the re-
ward specification aswell. Note that this is reasonable assumption around the reward/task
distribution – for instance, most of the states would not give you any reward, or just a time
penalty or some states will always give you negative reward. In this case, the question be-
comes when to transfer or what are the samples that are ’safe’ to transfer. If the samples
being transferred from the source tasks differ a lot from the target task, negative transfer
can occur (Lazaric, 2012).

Evenwithoutmaking anyassumptions about exactly the reward functions,wecan some-
times reuse samples in building individual parts of our training algorithm. For instance, if
we adopt a model-based approach and seek to estimate the transition model in order to
plan, this estimation can be done using samples from various (training) tasks and could
readily be used in the target domain. More generally, the core idea would be to identify,
and if possible, separate in the learning that reward and the state-transition information –
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the invariance and the task specific part. In this waywe can reuse samples safely. Examples
of such architectures include successor features (Barreto et al., 2017) and the multitask
least-squares policy iteration method proposed in Section. 4.3 of this work.

2.2.3.2 Representation Transfer

The idea here is to use the source task(s) to infer and extract general characteristics that
are likely to be present in the target task as well. The aim of the transfer algorithm here
is to use these inferred characteristics to change the representation of the solution space
to speed up the learning by reusing relevant parts of the policies previously inferred. At a
more abstract level, it is the same idea of trying to figure out what is shared, what remains
invariant throughout the source task(s) and then leverage this information tomore rapidly
makeprogress on the target task. We single out twomajorwaysof achieving representation
transfer in RL and our work will mostly revolve around these:

• Feature transfer.

This transfer paradigm aims to build a set of features {φi}ni=1 that have been deemed
important for the source task(s) and (re-)define the hypothesis space of the solu-
tions considered for the target task, based on these features.

There are multiple instances in the literature and it is the focus of the next chapters
(Chapters 3-4). An example of this can be seen in (Mahadevan and Maggioni,
2007) that introduces a way of building proto-value functions using the Laplacian
of the estimated graph of the source MDP. Generalisations of this work relax the
constraint of the dynamics of the source and targetMDP and they now can slightly
vary and extend this framework to the case when the source and target MDP can
have different dynamics and different reward.

More recently, progressive networks were introduced in (Rusu et al., 2016) and
these allow features learnt in previous tasks to be used if necessary for the target
task. The power of this architecture lies in essentially constructing a very large set
of features, from different levels of abstractions that might be helpful. On top of
these, the target task can still learn from the raw input and develop a new repre-
sentation that can estimate the target function, even if the source tasks are not par-
ticularly relevant or related. This results in a safe way of doing transfer, where we
essentially safeguard against negative transfer if the source tasks are not a good in-
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dication of what to expect in the target task. The potential problem here is that the
number of features coming from previous tasks might be overwhelmingly large, by
constructions, thus the learning problem might become harder as now the learner
has to distil what is important from the abundance of features coming from pre-
vious tasks and complement them with the learning of its specialized features. As
the number of tasks grows, this problem is aggravated and the learning in the new
task sometimes gives up on re-using the available features from the previous tasks
andwill essentially default to learning its own representation and use that for its ap-
proximation. This is somewhat counter-intuitive in terms of learning, as we would
want our performance and transfer abilities to improve as the number of tasks we
experienced increases.

• Option or subpolicy transfer

Another way of transferring information in an RL setting is at the policy level. The
assumption here is that the source task and the target task can be decomposed into
sub-problems that at least partially canoverlap. In this case, these sub-policies learnt
on the training tasks can be readily used to make progress in the target task. The
idea here is to exploit as much as possible the shared dynamics between the source
and target domains and identify in what part of the state space the source policy
is still sensible/valid and which states actually contain information about the tasks
and reward. This typically allows for planning at a lower time resolution and enable
the reuse to learn skills to navigate between this crucial state where (higher-level)
decisions have to be made. Although most transfer algorithms in this section share
this outlined idea and structure, the critical point is how to identify the subgoals and
learn the options (Sutton et al., 1999) from the estimated dynamics. Inferring these
sub-policies or, mostly known in the RL literature, as options (Sutton et al., 1999;
Perkins et al., 1999) or subskills (Konidaris andBarto, 2009;Da Silva et al., 2012) is
a notoriously hard problem. Nevertheless, options are very natural way of thinking
about transfer and can potentially have major benefits as it provides a temporal ab-
straction that can speed up the learning and planning process as the effective time
horizon for which we are optimising is decreasing substantially. Another benefit
of these temporal abstractions would be using them for more informative, targeted
exploration (using the previously inferred subgoals).
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2.2.3.3 Parameter Sharing

In the previous methods of transferring, evolving features or options, we will assume that
the training and test tasks are similar enough to allow for positive transfer and we usu-
ally try to safeguard against negative transfer – this is done typically but augmenting the
hypothesis space between the common features or options, thus making sure that a (non-
transfer based) solution can be recovered at least theoretically. In these methods we as-
sumesimilarity, butwill typicallynever explicitlymodel, normeasure it. In contrast, parameter-
transfer algorithms do try to explicitly model the underlying distribution from which the
source and target tasks are assumed to be drawn. Thesemethodswill typically parametrise
the MDPs, thusMS =MθS andMT =MθT , and seek to model the distribution over
these parameters θ ∼ p(.|ω) and infer the hyperparameters ω. The assumption here is
that the tasks seen, and consequently the target task are drawn i.i.d. from this underlying
generative process. Methods here include a variety of hierarchical and Bayesian RLmeth-
ods (Wilson et al., 2007; Cao and Ray, 2012). The major advance of these methods is the
distillation of the knowledge gathered from previous task into the prior or the parameters
the generative process of the task experience, conditioned on θ is assumed invariant and
can be learnt using all task available during training.
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Part I

Transferable Representation
Learning
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3
Representation Learning inMultitask

Reinforcement Learning

In this chapter, we are going to consider a multitask Reinforcement Learning (MT-RL)
scenario and explore sharing information between the multiple tasks by learning a shared
representation across the value functions of interest. As the name suggests, in MT-RL we
reason about scenarios in which an agent needs to learn to perform a set of different tasks.
As such, our goal herewill be todesign algorithms that are capableof learning goodpolicies
across many of these tasks, leveraging commonalities whenever possible. As prefaced in
the introduction, in this work we restrict our attention to tasks that take place in the same
persistent environment, as described in Definition 1.1.

In this formulation, each task, indexed by j, formally gives rise to a different MDP,
Mj = ⟨S,A,P, rj, γ j⟩, that share the same state space, S , and action space,A, and dy-
namics. And the reward signal rj canbeanarbitrary functions rj : S×A → [Rmin,Rmax],∀j.
Mastering a task j in this environment is equivalent to finding an optimal policy, πj, for its
induced MDP,Mj. This is one of the most popular choices considered in multitask RL,
although there are many studies that allow for changes in the transition model - for in-
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stance (Ravindran and Barto, 2003) and (Ferguson andMahadevan, 2006). Note that the
methods developed in this chapter would be applicable to this extended setting as well,
although we leave this as a subject for future investigations.

Out of the many various attempts of phrasing the multitask learning problem in rein-
forcement learning and formalising the relativeness between tasks, we distinguish mainly
two prominent ideas in the literature:

• Tasks are drawn from some (un)known distribution. This is the most common sce-
nario treated in the literature and the one we will operate under at this stage. An
early work by (Tanaka and Yamamura, 2003) introduced that idea of maintaining
a sampling distribution over the tasks and implicitly over possible MDPs, an agent
would need to solve in its lifetime. They then used very basic statistics, like mean
and standard deviation, to better initialise the agent’s value tables for the follow-
ing task. Unfortunately, the modelling of the common structure in the tasks is very
limited and transfer of the summary statistics of the value functions are not always
the most informative for a different task - for instance, if the task distributions are
multi-modal.

• Tasks are constructed and presented to the agent in a progressive fashion. Madden and
Howley (2004) introduced a way of transferring experience between progressively
more difficult environments and tasks. They propose mastering partial or simpler
tasks at first, then within an introspection phase, the agent rationalises the experi-
ence gained and formulates a rule-based policy that can readily be used in a more
complex situation. This kind of task learning seems to bemore intuitive and aligned
with the way humans acquire knowledge and expertise, but the applicability of the
proposed method is quite limited. Nevertheless, there has been some recent work
along the lines of formalising the idea of lifelong learning and curriculum learning
(Thrun and Mitchell, 1995; Eaton and Ruvolo, 2013; Ruvolo and Eaton, 2013) to
the RL framework (Brunskill and Li, 2014; Tessler et al., 2017).

The methods we will propose and investigate in this part of the thesis, could be readily
applicable to either these scenarios when considering tasks within the same persistent en-
vironment. In other words, whether or not the reward functions are drawn from some
knowndistributionorpotentially increasing in their complexity (in termsof the tasks spec-
ified by these reward signals), the methods proposed in the next two chapters do not rely
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on any of these assumptions; although we expect empirically that the performance and
the benefits of transfer to be dependent on the nature of the underlying problem. In this
first part, we will be looking at methods that perform transfer within a set of tasks, rather
than transferring knowledge to a new task in order to speed up learning. Thus, since we
are not testing the generalisation outside the training set (in terms of tasks), the nature of
the underlying generative process, giving rise to these tasks, is less important. In this first
part, we are looking tomethods towould improve generalisation across a set of given tasks.
Typically this is usually the case when we have data already collected for a set of tasks and
would want to use the communality of the environment and state-action space to improve
learning across these tasks.

3.1 Shared Representation Learning for MDPs

As a brief reminder, in RL an agent interacts with an environment and selects actions to
maximise the expected amount of cumulative reward receivedGt =

∑∞
k=0 γkRt+k,where

Rt = r(St,At) (Sutton and Barto, 1998). We model this scenario using the formalism of
Markov Decision Processes and as discussed in Section 2.1.5, a principled way to address
the RL problem is to use methods derived from dynamic programming (DP) (Puterman,
1994). These usually compute the action-value function of a policy π, defined as:

Qπ(s, a) ≡ Eπ [Gt | St = s,At = a] , (3.1)

where Eπ[·] denotes expectation over the sequences of transitions induced by π.

The computation of Qπ(s, a) is called policy evaluation. Once a policy π has been eval-
uated, we can compute a greedy policy π′(s) ∈ argmaxaQ

π(s, a) that is guaranteed to per-
form at least as well as π, that is: Qπ′(s, a) ≥ Qπ(s, a) for any (s, a) ∈ S ×A.

In this workwe are interested in the problemof transfer in RL (Taylor and Stone, 2009;
Lazaric, 2012). Specifically, we ask the question: given a set of MDPs that only differ in
their reward function, how can we leverage knowledge gained by interacting with all these
MDPs to speed up the learning or improve the quality of the resulting solutions?

We are going to assume that our agent has access to a high-dimensional, highly struc-
tured observational space (for instance, pixels)which also doubles as the state of the agent,
St and that was generated by a much lower dimensional variable. While this is generally
the case with all high-dimensional input, we do not claim nor explicitly target recovering
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this true structure that gave rise to our agent’s observations. Instead we relax the above,
by requiring that there exists a low-dimensional Yt that can compactly capture all the rele-
vant information needed for our tasks – these will be defined later. That is, we require that
∃fe : S → Rd, s.t. ∀St ∈ S:

fe : S → Y , s.t. Yt = fe(St) (Low-dim embbeding of the input St)

While this trivially holds for the ”true” low-dimensional structure underlying our obser-
vations, it is not crucial for us that the reconstruction mapping exists. Thus the projection
fe can be lossy, as long as it supports the evaluation and control problems we are consider-
ing. This also means any information, or artefacts present in the observation space can be
eliminated if they donot improveour ability to approximate the value functions of interest.

3.1.1 Generalisation over Tasks

We want to achieve good generalisation and transfer of knowledge between tasks. To do
so, in this chapter, we hypothesise we can achieve this by declaring the representation Yt

(or an abstraction on the joint (Yt, At) space), to be invariant across tasks. In other words,
wewill train a representation of the environment that is powerful enough to accommodate
learning good approximations, for all of the tasks under consideration.

In the following, we show howDP-based paradigms of learning optimal policies can be
extended to multi-task RL and in particular to the case where we are interested in learn-
ing a common abstraction of the state-action space to be shared across all value-functions
of interest, for all tasks j ∈ 1, J. A graphical depiction of the set of dynamical systems
under this constraint is available in Figure 3.1.1. We will be essentially learning a shared
representation for the action-value functional space. Moreover, wewill see that the emerg-
ing structure is quite specialised and encodes the shared structure among expert policies.
Maybe unsurprisingly in hindsight, this turns out to be a very efficient way of representing
the state-action space for the computation of optimal value functions.

3.1.2 Multi-Task Fitted Q-Iteration

In this section, we outline a general framework of using approximate value iteration to com-
pute the optimalQ-values (and optimal policies) for a set of tasks, in a given environment
following the MT-RL setup previously introduced. The proposed algorithm is an exten-
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Figure 3.1.1: Enforcing a shared representation of the state-action space, to be used in
modelling all action-value functions, Qj, across a set of tasks j = 1, J.

sion of Fitted Q-Iteration (Algorithm 2.6) that allows for joint learning and transfer across
tasks. Following the recipe of FQI, at each step in the iteration loop and for each sample in
our experience set D = {(s, a, r, s′)|s′ ∼ P(.|s, a)}, we compute the one-step TD target
based on our current estimate of the value function. This is can be done online or from
a recorded set of experiences. Then, treating these estimates as ground truth, we obtain a
regression problem from the state-action space onto the TD targets; in the simplest case
T∗Q. In the case of MT-RL, we obtain such a regression problem for each task j. Now we
could, in principle, solve all these regression problems independently for each task, which
would amount to applying FQI individually for each task. But our assumption here is that
there is shared structure between tasks and we would like to make use of this common
ground to aid the learning process. Thus we propose that the resulting regression prob-
lems are to be solved jointly, accounting for such a common representation. A detailed
description of the proposed procedure can be found outlined in Algorithm 3.1.

Note that, in the spirit of generality, we do not specify a particular algorithm for the
multi-task learning step (MTL in Algorithm 3.1). This is on purpose, as there exists an
extensive literature of how to deal with the resulting multi-task regression problem and
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Algorithm 3.1Multi-task Fitted Q-Iteration

Require: D = {Dj}Jj=1 ∼ μ,P - set of experiences/episodes for each task j

InitializeΘ = Θ0, k = 0 (parameters of our considered approximation)

while convergence not reached (dΘ < ε or k < MaxIter) do
Compute Targets:
Y(k+1)

j = {y(k+1)
j (s, a) = rj(s, a) + γ maxa′ Q(k)(s′, a′)|(s, a, s′) ∈ Dj}, ∀j = 1, J

Multi-task Learning:
Θ(k+1) = MTL

(
D = {Dj}Jj=1,Y(k) = {Y(k)

j }
J
j=1

)
dΘ = ∥Θ(k+1) −Θ(k)∥, k = k + 1

end while

return Θ = {θj}Jj=1
(
⇒ Qj(s, a) = fθj(s, a), ∀s, a ∈ S ×A

)

exploit shared structure between tasks in purely supervised settings. In this work, we will
take a look at only one particular instance of this step to serve as proof-of-concept.

3.2 Learning Linear Representations for Value Functions

In the following sections, we will restrict our attention to the class of linear functional ap-
proximations of the value functions. Thus we assume there exists a representationΦ(s, a)
such that for any policy π the corresponding value function can be well approximated by
a inner product of this representation with some parameter vector.

Qπ(s, a) = Φ(s, a)Twπ (3.3)

Now let us consider a class of reward functions: {rj|j = 1, J}. These reward functions
will induce, a set of optimal Q-functions one for each task j, {Q∗j }1,J that specify the op-
timal behaviour for that task. Our objective is to infer a small set of featuresΦ(s, a), that
are powerful enough to approximate any of these optimal value-function Q∗j , ∀j = 1, J.
Unfortunately, we do not know the optimal value function in advance and thus will have
to iteratively build up those values and a good feature representation that can model the
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intermediate and optimal values. This leads to the following set of equations:

Φ(s, a)Tw1 ≈ T∗Q1(s, a)

Φ(s, a)Tw2 ≈ T∗Q2(s, a)

· · ·

Φ(s, a)TwJ ≈ T∗QJ(s, a)

(3.4)

⇔
[
− Φ(s, a) −

] | | · · · |
w1 w2 · · · wJ

| | · · · |

 ≈ [T∗Q1 T∗Q2 · · · T∗QJ

]
And in particular for the optimal value functions, the above implies that there exist a set of
weights{w∗j }j=1,J that cancapture

[
Q∗1 Q∗2 · · · Q∗J

]
≈
[
T∗Q∗1 T∗Q∗2 · · · T∗Q∗J

]
.

Without further constraints solving the above problem is equivalent to performing in-
ference over the optimal value function for each task individually, without any exchange
of information between tasks. Instead, we would like to use data from all tasks to inform
and improve all individual learning problems by exploiting relationships between tasks.

In the following section,wewill lookat aparticularmethodofperforming themulti-task
learning step in MT-FQI when considering linear approximations of the value functions.
We specify a feature space Φ(s, a) that can be used to express all value functions, for all
tasks, and then using MT-FQI we can learn the corresponding weight vectors. Although
the feature space considered should be able to fit any value function, we will show that it
only needs to be able to fit good/optimal strategies — and this is precisely the represen-
tation we want to capture. In general, we try to start with a very general representation of
the input space and then progressively specialise and compress this representation to fit
efficiently optimal policies across tasks. In the following, we present a method of evolv-
ing this representation that have been proposed and have been studied extensively in the
multi-task learning literature for supervised tasks.

55



3.2.1 LearningSharedLinearRepresentationsviaaConvexReformulation

In terms of estimating the action-value functions, the joint problem we are trying to solve
can be formalised as inferring

{wj}Jj=1 = argmin
W

∑
j

L
(
wT

j Φ(s, a), yj
)
+H(W)

 (3.5)

where yj = rj(s, a)+γ maxb Q(s′, b) andH(W) is a regulariser on theweight vectors, that
encourages feature sharing. At the same time, wewish to learn amore compact abstraction
of the state-action space, that will be shared among tasks. To make this a bit more formal,
letQj,w : S×A → R,Qj,w(s, a) := ⟨Φ(s, a),wj⟩. Thenour assumption canbe expressed
as follows: ∃ a small set of featuresΨ = {ψ i}i=1,Nψ obtained as linear combinations of the
original set of featuresΦ – note this is just a change of basis, through a matrix U. Thus we
obtain a reparametrisation of our value functions, where for every task j its corresponding
value function can be re-written as a linear combination in the low-dim representation
Ψ = UΦ:

Qj(s, a) ≈
∑

i

αjiψ i(s, a) = ⟨αj,UTΦ(s, a)⟩.

Since we want the above representation to be sparse, for each task j, one could try to
solve an optimisation problem of the following type:

Qj = argmin
fj=⟨αj,UTΦ⟩

∑
j

LDj

(
fj(s, a), yj

)
+ ∥αj∥21

 (3.6)

Nevertheless, it has been proposed that we can look at such problems jointly, under a sim-
ilar sparsity regulariser that also promotes features sharing among tasks. This leads to a joint
optimisation problem of the form:

(U∗,A∗) = argmin
A,U

[ε(U,A) + λH(A)] (Problem 3.1)

= argmin
A,U

∑
j

LDj

(
⟨αj,UTΦ(s, a)⟩, yj

)
+ λH(A)


whereA = [α1, · · · , αj, · · · , αJ] andH(A) = λ||A||22,1. Theabove equation canbebroken
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up into two parts: the empirical error in fitting T∗Qj and the regulariserH(A). There are
detailed below:

ε(U,A) =
∑

j

1
m

L∑
l=1

L(rj(s(l), a(l)) + γ max
a

Qj(s′(l), a)︸ ︷︷ ︸
y(l)j

, ⟨φ(s(l), a(l))︸ ︷︷ ︸
x(l)j

, [UAj]︸︷︷︸
wπ

j

⟩)

(Empirical error)

=
∑

j

1
m

L∑
l=1

L(rj(s(l), a(l)) + γ max
a

Qj(s′(l), a)︸ ︷︷ ︸
y(l)j

, ⟨UTφ(s(l), a(l))︸ ︷︷ ︸
ψ(s(l),a(l))

,Aj⟩)

where we used subscript (l) to index the samples from our datasets (s(l), a(l), r(l)), s′(l)) ∈
Dj, and

H(A) = ∥A∥22,1 =
d∑

k=1

√∑
j

A2
k,j =

d∑
k=1

||Ak||2 where Ak,j is the element in A at position (k, j).

(Regulariser)

It was shown in (Argyriou et al., 2008) that Problem 3.1 is equivalent to solving the fol-
lowing convex problem:

(W∗,D∗) = arg inf
[
ε(W) + λTr(WTD−1W)

]
s.t. D ≻ 0,Tr(D) ≤ 1 (Problem 3.2)

where we denote by ε(W) the joint empirical loss in Eq. 3.5 and by D−1 the inverse of D.

More precisely if (U∗,A∗) is a solution for Problem 3.1 thenW∗ = U∗A∗ is an optimal
solution for Problem 3.2 (Theorem 1 in Argyriou et al. (2008)). Moreover, given a fixed
W, the optimal D∗ is given by:

D∗(W) =
(WWT)

1
2

Tr(WWT)
1
2

(3.8)

as discussed in Appendix A.2 and (Argyriou et al., 2008).

Now keeping D fixed, we get another convex problem that we can now solve for W. In
doing so, note that the above amounts to a minimisation over wj that can be carried out
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independently for each task j as both objectives factorise over tasks.

W∗ = arg inf
W=[w1:T]

∑
j

ε(wj) + λ
∑

j

⟨wj,D−1wj⟩

 (Problem 3.2a)

This leads to a very intuitive alternating minimisation algorithm proposed in (Argyriou
et al., 2008), that we outline in Algorithm 3.2. Note that we prefer the non-perturbed
version of this alternating algorithm as we empirically observed convergence even under
these conditions. More details about the algorithm can be found in Appendix A.2 and
original works (Argyriou et al., 2007, 2008). Moreover, keep in mind this optimisation is
to be performed at every iteration kof theMT-FQI algorithm. Thuspartial, rapid solutions
are preferred. In the description of the algorithm below, we assume the input of this sub-
procedure to be a regression-like dataset, which contains state-action pairs from D and 1-
step sampled targets T∗Q(k−1)

j (s, a) based on our current estimates Q(k−1)
j = Φw(k−1)

j .

Algorithm 3.2 Joint MT feature learning for MT-FQI
Require: The dataset corresponding to the joint regression problem at iteration k:
{D(k)j , Y(k)|j = 1, J} for each task j as define in Alg. 3.1.

Initialisation: D = 1
d Id

while representation has not converged do

for j = 1 : J do
Solve for each vector wj under a sparse regularisation weighted by D:

wj = argmin
w

[
L
D
(k)
j

(
⟨w, φ(s(l)j , a(l)j )⟩, y(l)j

)
+ λ⟨w,D+w⟩

]
end for
Compute new relation matrix D:

D =
(WWT)

1
2

Tr(WWT)
1
2

end while
return Rotation matrix U, D and weight vector matrix W.
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3.3 Experiments

In this section, we present an empirical evaluation of the previously proposed algorithms
and try to validate to what extent learning a shared representation over our set of value
functions is possible andwhether this indeed leads to better generation and increased sam-
ple efficiency. Throughout these experiments, unless specified otherwise, we will use a
batch set of experiences D = ∪J

j=1Dj, created under a uniformly random behaviour pol-
icy μ : S × A → [0, 1], with μ(a|s) = 1

|A| , ∀a ∈ A, s ∈ S , where |A| denotes the
cardinality of our action setA. For each task j, we have a fixed budget of nepisodes episodes
with a maximum length of 25 steps. These will be trajectories generated from a random
start location while following the behaviour policy μ. As we are going to be looking at
fairly restrictive budgets when generating the datasets for each task j, we make sure that
Dj contains at least one transition to the goal location Gj, otherwise, the agent would have
no information where the location of the goal is. This data will be generated upfront, at
the beginning of the experiment and all algorithms presented will use the same dataset D.
Thus comparisons between the algorithms will be purely based on how well each of them
manages to utilise this predefined dataset D.

3.3.1 Task Description: Multi-goal Navigation

In this experiment, weconsider twogridworldnavigation tasks: a variationof the4-Rooms
problem proposed in (Sutton et al., 1999) and a 3-Rooms world, that breaks some of the
potential symmetries present in the first scenario. Theenvironments are depicted inFigure
3.3.1.

Theagent canmovedeterministically in all the cardinal directionsA = {up(↑), down(↓
), left(←), right(→)} throughout the empty space (orange squares in the Figure 3.3.1).
Bouncing into walls (black squares) has no effect on the position of the agent. In this
maze-like environment, we consider several navigation tasks to different goal locations in
themaze. We consider a sparse reward signal, where the agent gets a positive reward (+10)
when it reaches the active goal location and 0 (no signal) otherwise. Thus in our setting,
the goal location will fully specify the task. To generate multiple tasks, we simply gener-
ated different goal locations {Gj}j=1,J, sampled uniformly at random from the achievable
positions in the grid. Once a goal is reached, on a particular task, the episode ends and
the agent re-spawns in a new random initial position. Note that this final transition will be
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(a) 4-Rooms Grid (b) 3-Rooms Grid

Figure 3.3.1: Environments considered for our navigation task. Starting states S are
chosen at random and the goal states G describe a particular task j.

particular to each task and thus the considered MDP will share all transitions, apart from
this one. Thus, technically for this terminal state we are violating the shared dynamics as-
sumption. At the same time, this is a terminating transition, which is modelled by γ = 0,
as we are going to be bootstrapping on the immediate (terminal) reward only. Thus in
this case the future transitions do not matter for the learning problem, as we are not boot-
strapping beyond termination. It follows that, in the learning problem we are going to be
using transitions (s, a, s′) that always share the probability of transitioning to s′, from s,
after executing action a.

The observation space of the agent is a one-hot embedding of the agents’ grid location.
No other information about the environment is provided: in particular, note that thewalls
and goals locations are not part of the observation space. Thus the agent needs to discover
the environment and reward structure, purely through the samples in D. This makes the
inference problem more challenging as FQI will take quite a few iterations to propagate
that weak signal throughout the environment into parts of the state space away from the
goal. Moreover, under a restricted budget of interactions, the algorithm is exposed to only
a small set of transitions that actually lead to a reward in any given task. That is why, under
this regime, the single-task FQImight fail to recover the optimal value. In this case, jointly
inferring a shared structureof the state-action spacemighthelp this generalisationproblem
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(a) Task 2: FQI for single task
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(b) Task 2: Feature learning MT-FQI
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(c) Task 17: FQI for single task
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(d) Task 17: Feature learning MT-FQI

Figure 3.3.2: Examples of the inferred value functions (V(s) = maxa Q(s, a)) and poli-
cies (greedy) achieved by single-task FQI vs MT-FQI learning. One can
see we indeed obtain a better generalisation when sharing information
and representation across tasks.

and this will be precisely the setup we are considering in our experiments.

To make this a bit more explicit, in Figure 3.3.2 we provide two examples of the value
functions and greedy policies obtained for two of the navigation tasks considered in the
3-Rooms Grid. The first row corresponds to value functions inferred for the second task,
which achieved a good performance on all training algorithms (Task 2); the second row
illustrates a case where single-task learning fails to generalise properly beyond the imme-
diate vicinity of its goal state and this results in a very poor empirical performance (Task
17). For this experiment, we trained an agent on J = ntasks = 20 tasks, randomly sam-
pled from the set of all reachable positions in the MDP, and we provide a budget of 50
episodes per task of maximum 25 interactions. Please note that all algorithms have access
to the same training sample set and are run for 100 Q-iterations, at which point they all
exhibit convergence. Thus, the superior performance of MT-FQI is due to its ability to
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transfer knowledge across the state-action space by sharing a common subspace with the
other tasks.

Nevertheless, this is just oneexample illustratingqualitatively thedifferenceofbehaviour
we get under the single-task versus multitask FQI. Next, we are going to look at a larger
quantitative study to assess the benefits in performance, one could expect under a multi-
task training procedure. In particular, we were interested in assessing how the number of
tasks ntasks considered and regularisation parameter λD (Eq. 1.1) impact theMT-FQI per-
formance. In order to assess this more broadly, we vary also the sample budget for each
task: nepisodes = {25, 50, 100}. Results are summarised in Figure 3.3.3. These were ob-
tained in the 4-Rooms environment and we are showing the (undiscounted) cumulative
reward obtained by our agents, averaged over the tasks and over 3 random seeds. These av-
erages were computed in an evaluation phase: for each iteration of learning, for each task
j we compute the greedy policy π̃j on the current estimate of the value function Q̃j and
evaluate its performance in the environment. We compute this performance by an average
Monte Carlo return over 100 evaluation episodes with random starting locations.

Looking at Figure 3.3.3, within one row – that is for a given number of tasks ntasks –
for each random seed, we sample the tasks (goal locations) once andwe keep this set fixed
over the different sample budgets. Thuswe get the expectedmonotonic increase in perfor-
mance as the sample size increases. Across all variations, we can clearly see that there are
always instances, depending on the regularisation parameter λD, where MT-FQI substan-
tially improves over its single-task counterpart. Although empirically we have found that
we can obtain positive results for a generous range of λD-s, there are still values that could
hurt the performance and going beyond certain values, the performance degrades consid-
erably, leading to a form of negative transfer. We can see signs of that for λD ≥ 0.001.

3.3.2 Learnt Shared Representations

Probably the most interesting phenomenon encountered in learning these shared repre-
sentations is the nature of the low dimensional representations inferred. We visualise the
inferred set of shared features (Figure 3.3.4) and their respective weights in the value-
function (Figure 3.3.5). These were produced via MT-FQI, training on a set of J = 30
training tasks in our 4-Rooms Grid. We obtain strong activations (significant weights in
the α matrix) only for the top 3 features inferred ψ1:3. As a reminder, the learnt shared
representations ψ(s, a) = UTφ(s, a) aim to represent linearly the value functions for each
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Figure 3.3.3: Performance comparison between a single-task FQI and MT-FQI agents
with different λD, under different conditions: number of tasks ntasks ∈
{5, 10, 20, 30} (top entry in the title of the cell) and the budget per task,
nepisodes ∈ {25, 50, 100} (bottom entry in the title of the cell). This illus-
trate that data from different tasks and be used effectively by Alg. 3.1
to overcome a small budget of per-task iterations. Results were averaged
over 3 seeds (data generation). Tasks were samples once for each ntasks.
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Figure 3.3.4: [To be read row-wise] The first three most relevant shared features
ψ1:3(s, a) – corresponding to the top three eigenvalues – learnt via MT-
FQI under 30 tasks randomly sampled in the 4-Rooms Grid. Please note
that these already enable the navigation between any pair of rooms.

task j:
Q̃j(s, a) = ψ(s, a)Tαj,∀j

A similar phenomenon happens in the 3-Rooms Grid – check Figures B.1.1-B.1.2 in the
Appendix B.1. Thus, it seems that across different situations, the learnt representation
seems to converge to a very low dimensional compression, that at the same time seems to be
expressive enough to effectively approximate the desired optimal value functions.

Moreover, if we take a closer look at Figure 3.3.4, we can see that the learnt representa-
tion recovers very intuitive features. As reminder this is the linear representation obtained
as Ψ(s, a) = UΦ(s, a), for all s ∈ S, a ∈ A, where transformation matrix U and cor-
responding coefficients αj where obtained by a eigen-decomposition of matrix D defined
in Eq. 3.8. Themost prominent feature, corresponding to the highest eigenvalue, captures
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Figure 3.3.5: Weighting Coefficients α1:3,j and α2:3,j for the above three most promi-
nent shared features. We can see from these values that the first feature
clearly dominated in all tasks. Bottom: Rescaled version of α2:3,j such
that we can see the activation of the other two prominent features. Blue
corresponds to negative activation and red to positive ones. Given the
nature of the features one can readily read out, just by looking at the
sign of the weight, which room that task’s goal state is. For instance, if
we look at second task: negative activation for both ψ2 ⇒ north-side of
the environment and ψ3 ⇒ west-side of the environment. The goal G2 is
indeed located at position (2, 1) in the top-left room.

the layout of the environment, while the second and third features seems to encode the
navigation between different parts of the state space. For instance, the second feature ψ2

has a high value in the lower part of the state space, supporting value functions that need to
encode transitions to the south rooms. At the same time, note that if theweight α2,j for this
feature is negative, this feature also encodes the opposite navigation pattern to the north
part of the grid. A similar thing can be said for the third feature ψ3 which encodes navi-
gation from the left to right and vice-versa depending on the sign of the weight associated
with it. We can see that just by looking at these features and the sign of their corresponding
weights, Figure 3.3.5, one can immediately read off the room in which the goal is located,
for a particular task. For instance, for the second task, both activation are negative, thus
we can infer that the room where the value function is highest would the NW room; like-
wise for the last task, both activations are positive, thus its goal is situated in the SE room.
Similar patterns have been observed in the other scenarios (Mahadevan and Maggioni,
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2007; Konidaris et al., 2011;Machado et al., 2017a). What this analysis is showing, maybe
not surprisingly, is that indeed the optimal value function space for MDPs that shared the
same state-action space and transition dynamics has a lot of common structure. Moreover,
what is more encouraging is that this structure can be learnt as part of a multitask learning
procedure, as we have done here and can promote positive transfer between the tasks and
lead to better generalisation.

3.3.3 Connection to Options

As discussed previously, the learnt shared representation seems to account for the general
topology and dynamics of the environment in the value functions. They nicely partition
the environment into relevant regions to facilitate the global navigation to a local neigh-
bourhood of the goal. Some of these characteristics are reminiscent of the options (Sutton
et al., 1999), subskills (Konidaris andBarto, 2007) ormacro-actions literature (Dietterich,
2000) and have the potential to drastically improve the efficiency and scalability of RL
methods (Barto and Mahadevan, 2003; Hengst, 2002). And much like our shared repre-
sentation, one of the appealing qualities of options is that they could be shared and re-used
across different tasks. Thus, we would like to investigate this connection further.

Following the formulation in (Sutton et al., 1999), an option o = ⟨I, μo, β⟩, is a gen-
eralisation of primitive actions a ∈ A to a temporally extended course of action. I is the
initiation set I ⊆ S from which the option is available, μ is the policy we are going to
follow once the options is triggered and β : S → [0, 1] is the probability of termination.
In this case, the action-value function takes the form:

Qπj
j (s, o) = E


K∑

k=0

γkrj,k︸ ︷︷ ︸
rj(s,o)

+γK+1
∑
s′

P(s′|s, o)Vπj
j (s
′)


where s′ is in the termination state of options o. We denote Po

ss′ =
∑∞

k po(s′, k)γk, where
po(s′, k) is the probability that options owill terminate in state s′ after exactly k steps. Note
that this term does not depend on the reward function and only accounts for the transi-
tion dynamics, the policy of the option and its termination criteria – all of which are task-
invariant. Moreover note that for us, rt(s, o) is generally 0 unless the option happens to hit
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the goal. Thus the above equation, simplifies to:

Qπj
j (s, o) =

∑
s′

 Po
ss′︸︷︷︸

task independent

· Vπj(s′)︸ ︷︷ ︸
task dependent(j,πj)


This is a linear combination between the option transition models Po

ss′ = φμo(s, s′) in the
termination set (subgoals of the option) –which is independent of task j and πj, it only de-
pends on μo –weightedby the value functionof the termination statesVπj(s′), for each task
–which incorporates the dependency on task and the individual policy employed after the
option has terminated. This is very similar to the parametrisation we assumed in Eq. 3.4.
This also suggests that the learnt representation is able to capture and represent efficiently
some option-like transition models without us specifying any subgoals, sub-policies nor
initial states. We hypothesise that the learnt shared space is actually a compressed basis for
these option-transition models. In order to test this hypothesis, we consider an intuitive set
of optionsO (like navigation to a particular room) and test if this learnt basis can span Po

ss′

for some option o ∈ O and can successfully represent an option-policy.

Wedefine an option o1 to be navigating to a specific room, say room 1 (NW).The initial-
isation set Io1 is the set of states outside the room and termination set contains all states in
the desired room. We also can define an MDP that maintains the same transition dynam-
ics, state and action space, but now the reward signal is zero outside the target room and
a constant positive reward in any of the desired termination states s′ in room 1. Note that
the value function corresponding to this newly defined semi-MDP (Sutton et al., 1999)
is given by: Qπ(s, o) =

∑
s′ P

o
ss′ , as Vπ(s′) = const. In this semi-MDP, we run FQI and

indeed see that we are able to construct a value function, based solely on the learnt 5-dim
feature space ψs, that successfully completes the newly specified task. Results for all such
navigation options are available in Figure 3.3.6.

Please note that the abovely defined options are quite extended ones. Simpler ones
would include finding a way out of a particular room – these are along the lines of the
options defined in (Sutton et al., 1999) and (Stolle and Precup, 2002) – can be easily re-
covered as well. Actually, for these simpler options, we require very few samples to obtain
the desired behaviour (10-30 samples), although they might not be optimal. The fact that
we are able to express awhole variety of such intuitively definedoptions –muchmore than
the dimensionality of the common subspace on which we are building – is a clear indica-
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Figure 3.3.6: Learned greedy policies (as indicated by the arrows) and value functions
(V(s) = maxa(Q(s, a)) ) enabling navigation to any of the four rooms,
based only on the share feature subspace discovered in the multi-task
value function learning of 30 goals randomly sampled in the environment.
The value functions were learnt using (single-task) FQI on the top 5 fea-
tures ψ(s, a) and required ≈ 10 episodes to recover option-like policies
that enable the agent to reach the desired room.
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tion of the expressiveness of this shared representation and its potential transferability in
aiding learning of new tasks within the same environment.

3.3.4 Towards On-policy Data Generation

The last study we conducted for this work, is going towards a more on-policy data collec-
tion scenario, where after each iteration of Q-fitting, we go back to the environment and
act according to an ε-greedy policy (with ε = 0.1) based on our current estimate of the
per-task action-value function. Thus after each iteration, we would collect new data and
use this new dataset in the next iteration of the algorithm. One could also consider amore
additive approach to this data collection process, where the new experience is added to the
old one, but that wouldmean that over time our dataset would increase considerably. Due
to this effect, it would be hard to compare the efficiency in learning under a constrained
budget. Thus, we opted for having a constant budget of episodes and populating our ex-
perience buffer with the most recent experiences only. This is similar to having a replay
buffer, where only the new on-policy transitions are stored.

With thismodification,we repeat the experiments onour4−Roomsenvironment (Fig-
ure 3.3.1), training agent in both a single task setting and under a multitask regime using
MT-FQI. We do this varying the number of tasks ntask ∈ {5, 10, 20, 30} under a fairly
restrictive budget of nepsiodes = 50 episodes or maximum 25 steps. The results are sum-
marised in Figure 3.3.7. One thing to notice here is that this new regime of data collection
might be quite restrictive for the single-task agent – what we have noticed is that under
these conditions, the single-task agent will need on average 300 − 500 episodes to solve
the task. This is mainly because the on-policy data will be quite biased around regions of
the policy that the agent currently thinks are good.

Nevertheless, we can see that the multitask agents can do substantially better. This
might be in part because they are making better usage of the data, as the previous exper-
iments have shown. The other cause might be credited to the different data generation.
Although still on-policy as in the single-task setting, the multitask algorithm looks at dif-
ferent datasets collected under different behaviour policies. Thus even though these poli-
cies are fairly limited in their coverage of the state-space, the combination of the station-
ary distributions induced by all of these policies might still result in diverse coverage of
the state-action space. In general, it would hard to distinguish how much of the improve-
ment is due to better learning and how much is due to better data – the latter still possibly
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Figure 3.3.7: Empirical analysis of the performance achieved by the FQI single-task vs.
MT-FQI agents, on the 4-Rooms Grid, in a setting where the dataset is
refreshed on-policy (ε-greedy on the current estimate) at each iteration in
the optimisation. The budget is restricted at 50 episodes worth of sam-
ples. We can see again that the MT agents manage to achieve a better
performance and this effect is now amplified by on-policy collection of
that data that now can produce more useful experiences as the agent’s
competence increases. Results are averaged over 3 random seeds.

powered by better learning in the previous iteration. Nevertheless, this is more of a san-
ity check that seems to indicate that the insights we have established in the offline batch
setting, could have similar benefits and implications in a more online, on-policy setting.

3.4 Conclusion

3.4.1 Related Work

Multitask and transfer learning are one of the most important problems in RL in our am-
bition to scale up our agent to perform more and more complex tasks. As such, over the
years there have been various attempts atmodelling this problem–a fairly extensive survey
can be found in (Lazaric, 2012; Taylor and Stone, 2009). All in all, there are at least four
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different strains of multitask reinforcement learning that have been explored in the litera-
ture: off-policy learning ofmany predictions about the same stream of experience (Sutton
et al., 2011; Gruslys et al., 2017; Mankowitz et al., 2018; Borsa et al., 2019) most of them
building multiple value function predictions, but also other auxiliary tasks as in (Jader-
berg et al., 2016; Pathak et al., 2017), continual learning of a sequence of tasks (Thrun,
1996, 2012; Ammar et al., 2014; Ruvolo and Eaton, 2013) that aim to draw on previous
knowledge to learn a new taskwhile trying to protect the previously trained policies (Rusu
et al., 2016;Kirkpatrick et al., 2017), distillation of task-specific experts into a single shared
model (Parisotto et al., 2015; Rusu et al., 2015; Teh et al., 2017; Berseth et al., 2018), and
joint learning of multiple tasks at once (Caruana, 1997; Caruana and O’Sullivan, 1998;
Sharma and Ravindran, 2017; Du et al., 2018). In this work, we have focused on the lat-
ter under a batchmode assumption. Nevertheless, as mentioned previously, the proposed
algorithm is applicable under a different, online behaviour policy as long aswe still have ac-
cess to a replay of experience per task, fromwhich one can sample corresponding datasets
Dj.

One of themethods investigated in (Calandriello et al., 2014) as part of a study on spar-
sity in multitask RL, is very closely related to our learning procedure and this work can be
seen as a generalisation of that method, although the focus andmodel assumptions we are
making are quite different. Perhaps themost relevant prior work that shares our vision and
some of the modelling assumptions is the approach in (Schaul et al., 2015a) which mod-
els a shared state representation between goals and assumes a linear factorisation between
this state embedding and task or goal embedding. In our work, this can be seen as the α
learnt to specify the task in the learnt shared representation.

Some other works investigating joint training of multiple value functions include (Wil-
son et al., 2007) and (Lazaric andGhavamzadeh, 2010) which both employ a hierarchical
Bayesian model to learn a prior over value functions. More recently (Laroche and Barlier,
2017), a follow-up work on ours, proposed a model exploiting the same shared structure
property induced by the shared dynamics across our tasks. A different, but related line
of work has been exploring structure in the policy space, rather than values (Dimitrakakis
andRothkopf, 2011). The properties of those representations can be very different as they
model commonalities in a different space, but in principle these two could be used to-
gether in an actor-critic-like algorithm (Witten, 1977; Barto et al., 1983; Grondman et al.,
2012), trying to share representation across both functional approximation classes. Along
these line, IMPALA (Espeholt et al., 2018), an importance weighted actor learner, has re-
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cently achieved state of the art for multitask RL (on both the Atari suite and across the
30 DeepMind lab levels). Nevertheless, these results are far from the human level perfor-
mance demonstrated by deep RL agents on the same domains, when trained on each task
individually. Building upon this work, later on, (Hessel et al., 2019) manage to improve
these results by stabilising the learning across multiple objectives by PopArt (van Hasselt
et al., 2016). This is notably one of the only results in literature where training over such
a diverse set of tasks is not only possible – previous works have struggled to even obtain a
solution that caters to all tasks (Parisotto et al., 2015; Du et al., 2018) – but improves the
single-task performance, which was the main motivation behind our work as well as the
wider literature in multitask RL (Thrun, 1996).

3.4.2 Summary

In this chapter, we studied the problem of learning multiple optimal value functions in a
multitask RL scenario where the class of MDPs we considered for generalisation shares
the environment and actuators specification but differ in their reward. In this scenario, we
explored the feasibility of learning a joint representation over our value functions and as-
sess the ability to transfer knowledge between tasks by treating the estimation of the value
functions as a joint multitask regression problem (see Section 3.1, Algorithm 3.1). We
proposed a very general extension to the popular fitted-Q learning iterative algorithm to
encompass this joint learning. Next, focusing on linear representations, we studied an in-
stanceof this algorithmwith apopularmultitask learningprocedureproposed in(Argyriou
et al., 2008). We tested the resulting procedure experimentally in a batch learning scenario
with a restrictive sample budget and showed that we can indeed get positive transfer be-
tween the tasks through this multitask procedure. We then examined the resulting repre-
sentation that enabled this transfer. As presented in the experimental section, the learnt
representation seems to capture nicely the joint structure in the optimal action-value space
and due to their linearity leads to quite interpretable features.

It is worth noting that, in principle, Algorithm 3.1 can be instantiated with any multi-
task regression solver anddepending on the tasks andMDPs, theremight be better choices
out there, including some that deal with non-linear features. The purpose of this work was
mostly to show that formalising the problem in this way and treating the backup steps of
the optimal Bellman operators jointly can lead to positive transfer. It is worth mention-
ing that we did investigate one other multitask learning mechanism here, based on (Ando
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and Zhang, 2005). The study and results can be found in (Borsa et al., 2016). This was
prompted by the observation that in some scenarios tasks can benefit from having a small
and sparse set of features that represent the particularities of each individual task on top of
a low-dimensional shared subspace. This is definitely the case in many practical applica-
tions and had been observed in purely supervised settings as well. It is sometimes simply
too restricted to constrain all tasks to be using a single shared structure. Thus researchers
have come up with various ways of incorporating task-specific components — see (Zhou
et al., 2011; Chen et al., 2012) and reference therein – and showed that modelling these
explicitly can improve both the learning (in accuracy and speed) and interpretability of
the resulting representations. We showed that these results translated to the RL setting
and result in an improved performance.
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4
Least-SquaredMethods forMultitask Policy

Iteration

In this chapter, we are going to explore a series of methods following the general paradigm
of Approximate Policy Iteration (API), introduced in Section 2.1.7. In particular, we will
take a close lookat least-squares approximationsof thepolicy evaluation step inAPI (Buşo-
niu et al., 2012). Oneof themost iconic algorithms in this class is Least SquarePolicy Itera-
tion (LSPI) introduced in Lagoudakis and Parr (2003), which extends the use of the least-
squares temporal-difference( LSTD) learning algorithm proposed in Bradtke and Barto
(1996). In this work we are going to briefly re-visit and re-phase those in a more general
light that will allow us to extend these to our multitask scenario, taking advantage of the
rich common structure present in a persistent environment, shared across our tasks.

4.1 Background

As before, we are interested in a family of MDPs that differ only in their reward speci-
ficationM = (S,A,P, γ, r), where the reward signal r can be an arbitrary function
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r : S × A → [Rmin,Rmax]. Given multiple of these MDP {Mj}j=1,J, our goal is to learn
optimal policies π∗j : S × A → [0, 1] that maximise the value functions, Vπ

j (or Qπ
j ),

associated with these reward signals rj.

In the singleMDP setting, Policy Iteration(PI) (see Section 2.1.5.4 or Sutton andBarto
(1998)) represents a particular class of methods that aim to build optimal value functions
(and therefore optimal policies) within this MDP. PI methods rely on an iterative proce-
dure that alternates between a policy evaluating step and a policy improvement step. As
the name suggests, the policy evaluation step will build the value function associated with
the current policy – evaluating ’goodness’ of the current policy. Then, the policy improve-
ment step computes a newand improvedpolicy, usually basedon thepreviously built value
function. The procedure continues until we can improve the policy nomore. WhenS and
A are finite and we use exact representation for the value functions – no approximation
error incurred – a greedy policy improvement step is guaranteed to produce a strictly bet-
ter policy than the one considered at the previous iteration. Since in the finite state-action
space, there are only a finite number of deterministic policies, PI is guaranteed to converge
to the optimal value function (and associated greedy optimal policy) in a finite number of
iterations.

Since the improvement step can be addressed greedily, let us focus our attention onto
the policy evaluation step instead. This step consists of building the Qπ-function associ-
ated with a policy π. In order to do this, we recall thatQπ satisfies the Bellman expectation
equation:

Qπ(s, a) = TπQπ(s, a) (4.1)

= r(s, a) + γ
∑
s′,a′

P(s′|s, a)π(a′|s′)Qπ(s′, a′) (4.2)

Based on the above equation, there are a number of algorithms that we can employ to
obtain Qπ , such as directly solving the linear system induced by Eq. 4.2 over all states and
actions, iterative application of the Bellman operator, temporal-difference methods, etc.

Nevertheless, in most problems of interest, we will not be able to represent the value
function of interest exactly. Instead, we will try to approximate our values within a func-
tional approximationclassF . Andwewould settleonfindingagoodapproximationwithin
this class. In doing so, we distinguish two main types of approaches to approximatively
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solve the Bellman equation above (Eq. 4.2): projected policy evaluation methods and Bell-
man residual minimisation (BRM) methods (Buşoniu et al., 2012).

Projected policy evaluation methods will approximately enforce Eq. 4.2 via a projection
of the Bellman operator onto the space of approximations F . More specifically given an
approximation Q̃ ∈ F , we apply the Bellman operator Tπ which would likely result in a
function outside our approximation space. Then we project this function back onto the
space of representable functions F and require this projection to be close to the original
point Q̃. Thus methods in this class will try to solve the following approximate problem:

Q̃π = argmin
Q̃∈F

∥Q̃− ΠF (TπQ̃)∥ (4.3)

where ∥.∥ denotes a norm, ormeasure of distance in the functional space and themapping
ΠF : Q → F is a projection operator from the space of all Q-functions, Q, onto the
approximation spaceF . Note that this is solving the projected Bellman equation:

Q̃ ≈ ΠF (TπQ̃) (4.4)

which gives the name for this class of methods. It is also worth noting that for linear ap-
proximation, F = FΦ = {Q = ΦTw|w ∈ Rd}, the above equation can be solved ex-
actly, whereas for arbitraryF , this might not be the case. We will revisit this case shortly.

The other class of methods are Bellman residual minimisation methods. These do not
involve a projection step, instead they simply try to solve directly the Bellman equation
(Eq. 4.2) in an approximate sense:

Q̃ ≈ TπQ̃ (4.5)

As mentioned before, TπQ̃ might not be in the same space as Q̃, thus the above problem
will typically not admit an exact solution. Instead, this class of methods will try to find an
approximation, Q̃π , such that:

Q̃π = argmin
Q̃∈F

∥Q̃− (TπQ̃)∥ (4.6)

The difference ∥Q̃ − TπQ̃∥ is referred to as the Bellman residual indicating the degree
to which the approximation violates the Bellman expectation equation. As the name sug-
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gests, BRM methods will try to find the approximation that minimises this residual.

4.2 Least-Squares Methods for Policy Evaluation

In this section, we will take a closer look at the policy evaluation step and review some
classical takes on using least-square methods to provide (approximate) solutions to this
step. We start with a somewhat idealised setting where we consider discrete states and
actions: (s, a) ∈ S ×Awith |S| <∞, |A| <∞. This is mainly for the sake of clarity in
exposition, but wewill show that the studied algorithms have online, incremental, sample-
based versions that support their applicability tomore complex, possibly uncountable and
continuous state spaces. The above assumption also enables us to use the matrix form
notation associated with the Bellman Equations.

Weconsider again the linear approximationof the value functions: Q(s, a) = φ(s, a)Tw
where w ∈ Rd is a set of weights and φ are a set of d independent features φ(s, a) =

[φ1(s, a), φ2(s, a), · · · , φd(s, a)]
T ∈ Rd for all s ∈ S, a ∈ A. Thus in this case the class of

functional approximators considered isF = Fφ which is the span of the features φ. For
convenience, let us denote the matrix of features φ for all state-action pairs asΦ:

Φ =



− φ(s1, a1)T −
...

− φ(s, a)T −
...

− φ(s|S|, a|A|)T −


(4.7)

For the class of methods reviewed in this section we would consider a (weighted) Eu-
clidean norm. More formally, given a probability distribution over the state-actions space
ρ : S ×A → [0, 1] the corresponding weighted Euclidean norm is defined as:

∥f∥2ρ =
∑
s,a

ρ(s, a)|f(s, a)|2 (4.8)

And we denote the corresponding (weighted) least-square projection operator,Πρ:

Πρ(f) = argming∈F∥g− f∥2ρ (4.9)
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Moreover, for F = Fφ, the above operator has a known close-form solution Πρ
Fφ

=

Φ(ΦTΔρΦ)−1ΦTΔρ, where we define Δρ to be the diagonal matrix with entries ρ(s, a).
This property makes linear approximations particularly appealing.

4.2.1 Projected Policy Evaluation

Let us now revisit Eq. 4.3-4.4 under a linear parametrisation of the value functions. Again
we would want to approximate the value function corresponding to a given policy π and
we will do so by finding the approximation that minimises the distance to the projected
Bellman operator. Using the matrix form, one can write:

Q̃ ≈ ΠFφ(T
πQ̃)⇒ Φw ≈ ΠFφ(T

π(Φw)) (4.10)

For linear parametrisations, the above can be solved exactlyΠρ
Fφ

= Φ(ΦTΔρΦ)−1ΦTΔρ:

Q̃π = Φ(ΦTΔρΦ)−1ΦTΔρ
(
TπQ̃π) (4.11)

⇒ Φwπ = Φ(ΦTΔρΦ)−1ΦTΔρ (R + γPπΦwπ) (4.12)

which leads to:
ΦTΔρ︸ ︷︷ ︸

k×|S||A|

(Φ− γPπΦ)︸ ︷︷ ︸
|S||A|×k︸ ︷︷ ︸

k×k

wπ︸︷︷︸
k×1

= ΦTΔρ︸ ︷︷ ︸
k×|S||A|

R︸︷︷︸
|S||A|×1

(4.13)

And finally:

wπ =

ΦTΔρ(Φ− γPπΦ)︸ ︷︷ ︸
Bπ

−1ΦTΔρR︸ ︷︷ ︸
br

(4.14)

In order to compute the above solution, we only needBπ and br, which are independent
of the original dimensionality of the problem, independent of the size of state and action
space, and only depend on d, the dimensionality of the feature set φ. Notice that Bπ and
br = ΦTR can be computed from the samples, making this approach extendable beyond
finite state and action spaces. Moreover note that br is essentially policy independent (thus
for each task, we need to compute this vector only once) and Bπ is task-independent as its
computation involves just the considered policy π and the dynamics of the environment,
which is considered shared across tasks. This will become relevant later in the chapter.
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4.2.2 Bellman Residual Minimisation

Letusnowrevisit theBellman residualminimisationproblemEq. 4.6, under linearparametri-
sation and aL2,ρ norm:

minQ̃∈Fφ
∥Q̃− TπQ̃∥ ⇒ minw∥Φw− TπΦw∥2ρ (4.15)

Expanding and re-arranging terms, we obtain:

minw∥Φw− (TπΦw)∥2ρ = minw∥Φw− (R + PπΦw)∥2ρ
= minw∥(Φ− PπΦ)w− R∥2ρ
= minw∥Zπw− R∥2ρ (4.16)

Note that the above is now a least-squares (weighted) linear regression problem. And thus
its minimiser has again a closed-form solution:

ZT
πΔρZπw = ZT

πΔρR⇒ w =
(
ZT

πΔρZπ
)−1 ZT

πΔρR (4.17)

Based on the above equation, one can see that these methods enjoy the same scalability
properties as the projected policy ones. In particular, one can easily show that ZT

πΔρZπ ∈
Rd×d andZT

πΔρR ∈ Rd scale in the number of features d, not in the state-action space and
can be built from samples (s, a, r, s′) drawn from ρ. A small caveat here is that in order to
get a consistent sample-estimate for ZT

πΔρZπ we might require a double sample for s′ ∼
P(.|s, a). In the followingwewill restrict our attention for deterministic environments and
as such this will not be a concern for us.

4.3 Multitask - LSPI via Transfer of Samples

In this section, we revisit our previous discussion on Projected Policy Evaluation (Section
4.2.1), now in the context of a multitask RL scenario. In this case, we are interested in
learning how to behave in a collection of MDPs that share the same dynamics, but differ
in their reward and we adopt a linearly parametrised functional approximation space Fφ

induced by a given set of d features φ : S × A → Rd. This can be seen as the sensory
system of our agent and will therefore be persistent over all tasks considered. This means
that now we would like to find in the span of φ, an approximation for all value functions
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Qπ for the tasks considered and policies encountered at different iterations of PI:

Q̃π
j (s, a) = φ(s, a)Twπ

j ,∀s ∈ S, a ∈ A, and ∀j ∈ {1, · · · , J} (4.18)

Revisiting the Projected Expectation equation, for each task j ∈ {1, · · · , J}we obtain:

Q̃π
j ≈ ΠFφ(T

πQ̃π
j )⇒ Φwπ

j ≈ ΠFφ(T
π(Φwπ

j )) (4.19)

And following the argument above, for every task j, be obtained the parameters wπ
j that

most closely minimise the distance between the LHS and RHS of the equation above is:

wπ
j =

(
ΦTΔρ(Φ− γPπΦ)

)−1ΦTΔρRj = (Bπ)−1 bj (4.20)

To obtain the matrices Bπ and vectors bj in the equation above, we would ideally need
access to the transition function P(s′|s, a) of the MDP and reward functions associated
with each task rj, which are usually unknown in a reinforcement learning context. For-
tunately, sample-based version of these algorithms exists, especially when the density ρ
under which we can consider the projection in Eq. 4.19 matches the sampling distribu-
tion under which our trajectories have been collected in the environment. In this work we
are going to consider a batch setting, where we have access only to a fixed set of samples
collected under some behaviour policy μ, under each of these tasks j. We denote these
datasets generated by interacting with each task j by Dj = {(s, a, rj, s′)|s′ ∼ P(.|s, a), a ∼
μ, s ∼ dμ}. Revisiting the expressions of Bπ and bj in Eq. 4.20, we get:

Bπ = ΦTΔρ(Φ− γPΠπΦ)

=
∑
s,a

ρ(s, a)φ(s, a)(φ(s, a)− γEs′∼P(.|s,a)Ea′∼π(.|s′)[φ(s′, a′)])T

= Es,a∼ρ
[
φ(s, a)(φ(s, a)− γEs′∼P(.|s,a)Ea′∼π(.|s′)[φ(s′, a′)])T

]
(4.21)

and respectively

bj = ΦTΔρR =
∑
s,a

ρ(s, a)φ(s, a)rj(s, a) = Es,a∼ρ
[
φ(s, a)rj(s, a)

]
(4.22)

And now we can see that Bπ and bj can be easily approximated via samples in Dj. To make
this explicit, if we assume we have access to a dataset for each of the tasks of interest Dj, we
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can use this data to:

• Build bj, for each task j:

bj,Dj =
∑
s,a

φ(s, a)rj,∀ samples (s, a, rj, s′) ∈ Dj on task j (4.23)

• Build Bπ , for any policy π:

Bπ
Dj =

∑
s,a

φ(s, a)[φ(s, a)− γφ(s′, π(s′))]T,∀ samples (s, a, rj, s′) ∈ Dj on task j

(4.24)
where by φ(s′, π(s′)) we denote the expected feature value at state s′ under policy
π: φ(s′, π(s′)) = Ea′∼π(.|s′)[φ(s′, a′)]T =

∑
a′ π(a

′|s′)φ(s′, a′). Note that in order
to compute this expectation we only need access to the π which is the behaviour
we are trying to evaluate. In this chapter we would look primarily at deterministic
strategies that were computed via a greedy improvement over previous estimates.
In this case, the computation of the above expectation is particular simple as we
need to evaluate the feature set φ at (s′, π(s′)).

Thus for any policy π given these two estimates, we can compute wπ
j via Eq. 4.20 and ob-

tain Q̃π
j – which represents the least-squares solution to the (projected) policy evaluation.

If we consider this procedure in the context of Policy Iteration we obtain Algorithm 4.1.
This is a straight-forward application of LSPI (Lagoudakis and Parr, 2003) to each task j
independently, that uses the batch collected on task j to build the Bπj , bj.

The assumption in a multitask setting is that the J independent problems in Algorithm
4.1 may share some common structure and we could do better by considering the joint
learning problem instead. We have already seen evidence of that in the last chapter, where
we showed how one can learn a shared representation across tasks to benefit all tasks. In
this chapter we are going to do something similar, but taking explicit advantage of the per-
sistence property across the transition kernels. Themain insight here is to notice that com-
puting the parameterswπ

j involve two estimatesBπ and bj that nicely decouple the environ-
ment (and policy) and the task (reward signal). In particular, note that the computation
of the matrices Bπ do not contain any information particular to any of the tasks and for
any policy π, in order to build an estimate of Bπ we only need access to samples (s, a, s′),
where (s, a) are drawn for the stationary distribution under the behaviour policy μ and
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Algorithm 4.1 Least Squares Policy Iteration for Individual tasks

Require: D = ∪J
j=1Dj, set of experiences for each task j

InitialiseΘ = Θ0, k = 0

Precompute for all tasks j:
bj,Dj =

∑
s,a φ(s, a)rj, ∀(s, a, rj, s′) ∈ Dj

while convergence not reached (dΘ < ε||k < MaxIter) do
Policy Improvement:
π(k)j (a|s) = argmaxa(φ(s, a)Tw

(k−1)
j )

Policy Evaluation:
Bπj
Dj
=
∑

s,a φ(s, a)[φ(s, a)− γφ(s′, π(k)j (s′))]T, ∀(s, a, rj, s′) ∈ Dj

w(k)
j =

(
Bπj
Dj

)−1
bj,Dj

end while

return Θ = {wj}Jj=1 and learnt policiesΠ = {πj}Jj=1 ≈ Π∗

s′ ∼ P(.|s, a). Thus any of the samples in D = ∪J
j=1Dj could be used for this estimate.

This essentiallymeans that we can use all samples collected under any task to build amuch
better estimate of Bπ in Eq. 4.22.

Bπ
D =

∑
s,a

φ(s, a)[φ(s, a)− γφ(s′, π(s′))]T, ∀ samples (s, a, r∗, s′) ∈ D (4.25)

Theonly problemnow is that in order to computewπ
j wewould need bj,D and for this com-

putation we would need rj(s, a) for all samples (s, a) ∈ D. If one has access to the full set
of reward functions via the task specifications, one could compute the rewards associated
with samples (s, a) ∈ D \ Dj on demand. For instance, if the task is defined as navigation
to a target position g, the reward function can be simply z > 0 at s = g and 0 for any
other transition. In this case, we can compute the missing reward evaluation rj(s, a) for
each tuple (s, a) ∈ D \ Dj and it should be clear that we can effectively extend the task
datasets to include all samples across tasks and apply Algorithm 4.1 for the extended sets
D̄j = {(s, a, rj, s′)|(s, a, s′) ∈ D, rj = rj(s, a)}.

Nevertheless, in general we might not have access to the functional form of rj for the
tasks of interests. In this case, we will build an estimate of bj,D based on previous estima-
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tions ofwπ
j across the tasks. To see how one can do this, let us recall the Bellman Expecta-

tion equation:

Q̃π
j (s, a) = rj(s, a) + γEs′∼P(.|s,a)

[
Q̃π

j (s
′, π(s′))

]
Rewriting this, we can see that one can express the reward function rj(s, a) as:

⇒ rj(s, a) = Q̃π
j (s, a)− γEs′∼P(.|s,a)

[
Q̃π

j (s
′, π(s′))

]
=

(
φ(s, a)− γEs′∼P(.|s,a)

[
φ(s′, π(s′))

])T wπ
j (4.26)

r̃j(s, a) ≈
[
φ(s, a)− γφ(s′, π(s′))

]T wπ
j , for s′ ∼ P(.|s, a) (4.27)

Note that in the above equation, the only term that depends on the task j is wπ
j and all

others depend solely on samples (s, a, s′) ∼ (dμ, μ(.|s), P(′|s, a)). This holds for any
policy π and any task j. Throughout learning, we would generally have access to w(k)

j

which corresponds to evaluating policy πj = argmaxaφ(s, a)
Tw(k−1)

j . Thus we build term

[φ(s, a)− γφ(s′, π(s′))]T for πj = argmaxaφ(s, a)
Tw(k−1)

j , for all experience (s, a, s′) ∈ D

and usew(k)
j to get an estimate for the reward function r̃j. Moreover, it is worth noting that

we do not need to compute r̃j explicitly, but only its summed projections:

bj,D =
∑

(s,a,s′)∈D

φ(s, a)rj(s, a)

≈
∑

(s,a,s′)∈D

φ(s, a)̃rj(s, a)

=
∑

(s,a,s′)∈D

φ(s, a)
[
φ(s, a)− γφ(s′, π(s′))

]T wπ
j = Bπ

Dw
π
j (4.28)

All in all, the above give us a way of approximating bj,D and this particular form enjoys the
same scalability properties associated with LSPI. In particular, note that all matrices and
vectors we need to build and remember between iteration depend only on d, the dimen-
sion of the feature set φ and not the number of samples.

Based on the above, we can formulated a multitask LSPI (MT-LSPI) algorithm that
can effectively use the data across all tasks. Before we do that, wemake a final observation,
which is: if we do have access to rj and can build D̄j as explained above one ought to do
so and use the real reward rj(s, a). When that is not the case, Eq. 4.28 gives us a way of
effectively inferring r̃j ≈ rj. In our considered scenario, on-task samples, coming from Dj,
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will contain the actual reward function rj(s, a) and for all other off-task samples we will
use the estimation scheme proposed in Eq. 4.28. This results in the following combined
estimate:

bj,D =
∑

(s,a,s′)∈D

φ(s, a)rj(s, a)

≈
∑

(s,a,s′)∈D

φ(s, a)rj(s, a)︸ ︷︷ ︸
bj,Dj

+
∑

(s,a,s′)∈D\Dj

φ(s, a)̃rj(s, a)︸ ︷︷ ︸
b̃j,D\Dj

= bj,Dj + Bπ
D\Dj

wπ
j (4.29)

Based on this last modification we can now introduce our proposed algorithm MT-LSPI
with reward prediction, detailed in Algorithm 4.2 below. Note that the estimation of bj,D

needs to be done only once and then re-used for the all the subsequent iterations of PI.
This is akin to the pre-computation of bj,Dj in Algorithm 4.1. In Algorithm 4.2 we propose
revisiting this computation at each iteration, but we indicate that this is an optional step,
once we have computed at least one off-task reward estimate bj,D\Dj . The reason behind
revisiting this estimate is that we expect later iterations of PI to produce better estimates
to the target evaluations, which could result in a better estimate of the inferred rewards
r̃j. Finally, we note that this is more likely to happen in a online setting and we will see in
the experimental section that this would have almost no effect when considering a fixed
dataset. Other alternatives one could consider here are averaging over estimates produced
at each iteration or simply selecting the one which produces the smallest residual.

4.4 Multitask - LSPI: A Residual Minimisation Approach

In this section we will pick up our discussion from Section 4.2.2 on least-squares meth-
ods for Bellman residual minimisation and extend it to our considered multitask RL set-
ting. The idea behind this section is to investigate how one can approach the individual
BRM minimisation problems as a (joint) multitask learning problem predicting the re-
ward associated with each task. As before, we are going to be approximating the action-
value function via a linear approximation in the span of a d dimensional feature space
φ : S ×A → Rd.

Although we are considering a Policy Iteration procedure, the multitask learning prob-
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Algorithm 4.2Multitask Least Squares Policy Iteration (MT - LSPI)

Require: D = {Dj}Jj=1, set of experiences for each task j

InitialiseΘ = Θ0, k = 0

Precompute for all tasks j:
bj,Dj =

∑
s,a φ(s, a)rj, ∀(s, a, rj, s′) ∈ Dj, bj,D\Dj = 0

while convergence not reached (dΘ < ε||k < MaxIter) do

for all tasks j = 1 : J do

Policy Improvement:
π(k)j (a|s) = argmaxa(φ(s, a)Tw

(k−1)
j )

Policy Evaluation:

1) On-task Evaluation:
Bπ(k)
Dj

=
∑

s,a,s′ φ(s, a)[φ(s, a, s
′)− γφ(s′, π(k)j (s′))]T, ∀(s, a, rj, s′) ∈ Dj

2) Off-task Evaluation:
Bπ(k)
Dj′

=
∑

s,a,s′ φ(s, a)[φ(s, a)− γφ(s′, π(k)j (s′))]T, ∀(s, a, rj′ , s′) ∈ Dj′ ,∀j′ ̸= j

Bπ(k)
D\Dj

=
∑

j′ ̸=j B
π(k)
Dj′

3) New parameters based on both on- and off-task evaluations:

w(k)
j =

(
Bπ(k)
Dj

+ Bπ(k)
D\Dj

)−1
(bj,Dj + bj,D\Dj)

4) [Optional for k > 1] Off-task Reward Prediction:
bj,D\Dj = Bπ(k)

D\Dj
w(k)

j

end for

end while

return Θ = {wj}Jj=1 and learnt policiesΠ = {πj}Jj=1 ≈ Π∗
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lems we will be considering occur in the Policy Evaluation step. In the multitask sce-
nario, every (full) step of policy iteration, k, will involve coming up with approximations
{Q̃πj

j = Φwπj
j }j=1,J for a set of policies Π(k) = {πj}j=1,J . This is akin to the MT-FQI

algorithms proposed in the last chapter –Section 3.2, but in this section we will explore a
different joint evaluation problem, solved via Bellman Residual minimisation.

Let us first recall that the state-action value function Qπ
j representing the target for our

policy evaluation steps, is the solution of the Bellman Expectation equation, for a given
policy π and reward signal rj:

Qπ
j (s, a) = rj(s, a) + γ

∑
s′

P(s′|s, a)
∑
a′

π(a′|s′)Qπ
j (s
′, a′) (4.30)

A way of finding a good approximation to Eq. 4.30, is by finding the approximation Q̃ ∈
Fφ that satisfies the above equation as closely as possible: minQ̃∈Fφ

∥Q̃−(Tπ
rjQ̃)∥2. This is

the idea behind BRMmethods. Following this reasoning, substituting the approximation
Q̃π

j in the above equation, we obtain:

Q̃π
j (s, a) ≈ rj(s, a) + γ

∑
s′

P(s′|s, a)
∑
a′

π(a′|s′)Q̃π
j (s
′, a′)

Φ(s, a)wπ
j ≈ rj(s, a) + γEs′∼P(.|s,a)

[
Φ(s′, π(s′))

]
wπ

j(
Φ(s, a)− γEs′∼P(.|s,a)

[
Φ(s′, π(s′))

])︸ ︷︷ ︸
:=zπ(s,a)

wπ
j ≈ rj(s, a)

where, as before, we denote by f(s, π(s)) the expectation of the function f with respect
to the policy π: f(s, π(s)) = Ea∼π [f(s, a)]. Leading to the following linear regression
problem:

zπ(s, a)wπ
j ≈ rj(s, a), ∀(s, a) ∈ A× S (4.31)

And note that the least-square solution of the above is:

wπ
j =

(
ZT

πZπ
)−1 ZT

πRj (4.32)

whereZπ ,Rj denotes the vectors zπ(s, a), respectively rj(s, a) across the spaceS×A. Note
that the above recovers the knownBRMsolution introduced in Section 4.2.2. Hence, if we
were to consider each policy evaluation problem independently, the PE stepwould involve
buildingmatricesZπj for each policy j and then regressing on the reward vector associated
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with the tasks Rj.
As before, in the multitask/multi-policy setting, we assume that the evaluation prob-

lems considered are related and the scope of this work is to find a way to expose and ex-
ploit the common structure. To do so, let us first take amoment to observe that zπ(s, a) =(
φ(s, a)− γEs′∼P(.|s,a)[φ(s′, π(s′))]

)
is task-invariant, but policy dependent, as we require

that the action at the next state s′ is chosen according to policy π which we are currently
trying to evaluate. Based on this observation we will proceed to formulate two different
multitask problems one can tackle for amulti-policy, multitask evaluation step. Let us first
revise the evaluation problem we are interested in for such an MT-evaluation step:

Zπ1wπ1
1 ≈ R1

Zπ2wπ2
2 ≈ R2

· · ·

ZπJw
πJ
J ≈ RJ

⇔



zπ1(s, a)wπ1
1 ≈ r1(s, a)

zπ2(s, a)wπ2
2 ≈ r2(s, a)

· · ·

zπJ(s, a)w
πJ
J ≈ rJ(s, a)

, ∀(s, a) ∈ S ×A (4.33)

In the following, we propose twomethods for solving the above regression problemunder
slightly different assumptions on the common structure present in the problem. The first
proposal will deal with the above problem directly, inferring wπj j and the second one will
focus on zπ for a particular policy π andwill try to learn commonalities of this policy across
tasks, inferring {wπ

j } for every π ∈ Π = {πi}i=1,J.

4.4.1 Learning Shared Representation over Control Policies

In this section we explore tackling the multitask problem in Eq. 4.33 and a fairly standard
wayof doing this is by a regularised versionof this objective. In particular, the optimisation
problem we are trying to solve can be expressed as:

W = argminW

 J∑
j=1

∥Zπjw
πj
j − Rj∥2ρ + λH(W)

 (4.34)

where W = [wπ1
1 ,wπ2

2 , · · · ,w
πJ
J ] ∈ Rd×J andH(W) is a regulariser over the set of weight

vectorswπj
j , modelling the structure between the individual learning problems. The above

problem characterises each step of multi-policy, multitask evaluation step for a given set
of policies Π. In general we will encounter these types of problems in the inner loop of
Policy Iteration and this will be the focus of our investigation. The proposed algorithm, in
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the context of PI, is detailed in Algorithm 4.3 below.

Algorithm 4.3 Least Squares Policy Iteration via Multitask Bellman Residual minimisa-
tion (LSPI-MTBRM)

Require: D = {Dj}Jj=1, set of experiences for each task j

InitialiseΘ = Θ0, k = 0

while convergence not reached (dΘ < ε||k < MaxIter) do

Policy Improvement:
Compute improved policiesΠ(k) =

[
π1, · · · , πj, · · · , πJ

]
.:

πj(a|s) = argmax
a
(φ(s, a)Tw(k−1)

j ) for each task j

where w(k−1)
j is the j-s column of W(k−1).

Policy Evaluation:
1) Compute zπ for all policies π ∈ Π(k) :

zπj(s, a) =
[
φ(s, a)− γφ(s′, πj(s′))

]
∀(s, a, s′) ∈ Dj,∀j = {1, · · · , J}

2) Compute W =
[
wπ1
1 , · · · ,w

πj
j , · · · ,w

πJ
J

]
via Alg. 3.2:

W(k) = argminW={w
πj
j }j=1:J

∑
j

LDj

(
⟨zπi(s, a),w

πj
j ⟩, rj(s, a)

)
+H(W)


end while

return Θ = {wπj
j }

J
j=1 and learnt policiesΠ = {πj}Jj=1 ≈ Π∗

Aparticularly effectiveway of doing sowas discussed in the previous chapter:H(W) =

∥W∥2tr = Tr(WWT). We will adopt this as our multitask learning procedure for the rest
of this chapter, although other approaches can be swapped in. We have seen in Section
3.2 that in the above formulation one can learn compact linear representation of the state-
action space shared across all tasks. As a reminder, the assumption we were making there
was that: there exists a more compact representation ψ based on φ that can span the value
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functions we are interested in representing:

∃U s.t. ψ(s, a) = UTφ(s, a)⇒ Q̃j = ⟨φ(s, a),wj⟩ = ⟨UTφ(s, a),Uwj⟩ = ⟨ψ(s, a), αj⟩
(4.35)

where we impose that this representation supports a sharing structure across tasks, en-
couraged by a L2,1 regularisation on matrix A = [α1, · · · , αJ]. In (Argyriou et al., 2008)
was shown that solving the optimisation problem in Eq. 4.34 is equivalent to solving:

argminA,U =

 J∑
j=1

∥ZπjUαπj
j − Rj∥2ρ + λH(A)

 (4.36)

which leads to an alternatingminimisation algorithm that factorises over tasks. For further
details, we would refer the reader to Section 3.2 and the original work in (Argyriou et al.,
2008).

Note that the assumption on the joint representation considered here is essentially the
same as the onemade in the last chapter, Section 3.2, as if∃U, unitarymatrix s.t. ψ(s, a) =
Uφ(s, a) then:

φ(s, a) = UTψ(s, a)⇒ zπ =
(
φ(s, a)− Es′ [φ(s′, π(s′))]

)
= UT (ψ(s, a)− Es′ [ψ(s′, π(s′))]

)︸ ︷︷ ︸
zπ,ψ

(4.37)

Thus there exists a compact representation zπ,ψ = UTzπ via the same shared rotation
U. Nevertheless, the nature of the (multitask) regression problems is different: one was
considering iterative backups of the Optimality Bellman operator, as the other is consid-
ering a regression towards the reward signals associated with each task. Thus here the PE
step this is not an iterative process any more, it is a one-shot solution that yields the BRM
least-squares solution. Also worth noting that this rotationmatrixU is independent of the
policy π, but at the same time it will only need to accommodate the current set of policies
up for evaluation at the current iteration. Note that although, we assumed a universal U
for all policies we might encounter, in practice this transformation U can and will evolve
throughout iterations as the estimation problems it is trying to support do too. In the end,
this learnt transformation will represent the common structure in the optimal policies, if
achieved in the improvement process.
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4.4.2 Learning Policy-dependent Representations

In this section, wepropose a differentwayof approaching themulti-task,multi-policy eval-
uation step. In the last section, we proposed solving the MT-evaluation problem in Eq.
4.33 by finding a common linear transformation U. Note that in this formulation the in-
put representation of each task zπj is policy dependent – thus for the first time in this work,
wewere tackling aMTproblem that has a task-dependent input. Nevertheless, wepropose
a learning procedure based on the factorisation presented in the solution spaceW and the
duality of this transformation, acting as a shared representation for the common feature
space φ. Note that this transformation is universal as it applies to any set of policies. We
would argue here that, in general, it might be hard to learn such with a common trans-
formation over a set of task-dependent features, especially during the early stages of PI.
Instead, in this section, we propose tackling the MT-evaluation step via a series of simpler
problems that look at evaluating just one policy at the time, but using all data available.
This is partially inspired by Section 4.3, where we have looked at re-using data off-task to
help build the evaluation for policy π on a given task. The idea here is similar, but the way
we are going to tackle this evaluation problem, per policy π, is a bit different.

More specifically, for any given policy π we are trying to evaluate, we are going to be
considering the following joint optimisation problem:

Wπ = argminW

 J∑
j=1

∥Zπwπ
j − Rj∥2ρ +H(Wπ)

 (4.38)

where Wπ = [wπ
1 ,wπ

2 , · · · ,wπ
J ] ∈ Rd×J. Now the difference with respect to the pre-

viously investigated problem in Eq. 4.34 is that, in the above, we are considering repre-
sentation of zπ for one policy π, rather than across the batch of policies we are trying to
evaluation at this PE step. Although we might not use all of the entries in Wπ , the above
formulation let us use all data across all tasks to learn about policy π, under different reward
signals.

Note that we would have one such problem for every policy π ∈ Π for all tasks for
which we are interested in finding the optimal policy. As the number of tasks increase, so
does the number of problems we will need to solve at each evaluation step. Nevertheless,
as argued above, these individual problems aremuch simpler as they do not need tomodel
the relationship between the optimal/intermediate solutions, but only need to account for
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the similarities across tasks ,under a fixed policy π.

Algorithm 4.4 Least Squares Policy Iteration via Multitask Bellman Residual minimisa-
tion over Policy Representations (LSPI-MTBRM-PR)

Require: D = {Dj}Jj=1, set of experiences for each task j

InitialiseΘ = Θ0, k = 0

while convergence not reached (dΘ < ε||k < MaxIter) do

Policy Improvement:
Compute improved policiesΠ(k) =

[
π1, · · · , πj, · · · , πJ

]
πj(a|s) = argmax

a
(φ(s, a)Tw(k−1)

j ) for each task j

where w(k−1)
j is the j-s diagonal entry of W(k−1).

Policy Evaluation:
1) Compute zπ for all policies π ∈ Π(k) :

zπ(s, a) =
[
φ(s, a)− γφ(s′, π(s′))

]
∀(s, a, s′) ∈ D

2) Compute W(k) =
[
wπ1
1 , · · · ,w

πj
j , · · · ,w

πJ
J

]
for all tasks j′ in 1 : J do

Compute Wπ =
[
wπ
1 , · · · ,wπ

j , · · · ,wπ
J

]
for π = πj′ via Alg. 3.2:

Wπ = argmin
W={wπ

j }j=1:J

∑
j

LDj

(
⟨zπ(s, a),wπ

j ⟩, rj(s, a)
)
+H(Wπ)


end for
Store Wπ = {wπ

j }j=1:J in the j′ column of W(k).
end while

return Θ = {wπj
j }

J
j=1 and learnt policiesΠ = {πj}Jj=1 ≈ Π∗

Thus the proposed algorithm follows a similar structure as Alg. 4.3, but now the opti-
misation step in the policy evaluation will involve learning a shared representation that is
policy dependent. The full algorithm is detailed in Alg. 4.4.To be consistent with previous
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algorithms we opted not to change the improvement step. Nevertheless, we could in prin-
ciple employ an improvement step that looks at all the current policies Π and tries to act
greedily with respect to the best one under current evaluation. This is a generalisation of
the normal greedy improvement step, and readily applicable to any situations where one
has access to multiple policy evaluations (Barreto et al., 2017). This is indeed the case for
the Algorithm 4.4 proposed here, as the set {Wπ}π∈Π estimated at each iteration, readily
provides estimations for evaluations {Q̃π

j = Φwπ
j }, for every π ∈ Π.

4.5 Experiments

In this section, we empirically validate and investigate the effectiveness of the algorithms
proposed in the last sections. In particular, we show that our multi-task variants consis-
tently improve performance over their single-task counterparts – LPSI and PI with least-
squares BRM. As before, we study these problems under a constrained per-task budget –
this is the regime in which we expect these type of algorithms to be helpful. The more we
increase the budget (within a task), the less the learning has to rely on information coming
from the other tasks.

S

G

Two-Room MDP

Figure 4.5.1: Depiction of the Two-Room MDP. Starting states, S and Goals states, G
were sampled randomly. The goal states define the different tasks.

Similar to the experimental setup proposed for MT-FQI, we consider a series of navi-
gation tasks in a 10 × 10maze-like environment – see Figure 4.5.1 – to test the proposed
algorithms. We sample ntasks goal locations, at random from the set of reachable positions
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and we provide the agent with a positive reward (+10) once the goal is reached, and no
reward signal otherwise. All transitions in this environment are deterministic and interac-
tionwith thewalls is purely elastic - has no effect on the agent’s position nor does it provide
any (negative) reward. We vary the number of tasks ntasks, but for each choice, we sample
the corresponding goals once and keep this selection fixed throughout our experiments.
This is mostly tomake the different version of the algorithms and baselines comparable, as
the inter-task variance is quite high, especially for small ntasks. Acrossmultiple experiments
conducted, the trends remain the same: we consistently improve over the single-task algo-
rithm, but themagnitudeof this improvement is dependent on the set of tasks selected, the
data gathered under each of these tasks and the amount of information the data collected
under the different tasks brings to each on-task optimisation problem.

As before, we opt for a batch-mode validation¹. This means we provide the agent with
nepisodes worth of experience for each task j ∈ {1, · · · , J}– each of these episodes is atmost
25 steps in the environment, after which the episode ends and the agent is re-spawned in
a random location in the grid. These episodes were sampled a priori under a behaviour
policy μ which in our case was the uniformly random policy and this (per-task) dataset,
D = ∪jDj will not be revisited or augmented with online interaction with the environ-
ment. Throughout these experiments we restrict the number of samples in Dj to a small
enough number as that most of the time, we are in a sample regime in which the single
task methods, based solely in Dj for each task j, fail to recover the optimal policies/value
functions.

As a teaser, in Figure 4.5.2 we present some of the value functions and policies MT-
LSPI is able to learn in this environment. We can see that the learnt value functions give
rise to nearly optimal policies for all tasks considered, even when the per-task data is not
enough to learn the full value function. These were policies learnt via one of the MT Bell-
manResidualminimisationmethodproposed in Section 4.4. In particular, the above value
functions were obtained by running Alg. 4.3, for ntasks = 10 tasks, under a budget of
nepsiodes = 100 episodes per task. The training curves for this experiment can be found in
Figure 4.5.5 in the results’ discussion below. Looking at this figure (reporting aggregated
performance across tasks), one can see that, under these conditions, the single-task BRM

¹Our proposed algorithms extend easily to an online/on-policy interaction. Nevertheless, for this
investigation, we opted to focus on the benefits for the MT treatment of the problem and the better
generalisation that this formulation can bring about in estimating value functions, eliminating effects
due to exploration.
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(a) Task 1 (b) Task 2 (c) Task 3

(d) Task 4 (e) Task 5 (f) Task 6

Figure 4.5.2: Samples of the value functions and policy learnt via MT-LSPI

although it obtains a reasonable performance, fails to solve the task 30% of the time, while
Alg. 4.3 manages to further improve on this performance and achieve close to optimal be-
haviour – as illustrated by the estimated value function in Figure 4.5.2. In the following,
we will go through more empirical results generated by the different algorithms proposed
in this chapter.

4.5.1 Results: Transfer of Samples

We start with Alg. 4.2, which is an extension of the popular LSPI algorithmwhere we pro-
pose a more effective way of using data across tasks in the (MT) policy evaluation step.
This method relies heavily on the assumption that our agent resides in a persistent envi-
ronmentwhich enable us to transfer samples of the form (s, a, s′) ∈ D to build the estimate
of the matrices Bπ for any policy π. But as discussed in Section 4.3, in order to compute
the parameters, wπ

j , of the approximation Q̃π
j = Φwπ

j ≈ Qπ
j , we would need the corre-

sponding approximation of bj under the same sample set. Thus if wewant to use thewhole
dataset, generated by aggregating the experience across all tasks, we will need to come up
with estimates for rj or all samples outside Dj.

Now, if we have access to the analytic form of the reward functions rj we can easily
evaluate all samples inD and effectively create amuch larger on-task data set. This is indeed
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the case in our example, as the reward structure is very simple and re-assessing samples
collected under different tasks requires just a comparison with the goals of the task we are
pursuing now. Thus, in our case, this re-evaluation is easily feasible and this will be one
of our baselines. We denote this baseline as MT-LSPI (actual reward) as it has access to
the actual reward functions and we do not need to infer it. Note that in principle this is an
upper bound of what we can do by using the whole data in D if one has access to rj.

The more interesting, yet more challenging case is where we have access only to on-
task samples of this reward function andwe have to resort to inferring themissing rewards
for samples in D \ Dj. This is precisely what Alg. 4.2 proposes. And we will look at two
variants of this algorithm. In the first one, we build the estimate of bj,D for each task j just
once at the beginning of learning, based on our first iteration of policy iteration and keep
this estimate fixed for future iterations. We refer to this variant as MT-LSPI (data aug),
as for all iterations but the first one, this acts as a per-task data augmentation procedure.
The second one will constantly revisit and recompute the estimation of bj,D based on the
parameters values estimates at the latest policy iteration. We denote is variant of Alg. 4.2
as MT-LSPI (reward prediction).

We ran the above variants and a single-task LSPI baseline on the experimental setup
outlined in the previous section. The results are compiled in Figure 4.5.3. We include
the results for two types of budget nepsidoes ∈ {50, 100} and different number of tasks
ntasks ∈ {5, 10} (this indicated in the title of the cell in each of the plots). The first thing to
notice is that across all conditionsweare substantially improvingover the single-task coun-
terpart. Moreover, if we look at the performance of MT-LSPI (actual reward)which uses
the samedata, but has access to the true reward functions, we see that in this scenario, both
versions using the reward prediction match the performance of this upper bound. We hy-
pothesise this is mostly due to the simple structure the reward signals have in our tasks.
Furthermore, as discussed in Section 4.3, we expected the two variants of reward predic-
tion to have very similar performance under a fixed dataset, as the first iteration contains
as much information about the reward as do the subsequent ones. Moreover, one can see
that we can obtain optimal performance much sooner (with less data), as long as we have
a decent budget and increased number of tasks (regimes in the bottom-right corner).

InFigure 4.5.4we include further results on varying thebudget and thenumberof tasks.
We can clearly see a monotonic increase in performance as more data is available. This is
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Figure 4.5.3: Performance of different variants of MT-LSPI with data augmentation
and reward prediction, as compared with a single task LSPI and the ac-
tual reward for all data in the individual on-task batches. Results were
average over the number of tasks (top of the plots) and over 5random
generations of these set of tasks.

more noticeable for the single-task learning, as we can see that the multitask methods,
making use of all data available across tasks manage to get very good performance even
under very reduced budgets (see left column in Figure 4.5.4).

More surprisingly maybe is that we can achieve the same performance as knowing the
actual reward associatedwith each transition in the off-task datasetsD\Dj. Wehypothesise
this might due to a couple of effects, but one of the main ones could be the particular
reward structurewe assumed for our tasks. Theonly non-zero rewards in this environment
are at the goal state for each task andwemake sure that theon-taskdatasetDj has at least one
instanceof this positive reward. The rest of the rewards are zero and are sharedbetween the
many tasks considered. Thus in a sense, all the information needed to predict the reward
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Figure 4.5.4: Empirical analysis of the dependence on number of tasks ntasks ∈
{3, 5, 10, 20} (top entry in the title of the cell) and the budget per task,
nepisodes ∈ {25, 50, 100, 200} (bottom entry in the title of the cell). This il-
lustrate that data from different tasks and be used effectively by Alg. 4.2
to overcome a small budget of per-task iterations. Results were averaged
over 5 seeds (data generation). Tasks were samples once for each ntasks

.

for a given task j is captured in Dj and the generalisation for the other states is trivial. The
sparsity and determinism in reward signals benefit our inference problem in bj,D\Dj .

4.5.2 Results: Multitask Bellman Residual Minimisation

Next, we are going to turnour attention to evaluating ourmultitaskBellman residualmeth-
ods proposed in Section 4.4. We consider the same experimental setup outlined at the be-
ginning of our experiments section. Our baseline for this set of experiments will be the
single-task LSPI seeking to minimise the Bellman residual (LSPI-BRM single task) as
described in Eq. 4.16 with the least-squares solution given by Eq. 4.17.

Firstly, let us consider the multitask algorithm outlined in Alg. 4.3 (LSPI-MTBRM).
This algorithm at each iteration of PI will try to solve the joint multitask regression prob-
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lem Eq. 4.35 by learning a linear common representation that would support the current
policies up for evaluation. As in this algorithm, we are not going to re-use any of the off-
taskdata, the transfer of informationbetweenour task canonlyhappen through this shared
representation. This is similar to our setup in the MT-FQI case (Chapter 3), but the na-
ture of the regression problem here is different. In the previous case, we were performing
iterative backups of the per-task optimality operators, whereas here BRMmethods aim to

directly come up an approximation Q̃
π(k)j
j that minimises the residual for the current set of

policiesΠ(k) = {π(k)j }.
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Figure 4.5.5: Performance of different variants of LSPI-MTBRM under different reg-
ularisation strengths for H(W) in (Eq. 4.34). Results were average over
the number of tasks (top of the plots) and over 3 random generations of
Dj under a fixed set of tasks.

Wetrainedour agents over 3 randomselections of tasks anddata generations. As before,
we varied the number of tasks ntasks ∈ {5, 10} and the sample budgets nepisodes ∈ {50, 100}
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Figure 4.5.6: Top 3 features learnt by LSPI-MTBRM (end of training). Feature maps
are presented row-wise. Each of the four columns corresponds to the
value of the feature for each state in the grid, with respect to the four
actions available: φi(s,→), φi(s, ↑), φi(s,←), φi(s, ↓).

and consider multiple value for the regularisation parameter λD for the multitask regres-
sion problem. We include a selection of this results in Figure 4.5.5. For larger value of
λD, the performance degrades considerably. This is may be due to the fact that we keep
this parameter fixed throughout the learning process, although the regression problems at
each iteration might be very different and the similarity between them is a combination
between reward similarity and policy similarity.

Finally, it is worth taking a look at the learnt representations achieved by MT-BRM
for control policies – solving problem Eq. 4.33. We record about 6 relevant dimensions to
account for the shared subspaceψ - these correspond to eigenvalue greater than ελ = 1e−3.
We visualise the top 3 eigenvectors obtained in Figure 4.5.6. Note that they exhibit the
same compressed and highly informative structure that we encountered in the previous
sections, learnt by MT-FQI. Nevertheless, this is an analysis of the representation at the
end of training, where policies up for evaluation are (hopefully) competent, even close to
optimal. Throughout learning, this effective dimensionality of the representation changes,
but quite quickly converges to a low-dimensionality representation (4− 5) that supports
the evaluation problems of interest. Note that is not a massive reduction as the number
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Figure 4.5.7: Performance of different variants of LSPI-MTBRM-PR under different
regularisation strengths for H(Wπ) in (Eq. 4.33). Results were averaged
over the number of tasks (top of the plots) and over 3 random genera-
tions of Dj under a fixed set of tasks.

of tasks considered here are relatively small, but effective enough to result in performance
and generalisation boost outside the individual training sets Dj.

Lastly in this section, we are going to look at the performance and potential benefits of
solving a policy dependentmultitask optimisationproblemas proposed inAlg. 4.4 (LSPI-
MTBRM-PR). For comparison reasons, we maintain the same experimental setup and
even the samedatasets used in the previous set of experiments. The results are summarised
in Figure 4.5.7. We can see that the results both in performance and speed of convergence
are similar to the ones we obtained in the previous experiment, using LSPI-MTBRM.The
top-performing regularisation parameters λD, converge to the same asymptotic best per-
formance. We originally hypothesised that the multitask regression problems the agent
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needs to solve at each iteration might be simpler in the case of LSPI-MTBRM-PR, as the
only varying component here is the reward structure while the environment and policy
are shared by all value functions under construction. We do not seem to observe this here,
but we believe this might be an artefact of the non-overlapping reward structure consid-
ered here, as most policies πj that would be attempting to achieve a goalGj will have a zero
value under a different task j′,Qπj

j′ (s, a) = 0outside the transition (s, a) leading to the goal,
unless the goalGj′ happens to be on the path toGj. Thus, although the problem appears to
be simpler, there may be limited transfer that can happen between these value functions.
In particular, in the previous versions of themultitask problems considered we always had
a mixture of policies and thus transfer of subpaths could naturally occur through enforc-
ing the common representation. This cannot happen here anymore as the policy remains
fixed in thisMTproblem. Nevertheless, we believe thismight be a promisingway of build-
ing representation when the reward signal share a lot more commonalities, as the ones we
are going to explore in the second part of this thesis (Chapters 5-6). Actually, this type of
joint inference problems will be the focus on the next part: successor features provide an
evaluation of a common policy under different reward signals present in the environment.

4.6 Conclusion

4.6.1 Related Work

In this chapterwe studied the samemultitaskRLproblemasproposed inChapter 3 and the
relevant literature around this scenario has already been reviewed in detail in that chapter,
Section 3.4.1. As such, we will instead focus here on reviewing the relevant work dealing
with the underlying RL paradigm explored here: policy iteration (PI) and its proposed
solutions. In particular, we will focus on the policy evaluation step of this procedure, as
this is where the learning happens. It is worth noting that in recent years, most of the work
in RL has focused on Q-learning based methods. Nevertheless, many studies have shown
the power of a PI procedure especially for the multitask scenarios (Barreto et al., 2018;
Zhang et al., 2017; Borsa et al., 2019) and representation learning (Barreto et al., 2014).

First of all, it is worth noting that one can extend the procedure proposed in Chapter
3 to deal with a policy evaluation step. This would result in an iterative procedure of ap-
plying the Bellman expectation operator and solving jointly the corresponding regression
problems. As part of our study in (Borsa et al., 2016), we have tried this approach and
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managed to recover similar results as with MT-FQI. Nevertheless in this scenario, every
policy evaluation step is an iterative problem in itself. In small data regimes, this might not
be such a problem, but in this chapter, we have effectively looked at other ways of tackling
this step that is much more computationally efficient under linear parametrisations. In
particular, for the multitask scenario considered in the work, where the transition dynam-
ics are shared, we have seen that we can use the compositionality in projected solution and
directly leverage the experience from all tasks in building one of the terms needed in this
estimation.

The idea of minimising the Bellman residual was proposed as early as in (Schweitzer
and Seidmann, 1985) and several variants have been studied for instance in (Lagoudakis
and Parr, 2003; Antos et al., 2008). Residual algorithms are tempting as they propose a
more direct approach to the evaluation problem, rather than an iterative one and are guar-
anteed to convergence (Baird, 1995). Nevertheless, this class of algorithms do require a
double sample, unless the environment and rewards are deterministic. Thus rendering the
applicability of these methods, outside the deterministic case or model-based RL, fairly
limited. It should be noted that there exist variants of BRM approaches that eliminate the
need for double sampling by proposing a change in the original minimisation problem in
Eq. 4.5 (Antos et al., 2008) .

In (Thiery and Scherrer, 2010), one can find a study comparing BRM approaches with
projected approaches. In general, no strong statements can be made about the relative
quality of their solution, but empirical experiments seem to suggest that projected policy
evaluation may outperform BRM more often than not (Thiery and Scherrer, 2010).

4.6.2 Summary

In this chapter, we revised the general framework of policy iteration methods, in the con-
text of multitask learning under linear parametrisations of the targeted value functions. In
particular, we have looked at different ways one can jointly model and address the multi-
policy evaluationphase in themultitask-RLproblemconsidered. When considering a nor-
mal policy evaluation step, under functional approximation, there are two prominentways
of phrasing the learning problem: projected policy evaluation methods (described by Eq.
4.3) and Bellman residual methods (described by Eq. 4.5).

The first class of methods tries to find the solution that most closely satisfied the pro-
jected Bellman equation (Eq. 4.3). The first thing we did here is to see how these opti-
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misation problems look under ourmultitask RL objective. Under a linear parametrisation
of the value functions, one can easily obtain a closed-form solution that depends on two
terms that can be built from samples: one depending on the environment and one de-
pending on the reward. This factorisation in the solution is particularly useful for us as the
dynamics of the environment are shared across tasks and thus the first term can be built
across tasks, using all of the experience. This is a particularly simple form of transfer, but
a very powerful one as we have seen in the experimental section, exploiting the structure
in our MDP. As a consequence, the policy evaluation step for each of the tasks can use all
the transition experience ({(s, a, s′)}) generated by all tasks and can be augmented by a
reward prediction step that will try to build a projected model of the reward for each task.

The second approach to policy evaluation we investigated in this chapter is minimising
the Bellman residual (Eq. 4.5). In this case, inspired by the positive results obtained in
chapter 3, we explore learning a common representation across themultiple policy evalu-
ation steps under consideration. In doing so, we aim to leverage the different data collected
by different tasks and any commonalities that the policies might share. We proposed two
instances of the joint evaluation step: one that looks at multiple policies under the same
task (MTBRM-PR) and one that only looks at the evaluation problemswe are actually in-
terested in, the evaluations of a particular policy πj under its task j (MTBRM). Although
both of these algorithms are targeting estimating the optimal value functions at conver-
gence, they will tackle the (joint) policy evaluation steps very differently. Notably, the
multitask problems solved and the resulting shared representations will be different. One,
LSPI-MTBRM, will be learning a representation that supports the estimation of optimal
value functions across the class of MDP considered, much like how we did in Section 3.1
– in a sense, this is just a different way of constructing a similar representation (Section
3.3). The other one, LSPI-MTBRM-PR, will build, for each policy, a shared represen-
tation across multiple reward signals; thus supporting in a sense this policy’s evaluation
under different reward structures. A complementary idea has been recently explored in
(Dadashi et al., 2019; Bellemare et al., 2019). Since the nature of this problem is different
so is the generalisation they are targeting: one is across MDPs and (optimal) policies, the
for a particular policy, across MDPs. For this work, we used the same multitask algorithm
(Argyriou et al., 2008) as in chapter 3, but as with the previous chapter, this is plug-in
choice and other multitask regression methods can be utilised here.

As wementioned in the main text, in this work we have focused mainly on the benefits
that come out of a joint learning procedure and the transfer enabled across the multiple
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policy evaluation steps. Nevertheless, one could also think of using the other tasks, and in
particular the other policies, in the improvement steps as well. This is especially compat-
ible with algorithms Alg. 4.2 and Alg. 4.4, where we can easily get the evaluations of all
policies considered at this iteration with respect to all tasks, thus enabling us to perform a
potentially larger improvement step via Generalised Policy Improvement (Theorem 5.1),
as we will explore further in the next chapters. Intuitively, this would be possible if any
of the current policies surpasses as any state the performance of its optimising policy. Al-
though this advantagemight be of limited use further into the policy iteration procedure –
aswe expect policies learnt tooptimise for that task todominate these evaluations. Itmight
bemuchmore beneficial in the early phases of training andmaybemore importantly in the
scenario in which we consider tackling a new task in our MDP class. This kind of transfer
will immediately provide us with a good starting point. We refrain from more details at
this point, as we will delve into these topics in the next chapters (Section 5.1.2 - 5.2), as
part of a different policy evaluation scheme via successor features (Barreto et al., 2017).
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Part II

Transfer in Policy Space
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5
Scalable Policy-based Transfer for Deep

Reinforcement Learning via Successor Features

In the previous part, we have looked into learning a common representation which then
can be used tomore easily build value functions for future tasks. The intuition there came
from the evidence provided by examples in supervised transfer learning literature showing
tasks may benefit from a joint representation both in prediction performance but also in
better generalising to a related task in the same/similar family. We have seen previously
that some of these intuitions can be brought over toRL tasks. In particular, we have shown
how one could adapt multitask supervised techniques to jointly learn a transferable com-
mon representation for value functions corresponding to different control problems. As
a reminder, in this work, we have been and will be looking at control problems that differ
in reward specification only, but otherwise maintain state and action specifications as well
as observe a constant dynamics of the environment. Although some of the methods pre-
sented in Chapter 2 are widely applicable even outside this shared dynamics assumption,
we have seen in Chapter 3 that we can do better by taking advantage of these assumptions
and exploiting them to get reuse samples s′ ∼ P(.|s, a), increasing our sample efficiency
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at transfer. In this part of the thesis, we will take a close look at explicitly leveraging the
shared dynamics in the tasks considered. At the same time, we will be relaxing slightly
one of the constraints on the common representation we will be learning. We will show
that relaxing the linearity constraint and moving instead towards building a policy-based
representation leads to more scalable, practical algorithms that pair well with non-linear,
state-of-the-art, neural networks-based representation learning andmoreprincipled trans-
fer opportunities.

Why policy-based representations? Policies are a central and key concept in any con-
trol or prediction problem in an MDP. They fully describes the behaviour of an agent and
highly impact the quantities wemight want to estimate or questions wemight want to an-
swer. For instance, the prediction problem of where our agent is going to be in T steps
is usually dependent not only on the transition kernel but also on the policy this agent is
following: Pπ(st+T|st). And the complexity of this prediction problem is implicitly linked
to the complexity of π. Here we are assuming a long term sequential learning problem, in
which the agent can and will influence the environment and the distribution of the states
it will visit through its actions. As such, the trajectories an agent can observe in the same
environment can be very different under different policies, πi: Pπ1({st+1, . . . , st+T}|st) ̸=
Pπ2({st+1, . . . st+T}|st). Nevertheless, as the transition kernelP does not change, π1 and
π2 being close to eachother (in the sense that their selection differs only slightly)will likely
imply the induced prediction problems are closely related as well. Although one could
easily construct examples where even one simple deviation in the policy can lead to very
different futures, we would argue that in general, a measure on π induces ameasure onPπ

and respectively on the corresponding predictions and value functions Vπ(or Qπ). More
precisely, the assumption is that common structure in one space would imply structure in
the induced prediction problems.

The concept of policy and the dependency of our estimates on it is very specific to RL –
not present in supervised or unsupervised learning problems, at least not stationary ones.
In the following chapters, we will start to investigate some of the peculiarities present in
transfer problems in reinforcement learning tasks – in particular, the reusable structure
present in policy space. This type of structure becomes primarily relevant if we approach
new control problems or complex planning tasks. We first try to break down the problem
into manageable sub-tasks that we have experience solving or for which we have already
’cached in’ solutions. In other words, we devise a plan relying on transferring previously
learnt skills or partial policies andapplying them,whenever appropriate, to anewsituation.
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In the literature, this kind of hierarchical decision making based on subskills (Dietterich,
2000; Konidaris and Barto, 2007), sometimes called options (Sutton et al., 1999; Precup,
2000), has been thoroughly investigated and shown tobe a very effectivewayof planning at
a higher temporal horizon (Brunskill andLi, 2014). Nonetheless defining – or discovering
– a collection of re-usable subskills that can be used effectively for planning remains largely
an elusive open question (Hengst, 2017; Barto and Mahadevan, 2003; Diuk and Littman,
2009; Konidaris and Barto, 2007; Brunskill and Li, 2014). Setting this option discovery
problem aside, for the time being, it should become clear by now that to attempt to re-
produce this kind of functionality and transferability in new control problems, our agents
should display some core capabilities:

1. The ability to lean to solve multiple tasks and remember or store these partial solutions.
We have already argued for this in the past chapters and the focus of this work has
been largely dedicated to investigating precisely this multitask learning problem.

2. The ability to devise a plan using these learnt subpolicies, in the context of a new task.
This includes the ability to invoke past policies whenever they are appropriate and
decide which of the available subskills are best suited for the task at hand.

The second point here implies that the ability to transfer knowledge from previous tasks
in RL problems can be multifaceted, exploiting different kinds of structure. In particu-
lar, in the first chapters, we have focused on learning common features based on which we
can estimatemultiple (optimal) value functions. These exploit the commonobservational
space shared by the tasks and can implicitly capture some of the structure induced by the
shared dynamics and smoothness in policy space. In the following chapters, we will try to
capture this structure more explicitly and argue for transfer via re-using previous policies
for planning. We will also show that being able to reason explicitly about multiple poli-
cies at the same time and what they would achieve under different tasks can lead to very
effective transfer in policy space. This ability to evaluate multiple policies will naturally
provide us with a mechanism to decide which previously learnt policies are pertinent to
use at any point in time and when to trust one versus the other. It is worth noting that, in
general, building such evaluation under different tasks can be very expensive and not nec-
essarily simpler than solving the new RL problem from scratch. Nevertheless, under the
same dynamics, this problem becomes much simpler as the futures we are trying to learn
about stay the same under a given policy π. Thus, switching to a new task (new reward
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signal) boils down to reward re-evaluation under a fixed transition kernelPπ . Fortunately
for us, there exists a particular policy-based representation, called Successor Representa-
tions (Dayan, 1993), that can do this re-evaluation instantaneously. In Section 5.1, we
formally introduce these representations and their feature generalisations, called Succes-
sor Features (Barreto et al., 2017) - SFs in short, and discuss their potential for transfer.

As previouslymentioned, these new representations are policy-dependent. On the one
hand, this allows us to exploit the structure in the dynamic programming problems more
effectively; on the other hand, we have to build these representations for each of the poli-
cies we would be interested in evaluating. Unfortunately, the space of all possible policies
one could consider in a given environment scales with the number of states and actions.
Thus answering even (prediction) questions like the one above for an arbitrary policy π
can easily become prohibitively hard, let alone the problem of coming up with a suitable
control policy for combining previous ones. Chapter 6 will propose an elegant and scal-
able solution to this problem, where based on a given structure in the reward space, we can
learn off-policy and off-task to build SFs that generalise over a policy embedding space,
closely linked to our reward space. In this chapter, we will be looking at how to discover
and exploit additional structure in reward space. Wewill show how by relating our current
task to the previously observed reward signals we can provide the same level of transfer
as one could if the underlying structure is observed or provided by the user. Before mov-
ing further, we introduce two (mild) assumptions that will make the transfer problem less
intractable if we can discover and leverage this structure:

• We will restrict the space of policies we are interested in representing or answer ques-
tions about. In this work, we specify this subset of policies by instead specifying the
subspace of reward signals we are interested in generalising over – the space of tasks
we are trying to handle. We will also argue that in order to deal with this family of
rewards, we only need to concern ourselves with policies that are trying to optimise
one or a combination of these reward signals. There is ample evidence in the lit-
erature that the structure induced by optimal policies (Schaul et al., 2015a) across
a selection of tasks can be much more compact, capturing only the essential infor-
mation needed to generalise to other optimal behaviours: e.g. the shortest path
between two states.

• As already hinted above, the second assumption will be that the induced space of
value functions, under the above set of policies, shares a common structure that can
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be learnt and leveraged for generalisation from one policy to the other. Note that
this is bound to be true under the shared dynamics assumption. Furthermore, what
we will show in the next chapter is that this property could be further enhanced by
discovering and exploiting the structure presented in reward space – if any.

5.1 Background: Successor Representations and Features

In this section, we will define Successor Representations (SRs) and their extension Suc-
cessor Features and see howone could use such representations for transfer (Barreto et al.,
2017). Successor representationswere introducedbyDayan (Dayan, 1993) as away to im-
prove generalisation for temporal difference methods within one task. This original ver-
sion relied mostly on ’transferring knowledge’ between different policies occurring at dif-
ferent value iteration steps. SRs are defined as the expected discounted number of visits to a
particular future state, starting from a given initial state, under a policy π.

More recently, in (Barreto et al., 2017), Barreto et al proposed a generalisation of these
representations in a feature space that can potentially deal with a much larger state space,
including the continuous case as well as functional approximation. The next two chapters
will be about extending and generalising this framework. As a reminder, we are interested
in generalising for a class of MDPs that share the state and action space, as well as the
transition dynamics, but differ in the reward functions which solely specify the tasks of
interest:

M(S,A,P, γ) ≡ {M(S,A,P, ·, γ)}. (5.1)

Specifically, the restricted scenario considered in (Barreto et al., 2017) puts an addi-
tional constraint on the reward signals one can expect to see. They looked atMDPswhose
expected one-step reward can be written as

r(s, a, s′) = φ(s, a, s′)⊤w, (5.2)

where φ(s, a, s′) ∈ Rd are features of (s, a, s′) and w ∈ Rd are weights. In general
φ(s, a, s′) can be any abstract function of (s, a, s′), but in order to build some intuition it
helps to think of them as salient events, potentially rewarding events, thatmay be desirable
or undesirable to the agent. Based on (5.2) one can define an environment (S,A,P, γ)
as

Mφ ≡ {M(S,A,P, r, γ)|r(s, a, s′) = φ(s, a, s′)⊤w}, (5.3)
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that is,Mφ is the set of MDPs induced by φ through all possible instantiations of w. We
call each M ∈ Mφ a task. Given a task Mi ∈ Mφ defined by wi ∈ Rd, we will use Qπ

i

to refer to the value function of π on Mi. Now looking at the value function Qπ of task w
under policy π one can observe the following decomposition:

Qπ(s, a) = Eπ

[∑
k

γtrt+k|St = s,At = a

]
= Eπ

[∑
k

γtφT
t+kw|St = s,At = a

]

= Eπ

[∑
k

γtφT
t+k|St = s,At = a

]
w = ψπ(s, a)Tw

And fromhereonwewill refer toψπ(s, a) as the successor feature(SF)at (s, a)underpolicy
π. Thus a SF, ψπ , is a vector of policy evaluation value functions under different reward
signals corresponding to the different dimensions of φ. And as one can easily see from
the equation above, this representation captures the sufficient information needed to re-
evaluate any reward signal in theMφ. Moreover, it is also easy to show that

ψπ(s, a) = Eπ [φt+1 + γψπ(St+1, π(St+1)) | St = s,At = a], (5.4)

which means SFs satisfy a Bellman equation in which φi play the role of rewards – one
can easily check this corresponds to the Bellman Expectation Equations for policy π and
rewards given by each entry in φ. Therefore, SFs can be learned using any conventional RL
method (Szepesvári, 2010; Sutton and Barto, 1998).

5.1.1 How General are ψπ?

Given these very appealing properties – zero-shot inference of policy evaluations over a
collection of tasks and suitability to TD-based learningmethods – the question onemight
ask is what are we giving away here or essentially how general are these representations?
And the answer is very tightly linked to the choice of φ(s, a). To provide some intuition let
us take a look at two particular scenarios, at different ends of the spectrum.

For instance, if S and A were both finite and φ(s, a, s′) is a |S|2|A| dimensional one-
hot vector, ψπ is the discounted sum of occurrences of this particular transition (s, a, s′),
under policy π. This not only recovers the original SRs but also this representation is able
to handle any reward function in the extended classM, as any reward signal r can be triv-
ially expressed as a linear combination in this tabular representation, where w ∈ R|S|2|A|

is equal to r: w = r. However, coverage of the S × A × S is simply not feasible for
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most interesting problems. Nevertheless, as argued in (Barreto et al., 2017; Dayan, 1993),
our rewards are usually somewhat sparse and so is the space of states we can reach in one
step. This implies that the number of features φ that we would need to represent can be
substantially less than |S × A× S|.

On theotherhand, if the reward signal in the current task is notwell represented inφ this
can lead to wrong evaluations – that could be either non-informative, but also misleading.
And as we will be using these evaluation for decision making – as we will outline in the
next section – this could lead to very poor decisions. A particular case of this scenario is
when the reward signal is orthogonal to φ in which case, all of our evaluations will be zero
and thus we would have no knowledge that we can transfer from previous behaviour nor
any way to distinguish between their applicability (’goodness’) in this new task.

5.1.2 Transfer via SFs and GPI

Let us take a look at learning and generalising to tasks inMφ. Remember the goal here is
to show how learning about a subset of the tasks inMφcan help us come up with a policy
suitable for a new, unseen task from the same family. (Barreto et al., 2017) propose SF&
GPI as a way to promote transfer between tasks inMφ. As the name suggests, GPI is a
generalisation of the policy improvement step described in Section 5.1. The difference is
that in GPI the improved policy is computed based on a set of value functions rather than
on a single one. In words, GPI implies that, if the agent acts greedily with respect to the
maximum over a set of value functions, the resulting policy is no worse than the policies
that originated the value functions. More formally, letQπ1 ,Qπ2 , ...Qπn be the action-value
functions of n policies defined on a given MDP, and let Qmax = maxi Qπi . If we define

πGPI(s) ∈ argmaxaQ
max(s, a), ∀s ∈ S (5.5)

then QπGPI(s, a) ≥ Qmax(s, a) for all (s, a) ∈ S × A. The result also extends to the
scenario where we replace Qπi with approximations Q̃πi , in which case the lower bound
on QπGPI(s, a) gets looser with the approximation error, as in approximate DP (Bertsekas
and Tsitsiklis, 1996). For the convenience of the reader, we restate (Barreto et al., 2017)
GPI theorem below and we include the proof in the Appendix A.3.1.
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Theorem 5.1: Generalised Policy Improvement

Let π1, π2, ..., πn be n decision policies and let Q̃π1 , Q̃π2 , ..., Q̃πn be approximations of
their respective action-value functions such that

|Qπi(s, a)− Q̃πi(s, a)| ≤ ε for all s ∈ S, a ∈ A, and i ∈ {1, 2, ..., n}.

Define
π(s) ∈ argmax

a
max

i
Q̃πi(s, a).

Then,
Qπ(s, a) ≥ max

i
Qπi(s, a)− 2

1− γ
ε

for any s ∈ S and any a ∈ A, where Qπ is the action-value function of π.

In the context of transfer, GPI has been shown in (Barreto et al., 2017) to leverage
knowledge accumulated over time, across multiple tasks, to learn a new task faster. Sup-
pose that the agent has access to n policies π1, π2, ..., πn. These can be arbitrary policies,
but for the sake of argument, let us assume they are solutions for tasksM1,M2, ...,Mn. Sup-
pose also that when exposed to a new task Mn+1 ∈ Mφ the agent computes Qπi

n+1—the
value functions of the policies πi under the reward function induced bywn+1. In this case,
applyingGPI to the set{Qπ1

n+1,Q
π2
n+1, ...,Q

πn
n+1}will result in a policy that performs at least

as well as any of the policies πi, even if one is allowed to choose a different baseline policy
πi in each s ∈ S .

Clearly, the approach above is appealing only if we have a way to quickly compute the
value functions of the policies πi on the task Mn+1. This is where SFs come in handy. SFs
make it possible to compute the value of a policy π on any task Mi ∈Mφ by simply plug-
ging in the representation the vectorwi defining the task. Specifically, if we substitute (5.2)
in the definition of the action-value function we have

Qπ
i (s, a) = Eπ [∑∞

i=tγ
i−tφi+1 | St = s,At = a

]⊤ wi

≡ ψπ(s, a)⊤wi, (5.6)

whereφt = φ(st, at, st+1) and ψπ(s, a) are the SFs of (s, a) under policy π. As one can see,
SFs decouple the dynamics of the MDP Mi from its rewards (Dayan, 1993). One benefit
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of doing this is that if we replacewi withwj in (5.6) we immediately obtain the evaluation
of π on task Mj. In other words, if we switch to a new MDP in this family, we can readily
evaluate π on this new MDP.

The combination of SFs and GPI provides a general framework for transfer in environ-
ments of the form (5.3). Suppose that we have learned the functions Qπi

i using the repre-
sentation scheme(5.6). Whenexposed to the taskdefinedby rn+1(s, a, s′) = φ(s, a, s′)⊤wn+1,
as long as we havewn+1 we can immediately compute Qπi

n+1(s, a) = ψ πi (s, a)⊤wn+1. This
reduces the computation of all Qπi

n+1 to the problem of determining wn+1, which can be
posed as a supervised learning problem whose objective is to minimise some loss derived
from (5.2). OnceQπi

n+1 have been computed, we can apply GPI to derive a policy π that is
no worse, and possibly better, than π1, ..., πn on task Mn+1.

5.2 Extending the Notion of Environment

As reviewed above, (Barreto et al., 2017) proposed a framework for transfer based on two
ideas: generalised policy improvement (GPI), a generalisation of the classic dynamic-
programmingoperation, and successor features (SFs), a representation scheme thatmakes
it possible to quickly evaluate a policy across many tasks. This approach to transfer is ap-
pealing for two reasons: it allows transfer to take place between any two tasks, regardless
of their temporal order, and it integrates almost seamlessly within the RL framework.

In this work we extend this framework in two ways. First, we will argue that its applica-
bility is broader than initially shown. SF&GPI was designed for the scenario where each
task corresponds to a different reward function; one of the basic assumptions in the origi-
nal formulation was that the rewards of all tasks can be computed as a linear combination
of a fixed set of features. We show that such an assumption is not strictly necessary, and in
fact it is possible to have guarantees on the performance of the transferred policy even on
tasks that are not in the span of the features.

The realisation above adds some flexibility to the problem of computing features that
are useful for transfer. Specifically, by looking at the associated approximation from a
slightly different angle, we show that one can replace the features with actual rewards. This
makes it possible to apply SF&GPI online at scale, bypassing, in a sense, the discovery
problem while maintaining the same level of generality.

Previous work focused on environments of the form (5.3). In this work we will adopt a
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more general notion of environment and the changes in the reward signal that can occur:

M(S,A,P, γ) ≡ {M(S,A,P, ·, γ)}. (5.7)

M contains all MDPs that share the same S , A, P , and γ, regardless of whether their
rewards can be computed as a linear combination of the features φ. Clearly,M ⊃ Mφ.
Now our goal is to devise a transfer framework for environmentM.

As reviewed in the first section of this chapter, (Barreto et al., 2017) provides theoret-
ical guarantees on the performance of SF&GPI applied to any task M ∈ Mφ. In this
section we show that one can generalise slightly this result and derive guarantees for any
task inM. We will do so by considering projection of the reward signals inM ontoMφ.
In some sense, we are going to approximate a general reward functionwith its closest point
inMφand show that taking the corresponding GPI policy for the approximation can still
lead to a good policy for the original task. In the following, we formally related the opti-
mal value function of an arbitrary reward signal r and the performance of the GPI policy
induced by its ’closest’ point inMφ. The general result is stated below:

Proposition 5.1

Let M ∈ M (MDP we are trying to generalise to) and let Q
π∗j
i be the action-value

function of an optimal policy ofMj ∈M, π∗j , when executed in anMi ∈M. Given

approximations {Q̃π1
i , Q̃

π2
i , ..., Q̃πn

i } such that
∣∣∣Qπ∗j

i (s, a)− Q̃πj
i (s, a)

∣∣∣ ≤ ε for all
s ∈ S , a ∈ A, and j ∈ {1, 2, ..., n}, let

π(s) ∈ argmaxamaxjQ̃
πj
i (s, a). (5.8)

Then,

∥Q∗ − Qπ∥∞ ≤
2

1− γ

(
∥r− ri∥∞ +min

j
∥ri − rj∥∞ + ε

)
, (5.9)

where Q∗ is the optimal value of M, Qπ is the value function of π in M, and ∥f −
g∥∞ = maxs,a |f(s, a)− g(s, a)|.

Proof. Theresult is a direct application ofTheorem 5.1 and intermediate results Lemmas 2

118



and 3 present in Appendix A.3.1. Let π∗ be an optimal value function of M. Then,

Q∗(s, a)− Qπ(s, a) = Qπ∗(s, a)− Qπ(s, a)
= Qπ∗(s, a)− Qπ∗i

i + Qπ∗i
i − Qπ(s, a)

= Qπ∗(s, a)− Qπ∗i
i + Qπ∗i

i − Qπ
i + Qπ

i − Qπ(s, a)
≤ |Qπ∗(s, a)− Qπ∗i

i |+ Qπ∗i
i − Qπ

i + |Qπ
i − Qπ(s, a)|

From Lemma 3, we know that

|Qπ∗(s, a)− Qπ∗i
i | ≤

maxs,a |r(s, a)− ri(s, a)|
1− γ

.

From Theorem 5.1 we know that, for any j ∈ {1, 2, ..., n}, we have

Qπ∗i
i (s, a)− Qπ

i (s, a) ≤ Qπ∗i
i (s, a)− Q

π∗j
i (s, a) +

2
1− γ

ε (Theorem 5.1)

= Qπ∗i
i (s, a)− Q

π∗j
j (s, a) + Q

π∗j
j (s, a)− Q

π∗j
i (s, a) +

2
1− γ

ε

≤ |Qπ∗i
i (s, a)− Q

π∗j
j (s, a)|+ |Qπ∗j

j (s, a)− Q
π∗j
i (s, a)|+ 2

1− γ
ε

≤ 2
1− γ

maxs,a
∣∣ri(s, a)− rj(s, a)

∣∣+ 2
1− γ

ε (Lemmas 2, 3 in Appendix).

(5.10)
Finally, from Lemma 2, we know that

|Qπ
i − Qπ(s, a)| ≤ maxs,a |r(s, a)− ri(s, a)|

1− γ
.

Our result provides guarantees on the performance of the GPI policy (5.8) applied to
an MDP M with arbitrary reward function r(s, a). Note that, although the theorem does
not restrict any of the tasks to be inMφ, in order to compute the GPI policy (5.8) we still
need an efficient way of evaluating the policies πj on task Mi. As explained in Section 5.1,
one way to accomplish that is to assume that Mi and all Mj appearing in the statement of
the theorem belong toMφ; this allows us to use SFs to quickly compute Q̃πj

i (s, a).
To build some intuition of the implications of this result, let us take a closer look at

Proposition 5.1 under the assumption that all MDPs belong toMφfor some φ, except
perhaps for M. Our application of this proposition relies on a reference MDP Mi ∈ Mφ.
One should thinkofMi as theMDP inMφ that is “closest” toM in some sense. Specifically,
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if we define ri(s, a, s′) = φ(s, a, s′)⊤wi, we can think of wi as the vector that provides the
best approximation φ(s, a, s′)⊤wi ≈ r(s, a, s′) under some well-defined criterion. The
first term of (5.9) can thus be seen as the “distance” between M andMφ, which suggests
that the performance of the GPI policy based on this approximation ri should degrade
gracefully as wemove away from the original setMφ. Also note that in the particular case
where M ∈ Mφ this first term of (5.9) vanishes, and we recover Theorem 2 in (Barreto
et al., 2017).

The two remaining terms in the bound quantify the approximation error ε incurred by
our value estimates and GPI’s ability to generalise withinMφ. In particular, this remain-
ing term could beminimised if ri = rj, for some j ∈ {1, 2, · · · n}. In this case, wewould be
effectively looking for which of the previous tasks ismost similar to our current one. Once
this task is identified, one could, in principle, try to employ its corresponding learnt policy
and see how well it does on our current task. Note that if this policy is not already opti-
mal for ri, by considering instead the GPI policy, as the proposition proposes, we would
be doing something more general that has the potential to further improve this policy by
bringing knowledge from all other policies in our collection. This is a particular way in
which knowledge from later tasks can readily incorporated when revisiting a task.

5.2.1 Uncovering the Structure of the Environment

In thisworkwe are interested in the transfer scenario. Thus ideallywewouldwant to solve a
subset of the tasks inM and use GPI to promote transfer between these tasks. As argued
in the previous section in order to do so efficiently, one would benefit from access to a
collectionof featuresφ that cover the tasks of interest asmuchaspossible. Ifwewere to rely
on (Barreto et al., 2017) original results, we would have guarantees on the performance
of the GPI policy only if φ spanned all the tasks of interest. Proposition 5.1 allows us to
remove this requirement, since nowwe have theoretical guarantees for any choice of φ. In
practice, though, we want features φ such that the first term of (5.9) is small for all tasks of
interest.

There might be contexts in which we have direct access to features φ(s, a, s′) that sat-
isfy (5.2), either exactly or approximately. And we will be exploring this particular case
in the next chapter, where we propose a model that can very efficiently capitalize on this
known structure. Nevertheless, in this chapter we propose tackling the more general sce-
nario where this structure is not available, nor given to the agent in any form. In this case
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the use of SFs requires a way of unveiling such a structure in order to ground the learning
for our value functions. If we assume the latent existence of a φ ∈ Rd that satisfy ( 5.2)
exactly, we can formulate the problem of computing an approximate φ̃ as a supervised
multi-task learning problem. The problem is decomposed into D regressions, each one
associated with a task. For reasons that will become clear shortly, we will call these tasks
base tasks and denote them by B ≡ {M1,M2, ...,MD} ⊂ Mφ. The multi-task problem
thus consists in solving the approximations:

φ̃(s, a, s′)⊤w̃i ≈ ri(s, a, s′), for i = 1, 2, ...,D, (5.11)

where ri is the reward of Mi (Caruana, 1997; Baxter, 2000).

In this section we argue that (5.11) can be replaced by a much simpler approximation
problem by simply rotating the problem. Suppose for a moment that we know a function
φ and D vectors wi that satisfy (5.11) exactly. If we then stack the vectors wi to obtain
a matrix W ∈ RD×d, we can write r(s, a, s′) = Wφ(s, a, s′), where the ith element of
r(s, a, s′) ∈ RD is ri(s, a, s′). Now, as long as we have d linearly independent tasks wi, we
can write

φ(s, a, s′) = (W⊤W)−1W⊤r(s, a, s′)

Since φ is given by a linear transformation of r, any task representable by the former can
also be represented by the latter. To see why this is so, note that for any task inMφ we
have

r(s, a, s′) = w⊤φ(s, a, s′) = w⊤
[
(W⊤W)−1W⊤

]
r(s, a, s′) = (w̃)⊤r(s, a, s′).

Therefore, we can use the rewards r themselves as features, which means that we can re-
place (5.11) with the much simpler approximation:

φ̃(s, a, s′) = r̃(s, a, s′) ≈ r(s, a, s′). (5.12)

One potential drawback of directly approximating r(s, a, s′) is that we no longer have
the flexibility of distinguishing between d, the dimension of the environmentMφ, andD,
the number of base tasks inB. Since in generalwewill solve (5.11)or (5.12) basedondata,
havingD > dmay lead to a better approximation. As the number of base tasksD increases,
we might be overparameterising the above regression problem. As D becomes larger than
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the intrinsic dimensionality of the task space d, a new reward signal can be represented in
a non-unique way. Nevertheless, due to linearity, all of these solutions will be equivalent
both in representing the rewards and corresponding value functions associated with the
policies {πi}i=1,D.

On the other hand, using r̃(s, a, s′) as features has a number of advantages that in many
scenarios of interest should largely outweigh this loss in flexibility. One such advantage
becomes clear when we look at the scenario above from a different perspective. If we as-
sume that there exists indeed a set of φ for which (5.11) is satisfied, then given any set of
D tasks with associated reward signals ri(s, a, s′), kD ≤ D of which are linearly indepen-
dent, our new set of features φ̃will span a kD dimensional subset of the original, unknown
space Rφ. If kD = d ≤ D, we recover the whole original space Rφ. Thus, instead of
assuming we know a set of φ and a W that satisfy (5.11), we can simply use the approx-
imate rewards φ̃ (W̃ = ID) and apply the above reasoning without modification. This
highlights a benefit of replacing (5.11) with (5.12): the fact that we can work directly in
the space of tasks, which in many cases may be more intuitive. When we think of φ as a
non-observable, abstract, quantity, it can be difficult to define what the base tasks should
be. In contrast, when we work on the reward signal r directly the question we are trying
to answer becomes: is it possible to approximate the future reward function of all tasks of
interest as a linear combination of the previous reward functions ri? One can see that in
this view, the setB acts as a basis for future tasks, and thus the name “base tasks”.

Another interesting consequence of using an approximation φ̃(s, a, s′) ≈ r(s, a, s′) as
features is that the resulting SFs are nothing but ordinary action-value functions. Specif-
ically, the jth component of ψ̃πi(s, a) is simply Q̃πi

j (s, a). Next we discuss how this gives
rise to a simple approach that can be combined with deep learning in a stable way.

5.3 Transfer in Deep Reinforcement Learning

In this work, we are interested in using SF&GPI to build scalable agents that can be com-
bined with state-of-the-art deep learning-based state representations in a stable way. Since
deep learning generally involves vast amounts of data whose storage is impractical, we
will mostly be focusing on methods that work online. Thus, our second contribution is to
show a simple and natural way of using the previous insights to propose a scalable, online
method of transferring knowledge from previously learnt tasks. The proposedmethod at-
tempts transfer in two ways: 1) through a shared representation (as in previous chapters),
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but now this is a learnt non-linear representation which the SFs are built upon and these
mappings are not assumed linear; 2) through GPI on a collection of approximate policy
evaluations based on previously learnt policies. Note that these two methods of transfer-
ring knowledge exploit commonalities in different spaces: the first one takes advantage of
the shared sensory/observational space and the other one exploits the structure present
in the dynamic programming nature of the problem and the policy space shared by the
multiple control problems considered. Thus, there is reason to believe these can be com-
plementary and leveraging both could further increase our sample efficiency in a new task.

In order to verify this claim, we revisit one of (Barreto et al., 2017) experiments in a
much more challenging format, replacing a fully observable 2-dimensional environment
with a 3-dimensional domain where observations are images from a first-person perspec-
tive. We show that the transfer promoted by SF&GPI leads to reasonable policies on
unseen tasks almost instantaneously. We do so by computing a zero-shot transfer policy
based on a guess of what the current task entails. This estimate will then be refined online
as we get more data about the current task – the more rewards the agent experiences, the
more it can refine this estimate. Furthermore, we will show that this GPI policy can be a
good starting point for learning amore specialised policy for the new task. Lastly, we show
how to learn these specilised policies in a way that allows them to be added to our agent’s
ever-growing set of skills, a crucial ability for continual learning (Thrun, 1996).

Tomake this more precise and as amotivating example, we show in Algorithm 5.1 how
SFs and GPI can be used for acting in a new task and combined with Q-learning (Watkins
and Dayan, 1992) to extend the collection of SFs ’cached in’ for transfer.¹ This algorithm
assumes we have already obtained a collection of features φ̃ and a corresponding set of SFs
ψ̃ built on top of these. Given a new task, we are going to estimate w̃ to approximate the
new reward signal as a linear combination of φ̃. Given this estimate we have two choices:
act according to the GPI policy induced by (ψ̃, w̃) or try to build a specialised policy πn+1

for this task and its SFs to add to our collection. In our case πn+1 is learnt to be the optimal
policy for the our current task estimate w̃ (line 12).

In essence, Algorithm 5.1 is similar to standard Q-learning for the estimated task and
can indeed be reduced to that if none of the previously learnt SFs provide any information
about this new task. Nevertheless, we would like to draw attention to twomain ways it dif-

¹We use x α←− ymeaning x← x+ αy. We also use∇θ f(x) to denote the gradient of f(x)with respect
to the parameters θ.
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Algorithm 5.1Acting and learning in a new task via SF&GPI

Require:


φ̃, Ψ̃ ≡ {ψ̃π1 , ..., ψ̃πn} features, SFs
extend_basis learn a new SF?
αψ , αw, ε, ns hyper-parameters

1: if extend_basis then
2: create ψ̃πn+1 parametrised by θψ
3: Ψ̃← Ψ̃ ∪ {ψ̃πn+1}
4: end if

5: select initial state s ∈ S
6: for ns steps do

7: if Bernoulli(ε)=1 then a←Uniform(A) {exploration}
8: else a← argmaxb maxi ψ̃

πi(s, b)⊤w̃ {GPI }

9: Execute action a and observe r and s′.

10: w̃ αw←−
[
r(s, a, s′)− φ̃(s, a, s′)⊤w̃

]
φ̃(s, a, s′) {learn w̃ }

11: if extend_basis then {will learn new SFs}
12: a′ ← argmaxbψ̃

πn+1(s, b)⊤w̃
13: for i← 1, 2, ..., d do
14: δi ← φ̃i(s, a, s

′) + γψ̃πn+1

i (s′, a′)− ψ̃πn+1

i (s, a)
15: θψ

αψ←− δi∇θψ ψ̃
πn+1

i (s, a) {learn ψ̃πn+1 }
16: end for
17: end if

18: if s′ is not terminal then s← s′

19: else select initial state s ∈ S
20: end for

fers from Q-learning. First, instead of selecting actions based on the value function being
learned, the behaviour of the agent is determined byGPI (line 8). Depending on the set of
SFs Ψ̃ used by the algorithm, this can be a significant improvement over the greedy policy
induced by Q̃πn+1 , which usually is themain determinant of aQ-learning agent’s behaviour.

Algorithm5.1 also deviates from conventionalQ-learning in theway a policy is learned.
There are two possibilities here. One of them is for the agent to rely exclusively on theGPI
policy computed over Ψ̃ (when the variable extend_basis is set to false). In this case no
specialised policy is learned for the current task, which reduces the RL problem to the su-
pervised problem of determining w̃ (solved in line 10 as a least-squares regression). The
other possibility is to use data collected by the GPI policy to learn a policy πn+1 specifi-
cally tailored for the task. As shown in lines 14 and 15, this comes down to solving equa-
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tion (5.4). When πn+1 is learned the function Q̃πn+1(s, a) = ψ̃πn+1(s, a)⊤w̃ also takes part
inGPI.Thismeans that, if the approximations Q̃πi(s, a) are reasonably accurate, the policy
computed by Algorithm 5.1 should be strictly better than Q-learning’s counterpart. This
is likely to be true especially at the beginning of training in a new task. The SFs ψ̃πn+1 can
then be added to the set Ψ̃, and therefore a subsequent execution of Algorithm 5.1 will
result in an even stronger agent. After multiple iterations we expect Qπn+1 to start domi-
nating the other policies, thus at this point wewould be essentially reverting toQ-learning.
This ability to build and continually refine a set of skills is widely regarded as a desirable
feature for continual (or lifelong) learning (Thrun, 1996).

There is a caveat, though. In order to apply Algorithm 5.1—or any variant of the SF&
GPI framework—,weneednotonly the set Ψ̃, but also away to compute features φ̃(s, a, s′)
that characterise our environment. We will now discuss why this is not a trivial problem
and propose a strategy to compute Ψ̃ and φ̃(s, a, s′) online in a stable way.

5.3.1 Challenges Involved in Building Features

In order to use Algorithm 5.1, or any variant of the SF&GPI framework, we need the fea-
tures φ̃(s, a, s′). A natural way of addressing the computation of φ̃(s, a, s′) is to see it as a
multi-task problem, as in (5.11). The solution of (5.11) requires data coming fromD base
tasks. In principle, we could look at the collection of samples as a completely separate pro-
cess. However, here we are assuming that the base tasksB are part of the RL problem, that
is, we want to collect data using policies that are competent inB. In order tomaximise the
potential for transfer, while learning the policies πi for the base tasks Mi we should also
learn the associated SFs ψ̃πi ; this corresponds to building the initial set Ψ̃ used by Algo-
rithm 5.1. Unfortunately, learning value functions in the form (5.6) while solving (5.11)
can be problematic. Since the SFs ψ̃πi depend on φ̃, learning the former while refining
the latter can clearly lead to undesirable and unstable solutions (this is akin to having a
non-stationary reward function). Although rewards φ̃ might change slowly – we can, in
principle, control for that via the learning rate, small changes in φ̃ can result in significant
changes in ψ̃ as these will be integrating over multiple of these small changes. On top of
that, the computation of φ̃ itself depends on the SFs ψ̃πi , for the latter ultimately define
the data distribution used to solve (5.11). This circular dependency canmake the process
of concurrently learning φ̃ and ψ̃πi very unstable – something we have often observed in
practice.
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One possible solution is to use a conventional value function representationwhile solv-
ing (5.11) and only learn SFs for the subsequent tasks (Barreto et al., 2017). This has the
disadvantage of not reusing the policies learned in B for transfer. Alternatively, one can
store all the data and learn the SFs associated with the base tasks only after φ̃ has been
learned, but thismay be difficult in scenarios involving large amounts of data. Besides, any
approximation errors in φ̃ will already be reflected in the initial Ψ̃ computed inB.

In the next section we show that all these issues are solved when we replace (5.11)
with (5.12), as proposed in Section 5.2.1.

5.3.2 Learning Features Online while Retaining Transferable Knowledge

To recapitulate, we are interested in solving D base tasks {Mi}i=1,D and, while doing so,
build φ̃ and the initial set Ψ̃ to be used by Algorithm 5.1. We want φ̃ and Ψ̃ to be learned
concurrently, so we do not have to store transitions, and preferably Ψ̃ should not reflect
approximation errors in φ̃. We argued that one can accomplish all of the above by replac-
ing (5.11) with (5.12), that is, by directly approximating r(s, a, s′), which are observable,
and adopting the resulting approximation as the features φ̃ required byAlgorithm5.1. Fur-
thermore, in order to break the circular dependency discussed in Section 5.3.1, we pro-
pose grounding the SFs learning problemdirectly in the observed reward signals r(s, a, s′).
Note that this will potentially result in a slight misalignment between φ̃ and Ψ̃ due to the
approximation errors in the reward prediction problems.

As discussed in Section 5.2.1, when using rewards as features the resulting SFs are col-
lections of value functions: ψ̃πi = Q̃πi ≡ [Q̃πi

1 , Q̃πi
2 , ..., Q̃

πi
D ]. This leads to a particularly

simple way of building the features φ̃ while retaining transferable knowledge in Ψ̃. Given
a set of D base tasks Mi, while solving them we only need to carry out two extra opera-
tions: compute approximations r̃i(s, a, s′) of the functions ri(s, a, s′), to be used as φ̃, and
evaluate the resulting policies on all base tasks—i.e., compute Q̃πi

j —to build Ψ̃.

Before providing a practical method to compute φ̃ and Ψ̃, we note that, although the
approximations r̃i(s, a, s′) can be learned independently fromeachother, the computation
of Q̃πi requires policy πi to be evaluated under different reward signals. This can be accom-
plished in different ways; here we assume that the agent is able to interact with the tasks
Mi in parallel. We can consider that at each transition the agent observes rewards from all
the base tasks, r ∈ RD, or a single scalar ri associated with one of them. We will primarily
assume the latter – availability to the on-task reward only, but our solution readily extends
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to the more informative scenario where the agent simultaneously observes D tasks.
Algorithm5.2 showsapossiblewayof implementingour solution, againusingQ-learning

as the basic RL method. We highlight the fact that GPI can already be used in this phase,
as shown in line 5, whichmeans that the policies πi can “cooperate” to solve each taskMi.

Algorithm 5.2 Build SF&GPI basis with ε-greedy Q-learning

Require:
{

M1,M2, ...,MD base tasksB
αQ, αr, ε, ns hyper-parameters

1: for ns steps do
2: select a task k ∈ {1, 2, ...,D} and a state s ∈ S
3: (”Pretend” you are in that task k and select action accordingly)

4: if Bernoulli(ε)=1 then a←Uniform(A) {exploration}
5: else a← argmaxb maxiQπi

k (s, b) {GPI }

6: Execute action a in Mk and observe r = rk(s, a, s′) and s′

7: θr
αr←− [r− r̃(s, a, s′)]∇θr r̃k(s, a, s′)

8: for i← 1, 2, ...,D do
9: a′ ← argmaxbQ̃

πi
i (s, b) {a′ ≡ πi(s)}

10: θQ
αQ←−
[
r + γQ̃π i

k (s
′, a′)− Q̃π i

k (s, a)
]
∇θQQ̃

π i
k (s, a)

11: end for
12: end for

13: return φ̃ ≡ [̃r1, ..., r̃D] and Ψ̃ ≡ {Q̃
π1 , ..., Q̃πD}

5.4 Experiments

In this sectionwe describe the experiments used to assess whether the proposed approach
can indeed promote transfer on large-scale domains. Here we focus on the most relevant
aspects of the experiments; for further details please consult Appendix B.2.

5.4.1 Environment and Tasks

The environmentwe consider is conceptually similar to one of the problems used by (Bar-
reto et al., 2017) to evaluate their framework: the agent has to navigate in a room picking
up desirable objects while avoiding undesirable ones. Here the problem tackled is in a par-
ticularlymore challenging format: instead of observing directly the state st at time step t, as
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(a) Screenshot of environment
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(b) Base tasks B and test set M̂

Figure 5.4.1: Environment and tasks (base tasks B , sample test tasks M̂) depiction.

in the original experiments, the agent interacts with the environment from a first-person
perspective, only receiving as observation a 84× 84 image ot that is insufficient to disam-
biguate the actual underlying state of the MDP (see figure 5.4.1a).

We used DeepMind Lab platform (Beattie et al., 2016) to design our 3D environment,
which works as follows. The agent finds itself in a room full of objects of different types.
There are five instances of each object type: “TV”, “ball”, “hat”, and “balloon”. Whenever
the agent hits an object it picks it up and another object of the same type appears at a
random location in the room. This process goes on for a minute, after which the episode
ends and a new one starts. The end of the episode is marked with a discount γ = 0.

The type of an object determines the reward associated with it. Thus, a task is defined
(and can be referred to) by four numbers indicating the rewards attached to each object
type. For example, in task1-100 the agent is rewardedpositively byobjects of the first type
and negatively by objects of the second type, while the other object types are irrelevant in
terms of reward. Thus in this case, the agent should be interested in picking up objects
of type one, while avoiding objects of type two. One can see that varying only these four
numbers, the induced (optimal) behaviour can be quite complex and diverse from one
task specification to the other. Nevertheless, there are also subsets of tasks thatmight share
sub-plans/sub-routines. For instance, ifwewere tonowconsider anew task1-1-10 wecan
see that the desired behaviour in this task is quite related to the first task considered1-100.
The agent in the new task cares about the same things as in 1-100 , but now it also needs to
avoid objects of type three, on top of pursuing objects of type one and avoiding objects of
type two. Thus, if we consider the extreme case where there are no objects of type three in
our current environment, these two tasks would be equivalent. Nevertheless, the opposite
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scenario – where we have only objects of type three in the environment – illustrates that
’closeness’ in the reward specification space can lead to very different optimal behaviours.
In general, as we could see from these two extreme examples, there is reason to believe that
the optimal policy for task 1-100 , π∗1−100, could already be a good policy on task 1-1-10
and would produce good behaviour in at least some parts of the space – e.g. in parts of
the state space where the number of type 3 objects is relatively low. This is precisely the
intuition behind this kind of transfer we achieve in the policy space via SFs: evaluating
how good previous policies are under the current task can be very valuable information.

We defined base tasks B that will be used by Algorithm 5.2 to build φ̃ and Ψ̃ in a very
natural way (see Figure 5.4.1b). We focus this first investigation on ”canonical” base tasks,
that correspond towhat our description of the environment underlyingφwould look like.
Nevertheless, please note that in order to represent new reward signals, any four linearly
independent set of tasks can be considered here and would result in the same generalisa-
tion. Theonly difference comes in the induced policies that we are going to be considering
for transfer. In this respect, the chosen set of base tasksB would induce policies that seek
one object type at a time. The hope is that these would lead to informative evaluations.
The transfer ability of the algorithms will be assessed on different, unseen tasks, referred
to as test tasks, M̂ – an illustration of such tasks can be found in Figure 5.4.1b.

5.4.2 Agents

TheSF&GPI agent adopted in the experiments is a variationofAlgorithms5.1 and5.2 that
uses (Watkins, 1989)Q(λ) to applyQ-learningwith eligibility traces. Due to the complex-
ity of the task and relatively long episodes, n-step methods were required to provide any
learning for this class of control problems. As such, we needed to adapt in particular the
update in Algorithm 5.2 line 10 to support trajectory-based evaluations. Since trajectories
were collected under a behaviour policy that might differ from the policy we are trying to
evaluate, we would cut traces whenever the two start to disagree.

The functions φ̃ and Ψ̃ are computed by a deep neural network whose architecture is
shown in Figure 5.4.2. The network is composed of three parts. The first one uses the his-
tory of observations and actions up to time t, ht, to compute a shared representation f(ht).
The construction of s̃t can itself be broken into two stages corresponding to specific func-
tional modules: a convolutional network (CNN) to handle the pixel-based observation ot

and a long short-term network (LSTM) to compute f(ht) in a recursive way (LeCun et al.,
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Figure 5.4.2: Schematic of the deep architecture used. Rectangles represent MLPs.

1998; Hochreiter and Schmidhuber, 1997).

The second part of the network is composed of D + 1 specialised blocks that receive
s̃t as input and compute φ̃(̃st, a) and ψ̃πi (̃st, a) for all a ∈ A. Each one of these blocks is
a multilayer perceptron (MLP) with a single hidden layer (Rumelhart et al., 1986). Note
that the specialised blocks share the representation f(ht) representing a specific trade-off
between plasticity and data efficiency. The third part of the network is simply w̃, which
combined with φ̃ and ψ̃πi will provide the final approximations.

The entire architecture was trained end-to-end through Algorithm 5.2 using the base
tasks shown in Figure 5.4.1b. After the agent had been trained, it was tested on a test task,
now using Algorithm 5.1 with the newly-learned φ̃ and Ψ̃. In order to handle the large
number of sample trajectories needed in our environment both Algorithms 5.1 and 5.2
used the IMPALA distributed architecture (Espeholt et al., 2018). Results of this training
procedure on the base tasks are included in Figure 5.4.3

Algorithm 5.1 was run with and without learning a specialised policy (as controlled by
the variable extend_basis in Algorithm 5.1). We call the corresponding versions of the
algorithm “SF&GPI-continual” and “SF&GPI-transfer”, respectively. This is in reference

130



0 50 100 150 200 250

Environment step (millions)

0

5

10

15

20

25

E
p
is

o
d
e
 r

e
w

a
rd

Task
1000

0100

0010

0001

Figure 5.4.3: Base tasks B : Training performance (average return per episode).

to the fact, that one assesses the transfer ability of GPI based only on the previous policies
and the other one considers learning a new policy that can be added to our collection thus
simulating one step of a continual learning process. We compare SF&GPI with baseline
agents that use the same network architecture, learning algorithm, and distributed data
processing. The only difference is in the way the network shown in Figure 5.4.2 is up-
dated and used during the test phase. Specifically, we ignore the MLPs used to compute
φ̃ and ψ̃πi and instead add another MLP, with the exact same architecture, to be jointly
trained with w̃ through Q(λ). We then distinguish three baselines. The first one uses the
learnt shared representation f(ht) learned in the base tasks to compute an approximation
Q̃(̃s, a)—that is, both theCNNand the LSTMare fixed. Wewill refer to thismethod sim-
ply as Q(λ). The second baseline is allowed to modify f(ht) during the test phase, so we
call it “DQ(λ) fine tuning” as a reference to its refinement of the representation. Finally,
the third baseline, “DQ(λ) from scratch”, learns its own representation f(ht) at the same
time as the corresponding value function for the task at hand. This third baseline will only
see data from the second phase, but its representation would also only need to cater to the
test task – all the network capacity is dedicated to one task.

5.4.3 Results and Discussion

Figure 5.4.4 shows the results of SF&GPI and the baselines on a selection of test tasksM̂.
Thefirst thing that stands out is the fact that SF&GPI-transfer gives rise to reasonable poli-
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(c) Task -1-100
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(d) Task -11-10
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(e) Task -1101
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Figure 5.4.4: Average discounted return per episode on a selection of test tasks M̂.
The x axes have different scales as the amount of reward available
changes across tasks. Shaded regions represent one standard deviation
over 10 test runs, based on three of the training runs included above.
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cies for the test tasks almost instantaneously. In fact, as this version of the algorithm is only
solving a simple supervised learning problem, its learning progress is almost imperceptible
at the scale atwhich the correspondingRLproblemunfolds. Since thebaselinesare solving
the full RLproblem, in some tasks their performance eventually reaches, or even surpasses,
that of the transferred policies. SF&GPI-continual combines the desirable properties of
both SF&GPI-transfer and the baselines. On one hand, it still benefits from the almost
instantaneous transfer promoted by SF&GPI. On the other hand, its performance keeps
improving, since in this case the transferred policy is used to provide better data for learn-
ing a specialised policy. As a result, SF&GPI-continual outperforms the othermethods in
almost all of the tasks.²

Another interesting trend shown in Figures 5.4.4 is the fact that SF&GPI performswell
on test taskswith negative rewards—in some cases considerably better than the alternative
methods—, even though the agent only experienced positive rewards on the base tasks.
This is an indication that the transferred GPI policy is combining the policies πi for the
base tasks in a non-trivial way (line 8 of Algorithm 5.1).

Ideally, our agent should rely on the GPI policy when useful but also be able to learn
and use a specialised policy otherwise. In other words, whenever it is appropriate to trans-
fer knowledge from a previously learnt policies, the agent should opt to do so, but when-
ever the previous tasks result in uninformative plans, it should devoted its resources to
learning how to tackle this new scenario. Figure 5.4.5 shows that this is possible with SF
&GPI-continual. Looking at Figure 5.4.5a we see that when the test task only has positive
rewards the performances of SF&GPI zero-shot and continual are virtually the same. This
makes sense, since in this case alternating between the policies πi learned onB should lead
to good performance as the test task naturally decomposes into the subtasks selected inB.
Although initially the specialised policy πtest does get selected by GPI a few times, even-
tually the policies πi largely dominate. The figure also corroborates the hypothesis above
thatGPI is in general not computing a trivial policy, since even after settling on the policies
πi it keeps alternating between them.

Interestingly, when we look at the test tasks with negative rewards this pattern is no
longer observed. As shown in Figures 5.4.5c and 5.4.5d, in this case SF&GPI-continual
eventually outperforms SF&GPI-transfer—which is not surprising. Looking at the fre-
quency at which policies are selected byGPI, we observe the opposite trend: now the pol-

²A video of SF&GPI-transfer behaviour can be found at: https://youtu.be/-dTnqfwTRMI.

133

https://youtu.be/-dTnqfwTRMI


0 20 40 60 80 100

Environment step (millions)

15

20

25

30

35

40

45

E
p
is

o
d
e
 r

e
w

a
rd

SF & GPI zero shot

SF & GPI continual

(a) Task 0111

0 20 40 60 80 100

Environment step (millions)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

E
p
is

o
d
e
 r

e
w

a
rd

(b) Task -1-100
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Figure 5.4.5: Top: Comparison between SF&GPI zero-shot and continual. Shaded
regions represent one standard deviation over 10 runs. Unlike in Fig-
ure 5.4.4, here all runs of SF&GPI-transfer (and continual) used the
same SFs basis Ψ̃. Bottom: Coloured bar segments represent the fre-
quency at which the policies πi were selected by GPI in one run of SF&
GPI-continual, with each colour associated with a specific policy. The
policy πtest specialised to the task is represented in light yellow (predom-
inant colour in figures 5.4.5c and 5.4.5d). The other colours depict the
frequency of decisions that where made based on policies in B.
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icy πtest steadily becomes thepreferredone. The fact that a specialisedpolicy is learned and
eventually dominates is reassuring, as it indicates that πtest does something fundamentally
different and thus will contribute to the repository of skills available to the agent when
added to Ψ̃. This also highlights the fact that SF&GPI-continual manages to provide a
form of safer transfer, where if the previously learnt skills are not applicable, the agent has
the option of disregarding them and specialising to this new task without much interfer-
ence. This is evident from Figure 5.4.5b, where we can see that the agent quickly figures
out that all previous policies, that actively seek a particular kind of object, will result in very
negative returns and chooses instead to build and act according to a newly specialised pol-
icy, thus essentially reverting to Q(λ).

5.4.4 Generalising outside the Span ofB

In this work we argued that SF&GPI can be applied even if assumption in Eq. 5.2 is not
strictly satisfied. In order to illustrate this point, we reran the experiments with SF&GPI-
transferusing a setof linearly-dependentbase tasks,B′ ≡ {1000, 0100, 0011, 1100}. Clearly,
B′ can only represent tasks in which the rewards associated with the third and fourth ob-
ject types are the same. We compared the results of SF&GPI-transfer using B and B′ on
several tasks where this is not the case. The comparison is shown in Figure 5.4.6. We can
see that the resulting GPI policy under this imperfect approximation still leads to a sensi-
ble transfer policy on the new tasks – although these were somewhat adversarially chosen
to be outside the span ofB’ . As shown in the figure, although using a linearly-dependent
set of base tasks does hinder transfer in some cases, in general it does not have a strong
impact on the results. This smooth degradation of the performance is in accordance with
Proposition 5.1.

The result above also illustrates an interesting distinction between the space of reward
functions and the associated space of policies. Although we want to be able to represent
the reward functions of all tasks of interest, this is only half of the story and does not guar-
antee alone that the resultingGPI policywill performwell. To see this, supposewe replace
the positive rewards inBwith negative ones. Clearly, in this casewewould still have a basis
spanning the same space of rewards; however, since nowapolicy that stands still is optimal
in all tasks Mi, we should not expect GPI to give rise to good policies in tasks with posi-
tive rewards. Thus the other half of quantifying transferability here comes from the base
policies used in GPI. And although in this work these policies were naturally induced by

135



-11-10 -1101 -11-11 -1101 -111-1 -1110

Task description

−5

0

5

10

15

20

25

30

35

40

E
p
is

o
d
e
 r

e
w

a
rd

Canonical base tasks

Linearly-dependent base tasks

Figure 5.4.6: Performance of SF&GPI-transfer using base tasks B and B′. The box
plots summarise the distribution of the rewards received per episode be-
tween 50 and 100 million steps of learning.

the base tasks, one could think about separating these two learning problems. In this view,
one could consider asking how to define a “behavioural basis” that leads to good policies
acrossM through GPI. We leave this as an interesting open question.

5.5 Conclusion

5.5.1 Related Work

Recently, there has been a resurgence of the subject of transfer in the deep RL literature.
(Teh et al., 2017) propose an approach for the multi-task problem—which in our case is
the learning of base tasks—that uses a sharedpolicy as a regulariser for specialised policies.
(Finn et al., 2017) focus on fast transfer, which is akin to SF&GPI-transfer. Specifically,
instead of optimising for performance on a set of tasks, they propose to learn a model that
can quickly adapt to different tasks. (Rusu et al., 2016) introduce a neural-network ar-
chitecture for the full continual-learning problem that consists of a growing number of
specialisedmodules. (Kirkpatrick et al., 2017) also propose an architecture well-suited for
continual learning, since it is specifically designed to avoid the problem known as “catas-
trophic forgetting”.

Many works on the combination of deep RL and transfer propose modular network
architectures that naturally induce a decomposition of the problem (Devin et al., 2017;
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Heess et al., 2017; Clavera et al., 2017). Among these, a recurrent theme is the existence
of sub-networks specialised indifferent skills that aremanagedby another network (Heess
et al., 2016; Frans et al., 2017; Oh et al., 2017). This highlights an interesting connection
between transfer learning and hierarchical RL, which has also recently re-emerged in the
deep RL literature (Vezhnevets et al., 2017; Bacon et al., 2017).

Most of the approaches cited above are inherently associated with deep learning, since
they exploit specific architectural designs or update rules used in the approximation. SF&
GPI operate at a different level, as they do not rely on any specific feature of deep learning.
Thus, rather than alternatives to our framework, we see themethods above as complemen-
tary approaches that can potentially be combined with SF&GPI.

5.5.2 Summary

In this chapterwe extended theSF&GPI transfer framework in twoways. First, we showed
that the theoretical guarantees supporting the framework can be extended to any set of
MDPs that only differ in the reward function, regardless of whether their rewards can be
computed as a linear combination of a set of features or not. In order to use SF&GPI
in practice we still need the reward features, though; our second contribution is to show
that these features can be the reward functions of a set of MDPs. This reinterpretation of
the problemmakes it possible to combine SF&GPIwith deep learning in a stable way. We
empirically verified this claimona complex3Denvironment that requires hundredsofmil-
lions of transitions to be solved. We showed that, by turning an RL task into a supervised
learning problem, SF&GPI-transfer is able to provide skilful, non-trivial, policies almost
instantaneously. We also showed how these policies can be used by SF&GPI-continual
to learn specialised policies, which can then be added to the agent’s set of skills. Together,
these concepts can help endow an agent with the ability to build, refine, and use a set of
skills while interacting with the environment.
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6
Universal Successor Features Approximators

6.1 Introduction

In the previous chapter, we have seen how one can build and use successor features (SFs)
for transferring knowledge in policy space. In particular, we have seen that SFs can provide
us with a reliable evaluation of previous policies on a new task pertaining to the same span.
Thesebecomeabase for a policy improvement step, that cannowbedoneover a set of poli-
cies. We have seen that as long as the future expectations captured by these base policies
are at least partially compatible with the task at hand, we can effectively transfer the (long-
term) consequences learnt under these policies. This kind of transfer explicitly exploits
two commonalities assumed over the set of MDPs we are trying to obtain generalisation
over the shared dynamics and the linear structure in the reward space. The combination of
these two assumptions results in a nice decomposition, where one component accounts
for the environment dynamics and the behaviour of the agent and the other one accounts
for the reward function we seek to maximise. This decomposition is particularly useful as
it supports a very easy recombination where we can now specify a new reward signal and
get an instantaneous evaluation of a previous behaviour with respect to this new task. To
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obtain this property, the new reward signal has to be a combination of a set of features φ,
or at least well approximated by a point in the span of φ (Proposition 5.1). In the previ-
ous chapter, we have shown that we can circumvent the discovery of this set of features,
by using instead rewards coming from tasks in the span of this underlying, unobserved φ.
Nevertheless, there are problems in which this structure (or a suitable proxy) is available
to us and does not need to be inferred. Specifyingφ can also be seen as a way of specifying
a prior over the set of tasks we would be interested in. In either of these cases, when the
reward structure is given, we do not have to infer the underlying space and we can focus
exclusively on the control problem. This is precisely what we are going to be exploring in
this chapter. And we will show how we can effectively leverage knowledge of φ to enable
off-task and off-policy learning, making the most out of the interactions with the environ-
ment.

Thus, for the time being, we will set aside the discovery problem and assume φ is given
– either available in the observation space, specified by the user or previously learnt as
in Chapter 5. And we will focus on using this extra information to boost our previously
shown transfer capabilities. This will be done by exploiting the smoothness in the task
space as well as the ability to propose on-the-fly fictitious tasks in the span of φ and try
to learn optimal policies for all of these. To sum up, in this chapter we will investigate
transfer capabilities and generalisation in the set of MDPsMφ for an observable set of
φ-s. As before the tasks can be specified by a task vector w ∈ Rd and this is how the
task will be specified to the agent. As an example, let us revisit the experimental set-up
in Section 5.4. A natural candidate set for φ are the recognisers associated with each type
of object – such a φ would be off (0) most of the time and will be on (1) when the agent
picks up this particular type of object. Note that this is also a very natural space to specify
tasks. Having one feature associatedwith picking up a particular type of object,means that
specifying a vectorw is equivalent to specifying a preference over these objects, including
negative ones. In this chapter, we will be investigating this situation, where this ’interface’
of task specification is provided and given a new taskw′ our aim is to output an appropriate
control policy. Thus, in contrast with the last chapter wherewe first needed to discover the
task, on the fly based on observations, here we get this task specification as an instruction
but we are going to be considering themuch harder problemof zero-shot generalisation in
Mφ. Thismeanswe are going tobe assessingour transferability based solely onknowledge
ported from other tasks, without any interaction with this new task and no adaptation
phase.
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Two approaches recently proposed in the literature can promote this type of zero-shot
learning. Universal value function approximators (UVFAs)(Schaul et al., 2015a) extend the
notion of value functions to also include the description of a task; by doing so one can gen-
eralise to unseen tasks by simply using their description as an argument to the approxima-
tor. Another way to transfer knowledge to unseen tasks is to use the framework explored
in the last chapter, which builds on two concepts (Barreto et al., 2017): successor features,
a representation scheme that allows a policy to be evaluated on any task of a given format,
and generalised policy improvement (GPI), a generalisation of dynamic programming’s clas-
sic operator that uses a set of policies instead of a single one. UVFAs and SF&GPI gener-
alise to new tasks in quite different, and potentially complementary, ways. UVFAs aim to
generalise across the space of tasks by exploiting structure in the underlying space of value
functions. In contrast, SF&GPI ’s strategy is to exploit the structure of the RL problem
itself.

In this chapter we propose a model that exhibits the types of generalisation provided
by both UVFAs and SF&GPI. The basic insight is to note that SFs are multi-dimensional
value functions, so we can extend them in the sameway a universal value function extends
their unidimensional counterparts. We call the resulting model universal successor features
approximators, orUSFAs for short. USFA is a strict generalisation of its precursors. Specif-
ically, we show that by combining USFAs and GPI we can recover both UVFAs and SF&
GPI as particular cases. This opens up a new spectrum of possible approaches in between
these two extreme cases.

6.2 Background

In this section, we present some backgroundmaterial, formalise the scenario we are inter-
ested in, and briefly revisit the methods we build upon.

6.2.1 Revised Multitask Reinforcement Learning Problem

As a reminder, in this work we are interested in generalising across multiple RL tasks, tak-
ing place in the same environment (S,A,P, γ) but differing in their reward signal. Thus
each task is defined by a reward function rw : S × A × S → R; and in this chapter, we
will assume that the expected one-step reward associated with transition s a−→ s′ is given
by:

E
[
Rw(s, a, s′)

]
= rw(s, a, s′) = φ(s, a, s′)⊤w, (6.1)
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where φ(s, a, s′) ∈ Rd are features of (s, a, s′) and w ∈ Rd are weights. The features
φ(s, a, s′) can be thought of as salient events that may be desirable or undesirable to the
agent, such as for example picking up an object, going through a door, or knocking into
something. And as discussed in the introduction, from hereon we will assume that the
agent is able to recognise such events—that is, φ is observable—, but the solution we pro-
pose can be easily extended to the case where φ must be learned (Barreto et al., 2017).

Thus in this work we will revisit the set up in (Barreto et al., 2017) and be considering
generalising over the set of MDP induced by some observed features φ, as introduced in
(5.3):

Mφ ≡ {M = (S,A,P, rw, γ)|rw(s, a, s′) = φ(s, a, s′)⊤w,w ∈ Rd}, (6.2)

Given w ∈ Rd representing a task, the goal of the agent is to find a policy πw : S 7→
A that maximises the expected discounted sum of rewards, also called the return G(t)

w =∑∞
i=0 γ iR(t+i)

w ,whereR(t)
w = Rw(St,At, St+1) is the reward received at the tth time step. In

the following, wewill denote the action-value function of a policy π on taskw asQπ
w(s, a) ≡

Eπ
[
G(t)

w | St = s,At = a
]
, representing the expected discounted reward that this policy

will collect under task w.

6.2.2 Knowledge Transfer in Policy Space: Parametric vs Non-parametric

Herewe focusononeaspectofmultitaskRL:howto transfer knowledge tounseen tasks (Tay-
lor and Stone, 2009; Lazaric, 2012). Specifically, we ask the following question: how can
an agent leverage knowledge accumulated on a set of tasks B ⊂ Rd to speed up the solu-
tion of a new task w′ /∈ B?

To investigate the question above we recast it using the formalism commonly adopted
in learning. Specifically, we define a distributionDw overRd and assume the goal is for the
agent to perform as well as possible under this distribution. Note that this distribution on
w induces a distribution over theMDPs wewere are going to be considering. As usual, we
assume a fixed budget of sample transitions and define a training setB ∼ Dw that is used
by the agent to learn about the tasks of interest. We also define a test set M̂ ∼ Dw and
use it to assess the agent’s generalisation—that is, howwell it performs on the distribution
of MDPs induced byDw.

A natural way to address the learning problem above is to use (Schaul et al., 2015a) uni-
versal value-function approximators (UVFAs). The basic insight behind UVFAs is to note
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that the concept of optimal value function can be extended to include as one of its argu-
ments a description of the task; an obvious way to do so in the current context is to define
the functionQ∗(s, a,w) : S×A×Rd 7→ R as the optimal value function associatedwith
taskw. The functionQ∗(s, a,w) is called a universal value function (UVF); a UVFA is then
the corresponding approximation, Q̃(s, a,w). Asmost parametric approximators, UVFAs
assume, in their parametrization, a particular structure over the optimal value function
space inMφ. The hope here is that a sufficiently expressive UVFA can identify and ex-
ploit structure across the joint state-action-task space S × A × Rd. In other words, with
enough data, a properly trained UVFA should be able to generalise across the space of
tasks. Nevertheless, with few tasks – small setB, our coverage of this joint space might be
quite limited which is bound to impact our generalisation abilities.

A different way of generalising across tasks was explored in Chapter 5, which builds
on assumption (6.1) and two core concepts: successor features (SFs) and generalised policy
improvement (GPI). The SFs of a state-action pair (s, a) under policy π are given by

ψπ(s, a) ≡ Eπ

[ ∞∑
i=t

γ i−tφi+1 | St = s,At = a

]
.

SFs allow one to immediately compute the value of a policy π on any task w: it is easy to
show that, when (6.1) holds, Qπ

w(s, a) = ψπ(s, a)⊤w. Suppose that the agent has learned
the SFs ψπi of policies π1, π2, ..., πn. When exposed to a new task defined by w, the agent
can immediately computeQπi

w (s, a) = ψπi(s, a)⊤w. Thuswe can build evaluations of a set
of policies on this new task and use these to formulate a control policy. Let the GPI pol-
icy be defined as π(s) ∈ argmaxaQ

max(s, a), where Qmax = maxi Qπi . The GPI theorem
states that Qπ(s, a) ≥ Qmax(s, a) for all (s, a) ∈ S × A. This result also extends to the
scenario where we replace Qπi with approximations Q̃πi . It is also worth noting that this
holds irrespective of the set of (base) policies {πi}i=1,n and one does not need to assume
any structure on this policy space, for the above to hold. Nevertheless, if we do assume
that this set of policies correspond to optimal policies maximising a set of tasks {wi}i=1,n,
then we can obtain an extra guarantee over the quality of the resulting GPI policy. This
will depend on the distance of the new taskw to the set of base tasksB and the maximum
approximation error incurred at the policy evaluation step (Barreto et al., 2017). Note
that this method of transfer does not assume a distribution of the tasks at training nor at
testing time. These sets of tasks can be sampled, in principle, from different distributions

143



... ...

Figure 6.2.1: A simple Chain MDP with two rewards (at end states).

without affecting our guarantees and our ability to transfer information. On the other
hand, this means such a procedure would not be able to exploit any structure, if present, in
Dw. Instead, SFs will generalise over theS ×A space andGPI will have a non-parametric
approach to generalise in policy space.

In thenext sectionwewill take a look at a very simple class ofMDPof the formMφ, and
in this context try to highlight the benefits and shortcomings for addressing learning and
generalisation in this class of problems by a fully parametricmodel likeUVFAs versus SF&
GPI, a semi-parametric model which we have seen previously to be a potentially powerful
model for transfer.

6.2.3 A Motivating Example: UVFAs and SFs

Consider a simple chainMDP (Figure 6.2.1), with n states and two actions: left and right.
For simplicity, both actions result in a deterministic transition to the neighbouring state in
thedirectionof the chosen action andweassumea constant discount factor γ for each tran-
sition. At the two ends of the chain, one can find the two potentially rewarding transitions
(s1,←) and respectively (sn,→) associated with picking up a particular type of apple. Af-
ter collecting the associated reward, these transitions lead to a non-reward absorbing state
– one can also see this as the end of an episode. Now imagine a person A might like red
apples but dislike green apples and a person B that does not have a strong preference for
any of these kind of apples. In this environment, generalising inMφ would mean we can
predict what is the best policy for each of these different preferences.

Tomake thismore formal, wewouldbe interested in the class ofMDPof the form(6.1),
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where the features φ are defined as:

φ(s, a) =


[1, 0], for s = s1, a =←

[0, 1], for s = sn, a =→

[0, 0], otherwise

(6.3)

Thus if the task is specified by w = [w1,w2], and let us consider w1,w2 ≥ 0, one can see
that the twodesiredoutcomes are at the endof the chains. Anddepending on these precise
values and our proximity to the two ends of the chain, the optimal strategy will prioritize
one outcome over the other. Having this in mind, we can easily derive that for any state
s = sk, the optimal value function associated with this state, under task w is:

V∗w(s) = max (γkw1, γn−kw2), where s = sk (6.4)

Thus for all tasksw, the associated optimal planwill involve a cut-offpoint kwhere (γkw1−
γn−kw2) changes sign. Hence, in this space,Mφ = {M = (S,A,P, rw, γ)|rw(s, a) =

φ(s, a)Tw,w ∈ R2
+}, we will have at most n optimal deterministic policies – one for each

cut-off point sk. At the same time, if we look at the possible optimal value functions inMφ

we will see that these can take arbitrary values acrossR+.

Of course, there is a lot of structure in this space that aUVFAcould easily exploit, for in-
stance if two tasksw1 andw2 are close to eachotherunder somemeasure, say ||w1−w2||2 ≤
δ, their corresponding optimal value functions will take similar values. For instance, if
w1 = [1, 0] and w2 = [1, γn−1], for a large enough chain, we can see that their norm is
quite small ||w1−w2||2 = γn−1 as γ ∈ (0, 1). One can easily see that this similarity would
also be reflected in the corresponding optimal value functions Q∗w1 and Q∗w2 . To make this
more precise, one can see that the value functions agree in most states:

Q∗w1(s, a) = Q∗w2(s, a) = Qπ←(s = sk, a) =

γk, for a =←, k ≤ n

γk+1, for a =→, k ≤ n− 1
,

and for one transition – the final transition at the endof the chain –whereQ∗w1(sn,→) = 0
and Q∗w2(sn,→) = γn−1. Thus ||Q∗w1 −Q∗w2 ||∞ = γn−1 = ||w1 −w2||2. And by a similar
argumentwe can see the sameholds forw′2 = [1, γn−2]: ||Q∗w′2−Q∗w2 ||∞ = γn−1−γn−2 =

||w′2 − w2||2, although the associated optimal policies will differ in this second case.
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In spite of this, something like l2 or other metric onwmight not capture all the similar-
ity present in the task space. An example of that would be w1 = w and w2 = αw, where
for a large α the value functions can be quite far apart in terms of value, although they are
just a factor from each other Q∗w1 = αQ∗w2 . Note that this is generally true for any set of
tasksMφ for given set of φ. We could normalise w -s to avoid this particular issue. Nev-
ertheless, one could also argue that we would like our agents to be able to recognize that
these two tasks are essentially the same, without us having to specify an equivalence class¹.
Furthermore, even if we were to normalise our task descriptors w, we would still have an
infinite number of value functions to represent, although we have previously established
that there only a finite number of optimal policies. Thus, even with this massive reduction
via normalisation, we still seem to be missing out on some of the structure present in this
space. This suggests that the equivalence class above does not capture all of the rich struc-
ture available in policy space. This is partially because, under different reward signals, this
equivalence is not readily present in the value space. Different reward signals could lead
to the same optimal policy, but won’t necessarily lead to the same value function. This
is true in our example. And it is worth noting that this is bound to be true more widely,
as the mapping between (deterministic) optimal policies and value functions is generally
one-to-many. Nevertheless, this is by nomeans an argument against the usage of powerful
functional approximations, likeUVFAs, that assume and exploit smoothness assumptions
(in S,A and/or w). Instead the above merely points out that there is more structure,
particularly in the policy space, that the smoothness alone cannot account for. Thus, al-
though very powerful, exploiting similarities in state, action and task space, UVFAs might
not be enough to exploit the rich structure inMφ.

To see that let us consider a different example. Take tasksw1 = [1, 0] andw3 = [γ−n, 1]
which might not be that close to each other under some distance nor a scalar factor away
(trivial equivalence), but will nevertheless induce the same optimal policy, π←, that from
any state s will seek the left-most state of the chain and the associated reward. Although
in this example the value functions space is fairly smooth as exposed above, the distance
between these tasks ||w1 − w2|| = ||1 − γ−n−1|| is likely to be too large to support any
generalisation between these tasks’ value functions under a smoothness assumption. But
even though the optimal value functions forw1 andw3 might not be as close to each other
under some norm ||.||, their associated SFs are actually the same across the state space, as

¹Scaling the reward is usually not a problem for a single-task problem. Yet learning a value function
on a scaled reward is not the same as generalising in the value space over a class of such rewards.
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they implicitly encode the information that these two tasks will lead to the same optimal
policy. Since we know there are only n optimal policies, we only have n SFs that we would
need to represent in order to fully cover the space of optimal policies. This suggest that
SFs might be the more compact way of representing optimal value functions. Let us look
how these SFs {ψπk}k=1,n, where πk is the optimal policy that will choose to go left for all
states left of sk and choose to go right for all state on the right of sk. The successor features
corresponding to one of these policies take the form:

ψπk(s,←) =


[1, 0], for s = s1

[γ i, 0], i < k

[0, γn−i+1], i ≥ k

ψπk(s,→) =


[0, 1], for s = sn

[γ i+1, 0], i < k

[0, γn−i], i ≥ k

(6.5)

Now suppose we have learnt all n SFs, {ψπk}k=1,n. A question one might ask is how do
we match an arbitrary task w ∈ R+ with its corresponding policy and/or optimal value
function. This is where GPI comes into play. Similar to what we have done for transfer in
the previous chapter, we can readily build the evaluation of all these under task w. And
one of these value functions will correspond to the optimal value functionQ∗w. Moreover,
it is easy to see that we can use GPI to identify this policy. If ∃k∗ ∈ {1, · · · , k} s.t. πk∗ is
the optimal policy for w, then Q∗w(s, a) = Qπk∗

w (s, a) ≥ Qπ(s, a), ∀π, and thus

πGPI(s) ∈ max
k

max
a

Qπk
w (s, a) = max

a
Qπk∗

w (s, a) = max
a

Q∗w(s, a). (6.6)

Thus, more generally, if we have access to the collection of optimal SFs, we can recover
the optimal policy and the optimal value function for any task w. Now the question be-
comes how to best build this collection of SFs. In principle we can apply Algorithm 5.1
(Chapter 5) as long as we define a diverse enough set of base tasks to induce all optimal
policies present inMφ . While this is possible in this simple chain MDP example, this
might not always be the case. Moreover, although the space of policy (and SFs) will be
generally more compact than that of the values functions inMφ, this set might not always
be finite or it might still include a large number of policies. Even in our simple example, if
we increase n the number of SFs that would be needed to represent, computation would
scale accordingly. Thus the way we were building SFs one at a time as proposed in Algorithm
5.1 might not scale well enough to give us a diverse enough collection. Nevertheless, this is
precisely where the kind of structure UVFAs exploit comes in handy. To see this, let us re-
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visit tasks w′2 = [1, γn−2] and w2 = [1, γn−1] above. These are ’close’ to each other, under
l2 and as argued previously so will their value functions but so would their corresponding
SFs.

Nevertheless note that these two tasks will actually induce two different optimal poli-
cies πw2 = πw3 = πn and respectively πw′2 = πn−1. Although these are different policies,
they are quite related and will agree in most of the state space, except for s = sn. Thus, it
stands to reason that knowing about one can help us generalise to the other. And similari-
ties like these arepreciselywhatparametric functional approximators are goodat capturing
and exploiting for generalisation. Therefore, we propose to use such an approximator to
build a large set of SFs that correspond to different optimal policies inMφ – this is akin to
learning the optimal value functions, but instead, we would be using this approximator to
generalise SFs across the policy space. A UVFA-like approximator for SFs should be able
to capture the generalisation between w2 to w′2 and then GPI can make the leap between
w2 andw3 through the evaluation provided by ψw2

. In doing so, we obtain a more scalable
method to build a large, potentially infinite set of SFs that can then be used in conjunction
with property (6.6) to obtain generalisation acrossMφ. Lastly note that even if we are not
able to represent all optimal policies, by combining multiple of these via GPI, we can still
get a very good policy for a new task – as empirically shown in the chapter.

6.3 Universal Successor Features Approximators

UVFAs and SF&GPI address the transfer problem described in Section 6.2.2 in quite dif-
ferent ways. With UVFAs, one trains an approximator Q̃(s, a,w) by solving the train-
ing tasks w ∈ M using any RL algorithm of choice. One can then generalise to a new
task by plugging its description w′ into Q̃ and then acting according to the policy π(s) ∈
argmaxaQ̃(s, a,w

′). With SF&GPI one solves each task w ∈ M and computes an ap-
proximation of the SFs of the resulting policies πw, ψ̃

πw(s, a) ≈ ψπw(s, a).
The algorithmic differences between UVFAs and SF&GPI reflect the fact that these

approaches exploit different properties of the transfer problem. UVFAs aimat generalising
across the space of tasks by exploiting structure in the function Q∗(s, a,w). In contrast,
SF&GPI’s strategy for generalising across tasks is to exploit structure in the RL problem
itself. GPI builds on the general fact that a greedy policy with respect to a value function
will, in general, perform better than the policy that originated the value function. SFs, in
turn, exploit the structure (6.1) tomake it possible to quickly evaluate policies across tasks
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and apply GPI efficiently.
Obviously, both UVFAs and GPI have advantages and limitations ,but their types of

generalisation are in some sense complementary. Thus, it is then natural to ask if we can
simultaneously have the two types of generalisation. In thiswork, we propose amodel that
provides exactly that. Themain insight is actually simple: since SFs aremulti-dimensional
value functions, we can extend them in the same way as universal value functions extend
regular value functions. In the next section, we elaborate on how exactly to do so.

6.3.1 Universal Successor Features

As discussed in Section 6.2.2, UVFs are an extension of standard value functions defined
as Q∗(s, a,w). If πw is one of the optimal policies of task w, we can rewrite the definition
as Qπw(s, a,w). This makes it clear that the argument w plays two roles in the definition
of a UVF: it determines both the task w and the policy πw (which will be optimal with
respect to w). This does not have to be the case, though. Similarly to (Sutton et al., 2011)
general value functions (GVFs), we could in principle define a function Q(s, a,w, π) that
“disentangles” the task from the policy. This would provide a model that is even more
general than UVFs. In this section we show one way to construct such a model when as-
sumption (6.1) holds. If (6.1) is true, we can revisit the definition of SFs and write

Q(s, a,w, π) = ψπ(s, a)⊤w. (6.7)

If we want to be able to compute Q(s, a,w, π) for any π, we need SFs to span the space of
policies π. Thus, we define universal successor features as ψ(s, a, π) ≡ ψπ(s, a). Based on
such definition, we call ψ̃(s, a, π) ≈ ψ(s, a, π) a universal successor features approximator
(USFA).

According to this definition, we can see that now policies π become inputs to our func-
tional approximator. Since these are in general functions over the whole S × A space,
we will need to find a more compressed way of specifying this argument. Thus in prac-
tice, whenever we define aUSFAwewill also need to define an embedding for the policies
π. Let e : (S 7→ A) 7→ Rk be a policy-encoding mapping, that is, a function that turns
policies π into vectors in Rk. We can then see USFs as a function of e(π): ψ(s, a, e(π)).
The definition of the policy-encodingmapping e(π) can have a strong impact on the struc-
ture of the resulting USF. We now point out a general equivalence between policies and
reward functions that will provide a practical way of defining e(π). It is well known that
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any reward function induces an optimal policy (Puterman, 1994), that can be recovered by
acting greedilywith respect to the optimal function. A point that is perhaps less immediate
is that the converse is also true. Given a deterministic policy π, one can easily define a re-
ward function rπ that induces this policy: for example, we can have rπ(s, π(s), ·) = 0 and
rπ(s, a, ·) = −1 for any a ̸= π(s). Therefore, we can use rewards to refer to deterministic
policies and vice-versa.

Since here we are interested in generalising to policies that maximise reward functions
of the form (6.1), by restricting our attention to policies induced by tasks z ∈ Rd we end
up with a conveniently simple encoding function e(πz) = z that is bound to include at
least some of our target policies. Thus although USFA can be defined for any policy em-
bedding space in thiswork, in thisworkwewill adopt apolicy embedding that corresponds
to the task embedding inMφ, that this policy is trying tomaximise. Therefore e(π) = z if
and only if π is the maximising the reward signal rz = zTφ. From this encoding function
it follows that Q(s, a,w, πz) = Q(s, a,w, z). It should be clear that UVFs are a particular
case of this definition when w = z. Going back to the definition of USFs, we can finally
write Q(s, a,w, z) = ψ(s, a, z)⊤w. Thus, if we learn a USF ψ(s, a, z), we have a value
function that generalises over both tasks and policies, as promised.

6.3.2 USFA Generalisation

We now revisit the question as to why USFAs should provide the benefits associated with
bothUVFAs andSF&GPI.Wewill discuss howexactly to train aUSFA in the next section,
but for now suppose that we have trained one such model ψ̃(s, a, z) using the training
tasks inB. It is then not difficult to see that we can recover the solutions provided by both
UVFAs and SF&GPI. Given an unseen task w′, let π be the GPI policy defined as

π(s) ∈ argmaxa max
z∈C

Q̃(s, a,w′, z) = argmaxa max
z∈C

ψ̃(s, a, z)⊤w′, (6.8)

where C ⊂ Rd. Clearly, if we make C = {w′}, we get exactly the sort of generalisation
associated with UVFAs. On the other hand, setting C = B essentially recovers SF&GPI.

The fact thatwe can recover bothUVFAs andSF&GPIopens up a spectrumof possibil-
ities in between the two. For example, we could applyGPI over the training set augmented
with the current task, C = B ∪ {w′}. In fact, USFAs allow us to apply GPI over any set
of tasks C ⊂ Rd. The benefits of this flexibility are clear when we look at the theory sup-
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porting the generalisation SF&GPI provides. As revised in last chapter, (Barreto et al.,
2017) provide theoretical guarantees on the performance of SF&GPI applied to any task
w′ ∈ M̂ based on a fixed set of SFs. Below we state a slightly more general version of this
result that highlights the two types of generalisation promoted by USFAs.

Proposition 6.1

Let w′ ∈ M′ and let Qπ
w′ be the action-value function of executing policy π on

task w′. Given approximations {Q̃πz
w′ = ψ̃(s, a, z)⊤w′}z∈C , let π be the GPI policy

defined in 6.8. Then,

∥Q∗
w′−Qπ

w′∥∞ ≤
2

1− γ

minz∈C

∥φ∥∞ ∥w′ − z∥︸ ︷︷ ︸
δd(z)

+max
z∈C

∥w′∥ · ∥ψπz − ψ̃(s, a, z)∥∞︸ ︷︷ ︸
δψ(z)




(6.9)

where Q∗w′ is the optimal value of task w′, ψπz are the SFs corresponding to the op-
timal policy for task z.

Whenwewrite the result in this form, it becomes clear that, for eachpolicy πz, the right-
hand side of (A.31) involves two terms: i) δd(z), the distance between the task of interest
w′ and the task that induced πz, and ii) δψ(z), the quality of the approximation of the SFs
associated with πz.

In order to get the tightest possible bound (A.31) we want to include in C the policy
z that minimises δd(z) + δψ(z). This is exactly where the flexibility of choosing C pro-
vided by USFAs can come in handy. Note that, if we choose C = B, we recover Barreto
et al.’s (2017) bound, which may have an irreducibleminz∈Cδd(z) even with a perfect ap-
proximation of the SFs in B. On the other extreme, we could query our USFA at the test
point C = {w′}. This would result in δd(w′) = 0, but can potentially incur a high cost
due to the associated approximation error δψ(w′), depending on the functional approxi-
mation’s ability to capture this point.

6.3.3 How to Train a USFA

Now that we have an approximation Q̃(s, a,w, z) a natural question is how to train this
model. In this section, we show that the decoupled nature of Q̃ is reflected in the training
process, which assigns clearly distinct roles for tasks w and policies πz.
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In the scenario consideredhere the transitionat time twill beof the form (st, at, φt+1, st+1).
Since φ allows us to compute the reward of any taskw, and since our policies are encoded
by tasks z, data in the format above allows us to learn the value function of any policy πz

on any taskw. To see why this is so, let us define one of the fundamental quantities used in
RL to learn value functions: the temporal-difference (TD)error (Sutton andBarto, 1998).
Given transitions in the form above, the n-step TD error associated with policy πz on task
w will be

δt,n
wz =

t+n−1∑
i=t

γ i−trw(si, ai, si+1) + γnQ̃(st+n, πz(st+n),w, z)− Q̃(st, at,w, z)

=

[
t+n−1∑
i=t

γ i−tφ(si, ai, si+1) + γnψ̃(st+n, at+n, z)− ψ̃(st, at, z)

]⊤
w = (δt,n

z )⊤w,

(6.10)

where at+n = argmaxbQ̃(st+n, b, z, z) = argmaxbψ̃(st+n, b, z)⊤z. As it is well known,
the TD error δt,n

wz allows us to learn the value of policy πz on task w; since here δt,n
wz is a

function of z and w only, we can learn about any policy πz on any task w by just plugging
in the appropriate vectors.

Equation (6.10) highlights some interesting (and subtle) aspects involved in training
a USFA. Since the value function Q̃(s, a,w, z) can be decoupled into two components,
ψ̃(s, a, z) and w, the process of evaluating a policy on a task reduces to learning ψ̃(s, a, z)
using the vector-based TD error δt,n

z showing up in (6.10). Since δt,n
z is a function of z

only, the updates to Q̃(s, a,w, z) will not depend on w. How do the tasks w influence the
training of a USFA, then? If sample transitions are collected by a behaviour policy, as is
usually the case in online RL, a natural choice is to have this policy be induced by a task
w. When this is the case, the training tasks w ∈ M will define the distribution used to
collect sample transitions. Whenever we want to update ψ(s, a, z) for a different z than
the one used in generating the data, we find ourselves in the off-policy regime (Sutton and
Barto, 1998) and we need to cut traces accordingly, whenever policies disagree.

Assuming that the behaviour policy is induced by the tasks w ∈ B, training a USFA
involves twomain decisions: how to sample tasks fromB and how to sample policies πz to
be trained through (6.10) or some variant. As alluded to before, these decisions may have
a big impact on the performance of the resulting USFA, and in particular on the trade-offs
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Algorithm 6.1 Learn USFA with ε-greedy Q-learning

Require:



B training tasks
Dz distributions overRd

nz number of policies
ns total number of steps
ε exploration parameter
α learning rate

1: Select a task w ∈M

2: [Begin episode] Set initial state s = s0 ∈ S
3: for ns steps do

4: for i← 1, 2, ..., nz do
5: Sample zi ∼ Dz(·|w) {sample policies, possibly based on current task }

6: if Bernoulli(ε)=1 then a←Uniform(A) {exploration}
7: else a← argmaxb maxi ψ̃(s, b, zi)⊤w {GPI }

8: Execute action a and observe φ and s′

9: Sample zi ∼ Dz(·|w) {sample policies for learning}
10: for i← 1, 2, ..., nz do
11: Update ψ̃ based on sampled policies
12: a′ ← argmaxbψ̃(s, b, zi)

⊤zi {a′ ≡ πi(s′)}
13: θ α←−

[
φ + γψ̃(s′, a′, zi)− ψ̃(s, a, zi)

]
∇θ ψ̃

14: end for

15: end for
16: s← s′

17: end for
18: return θ

involved in the choice of the set of policies C used by the GPI policy (6.8). As a form of
illustration, Algorithm 6.1 shows a possible regime to train a USFA based on particularly
simple strategies to select tasks w ∈ B and to sample policies z ∈ Rd.

One aspect of Algorithm 6.1 worth calling attention to is the fact that the distribution
Dz used to select policies can depend on the current task w. This allows one to focus on
specific regions of the policy space; for example, one can sample policies using a Gaussian
distribution centred around w. This will allow us to provide the functional approximator
with fictitious data-points in the policy space easy to generalise to. At the same time, tasks
that are close tow are likely to induce similar optimal policies. If that is the case, trajectories
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produced under w would allow for very efficient off-policy learning for these z.

6.4 Experiments

In this section, we describe the experiments conducted to test the proposed architecture in
a multitask setting and assess its ability to generalise to unseen tasks. To illustrate USFAs
capabilities for generalisation we will look at two different sets of MDPs. The first one is
an example where the structure inMφ can be easily exploited by a parametric model like
UVFAs, butwhere vanilla SF&GPI on the training tasks as presented in last chapterwould
not have enough coverage to represent the additional optimal policies present inMφ. We
will see that the proposed model can overcome this limitation and leverage the paramet-
ric generalisation in policy space. As a second example, we will revisit the experimental
setup in Section 5.4, where we have already seen that the kind of generalisation that GPI
provides can be very effective. Moreover, we will see that this scenario is actually an exam-
ple where GPI’s ability to recombine policies can substantially outweigh the parametric
generalisation UVFAs can provide, at least for a limited set of training tasks.

We start with a simple illustrative example to provide intuition on the kinds of general-
isation provided by UVFAs and SF&GPI. We also show how in this example USFAs can
effectively leverage both types of generalisation and outperform its precursors. For this,
we will consider the simple two-state MDP depicted in Figure 6.4.1. To motivate the ex-
ample, suppose that state s1 of our MDP represents the arrival of a traveller to a new city.
The traveller likes coffee (C) and food (F) and wants to try what the new city has to offer.
In order tomodel that, we will use features φ ∈ R2, with φ1 representing the quality of the
coffee andφ2 representing the quality of the food, both ranging from0 to 1. The traveler has
done some research and identified the places that serve the best coffee and the best food;
in ourMDP these places aremodelled by terminal states associatedwith actions ‘C’ and ‘F’
whose respective associated rewards are φ(·,C) = φ(C) = [1, 0] and φ(F) = [0, 1]. As
one can infer from these feature vectors, the best coffee place does not serve food and the
best restaurant does not serve coffee (at least not a very good one). Nevertheless, other
places in town serve both; as before, we will model these places by actions Pi associated
with features φ(Pi). We assume that ∥φ(Pi)∥2 = 1 and consider N = 5 alternative places
Pi evenly spaced on the preference spectrum. We model how much the traveller wants
coffee and food on a given day by w ∈ R2. If the traveler happens to want only one of
these (i.e. w ∈ {[1, 0], [0, 1]}), she can simply choose actions ‘C’ or ‘F’ and get a reward
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Figure 6.4.1: Trip MDP: Depiction of MDP.

r = φ(·)⊤w = 1. If instead, she wants both coffee and food (i.e. if w is not an “one-hot”
vector), it may actually be best to venture out to one of the other places. Unfortunately,
this requires the traveller to spend some time researching the area, which we model by an
action ‘E’ associated with feature φ(E) = [−ε,−ε]. This models the fact that there is a
small price to pay for choosing to explore. After choosing ‘E’ the traveler lands on state s2
and can now reach any place in town: C, F, P1, ..., PN. Note that, depending on the vector
of preferencesw, it may be worth paying the cost of φ(E)⊤w to subsequently get a reward
of φ(Pi)

⊤w (here γ = 1). The leftmost plot in Figure 6.4.2 depicts what the optimal final
destinations would be under different preferences w ∈ [0, 1]2.

6.4.1 Trip MDP

In order to assess the transfer ability of UVFAs, SF&GPI and USFAs, we define a train-
ing set B = {10, 01} and K = 50 test tasks corresponding to directions in the two-
dimensional w-space: M̂ = {w′|w′ = [cos( πk

2K), sin(
πk
2K)], k = 0, 1, ...,K}. We start by

analysing what SF&GPI would do in this scenario. We focus on training taskwC = [1, 0],
but an analogous reasoning applies to task wF = [0, 1]. Let πC be the optimal policy as-
sociated with task wC. It is easy to see that π(s1) = π(s2) = C. Thus, under πC it should
be clear that QπC

w′ (s1,C) > QπC
w′ (s1, E) for all test tasks w′. Since the exact same reason-
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to the optimal performance one could get in this MDP (plot above). As
above, the optimal performance and the SF&GPI were computed exactly.

ing applies to taskwF if we replace action C with action F, the GPI policy (6.8) computed
over {ψπC , ψπF} will be suboptimal for most test tasks in M̂. This is more generally true
as illustrated in Figure 6.4.2. The middle plot illustrated the final destinations of the GPI
induced policy under w ∈ [0, 1]2. Moreover if we look at the difference between the first
plot and this middle one, we can see that in this case GPI will fail to recover the optimal
policy formost of thew space. Actually it will fail to do so, for all tasks outside the ones for
which the base policies are optimal – as highlighted in the last subplot in the same figure.

Training a UVFA on the same setM, will not be perfect either due to the very limited
number of training tasks. Nonetheless, the smoothness in the approximation allows for a
slightly better generalisation in M̂. We include a depiction of the performance a trained
UVFA will typically achieve after 100 episodes in Figure B.3.1. By comparing with the
subplot on its right corresponding to the returns under the GPI policy over a perfect set

156



0 20 40 60 80

Training iterations (10 episodes each)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

O
p
ti

m
a
lit

y
 G

a
p

Optimality Gap across directions

USFA over C={w'}

USFA over C=random(5)

UVFA

SF&GPI

Figure 6.4.4: Trip MDP: Zero-shot performance across directions (semi-circle in the
unit square): Optimality gap for = {w′|w′ = [cos( πk

2K ), sin(
πk
2K )], k =

0, 1, ...,K} for K = 50. These results were averaged over 10 runs.

of SFs, we can see that the smoothness assumption allows the functional approximator to
extrapolate a bit better than its SF&GPI counterpart. This is not a perfect interpolation
as the training set is very small, but note that with more tasks the UVFA will refine this
representation further. The same is true for SF&GPI but in a slightly different way. As
in this example, unless we include in B at least one point corresponding to each of the
optimal policies inMφ we will not be able to recover the optimal value functions. Thus if
we were to increase N (possible mixed outcomes), we would have to increase the number
of SFs we represent accordingly. On the other hand, due to the structure in our outcomes,
UVFA-s generalisation will be almost independent of our choice N.

Alternatively, we can use Algorithm 6.1 to train a USFA on the training set B. In or-
der to do so we sampled nz = 5 policies z ∈ R2 using a uniformly random distribu-
tion Dz(·|w) = U([0, 1]2) (see line 5 in Algorithm 6.1). When acting on the test tasks
w′ we considered two choices for the candidates set: C = {w′} and C = {zi|zi ∼
U([0, 1]2), i = 1, 2, ..., 5}. In the last two subplots of Figure 6.4.3 we provide an exam-
ple a train USFA and its generalisation performance over the [0, 1]2.

Lastly, we will quantify our generalisation ability by measuring performance on the di-
rection set defined above M̂. Aggregated results are provided in Figure 6.4.4. As a refer-
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ence we report the performance of SF&GPI using the true {ψπC , ψπF} – no approxima-
tion. We also show the learning curve of a UVFA. As shown in the figure, USFA clearly
outperforms its precursors and quickly achieves near-optimal performance. This is due to
two factors. First, contrary to vanilla SF&GPI, USFA can discover and exploit the rich
structure in the policy-space, enjoying the same generalisation properties as UVFAs but
now enhanced by the combination of the off-policy and off-task training regime. Second,
the ability to sample a candidate set C that induces some diversity in the policies consid-
ered by GPI overcomes the suboptimality associated with the training SFs ψπC and ψπF .

A particularly adversarial choice of test tasks for the vanilla SF&GPIwould be the diag-
onal in the [0, 1]2 quadrant depicted in the plot above: M̂′ = {w′|w′1 = w′2,w′1 ∈ [0, 1]}.
This is, in a sense, maximally away from the training tasks and both of the precursor mod-
els are bound to struggle in this portion of the space. This intuitionwas indeed empirically
validated. Empirical results are provided in Figure 6.4.5. As mentioned above, this is an
adversarial evaluation, mainly to point out that, in general, there might be regions of the
spacewhere the generalisation of the previousmodels can be very bad, butwhere the com-
bination of them can still recover close to optimal performance.
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Figure 6.4.6: USFA architecture used to the large scale, partially observable experi-
ments in Section 6.4.2.

6.4.2 Large-scale Experiments

Environment and tasks. We used the DeepMind Lab platform to design a 3D environ-
ment consisting of one large room containing four types of objects: TVs, balls, hats, and
balloons (Beattie et al., 2016). This is the same environment used in Chapter 5. A depic-
tion of the environment through the eyes of the agent can be seen in Figure 5.4.1a. The
features φi are indicator functions associated with object types, i.e., φi(s, a, s

′) = 1 if and
only if the agent hit an object of type i (say, a TV) on the transition s a−→ s′. A task is de-
fined by four real numbersw ∈ R4 indicating the rewards attached to each type of object.
Note that these numbers can be negative, in which case the agent has to avoid the corre-
sponding object type. For instance, in task w = [1-100] the agent is interested in objects
of the first type and should avoid objects of the second type, while the other objects are
irrelevant.

Agent architecture. A depiction of the architecture used for the USFA agent is illus-
trated in Figure 6.4.6. The architecture has three main modules: i) A fairly standard input
processing unit composed of three convolution layers and an LSTM followed by a non-
linearity (Schmidhuber, 1996); ii) A policy conditioning module that combines the state
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embedding coming from the firstmodule, s ≡ f(h), and the policy embedding, z, and pro-
duces |A| outputs corresponding to the SFs of policy πz, ψ̃(s, a, z); and iii)The evaluation
module, which, given a taskw and the SFs ψ̃(s, a, z), will construct the evaluation of policy
πz on w, Q̃(s, a,w, z) = ψ̃(s, a, z)⊤w.

Training and baselines. We trained the above architecture end-to-end using a varia-
tion of Alg. 6.1 that uses (Watkins, 1989) Q(λ) to apply Q-learning with eligibility traces.
As the distribution Dz used in line 5 of Alg. 6.1 we adopted a Gaussian centred at w:
z ∼ N (w, 0.1 I), where I is the identity matrix. We used the canonical vectors of R4

as the training set, B = {1000, 0100, 0010, 0001}. Once an agent was trained on B we
evaluated it on a separate set of unseen tasks,M̂, using theGPI policy (6.8) over different
sets of policies C. Specifically, we used: C = {w′}, which corresponds to a UVFA with
an architecture specialised to (6.1); C = B, which corresponds to doing GPI on the SFs
of the training policies (similar to (Barreto et al., 2017)), and C = B ∪ {w′}, which is
a combination of the previous two. We also included as baselines two standard UVFAs
that do not take advantage of the structure (6.1); one of them was trained on-policy and
the other one was trained off-policy (see Appendix B.3.2.2). The evaluation on the test
tasks M̂ was done by “freezing” the agent at different stages of the learning process and
using the GPI policy (6.8) to select actions. To collect and process the data we used an
asynchronous scheme similar to IMPALA (Espeholt et al., 2018).

6.4.3 Results and Discussion

Figure 6.4.7 shows the results of the agents after being trained onM. One thing that im-
mediately stands out in the figure is the fact that all architectures generalise quite well to
the test tasks. This is a surprisingly good result if we consider the difficulty of the scenario
considered: recall that the agents are solving the test taskswithout any learning taking place.
This performance is evenmore impressive as we note that some test tasks contain negative
rewards, something never experienced by the agents during training. Whenwe look at the
relative performance of the agents, it is clear that USFAs perform considerably better than
the unstructured UVFAs. This is true even for the case where C = {w′}, in which USFAs
essentially reduce to a structuredUVFA that was trained by decoupling tasks and policies.
The fact thatUSFAs outperformUVFAs in the scenario considered here is not particularly
surprising since the former exploit the structure (5.2) while the latter do not. In any case,
it is reassuring to see that our model can indeed exploit such a structure effectively. This
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Figure 6.4.7: Learning curves for training tasks B and generalisation performance on a
sample of test tasks w′ ∈ M′ after training on M. Shaded areas repre-
sent one standard deviation over 10 runs.
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result also illustrates a particular way of turning prior knowledge about a problem into a
favourable inductive bias in the UVFA architecture.

It is also interesting to see how the different instantiations of USFAs compare against
each other. As shown in Figure 6.4.7, there is a clear advantage in includingM to the set
of policiesC used inGPI (6.8). This suggests that, in the specific instantiation of this prob-
lem, the type of generalisation provided by SF&GPI is more effective than that associated
withUVFAs. One result thatmay seemcounter-intuitive at first is the fact thatUSFAswith
C = B+{w′} sometimes performworse than their counterparts using C = B, especially
on tasks with negative rewards. Here we note two points. First, although including more
tasks to C results in stronger guarantees for the GPI policy, strictly speaking, there are no
guarantees that the resulting policy will perform better (see Barreto et al.’s Theorem 1,
2017). Another explanation that is more likely in the current scenario is that errors in the
approximations ψ̃(s, a, z) may have a negative impact on the resulting GPI policy (6.8),
for example, if the resulting Q̃(s, a,w, z) are overestimations of the actual value functions.
On the other hand, comparingUSFA’s results using C = B+ {w′} and C = {w′}, we see
that by combining the generalisation of UVFAs andGPI we can boost the performance of
a model that only relies on one of them.

In the above scenario, SF&GPI on the training setB seems to provide a more effective
wayof generalising, as compared toUVFAs, evenwhen the latterhas a structure specialised
to (6.1). Nevertheless, with less conservative choices ofDz that provide a greater cover-
age of the z space we expect the structured UVFA (C = {w′}) to generalise better. Note
that this can be done without changingM and is not possible with conventional UVFAs.
One of the strengths of USFAs is exactly that: by disentangling tasks and policies, one
can learn about the latter without ever having to actually try them out in the environment.
We exploit this possibility to repeat our experiments now usingDz = N (w, 0.5 I). Re-
sults are shown in Figure6.4.8. As expected, the generalisation of the structured UVFA
improves considerably, almost matching that of GPI. This shows that USFAs can oper-
ate in two regimes: i) with limited coverage of the policy space GPI overM will provide
reliable generalisation; ii) with broader coverage of the space structured UVFAs will do
increasingly better.²

²Videos of USFAs in action on the links https://youtu.be/Pn76cfXbf2Y and
https://youtu.be/0afwHJofbB0.
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USFA (GPI over C = {w'}), σ= 0. 1

USFA (GPI over C = {w'}), σ= 0. 5

USFA (GPI over C = M), σ= 0. 1
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Figure 6.4.8: Generalisation performance on sample test tasks w′ ∈ M′ after training
on M, with Dz = N (w, σ I), for σ = 0.1 and σ = 0.5 (larger coverage of
the z space). Average over 3 runs.

6.5 Conclusion

6.5.1 Related Work

Multitask RL is an important topic that has generated a large body of literature. Solu-
tions to this problem can result in better performance on the training set (Espeholt et al.,
2018), can improve data efficiency (Teh et al., 2017) and enable generalisation to new
tasks. For a comprehensive presentationof the subject please see (Taylor andStone, 2009)
and (Lazaric, 2012) and references therein.

There exist various techniques that incorporate tasks directly into the definition of the
value function for multitask learning (Kaelbling, 1993; Ashar, 1994; Sutton et al., 2011).
UVFAs have been used for zero-shot generalisation to combinations of tasks (Mankowitz
et al., 2018; Hermann et al., 2017), or to learn a set of fictitious goals previously encoun-
tered by the agent (Andrychowicz et al., 2017).

Many recent multitask methods have been developed for learning subtasks or skills for
a hierarchical controller (Vezhnevets et al., 2017; Andreas et al., 2017; Oh et al., 2017). In
this context, (Devin et al., 2017) and (Heess et al., 2016) proposed reusing and composing
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sub-networks that are shared across tasks and agents in order to achieve generalisation to
unseen configurations. (Finn et al., 2017) uses meta-learning to acquire skills that can be
fine-tuned effectively. Sequential learning and how to retain previously learned skills has
been the focusof anumberof investigations (Kirkpatrick et al., 2017;Rusuet al., 2016). All
of these works aim to train an agent (or a sub-module) to generalise acrossmany subtasks.
These can be great use-cases for USFAs.

USFAs use a UVFA to estimate SFs over multiple policies. The main reason to do so
is to apply GPI, which provides a superior zero-shot policy in an unseen task. There have
been previous attempts to combine SFs and neural networks, but none of them used GPI
(Kulkarni et al., 2016; Zhang et al., 2017). Recently, (Ma et al., 2018) have also considered
combining SFs and UVFAs. Although this work is superficially similar to ours, it differs
quite a lot in the details. Specifically, (Ma et al., 2018) do not consider GPI, and restrict
the use of UVFAs to building a task-dependent set of SFs.

6.5.2 Summary

In this chapter, we presented USFAs, a generalisation of UVFAs through SFs. The combi-
nation of USFAs andGPI results in a powerful model capable of exploiting the same types
of regularity exploited by its precursors: structure in the value function, like UVFAs, and
structure in the problem itself, like SF&GPI.Thismeans that USFAs can not only recover
their precursors but also provide a whole new spectrum of possible models in between
them. We described the choices involved in training a USFA and discussed the trade-offs
associated with each alternative. Tomake the discussion concrete, we presented a specific
way to trainUSFAsandput it to the test ona complexdomain inwhich the agenthas tonav-
igate in a three-dimensional environment using only images as observations. We showed
how all instantiations of our model are able to generalise to unseen tasks and discussed
how we can emphasise different behaviours with simple changes in the training process.
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7
Conclusions

In this thesis, we explored the scenario of a learning agent, ’living’ in a persistent envi-
ronment where it needs to figure out how to behave in order to optimise a set of reward
signals. We argue that this is a very natural scenario most intelligent beings are subjected
to. Just to survive, animals need to learn how to navigate their surroundings, find food and
water, build shelters, avoid predators, interact and cooperate with their peers. All of these
behaviours are very intricate and diverse. Moreover, at the micro-scale of individual ac-
tions, all of these correspond to elaborate policies made up of smaller building blocks, like
moving into a certain direction, jumping, swimming, grasping, grabbing or manipulating
objects, etc. Being able to master and compose them is truly a hallmark of intelligence.

The world around us is very complex, probably beyond our abilities to fully compre-
hend or accurately model it. Nevertheless, we are able to meaningfully interact with our
environment, predict outcomes, actively change andmodify our surrounding, engage and
explore in a targeted manner. This is because we are able to learn representations of the
world that are sufficient for us to achieve the above feats. And this is in partwhatwewanted
to investigate in this work: what kind of representations could support this complex, mul-
titask (or multi-reward for us), multi-policy learning? Of course, we can think about treat-
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ing all of these (RL) problems independently and learning solutions separately for all of
them. Nevertheless, as Rich Caruanamentioned in his thesis, perhaps the common struc-
ture and similarities across these tasks are precisely the reasons behind our ability to learn
them so efficiently, from so little experience, when compared with current state-of-the-art
machine learning systems.

In the first part of this thesis, we looked at agents trying to learn policies optimising
for a fixed set of rewards, given some restrictive number of per task interactions. This is a
common scenario inmanypractical RL applications, such as designingmedical treatments
(Panuccio et al., 2013; Koedinger et al., 2013; Liu et al., 2018) or optimising educational
curricula (Thomas and Brunskill, 2016). In these settings, the data is very scarce and ex-
pensive to procure, thus combining multiple sources of data, recorded under different be-
haviour policies, trying to optimise for different things is a standard scenario. In the first
part, we investigated learning optimal value functions for a collection of tasks by leverage
all the data collected across tasks.

Our first attempt in doing so was to extend the popular fitted-Q iteration algorithm
to the multitask case and we proposed to build a common representation of the value
functions being learnt (Chapter 3). To make this more concrete, we chose to build this
shared representation using a popular method in linear multitask learning introduced in
(Argyriou et al., 2008). We then showed empirically that the resulting algorithm indeed
led to better performance under restricted budgets and one could achieve positive transfer
between tasks using this method. This is by nomeans the only choice. In a sense, anymul-
titask regression method that trains a common representation could be swapped in here,
as discussed in Section 3.4.2. One of the benefits of opting for a linear parametrisation
of the value functions was that we could easily inspect the learnt shared representation.
This revealed a very compressed, informative representation that essentially encoded nav-
igation patterns between rooms. This trained representation captures the main features
needed to represent all optimal value function in this class.

In the fourth chapter, we considered the same experimental setting and explored a sim-
ilar idea of jointly learning a shared linear representation for our value functions. In this
chapter, we look at exploring least square methods for (approximate) policy iteration. In
this case, one can observe that the policy evaluation sub-procedure can naturally be cast
as a multitask problem, where we aim to build the evaluation of the n policies under their
corresponding n tasks. This problem can be tackled in various ways. The first one we ex-
plored was a simple least-squares projected policy evaluation method. In this case, for
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linear representation, it turns out that the solution factorises into a dynamics-only model
and a reward-dependent term. Due to this factorisation, under our persistent environ-
ment assumption, we can compute the first term from all of the experience, across tasks.
And we have shown empirically, that there are situations in which this simple transfer via
samples can be very effective. Our second approach to the multitask multi-policy evalua-
tion problem was via Bellman residual minimisation (BRM). In particular, we cast the n
residualminimisation problems as amultitask regression problem and employed the same
method as in Chapter 3 to train a joint representation that would support themulti-policy
evaluations. As discussed in Section 4.6.2, it is important to note that the nature of the
regression problemswe ended up solving in these two chapters is quite different, although
at the end of this process they both should result in a common representation that sup-
port optimal value functions. As in the previous experiments, we show that phrasing and
solving the joint problem in thisway leads to better performance, under small sample sizes.

In the second part of this thesis, we looked at a different transfer scenario, more in-
line with the way we transfer knowledge to speed-up our learning of new, but related tasks
(Lazaric, 2012). The representations investigated in this second part are successor repre-
sentations, which have been shown to achieve a computationally efficient middle ground,
between model-free and model-based methods (Lehnert and Littman, 2019; Botvinick
and Weinstein, 2014), and to model closely the decision making process for biological
agents, like rats or even humans (Russek et al., 2017). One of the other benefits of this
representation is that it exploits fully the persistent environment assumption, leveraging
explicitly the shared dynamics. It is also a representation compatible with more power-
ful functional approximation classes, like deep neural nets, which allowed us to draw on
the recent successes in deep RL. This representation enables us to perform a generalised
policy evaluation step within a linear class of reward functions. This ability paired with
generalised policy improvement (GPI), leads to a very natural transfer framework in be-
haviour space (Barreto et al., 2017).

In Chapter 5, we proceed to extend this framework in two ways. First, we extended the
above setup to deal with reward functions outside the assumed span of a given feature set.
We also show that it is possible to provide guarantees and characterise the quality of the
resulting zero-shot policy, on a new task. Based on this we can clearly see that the quality
of this transfer is based on i) the underlying reward features and howwell theywill approx-
imate the current reward signal, as well as ii) the applicability of previously learnt policies
to our current task. Thus the problem of specifying these reward dimensions becomes of

167



great importance. Specifically: How could one come up, a priori or build from experience,
a set of features that describe the variability of one’s reward class? This is precisely where
our second contribution lies. Specifically, by looking at the associated approximation from
a slightly different angle, we show that one can replace the featureswith actual rewards that
the agent has experienced so far. This is without loss of generality and makes it possible
to apply SF&GPI online at scale, bypassing, in a sense, the discovery problem. Neverthe-
less, it is worth noting that other works (Machado et al., 2017b; Ramesh et al., 2019; Janz
et al., 2019) have tried to build these features online while training the successor features
(SFs). Although that can be done, we found this setting to be somewhat unstable, as the
optimisation has to chase a constantlymoving target. Moreover, small corrections in these
reward features might lead to a large change the corresponding SFs, as these have to inte-
grate in time all these small adjustments in the reward basis. In contrast, our approach to
this problem allows us to train on stationary rewards for each of the task.

In the last chapter, we explored extending this work in a different dimension. In par-
ticular, we assumed we do have the right underlying features to span all rewards an agent
would ever need to perform. This can be the case if these features are given by a user who
would then use them to specify the task in this pre-described language, or we can be in
the latter stages of a long-life learning scenario where the agent has already learnt what
those reward features would be – building these is something we discussed in Chapter 5.
In this scenario, we ask the question: how could we learn most effectively in order to gen-
eralise to all task in this class? To do so, we build on work in universal and general value
functions (Schaul et al., 2015a; Sutton et al., 2011), to obtain a parametric generalisation
in the successor feature space. Unlike previous work, the generalisation problem we are
dealing with is one overmultiple policies, but under the same reward signals – these being
the reward features discussed above. This tends to be a simpler and more structured gen-
eralisation problem as it aims to generalise over policy evaluations, in the same MDP. In
the proposed model, USFAs, this parametric generalisation is then paired with the direct
transfer enabled by GPI, to essentially get the best of both worlds. The last contribution
here is in the training procedure, wherewe increase our sample efficiency and potential for
generalisation by using all the experience generated, to train off-policy for a collection of
sampled fictitious tasks. This enables us to train many policies (and corresponding SFs),
by ’pretending to be on these tasks’ without ever having to execute them in the environ-
ment. This agent enjoyed the transfer properties studied in the first part of this thesis, by
training jointly under multiple fictitious tasks, as well as the direct transfer in behaviour
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space enabled by the successor features and GPI. The resulting agent was tested in a com-
plex 3D navigation task where the agent needs to pick up and/or avoid a set of objects. In
the experiments, we have seen that these two kinds of transfer can be very different, yet
complementary to each other.

Limitations and Future Directions

The material presented in this thesis can naturally be extended in a number of directions.
In the following we will discuss some of these avenues, looking at applicability to different
scenarios, algorithmic extensions and further studies that were left as future work.

In the first part of this thesis, we considered the offline data scenario. This was mo-
tivated mainly by real-world application scenarios, where the cost of generating new ex-
periences by interacting in the real-world can be prohibitively expensive – domains like
medicine, education, robotics. Nevertheless, the proposed methods can be straightfor-
wardly applied to the online settings as hinted in Section 3.3.4. The performance here will
now be intertwined with the exploration policy, that can now take into account the learn-
ing doneby the system so far. But this could also allow the system to test its current policies
and actively sample to collect better experiences to validate/invalidate its generalisations.
If data can be gathered under such a learnt policy safely, a system that relies on learning
from both on-policy data and historical data might exhibit the best properties.

In terms of learning methods, in this first part, we chose to concentrate on building a
linear shared representation for our inferred value functions and we present one particu-
lar way of doing so. But of course there are many other ways to approach the multitask
regression problems encountered in Algorithms 3.1, 4.3 and 4.4. Different MDP classes
might benefit from different structural assumptions one might bake into the optimisation
and in principle, any multitask regressor can be swapped in here. Along a similar line, as
seen in the other chapters, maybe a more powerful function approximation could be em-
ployed to learn a shared representation across value functions. One natural candidate here
are deep neural nets. Unfortunately, they tend to require a lot more experience to learn.
Considering the strict constraints on the sample budget we considered here, it is not also
clear how to properly regularise this functional class to induce good generalisation under
limited number of samples. More generally, learning representations in deep RL under a
multitask setting has proven to be challenging (Rusu et al., 2016; Kirkpatrick et al., 2017;
Teh et al., 2017) and rarely delivering on the promise of positive transfer. This can stem
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from a few sources. A general issue in multi-task learning is that a balance must be found
between the needs of multiple tasks competing for the limited resources of a single learn-
ing system. This is not particular toRL, but the nonstationary of theRL setting, even in the
single task, complicates this problem further. Moreover, the usual dependency between
the exploratorypolicy and the competencyof the agent can lead to feedback cycles that can
detrimentally affect the learning (Schaul et al., 2019). As future work, it would be inter-
esting to look into different functional classes and investigate more closely the interaction
between this choice of the approximations and the RL algorithm.

In the second part of this dissertation, we studied the possibility of transferring knowl-
edge to a new task and investigated the problem of task generalisation in a persistent envi-
ronment. Our way of representing and building knowledge in this part was through suc-
cessor features (SFs). In a nutshell, the transfer to a different task happens through our
ability to reassess a previously learnt behaviour under a new task. This reassessment is
possible zero-shot, through the SFs, within the span of the reward features on which the
SFs were trained. But one can argue that this really embodies a more general and power-
ful principle of transferring knowledge in RL, generalising the inner step of PI. If we can
cheaply perform a general policy evaluation step where we can reassess previously learnt
policies on our current task, this can then be paired with GPI to immediately provide us
with a policy that is guaranteed to be better than any of the evaluated policies. In this view,
one can argue that it worth exploring other ways of enabling such a fast re-evaluation step.

Nevertheless, in general, this step (policy evaluation) tends to be quite expensive, so
we would want to limit the number of re-evaluations one needs to do. This leads us to
a natural question: which policies should one learn and which policies should one use
for this evaluation step? This is a very important, recurring question that remains largely
unanswered. Whatwe have seen so far in our experiments is that this choice can have dras-
tic effects on the performance – Section 5.4 and 6.4. This makes sense, as the collection
of policies we consider here are the basis of the improvement step. Thus we would want
policies that are most informative to improvement. It turns out that this is a combined ef-
fect of how aligned these policies are with the new task and how precise the re-evaluation
would be. This is marvellously exemplified in our last experiment Section 6.4.3 andmore
formally justified by Proposition 6.1. One of the advantages of USFAs is that they pro-
vide us with a choice here. We can sample, for every task, which of these points in policy
space we think are likely to result in a better improvement step. And in the few choices we
explored, we can definitely see the trade-off anticipated by Proposition 6.1. This choice
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depends also on the training procedure, in particular, which policies have we learnt about
more in training. Again, for USFA that is a choice, as for each trajectory of experience, we
are going to sample multiple other tasks for which we aim to learn optimal policies. We
explored two options here: learning on tasks close to the one that generated the data (due
to the off-policy updates, these tasks might benefit the most from this experience) and
learning almost uniformly across the set of tasks we aim to generalise to. These are two ex-
tremes that will interact greatly with the decision of which policies to now sample for GPI,
as the generalisation properties of these two training procedures, will be very different: in
one case we have trained clusters of policies around our behaviours, in the other we have
trained across broader areas of the policy space but maybe with less relevant data. Both of
these samplingmechanisms, in learning and for acting, were explored only for a few initial
design choices and deserve deeper investigations in their properties and their interaction.

Finally, one critical, overarching question worth a lot more investigation is which tasks
should be learnt? Thiswill dictate what are the appropriate learningmethods, what are the
appropriate assumptions, what structure can be exploited, what kind of transfer canwe en-
able or how safe is the transfer of information (negative transfer, potential for interference,
etc). This becomes particularly relevant in a scenario like the one in Chapter 6 where the
agent can choose which tasks to focus on. This is just an example of a more general prin-
ciple in which our agent could come up with their own tasks in order to build a better
representation of the world, achieve better agency and control, explore in a more struc-
turedway, in the attempt to prepare itself for generalisation problems down the line. Initial
studies on the benefits of auxiliary tasks (Jaderberg et al., 2016), self-supervision (Pathak
et al., 2017; Kahn et al., 2018) and learning general value functions (Sutton et al., 2011;
Andrychowicz et al., 2017; Riedmiller et al., 2018; Borsa et al., 2019), seem to suggest that
this is a particularly promising way to approach the representation learning problem.
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A
Appendix: Omitted Proofs
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A.1 Background: Reinforcement Learning

A.1.1 Proof for Greedy Policy Improvement Theorem

In this section, we include a proof of the Greedy Policy Improvement theorem, restated
below in Theorem 1.1. As explained in the main text, this is crucial step in many of the
algorithms studied in this work, as well as a precursor the policy improvement step given
by GPI (Theorem 1.2).

Theorem 1.1: Greedy Policy Improvement

Given anMDP,M = ⟨S,A,P, r, γ⟩, a policy π and its associated action-valueQπ ,
then if we consider the greedy policy πgreedy = argmaxa Qπ(s, a)we have that:

Qπgreedy(s, a) ≥ Qπ(s, a),∀s ∈ S, a ∈ A

withequality satisfiedonlywhen π cannotbe improvedanymore: π ∈ argmaxμ Qμ(s, a),
∀s ∈ S, a ∈ A.

Proof. We will prove that acting greedy with respect to state-action value functions, leads
to a newQπgreedy(s, a) that improves as each (s, a) pair value. To do that, let us first observe
that:

Qπ(s, πgreedy(s)) = max
a∈A

Qπ(s, a) ≥ Qπ(s, π(s)) := Ea∼π[Qπ(s, a)].

Thus:

TπgreedyQπ(s, a) = r(s, a) + γ
∑
s′

P(s′|s, a)
∑
a′∈A

πgreedy(s′, a′)Qπ(s′, a′)

= r(s, a) + γ
∑
s′

P(s′|s, a)max
a′

Qπ(s′, a′)

≥ r(s, a) + γ
∑
s′

P(s′|s, a)
∑
a′∈A

π(s′, a′)Qπ(s′, a′)

≥ TπQπ(s, a) = Qπ(s, a)

Nowweknowby thefixpoint theoremthat repeated applicationofTπgreedy will convergence
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to its unique fixed point Qπgreedy , thus we get:

Qπgreedy = lim
k→∞

(Tπgreedy)k [Qπ] ≥ lim
k→∞

(
(Tπgreedy)k−1Tπ) [Qπ] ≥ lim

k→∞
(Tπ)k [Qπ] = Qπ

(A.1)
That is, we are guaranteed not to decrease the state-action value function by acting greed-
ily. Note also that equality is satisfied if andonly ifTπQπ(s, a) = TπgreedyQπ(s, a),∀(s, a) ∈
S×A ⇒ (Tπgreedy)k [Qπ] = (Tπ)k [Qπ]⇒ limk→∞ (Tπgreedy)k [Qπ] = limk→∞ (Tπ)k [Qπ]⇒
Qπgreedy = Qπ ⇒ the two policies are equivalent (in terms of the value function).

Similarly, we can very easily prove that the greedily constructed policy will improve the
state value function at each step:

Vπ(s) =
∑

a

π(s, a)Qπ(s, a) ≤ max
a∈A

Qπ(s, a) = Qπ(s, πgreedy(s))

≤ Qπgreedy(s, πgreedy(s)) (proved above Qπgreedy(s, a) ≥ Qπ(s, a),∀s, a)

= Vπgreedy(s) (Vπgreedy(s) = Qπgreedy(s, πgreedy(s)))
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A.1.2 TD(λ): Sketch for the Derivation of the Backward View

In this section we revisit TD learning, in particular TD(λ). As a reminder, TD methods
are a combination of Monte Carlo learning and dynamic programming(DP) divide-and-
conquer ideas explored before. Like MC methods, TD methods can learn directly from
sampled experiencewithout a full model of the environment. And similar to DP, TDmeth-
ods will update estimates based on partial (learnt) solutions, without having to wait for
the final outcome of an episode.

The simplest version of temporal-difference learning, TD(0), replaces the return Gt

with an estimate of it,Gt:t+1 ≈ Rt+1+ γV(St+1), given by the Bellman Expectation Equa-
tion. Consequently the update becomes:

V(St)← V(St) + α(Rt+1 + γV(St+1)︸ ︷︷ ︸
Gt:t+1

−V(St)) (A.2)

where we will commonly refer to Gt:t+1 = Rt+1 + γV(St+1) as the TD target and we can
define the TD error as:

δt := Gt:t+1 − V(St) = Rt+1 + γV(St+1)− V(St)

Something in-between the full history return used by the MC update and the one-step
TD target, is the n-step return:

Gt:t+n = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV(St+n) (A.3)

Note that by setting n = 0, we recover TD(0) and if we set n =∞we recover the Monte
Carlo update in Eq. 2.25. Furthermore, we can think about combining these n-step targets
to get a new target. Wedefine the λ-return,Gλ

t as a linear combination of the n-step returns:

Gλ
t =

∞∑
n=1

anGt:t+n (A.4)

with an = (1 − λ)λn, and where λ ∈ (0, 1). In this section we are going to look into the
backward viewofTD(λ)which provides uswith anupdate rule that canbe immediately be
applied after seeing just one additional transition, as we did in TD(0). In doing so, we can
dynamically assign credit to the most recently and the most frequently visited states. The
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resulting algorithm was described in Algorithm 2.4 and it relies on re-writing the episode
TD error,Gλ

t −V(St), in terms of the per-step TD errors, δt = Rt+1 + γV(St+1)−V(St),
and weighting them accordingly, using eligibility traces. In the following, we provide a
sketch of this result. Let us first look at the episodic TD error:

Gλ
t − V(St) =

∞∑
n=1

anGt:t+n − V(St)

=

∞∑
n=1

an (Gt:t+n − V(St)) as
∑∞

n=1 an = 1 (A.5)

We can now take a closer look at the individual n-step TD errors:

Gt:t+n − V(St) = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV(St+n)− V(St)

=

n∑
k=1

γk−1Rt+k + γnV(St+n)− V(St)

=

n−1∑
k=1

(
γk−1Rt+k + γkV(St+k)− γkV(St+k)

)
+ γn−1Rt+n + γnV(St+n)− V(St)

=

n∑
k=1

γk−1Rt+k +

n∑
k=1

γkV(St+k)−
n−1∑
k=0

γkV(St+k)

=

n∑
k=1

γk−1Rt+k +

n∑
k=1

γkV(St+k)−
n∑

k=1

γk−1V(St+k−1)

=

n∑
k=1

γk−1 (Rt+k + γV(St+k)− V(St+k−1))︸ ︷︷ ︸
δt+k−1

=

n−1∑
k=0

γkδt+k (A.6)

Thus, combining Eq.A.5 and Eq.A.6 we get:

Gλ
t − V(St) =

∞∑
n=1

an

(
n−1∑
k=0

γkδt+k

)
=
∞∑
n=0

n∑
k=0

anγkδt+k =
∞∑
k=0

k∑
n=0

anγkδt+k

where the last equality is obtained simplify by re-arranging the terms in the two summa-
tions. Thus:

Gλ
t − V(St) =

∞∑
k=0

(
k∑

n=0

anγk

)
︸ ︷︷ ︸

et+k(St) as defined in Eq. 2.30

δt+k (A.7)
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A.2 Multitask Learning: Learning Shared Linear Representations

In this section, we continue the discussion in Section 3.2.1 and provide more details of
the resulting joint optimisation problem we are attempting to solve at each step of value
iteration in Algorithm 3.2.

To begin, we restate the problem we are trying to address. Our assumption can be ex-
pressed as: ∃ a small set of features {ψ i}i=1,Nψ such that∀j,Qj(s, a) ≈

∑
i αjiψ i(s, a). And

in this section, we restrict our attention to features that are given as a linear combination
of the input feature spaceΦ : S × A → Rd for each state and action. Thus we assume a
reparametrisation of the problem as follows: there exists a transformationmatrixU (d×d
orthogonalmatrix) such that the induced feature set ψ(s, a) = UTΦ(s, a) induces a sparse
representation across Qj-s. Thus, in the new representation

Qj(s, a) ≈
∑

i

αjiψ i(s, a) = ⟨αj,UTΦ(s, a)⟩,

we would like the vectors αj to be sparse (that is the approximation needs only a few of
these features to represent the desirable value functions) .

Since we want the above representation to be sparse, for each task j, one could try to
solve an optimisation problem of the following type:

Q(k)
j = argmin

fj=⟨αj,UTΦ⟩

∑
j

LDj

(
fj(s, a), y

(k)
j

)
+ ∥αj∥21

 (A.8)

where Dj is the data set of experiences (s, a, s′, rj) recorded on task j and y(k)j (s, a) = rj +

γmaxbQ
(k−1)
j (s′, b) ≈ T∗Q(k−1)

j (s, a) is the one-step target at iteration k. We denote by
superscript (k) the values of quantities at iteration k in the iterative process.

Nevertheless, it has been proposed that we can look at such problems jointly, under a
similar sparsity regulariser that also promotes features sharing among tasks. This leads to a
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joint optimisation problem of the form:

(U∗,A∗) = argmin[ε(U,A) + λH(A)] (A.9)

= argminA,U


∑

j

LDj

(
⟨αj,UTΦ(s, a)⟩, y(k)j

)
︸ ︷︷ ︸

ε(U,A)

+λH(A)

 (A.10)

where A = [α1, · · · , αj, · · · , αJ],H(A) = λ||A||22,1 and by ε(U,A) we denoted the em-
pirical loss over all tasks. It was shown in (Argyriou et al., 2008) that A.10 is equivalent to
solving the following convex problem:

(W∗,D∗) = arg inf
[
ε(W) + λTr(WTD−1W)

]
s.t. D ≻ 0,Tr(D) ≤ 1 (Problem 2)

where we denote by ε(W) the joint empirical loss in Eq. A.8. We refer the reader to the
original work for the proof of this equivalence and further details on general conditions of
these results (Argyriou et al., 2007, 2008).

More precisely one can show that if (U∗,A∗) is a solution for Eq. A.10 then W∗ =

U∗A∗ is an optimal solution for Problem 2 (Theorem 1 in (Argyriou et al., 2008)). More
over given a fixed W, the optimal D∗ that minimises the above equation is given by:

D∗(W) =
(WWT)

1
2

Tr(WWT)
1
2

(A.12)

We provide a proof for this last statement, as it will be used in the design of the alternating
minimisation algorithm used to tackle Problem 2.

Proof. (Adapted from (Argyriou et al., 2008))
Consider the partial optimisation problem:

D∗ = arg inf
[
ε(W) + λTr(WTD−1W)

]
s.t. D ≻ 0,Tr(D) ≤ 1 (Problem 2b)

which for a fixed W, is equivalent to:

D∗ = arg inf
[
Tr(WTD−1W)

]
s.t. D ≻ 0,Tr(D) ≤ 1 (A.13)
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Now, let us consider the corresponding Lagrangian:

L(α1, α2) =
[
Tr(WTD−1W)

]
− α1 (Tr(D)− 1) + α2

(
xT(D)x− 0

)
(A.14)

and let us compute the derivative with respect to this objective:

∂

∂D
Tr(WTD−1W) =

[
∂

∂WTD−1W
Tr(WTD−1W)

] [
∂

∂D−1
(WTD−1W)

] [
∂

∂D
D−1
]

= [Id]
[
WWT] [−D−2

]
= −WWTD−2

Thus the derivative of the whole Lagrangian is:

∂

∂D
L(α1, α2) = −WWTD−2 − α1 · Id + α2 · xxT

Putting this to 0, we explore the implications:

• If α2 ̸= 0⇒ xDxT = 0,∀x ∈ Rd ⇒ impossible

• If α1 ̸= 0⇒ Tr(D) = 1

WWTD−2 = α1 · Id⇒ D2 =
1
α1

WWT (A.15)

⇒ Tr(D) = Tr

(
1

α
1
2
1

(WWT)
1
2

)
=

1

α
1
2
1

Tr
(
(WWT)

1
2

)
= 1⇒ α1/21 = Tr

(
(WWT)

1
2

)

⇒ D =
1

α
1
2
1

(
(WWT)

1
2

)
=

(
(WWT)

1
2

)
Tr
(
(WWT)

1
2

) (A.16)

As prefaced above, we are going to be use the above result as part of an alternating op-
timisation procedure to tackle Problem 2. In particular, we are going to use the fact the
Problem 2 gives rise to a convex problem, in both D and W, when one of these variables is
kept fixed. Thus, the idea of the algorithm is to alternate between solving these two min-
imisation problems. It is worth noting that convergence of this algorithm has been shown
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for the perturbed objective function (Argyriou et al., 2008):

Rζ(W,D) =
[
ε(W) + λTr(WTD−1WT + ζId)

]
(A.17)

with a small perturbation parameter ζ > 0. Note that as ζ → 0,Rζ(W,D) recovers the
original problem. Although convergence is not guaranteed for ζ = 0, in practice we have
observed convergence, without needing a decaying schedule for ζ .

Now let us see how we can compute the second step in the proposed alternating opti-
misation. KeepingD fixed, we get another convex problem andwe can now solve forW. It
is important to note that the above amounts to a minimisation over wj that can be carried
out independently for each task j as both objectives factorise over tasks:

W∗ = arg inf
W=[w1:J]

∑
j

ε(wj) + λ
∑

j

⟨wj,D−1wj⟩

. (Problem 2a)

More specifically, introducing a change in variable w′j = D−1/2wj this yields a standard L2

norm regularisation problem:

w∗j = arg inf
wj

[
LDj(⟨w′j,D1/2φ(s, a)⟩, yj) + λ⟨w′j,w′j⟩

]
. (Problem 2b)

Lastly, note that the same multitask representation learning mechanism was used to
jointly solve the multiple joint optimisation problems proposed for solving in Chapter 4,
as part of Algorithms 4.2- 4.4.
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A.3 Transferable Representations in Policy Space

A.3.1 Generalised Policy Improvement(GPI) Proof

For the convenience of the reader we restate GPI theorem below. The result has originally
proven in (Barreto et al., 2017). Here, we restate the result and adapt the proof.

Theorem 1.2: Generalised Policy Improvement(GPI) (Barreto et al., 2017)

(Generalised Policy Improvement) Let π1, π2, ..., πn be n decision policies and let
Q̃π1 , Q̃π2 , ..., Q̃πn be approximations of their respective action-value functions such
that

|Qπi(s, a)− Q̃πi(s, a)| ≤ ε for all s ∈ S, a ∈ A, and i ∈ {1, 2, ..., n}.

Define
π(s) ∈ argmax

a
max

i
Q̃πi(s, a).

Then,
Qπ(s, a) ≥ max

i
Qπi(s, a)− 2

1− γ
ε

for any s ∈ S and any a ∈ A, where Qπ is the action-value function corresponding
to π.

Proof. Let Q̃max(s, a) = maxi Q̃πi(s, a), ∀a ∈ A, s ∈ S . Then, let us look at one applica-
tion of the Bellman expectation operator Tπ for our GPI policy:

TπQ̃max(s, a) = r(s, a) + γ
∑
s′

P(s′|s, a)
∑
a′

π(a′|s′)Q̃max(s′, a′) (A.18)

= r(s, a) + γ
∑
s′

P(s′|s, a)max
a′

Q̃max(s′, a′) (A.19)

= r(s, a) + γ
∑
s′

P(s′|s, a)max
a′

max
i

Q̃πi(s′, a′) (A.20)

≥ r(s, a) + γ
∑
s′

P(s′|s, a)max
a′

Qπi(s′, a′)− γε,∀i (A.21)

≥ r(s, a) + γ
∑
s′

P(s′|s, a)Qπi(s′, πi(s′))− γε, ∀i (A.22)

= TπiQπi(s, a)− γε = Qπi(s, a)− γε, ∀i (A.23)
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If this true for all i, then: TπQ̃max(s, a) ≥ maxi Qπi(s, a)− γε ≥ maxi Q̃πi(s, a)− ε− γε.
And thus, by the monotonicity and contraction of the Bellman expectation operator, we
have:

Qπ(s, a) = lim
k→∞

(Tπ)kQ̃max ≥ Q̃max − ε
1+ γ
1− γ

≥ max
i

Qπi(s, a)− ε − ε
1+ γ
1− γ

Thus:
Qπ(s, a) ≥ max

i
Qπi(s, a)− 2ε

1− γ

A.3.2 GPI as a Strictly Improving Step

In addition, the below result shows that GPI is indeed a valid, potentially better, improve-
ment step that can be used in a policy iteration like procedure.

Lemma 1. Let Π be a collection of policies and let Qπi
r be the action-value functions on task r.

Then the GPI policy π(s) ∈ argmaxa maxi Q̃πi(s, a) is a strict improvement over every policy
πi ∈ Π, unlessΠ already contains the optimal policy.

Proof. Let Qmax(s, a) = maxi Qπi(s, a), ∀a ∈ A, s ∈ S . Then, let us look at one applica-
tion of the Bellman expectation operator Tπ for our GPI policy:

TπQmax(s, a) = r(s, a) + γ
∑
s′

P(s′|s, a)
∑
a′

π(a′|s′)Qmax(s′, a′) (A.24)

= r(s, a) + γ
∑
s′

P(s′|s, a)max
a′

Qmax(s′, a′) (A.25)

= r(s, a) + γ
∑
s′

P(s′|s, a)max
a′

max
i

Qπi(s′, a′) (A.26)

≥ r(s, a) + γ
∑
s′

P(s′|s, a)max
a′

Qπi(s′, a′) (A.27)

≥ r(s, a) + γ
∑
s′

P(s′|s, a)Qπi(s′, πi(s′)) (A.28)

= Qπi(s, a),∀i (A.29)

Thus we have that TπQmax ≥ Qπi , ∀i. Note that this implies TπQmax ≥ Qmax, which,
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due to the monotonicity of Tπ , leads to:

Qπi ≤ Qmax ≤ lim
k→∞

(Tπ)kQmax = Qπ,∀i (A.30)

Now, let us investigate what are the conditions under which the above equalities hold.
Firstly, we need that Qmax = Qπi , which, but the definition of Qmax can only happen if
one policy inΠ dominates all others on this task. In this case, the GPI improvement step
reduces itself to a greedy improvement step over this dominating policy πi∗ . Andwe know
that this greedy step will result in a strict improvement, unless the starting policy πi∗ is al-
ready optimal. What the above really says is that enforcing the second part of the equality,
equates to Qmax = (Tπ)kQmax ⇒ Qπi∗ = (Tπgreedy)kQπi∗ ,∀k ⇒ Qπi∗ = Qπgreedy , where
πgreedy = argmaxa Qπi∗ (s, a). This can only happen if Qπi∗

= Qπ∗ in which case the GPI
policy is, as well, optimal as Qπ = Qπi∗

= Q∗.

A.3.3 USFA Generalisation

In this section, we include the proof for Proposition 6.1, characterising the zero-shot gen-
eralisation properties of universal successor features approximators, USFAs (Chapter 6).
For convenience, we begin by re-stating this result.

Proposition 1.1

Let w′ ∈ M′ and let Qπ
w′ be the action-value function of executing policy π on

task w′. Given approximations {Q̃πz
w′ = ψ̃(s, a, z)⊤w′}z∈C , let π be the GPI policy

defined in 6.8. Then,

∥Q∗
w′−Qπ

w′∥∞ ≤
2

1− γ

minz∈C

∥φ∥∞ ∥w′ − z∥︸ ︷︷ ︸
δd(z)

+max
z∈C

∥w′∥ · ∥ψπz − ψ̃(s, a, z)∥∞︸ ︷︷ ︸
δψ(z)




(A.31)

where Q∗w′ is the optimal value of task w′, ψπz are the SFs corresponding to the op-
timal policy for task z.

Proof. We first begin by proving an intermediate result, which bounds the distance be-
tween two action value functions evaluating the same policy, under different reward sig-
nals ri : S × A → R and respectively rj : S × A → R, under the same MDP class
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M = ⟨S,A,P, ., γ⟩. Note this result holds for any policy π and the whole family of
MDPsM without any additional assumptions about the structure of the reward signals
themselves.

Lemma 2. Let δij = maxs,a
∣∣ri(s, a)− rj(s, a)

∣∣ and let π be an arbitrary policy. Then,

|Qπ
i (s, a)− Qπ

j (s, a)| ≤
δij

1− γ
.

Proof. Define Δij = maxs,a |Qπ
i (s, a)− Qπ

j (s, a)|. Then,

|Qπ
i (s, a)− Qπ

j (s, a)| =

∣∣∣∣∣ri(s, a) + γ
∑
s′

P(s′|s, a)Qπ
i (s
′, π(s′))− rj(s, a)− γ

∑
s′

P(s′|s, a)Qπ
j (s
′, π(s′))

∣∣∣∣∣
=

∣∣∣∣∣ri(s, a)− rj(s, a) + γ
∑
s′

P(s′|s, a)
(
Qπ

i (s
′, π(s′))− Qπ

j (s
′, π(s′))

)∣∣∣∣∣
≤
∣∣ri(s, a)− rj(s, a)

∣∣+ γ
∑
s′

P(s′|s, a)
∣∣∣Qπ

i (s
′, π(s′))− Qπ

j (s
′, π(s′))

∣∣∣
≤ δij + γΔij. (A.32)

Since (A.32) is valid for any s, a ∈ S × A, we have shown that Δij ≤ δij + γΔij. Solving
for Δij we get

Δij ≤
1

1− γ
δij.

Lemma 3. Let δij = maxs,a
∣∣ri(s, a)− rj(s, a)

∣∣. Then,

|Qπ∗i
i (s, a)− Q

π∗j
j (s, a)| ≤

δij

1− γ
.

Proof. To simplify the notation, letQi
i(s, a) ≡ Qπ∗i

i (s, a). Note that |Qi
i(s, a)−Qj

j(s, a)| is
the difference between the value functions of twoMDPswith the same transition function
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but potentially different rewards. Let Δij = maxs,a |Qi
i(s, a)− Qj

j(s, a)|. Then,

|Qi
i(s, a)− Qj

j(s, a)| =

∣∣∣∣∣ri(s, a) + γ
∑
s′

P(s′|s, a)max
b

Qi
i(s

′, b)− rj(s, a)− γ
∑
s′

P(s′|s, a)max
b

Qj
j(s

′, b)

∣∣∣∣∣
=

∣∣∣∣∣ri(s, a)− rj(s, a) + γ
∑
s′

P(s′|s, a)
(
max

b
Qi

i(s
′, b)−max

b
Qj

j(s
′, b)
)∣∣∣∣∣

≤
∣∣ri(s, a)− rj(s, a)

∣∣+ γ
∑
s′

P(s′|s, a)
∣∣∣∣max

b
Qi

i(s
′, b)−max

b
Qj

j(s
′, b)
∣∣∣∣

≤
∣∣ri(s, a)− rj(s, a)

∣∣+ γ
∑
s′

P(s′|s, a)max
b

∣∣∣Qi
i(s

′, b)− Qj
j(s

′, b)
∣∣∣

≤ δij + γΔij. (A.33)

Since (A.33) is valid for any s, a ∈ S × A, we have shown that Δij ≤ δij + γΔij. Solving
for Δij we get

Δij ≤
1

1− γ
δij.

Knowing this, we can now return to the original inequality we aimed to prove. Let π∗w′
be anoptimal value function for taskw′. And as a reminderwedenotedby π theGPIpolicy
induced by a set of approximations {Q̃πz

w′ = ψ̃(s, a, z)⊤w′}z∈C for a set of policies/tasks,
C. This policy π will, of course, depend on the choice of the set C, but in order to simplify
notation in this proof, wewill omit indexing this dependency. FromTheorem5.1we know
that, for any z ∈ C, we have

Q
π∗w′
w′ (s, a)− Qπ

w′(s, a) ≤ Q
π∗w′
w′ (s, a)− Qπ∗z

w′ (s, a) +
2

1− γ
εC (Theorem 5.1)

(A.34)
where εC = maxz∈C ∥Qπz(s, a) − Q̃(s, a, z)∥ = maxz∈C ∥Qπz(s, a) − ψ̃(s, a, z)Tw′∥.
This leads to:

Q
π∗w′
w′ (s, a)− Qπ

w′(s, a) ≤ Q
π∗w′
w′ (s, a)− Qπ∗z

z (s, a) + Qπ∗z
z (s, a)− Qπ∗z

w′ (s, a) +
2

1− γ
εC

≤ |Q∗w′(s, a)− Q∗z (s, a)|+ |Q
π∗z
z (s, a)− Qπ∗z

w′ (s, a)|+
2

1− γ
εC

(A.35)
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Now, let us break-down each of these terms. Firstly, from Lemma 3, we know that

|Q∗w′(s, a)− Q∗z | ≤
maxs,a |rw′(s, a)− rz(s, a)|

1− γ
=
∥w′ − z∥ · ∥φ∥∞

1− γ
.

Similarly, from Lemma 2, we know that

|Qπ∗z
z (s, a)− Qπ∗z

w′ (s, a)| ≤
maxs,a |rw′(s, a)− rz(s, a)|

1− γ
=
∥w′ − z∥ · ∥φ∥∞

1− γ
.

Plugging the above two equations into Eq, A.35, we obtain:

Q
π∗w′
w′ (s, a)− Qπ

w′(s, a) ≤
2∥w′ − z∥ · ∥φ∥∞

1− γ
+

2
1− γ

εC (A.36)

which holds for all z ∈ C. Thus, we obtain:

Q
π∗w′
w′ (s, a)− Qπ

w′(s, a) ≤ minz∈C

(
2∥w′ − z∥ · ∥φ∥∞

1− γ

)
+

2
1− γ

εC

≤ 2∥φ∥∞
1− γ

minz∈C (∥w′ − z∥)+

+
2

1− γ
maxz∈C

(
∥ψπz(s, a)Tw′ − ψ̃(s, a, z)Tw′∥

) (A.37)
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B
Appendix: Additional Experimental Details
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B.1 Multitask FQI: Additional Results

In this section, we include some of the experimental results studied in Chapter 3. These
correspond to similar experiments done for the second MDP introduced in Section 3.3.
These were omitted in the exposition of that chapter due to the fact that the results are
very similar to the ones included in themain text. As a illustration, in Figure B.1.1, we dis-
play the common features learnt via the join optimisation problem. Similar to the MDP
analysed in the main text, one can see the trained representation is very compact and in-
formative for modelling the optimal value function. The same structure appear: the most
prominent feature encodes the structure if the environment, while the next 2+ features
encode navigation pattern within the ’rooms’, or area separated by doors (or bottleneck
states). For instance, the second most informative feature encodes navigation from the
right-hand side of the environment to the left-most part of the environment and vice-versa
(due to change in sign). We also include the weights associated with these features in the
trained value functions considered. These can be found in Figure B.1.2. If we now concen-
trate our attention to the second rowof this illustration, we can simply read off the location
of the goals associated with each of the training task considered: dark red values, indicat-
ing positive values for weights α2, correspond to goals in the left-most room; yellow values,
indicating negative values for α2, correspond to goals in rightmost room and for particular
strong activations this would indicate locations in the bottom-right area.
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Figure B.1.1: Learnt shared features via joint multi-task learning. Feature maps are
presented row-wise. Each of the first four columns corresponds to the
value of the feature for each state in the grid, with respect to the four
actions available. Thus row i depicts: φi(s,→), φi(s, ↑), φi(s,←), φi(s, ↓)
and the fifth column is just a max over these features maxa(φ(s, a)). This
helps visualise the potential local policies encoded in these features.

Figure B.1.2: Weight vectors αt, highlighting the importance of each features for a
given task j. To be read: column-wise = task-wise αj. Strong activation:
blue(negative activation), strong red(positive activation), yellow values
(negative activation).
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B.2 SuccessorFeatures at Scale andLearningonaNewTask: Exper-
imental Details and Additional Results

In this sectionwe give some further details about the experiments presented in Section 5.4
in the main text, as well as additional results on all tasks studied whenever only a small
selection could be presented in the main chapter.

B.2.1 Agents’s Architecture

The CNN used in Figure 5.4.2 is identical to that used by (Mnih et al., 2015) DQN. The
CNN outputs a 256-dimensional vector that serves as the LSTM state. As shown in Fig-
ure 5.4.2, the LSTM also receives the previous action of the agent as an input. The output
of the LSTM is a vector of dimension 256, which in the main text we call the state signal
s̃. The vector s̃ is the input of the D + 1 MLPs used to compute φ̃ and ψ̃πi . These MLPs
have 100 tanh hidden units and an output of dimension D× |A|—that is, for each action
a ∈ A the MLP outputs a D-dimensional vector representing either φ̃ or one of the ψ̃πi .
These D-dimensional vectors are thenmultiplied by w̃, leading to a (D+ 1)× |A| output
representing r̃ and Q̃πi .

B.2.2 Agents’s Training

The losses shown in lines 10 and 15 of Algorithm 5.1 and in lines 7 and 10 of Algorithm 5.2
wereminimisedusing theRMSPropmethod, a variationof thewell-knownback-propagation
algorithm. As parameters of RMSPropwe adopted a fixed decay rate of 0.99 and ε = 0.01.
For all algorithms we tried at least two values for the learning rate: 0.01 and 0.001. For the
baselines “DQ(λ) fine tuning” and “DQ(λ) from scratch” we also tried a learning rate of
0.005. The results shown in the main text are those associated with the best final perfor-
mance of each algorithm.

Asmentioned in themain text, the agents’s training was carried out using the IMPALA
architecture (Espeholt et al., 2018). In IMPALA the agent is conceptually divided in two
groups: “actors”, which interact with the environment in parallel collecting trajectories
and adding them to a queue, and a “learner”, which pulls trajectories from the queue and
uses them to apply the updates. On the learner side, we adopted a simplified version of
IMPALA that usesQ(λ) as the RL algorithm (i.e., no parametric representation of policies
nor off-policy corrections). For the distributed collection of data we used 50 actors per
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task. Each actor gathered trajectories of length 20 that were then added to the common
queue. The collection of data followed an ε-greedy policy with a decaying ε. Specifically,
the value of ε started at 0.5 and decayed linearly to 0.05 in 106 steps. The results shown
in the main text correspond to the performance of the the ε-greedy policy (that is, they
include exploratory actions of the agents).

For the resultswithSF&GPI-continual, in addition to the loss inducedbyequation(5.4),
minimised in line 15 of Algorithm 5.1, we also used a standardQ(λ) loss—that is, the gra-
dients associated with both losses were combined through a weighted sum and then used
to update θψ . The weights for the standard Q(λ) loss and the loss computed in line 14 of
Algorithm 5.1 were 1 and 0.1, respectively. Using the standard Q(λ) loss seems to stabilise
the learning of ψ̃πn+1 ; in this case (5.4) can be seen as a constraint for the standard RL
optimisation. Obviously, if we want to add ψ̃πn+1 to Ψ̃, we have to make sure that the SF
semantics are preserved—that is, the combined updates are indeed trying to satisfy (5.4).
We confirmed this fact by monitoring the loss computed in line 14 of Algorithm 5.1.fig-
ure B.2.1 shows the average of this loss computed over 10 runs of SF&GPI-continual on
all test tasks; as shown in the figure, the loss is indeed minimised, which implies that the
resulting ψ̃πn+1 are valid SFs that can be safely added to Ψ̃.
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Figure B.2.1: Loss in the approximation of ψ̃πn+1 (line 14 of Algorithm 5.1). Shaded
region represents one standard deviation over 10 runs on all test tasks.

B.2.3 Environment

The roomused in the environment and illustrated in Figure 5.4.1awas of size 13×13 (Beat-
tie et al., 2016). The observations ot were an 84 × 84 image with pixels re-scaled to the
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interval [0, 1]. The action space A contains 8 actions: move forward, move backwards,
strafe left, strafe right, look left, look right, look left and move forward, and look right and
move forward. Each action was repeated for 4 frames, that is, the agent was allowed to
choose an action at every 4 observations.

B.2.4 Additional Results

In our experiments we defined a set of 9 test tasks in order to cover reasonably well three
qualitatively distinct combinations of rewards: only positive rewards, only negative re-
wards, and mixed rewards. Figure B.2.2 shows the results of SF&GPI-transfer and the
baselines on the test tasks that could not be included in the main text due to the space
limit.

As discussed in themain text, ideally our agent should rely on theGPI policy when use-
ful but also be able to learn and use a specialised policy otherwise. Figures B.2.3, B.2.4 and
B.2.5 show that this is possible with SF&GPI-continual. Looking at Figure B.2.3 we see
that when the test task only has positive rewards the performances of SF&GPI-transfer
and SF&GPI-continual are virtually the same. This makes sense, since in this case alter-
nating between the policies πi learned onM̂ should lead to good performance. Although
initially the specialised policy πtest does get selected by GPI a few times, eventually the
policies πi largely dominate. The figure also corroborates the hypothesis that GPI is in
general not computing a trivial policy, since even after settling on the policies πi it keeps
alternating between them.

Interestingly, when we look at the test tasks with negative rewards this pattern is no
longer observed. As shown in Figures B.2.4 and B.2.5, in this case SF&GPI-continual
eventually outperforms SF&GPI-transfer—which is not surprising. Looking at the fre-
quency at which policies are selected by GPI, we observe the opposite trend as before:
now the policy πtest steadily becomes the preferred one. The fact that a specialised policy
is learned and eventually dominates is reassuring, as it indicates that πtest will contribute
to the repository of skills available to the agent when added to Ψ̃.
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(b) Task 1111
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(c) Task -1000
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(d) Task -1100
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(e) Task -11-10
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(f) Task -1101
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Figure B.2.2: Average reward per episode on test tasks not shown in the main text.
The x axes have different scales because the amount of reward available
changes across tasks. Shaded regions are one standard deviation over 10
runs. 195



(a) Task 1100
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(b) Task 0111
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(c) Task 1111
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Figure B.2.3: Top figures: Comparison between SF&GPI-transfer and SF&GPI-
continual. Shaded regions are one standard deviation over 10 runs. All
the runs of SF&GPI-transfer and SF&GPI-continual used the same ba-
sis Ψ̃. Bottomfigures: Coloured bar segments represent the frequency
at which the policies πi were selected by GPI in one run of SF&GPI-
continual, with each colour associated with a specific policy. The policy
πtest specialised to the task is represented in light yellow.
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(a) Task -1000
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(b) Task -1-100
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(c) Task -1100

0 20 40 60 80 100

Environment step (millions)

8

10

12

14

16

18

20

22

E
p
is

o
d
e
 r

e
w

a
rd

SF & GPI transfer

SF & GPI continual

Figure B.2.4: Top figures: Comparison between SF&GPI-transfer and SF&GPI-
continual. Shaded regions are one standard deviation over 10 runs. All
the runs of SF&GPI-transfer and SF&GPI-continual used the same ba-
sis Ψ̃. Bottomfigures: Coloured bar segments represent the frequency
at which the policies πi were selected by GPI in one run of SF&GPI-
continual, with each colour associated with a specific policy. The policy
πtest specialised to the task is represented in light yellow.
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(a) Task -11-10
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(b) Task -1101
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(c) Task -11-11
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Figure B.2.5: Top figures: Comparison between SF&GPI-transfer and SF&GPI-
continual. Shaded regions are one standard deviation over 10 runs. All
the runs of SF&GPI-transfer and SF&GPI-continual used the same ba-
sis Ψ̃. Bottomfigures: Coloured bar segments represent the frequency
at which the policies πi were selected by GPI in one run of SF&GPI-
continual, with each colour associated with a specific policy. The policy
πtest specialised to the task is represented in light yellow.
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B.3 USFAs: Experimental Details and Additional Results

In this section, we give some further details regarding the experiments presented in Sec-
tion 6.4 in themain text, aswell as additional results and studies conducted thatwere omit-
ted in the main body of the above experimental section.

B.3.1 Illustrative Example: Trip MDP

In this subsection we provide some additional analysis and results omitted from the main
text. As a reminder, this is a two stateMDP,where thefirst state is a root state, the transition
from s1 → s2 comes at a cost rw(s1, E) = φ(s1, E)Tw = −ε(w1+w2) and all other actions
lead to a final positive reward corresponding to how much the resulting state/restaurant
alligns with our preferences (our task) right now. For convenience, we provide below the
depiction of the Trip MDP introduced in Section 4.1.

Arrived in  
new city

Explored 
neighborhood

1

0

0

1

-ε
-ε

.8

.6

.6

.8

.7

.7

...

S₁ S₂E

C F

In the experiments run we considered a fixed set of training tasksM = {01, 10} for
all methods. The set of outcomes from the exploratory state s2 is defined as φ(s2, a) =

[cos(θ), sin(θ)] for θ ∈ {kπ/2N}k=0,N. Note that this includes the binary states for k = 0
and respectively k = N. We ran this MDP with N = 6, and ε = 0.05. Thus outside the
binary outcomes, the agent can select N− 1 = 5 other mixed outcomes and, as argued in
themain text, under these conditions therewill be a selection of thew-space inwhich each
of these outcomes will be optimal. Thus the space of optimal policies, we hope to recover,
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Figure B.3.1: [Sample run] Performance of the different methods (in this order, start-
ing with the second subplot): UVFA, SF&GPIon the perfect SFs induced
by M, USFA with C = random(5) and USFA with C = {w′} as com-
pared to the optimal performance one could get in this MDP (first plot).
These correspond to one sample run, where we trained the UVFA and
USFA for 1000 episodes. The optimal performance and the SF&GPIwere
computed exactly.

is generallyN+ 1. Nevertheless, there is a lot of structure in this space, that the functional
approximators can uncover and employ in their generalisation.

B.3.1.1 Additional Results

In themain text, we reported the zero-shot aggregatedperformanceover all directionM′ =
{w′|w′ = [cos( πk

2K), sin(
πk
2K)], k ∈ ZK}. This should covermostof the spaceof tasks/trade-

offs we would be interest in. In this section we include the generalisation for other sets
M′. First in Figure B.3.1 we depict the performance of the algorithms considered across
the whole w′ spaceM′ = [0, 1]2. Figure B.3.2 is just a different visualization of the pre-
vious plot, where we focus on how far these algorithms are from recovering the optimal
performance. This also shows the subtle effect mentioned in the discussion in the main
text, induced by the choice of C in the USFA evaluation.

B.3.2 Large scale Experiments: Details

B.3.2.1 Agent’s Architecture

This section contains a detailed description of the USFA agent used in our experimental
section. As a reminder, we include the agent’s architecture below (Figure 6.4.6 in themain
text). As highlighted in Section 6.4.2, our agent comprises of three main modules:

• Inputprocessingmodule: computes a state representation f(ht) fromobservation
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Figure B.3.2: [Sample run] Optimality gap over the whole task space. These corre-
spond to the same sample run as above, where we trained the UVFA
and USFA for 1000 episodes. We can now see more clearly that USFAs
manage to recover better policies and optimality across a much greater
portion of the task space. The last two plots correspond to the same
USFA just using different choices of the candidate set C. Something to
note here is that by having a more diverse choice in C, we can recover an
optimal policy even in areas of the space where our approximation has
not yet optimally generalised (like the upper-left corner in the w-space in
the figures above).

ot. This module is made up of three convolutional layers (structure identical to the
oneused in (Mnihet al., 2015)), theoutputofwhich then serves as input to aLSTM
(256). This LSTMtakes as input the previously executed action at−1. Theoutput of
theLSTMis passed through a non-linearity f (chosenhere to be aReLu) to produce
a vector of 128 units, f(ht).

• Policy conditioningmodule: compute the SFs ψ̃(s, a, z), given a (sampled) pol-
icy embedding z and the state representation f(ht). This module first produces nz

number of z ∼ Dz samples (nz = 30 in our experiments). Each of these is then
transformed via a 2-layer MLP(32,32) to produce a vector of size 32, for each sam-
ple z. This vector g(z) gets concatenated with the state representation f(ht) and the
resulting vector is further processed by a 2-layer MLP that produces a tensor of di-
mensions d×|A| for each z, where d = dim(φ). These correspond to SFs ψ̃(s, a, z)
for policy πz. Note that this computation can be done quite efficiently by reusing
the state embedding f(ht), doing the downstream computation in parallel for each
policy embedding z.

• Taskevaluationmodule: computes the value functionQ(s, a, z,w) = ψ̃(s, a, z)Tw
for a given task description w. This module does not have any parameters as the
value functions are simply composable from ψ̃(s, a, z) and the task description w
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Figure B.3.3: USFA architecture

via assumption (1). This module with output nz value functions that will be used
to produce a behavior via GPI.

An important decision in this design was how andwhere to introduce the conditioning
on thepolicy. In all experiments shownhere the conditioningwas done simply by concate-
nating the two embeddings w and z, although stronger conditioning via an inner product
was tried yielding similar performance. The ’where’ on the other hand is much more im-
portant. As the conditioning on the policy happens quite late in the network, most of the
processing (up to f(ht)) can be done only once, and we can sample multiple z and com-
pute the corresponding ψ̃πz at a fairly low computational cost. Asmentioned above, these
will be combined with the task vector w to produce the candidate action value functions
for GPI. Note that this helps both in training and in acting, as otherwise the unroll of the
LSTMwould be policy conditioned,making the computation of the SFs and the off-policy
n-step learning quite expensive.

UVFA baseline agents have a similar architecture, but now the task descriptionw is fed
in as an input to the network. The conditioning on the task of UVFAs is done in a similar
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fashion as we did the conditioning on the policies in USFAs, to make the computational
power and capacity comparable. The input processingmodule is the same and now down-
stream, instead of conditioning on the policy embedding z, we condition on task descrip-
tion w. This conditioning if followed by a 2-layer MLP that computes the value functions
Q̃∗(s, a,w), which induces the greedy policy π(UVFA)

w = argmaxa Q̃∗(s, a,w).

B.3.2.2 Agent’s Training

Theagents’ trainingwas carriedoutusing the IMPALAarchitecture (Espeholt et al., 2018).
On the learner side, we adopted a simplified version of IMPALA that uses Q(λ) as the RL
algorithm. In our experiments, for all agentswe used λ = 0.9. Depending on the sampling
distributionDz, in learning wewill often be off-policy. That is, most of the time, we are go-
ing to learn about a policy πz1 andupdate its correspondingSFs approximations ψ̃(s, a, z1),
using data generated by acting in the environment according to some other policy πz2 . In
order to account for this off-policiness, whenever computing the n-step return required in
Eq. 6.10, we are going to cut traces whenever the policies start to disagree and bootstrap
from this step on (Sutton and Barto, 1998):

et(s, a) =


1+ γλet−1(s, a), if s = st, a = at, π(s) = a

0, if π(s) ̸= a (policies disagree)

γλet−1(s, a), otherwise

(B.1)

Herewe can see how the data distribution induce by the choice of training tasksM can
influence the training process. If the data distributionDz is very close to the setM, as in
our first experiment,most of the policieswe are going to samplewill be close to the policies
that generated the data. Thismeans thatwemight be able tomake use of longer trajectories
in this data, as the policies will rarely disagree. On the other hand, by staying close to
the training tasks, we might hurt our ability to generalise in the policy space, as our first
experiment suggest (seeFigure6.4.7). Byhaving abroaderdistributionDz = N (w, 0.5I),
we can learn about more diverse policies in this space, but we will also increase our off-
policiness. We can see from Figure 6.4.8, that our algorithm can successfully learn and
operate in both of these regimes.

For the distributed collection of data we used 50 actors per task. Each actor gathered
trajectories of length 32 that were then added to the common queue. The collection of
data followed an ε-greedy policy with a fixed ε = 0.1. The training curves shown in the
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main text correspond to the performance of the the ε-greedy policy (that is, they include
exploratory actions of the agents).

B.3.2.3 Agent’s Evaluation

All agents were evaluated in the same fashion. During the training process, periodically
(every 20M frames) we will evaluate the agents performance on a test of held out test
tasks. We take these intermediate snapshots of our agents and ’freeze’ their parameters
to assess zero-shot generalisation. Once a test taskw′ is provided, the agent interacts with
the environment for 20 episodes, one minute each and the average (undiscounted) re-
ward is recorded. These produce the evaluation curves in Figure 6.4.7. Evaluations are
done with a small ε = 0.001, following a GPI policy with different instantiations of C. For
the pureUVFA agents, the evaluation is similar: ε-greedy on the produced value functions
Q̃∗(s, a,w), with the same evaluation ε = 0.001.

B.3.3 Additional Results

Inour experimentswedefined a set of easy test tasks (close toM) and a set of harder tasks,
in order to cover reasonably well a few distinct scenarios:

• Testinggeneralisation to tasks very similar to the training set, e.g. w′ = [0, 0.9, 0, 0.1];

• Testing generalisation to harder tasks with different reward profiles: only positive
rewards, only negative rewards, and mixed rewards.

In the main text, we included only a selection of these for illustrative purposes. Here we
present the full results.

B.3.3.1 Canonical Basis: Zero-shot Generalisation

This section contains the complete results of the first experiment conducted. As a re-
minder, in this experimentwewere training aUSFAagentonM = {1000, 0100, 0010, 0001},
withDz = N (w, 0.1I) and compare its performancewith two conventional UVFA agents
(one trained on-policy and the other one using all the data generated to learn off-policy)
on a range of unseen test tasks. Complete set of result is included below, as follows: Fig-
ure B.3.4 includes results on easy tasks, close to the tasks contained in the training setM
(generalisation to those should be fairly straightforward); Figure B.3.5 and Figure B.3.6
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present results on more challenging tasks, quite far away from the training set, testing out
agents ability to generate to the whole 4D hypercube.
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(c) Task 0.,0.1,-0.1,0.8
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(d) Task 0.,0.,-0.1,1.
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Figure B.3.4: Zero-shot performance on the easy evaluation set: Average re-
ward per episode on test tasks not shown in the main text. This is
comparing a USFA agent trained on the canonical training set M =
{1000, 0100, 0010, 0001}, with Dz = N (w, 0.1I) and the two UVFA agents:
one trained on-policy, one employing off-policy.
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(c) Task 1111
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Figure B.3.5: Zero-shot performance on harder tasks: Average reward per episode
on test tasks not shown in the main text. This is comparing a USFA
agent trained on the canonical training set M = {1000, 0100, 0010, 0001},
with Dz = N (w, 0.1I) and the two UVFA agents: one trained on-policy,
one employing off-policy. (Part 1)
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Figure B.3.6: Zero-shot performance on harder tasks: Average reward per episode
on test tasks not shown in the main text. This is comparing a USFA
agent trained on the canonical training set M = {1000, 0100, 0010, 0001},
with Dz = N (w, 0.1I) and the two UVFA agents: one trained on-policy,
one employing off-policy. (Part 2)
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B.3.4 Canonical Basis: USFAs in Different Training Regimes.

In this section, we include the omitted results fromour second experiment. As a reminder,
in this experiment we were training two USFA agents on the same set of canonical tasks,
but employing different distributionsDz, one will low variance σ = 0.1, focusing in learn-
ing policies around the training setM, and another one with larger variance σ = 0.5, that
will try to learn about a lot more policies away from the training set, thus potentially fa-
cilitating the generalisation provided by the UVFA component. Results are displayed in
Figures B.3.7-B.3.8 on all tasks in the hard evaluation set.
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Figure B.3.7: Different Dz – Zero-shot performance on harder tasks: Average re-
ward per episode on test tasks not shown in the main text. This is com-
paring the generalisations of two USFA agent trained on the canonical
training set M = {1000, 0100, 0010, 0001}, with Dz = N (w, 0.1I), and
Dz = N (w, 0.5I). (Part 1)
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Figure B.3.8: Different Dz – Zero-shot performance on harder tasks: Average
reward per episode on test tasks not shown in the main text. This is
comparing a USFA agent trained on the canonical training set M =
{1000, 0100, 0010, 0001}, with Dz = N (w, 0.1I), and Dz = N (w, 0.5I). (Part
2)

B.3.4.1 Larger Collection of Training Tasks

We also trained our USFA agent on a larger set of training tasks that include the previous
canonical tasks, as well as four other tasks that contain both positive and negative reward
M = {1000, 0100, 0010, 0001, 1-100, 01-10, 001-1, -1000}. Thus we expect this agent
to generalises better as a result of its training. A selection of these results and sample per-
formance in training are included in Figure B.3.9.
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Figure B.3.9: Large M. Learning curves for training task [1000] ∈ M and generalisation performance on a sample of test tasks
w′ ∈ M′ after training on all the tasks M. This is a selection of the hard evaluation tasks. Results are average over 10
training runs.
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