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ABSTRACT
This paper provides theoretical bounds for empirical game theo-
retical analysis of complex multi-agent interactions. We provide
insights in the empirical meta game showing that a Nash equilib-
rium of the meta-game is an approximate Nash equilibrium of the
true underlying game. We investigate and show how many data
samples are required to obtain a close enough approximation of the
underlying game. Additionally, we extend the meta-game analysis
methodology to asymmetric games. The state-of-the-art has only
considered empirical games in which agents have access to the
same strategy sets and the payoff structure is symmetric, implying
that agents are interchangeable. Finally, we carry out an empirical
illustration of the generalised method in several domains, illustrat-
ing the theory and evolutionary dynamics of several versions of the
AlphaGo algorithm (symmetric), the dynamics of the Colonel Blotto
game played by human players on Facebook (symmetric), and an
example of a meta-game in Leduc Poker (asymmetric), generated
by the PSRO multi-agent learning algorithm.
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1 INTRODUCTION
Using game theory to examine multi-agent interactions in complex
systems is a non-trivial task. Works by Walsh et al. [14, 15] and
Wellman et al. [16], have shown the great potential of using heuristic
strategies and empirical game theory to examine such interactions
at a higher meta-level, instead of trying to capture the decision-
making processes at the level of the atomic actions involved. Doing
this turns the interaction in a smaller normal form game, or meta-
game, with the higher-level strategies now being the primitive
actions of the game, making the complex multi-agent interaction
amenable to game theoretic analysis.
Others have built on this empirical game theoretic methodology
and applied these ideas to no limit Texas hold’em Poker and various
types of double auctions for example, see [4, 7–9, 12], showing that
a game theoretic analysis at the level of meta-strategies yields novel
insights into the type and form of interactions in complex systems.
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A major limitation of this empirical game theoretic approach is that
it comes without theoretical guarantees on the approximation of
the true underlying game by an estimated game based on sampled
data, and that it is unclear how many data samples are required to
achieve a good approximation. Additionally, the method remains
limited to symmetric situations, in which the agents or players have
access to the same set of strategies, and are interchangeable. One
approach is to ignore asymmetry (types of players), and average
over many samples of types resulting in a single expected payoff
to each player in each entry of the meta-game payoff table. Many
real-world situations though are asymmetric in nature and involve
various roles for the agents that participate in the interactions. For
instance, buyers and sellers in auctions, or games such as Scotland
Yard, but also different roles in e.g. robotic soccer (defender vs
striker) and even natural language (hearer vs speaker).
In this paper we tackle these problems. We prove that a Nash equi-
librium of the estimated game is a 2ϵ-Nash equilibrium of the real
underlying game, showing that we can closely approximate the
real Nash equilibrium as long as we have enough data samples
from which to build the meta-game payoff table. Furthermore, we
also examine how much data samples are required to confidently
approximate the underlying game. We also show how to generalise
the heuristic payoff or meta-game method introduced by Walsh et
al. to two-population asymmetric games.
Finally, we illustrate the generalised method in several domains. We
carry out an experimental illustration on the AlphaGo algorithm
[10], Colonel Blotto [5] and an asymmetric Leduc poker game. In
the AlphaGo experiments we show how a symmetric meta-game
analysis can provide insights into the evolutionary dynamics and
strengths of various versions of the AlphaGo algorithm while it
was being developed, and how intransitive behaviour can occur by
introducing a non-related strategy. In the Colonel Blotto game we
illustrate how the methodology can provide insights into how hu-
mans play this game, constructing several symmetric meta-games
from data collected on Facebook. Finally, we illustrate the method
in Leduc poker, by examining an asymmetric meta-game, generated
by a recently introduced multiagent reinforcement learning algo-
rithm, policy-space response oracles (PSRO) [6]. For this analysis
we rely on some theoretical results that connect an asymmetric
normal form game to its symmetric counterparts [13].
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2 PRELIMINARIES
In this section, we introduce the necessary background to describe
our game theoretic meta-game analysis of the repeated interaction
between p players.

2.1 Normal Form Games:
In a p-player Normal Form Game (NFG), players are involved in
a single round strategic interaction. Each player i chooses a strat-
egy π i from a set of k strategy Si = {π i1, . . . ,π

i
k } and receives a

payoff r i (π 1, . . . ,πp ) : S1 × · · · × Sp → R. For the sake of sim-
plicity, we will write π the joint strategy (π 1, . . . ,πp ) and r (π )
the joint reward (r1(π ), . . . , rp (π )). Then a p-player NFG is a tuple
G = (S1, . . . , Sp , r1, . . . , rp ). Each player interacts in this game by
following a strategy profile x i which is a probability distribution
over Si .

A symmetric NFG captures interactions where players can be
interchanged. The first condition is therefore that the strategy sets
are the same for all players, (i.e. ∀i, j Si = Sj and will be written
S). In a symmetric NFG, if a permutation is applied to the joint
strategy π , the joint payoff is permuted accordingly. Formally, a
game G is symmetric if for all permutations of p elements σ we
have r (πσ ) = rσ (π ) (where πσ = (πσ (1), . . . ,πσ (p)) and rσ (π ) =
(rσ (1)(π ), . . . , rσ (p)(π ))). So for a game to be symmetric there are
two conditions, the players need to have access to the same strategy
set and the payoff structure needs to be symmetric, such that players
are interchangeable. If one of these two conditions is violated the
game is asymmetric.

In the asymmetric case our analysis will focus on the two-player
case (two roles) and thus we introduce specific notations for the
sake of simplicity. In a two-player normal-form game, each player’s
payoff can be seen as ak×k matrix.Wewill writeA = (al,l ′)1≤l,l ′≤k
for the payoff matrix of player one (i.e. al,l ′ = r1(π 1

l ,π
2
l ′)) and

B = (bl,l ′)1≤l,l ′≤k for the payoff matrix of player two (i.e. bl,l ′ =
r2(π 1

l ,π
2
l ′)). In this two-player game, the column vector x is the

strategy of player one and y the one of player two. In the end, a
two player NFG is defined by the following tuple G = (S1, S2,A,B).
2.2 Nash Equilibrium
In a two-player game, a pair of strategies (x ,y) is a Nash equilibrium
of the game (A,B) if no player has an incentive to switch from their
current strategy. In other words, (x ,y) is a Nash equilibrium if
x⊤Ay = maxAy and x⊤By = maxx⊤B.

Evolutionary game theory often consider a single strategy x that
plays against itself. In this situation, the game is said to have a single
population. In a single population game, x is a Nash equilibrium if
x⊤Ax = maxAx .

2.3 Replicator Dynamics
The replicator dynamics equation describes how a strategy profile
evolves in the midst of others. This evolution is described according
to a first order dynamical system. In a two-player NFG (A,B, S1, S2),
the replicator equations are defined as:

Ûxl = xl
(
(Ay)l − x⊤Ay

)
Ûyl ′ = yl ′

(
(x⊤B)l ′ − x⊤By

)
(1)

The dynamics defined by these two coupled differential equa-
tions changes the strategy profile to increase the probability of the
strategies that have the best return or are the fittest.

In the case of a symmetric two-player game (A = B⊤), the repli-
cator equations assume that both players play the same strategy
profile (i.e. player one and two play according to x ) and the dynam-
ics is defined as follows:

Ûxl = xl
(
(Ax)l − x⊤Ax

)
(2)

2.4 Meta Games
A meta game is a simplified model of a complex interaction. In
order to analyze complex games like e.g. poker, we do not need to
consider all possible strategies but a set of relevant meta-strategies
that are often played [9]. These meta strategies (or styles of play),
over atomic actions, are commonly played by players such as for
instance "passive/aggressive" or "tight/loose" in poker. A p-type
meta game is now a p-player repeated NFG where players play a
limited number of meta strategies. Following our poker example,
the strategy set of the meta game will now be defined as the set
S = {"aggressive", "tight", "passive"} and the reward function as
the outcome of a game between p-players using different profiles.
3 METHOD
There are now two possibilities, either the meta-game is symmetric,
or it is asymmetric. We will start with the simpler symmetric case,
which has been studied in empirical game theory, then we continue
with asymmetric games, in which we consider two populations, or
roles.
3.1 Symmetric Meta Games
We consider a set of agents or playersAwith |A| = n that can choose
a strategy from a set S with |S | = k and can participate in one or
more p-type meta-games with p ≤ n. If the game is symmetric then
the formulation of meta strategies has the advantage that the payoff
for a strategy does not depend on which player has chosen that
strategy and consequently the payoff for that strategy only depends
on the composition of strategies it is facing in the game and not
on who is playing the strategy. This symmetry has been the main
focus of the use of empirical game theory analysis [7, 9, 14, 16].
If we were to construct a classical payoff table for r we would
require kp entries in the table (which becomes large very quickly).
Since all players can choose from the same strategy set and all
players receive the same payoff for being in the same situation, we
can simplify our payoff table.
Let N be a matrix, where each row Ni contains a discrete distri-
bution of p players over k strategies. The matrix yields

(p+k−1
p

)
rows. Each distribution over strategies can be simulated (or derived
from data), returning a vector of expected rewards u(Ni ). LetU be
a matrix which captures the rewards corresponding to the rows in
N , i.e.,Ui = u(Ni ). We refer to a meta payoff table asM = (N ,U ).
So each row yields a discrete profile (nπ1 , . . . ,nπk ) indicating exactly
how many players play each strategy, with

∑
j nπj = p. A strategy

profile x then equals (nπ1p , . . . ,
nπk
p ).

Suppose we have a meta-game with 3 meta-strategies (|S | = 3) and
6 players (|A| = 6) that interact in a 6-type, this leads to a meta
game payoff table of 28 entries (which is a good reduction from
36cells . An important advantage of this type of table is that it easily
extends to many agents, as opposed to the classical payoff matrix.
Table 1 provides an example for three strategies π1,π2 and π3. The
left-hand side expresses the discrete profiles and corresponds to
matrix N , while the right-hand side gives the payoffs for playing
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any of the strategies given the discrete profile and corresponds to
matrixU .

P =

©«

Ni1 Ni2 Ni3 Ui1 Ui2 Ui3
6 0 0 0 0 0

... ...
4 0 2 −0.5 0 1

... ...
0 0 6 0 0 0

ª®®®®®®¬
Table 1: An example of a meta game payoff table

In order to analyse the evolutionary dynamics of high-level meta-
strategies, we also need to estimate the expected payoff of such
strategies relative to each other. In evolutionary game theoretic
terms, this is the relative fitness of the various strategies, dependent
on the current frequencies of those strategies in the population.

In order to approximate the payoff for an arbitrary mix of strate-
gies in an infinite population of replicators distributed over the
species according to x, p individuals are drawn randomly from the
infinite distribution. The probability for selecting a specific row Ni
can be computed from x and Ni as

P(Ni |x) =
(

p

Ni1,Ni2, . . . ,Nik

) k∏
j=1

x
Ni j
j .

The expected payoff of strategy π i , r i (x), is then computed as the
weighted combination of the payoffs given in all rows:

r i (x) =
∑
j P(Nj |x)Uji

1 − (1 − xi )p
.

This expected payoff function can be used in Equation 2 to compute
the evolutionary population change according to the replicator
dynamics by replacing (Ax)i by r i (x). Note that we need to re-
normalize (denominator) by ignoring rows that do not contribute
to the payoff of a strategy because it is not present in the distribution
Nj in the HPT.
3.2 Asymmetric Meta Games
One can now wonder how the previously introduced method ex-
tends to asymmetric games, which has not been considered in the
literature. An example of an asymmetric game is the famous battle
of the sexes game illustrated in Table 2. In this game both players
do have the same strategy sets, i.e., go to the opera or go to the
movies, however, the corresponding payoffs for each are different,
expressing the differences in preferences that both players have.

O M
O 3, 2 0, 0
M 0, 0 2, 3

Table 2: Battle of the Sexes
game: strategies O and M corre-
spond to going to the Opera and
going to theMovies respectively.

C1 C2 C3
R1 r11, c11 r12, c12 r13, c13
R2 r21, c21 r22, c22 r23, c23
R3 r31, c31 r32, c32 r33, c33
Table 3: General 3x3 normal form game.

If we aim to carry out a similar evolutionary analysis as in the
symmetric case, restricting ourselves to two populations or roles,
we will need two meta game payoff tables, one for each player over
its own strategy set.Wewill also need to use the asymmetric version
of the replicator dynamics as shown in Equation ??. Additionally,
in order to compute the right payoffs for every situation we will
have to interpret a discrete strategy profile in the meta-table slightly
different. Supposewe have a 2-typemeta game, with three strategies
in each player’s strategy set. We introduce a generalisation of our

P =

©«

Ni1, j1 Ni2, j2 Ni3, j3 Ui1, j1 Ui2, j2 Ui3, j3
(1, 1) 0 0 (r11, c11) 0 0

... ...
(1, 0) (0, 1) 0 (r12, 0) (0, c12) 0
(0, 1) (1, 0) 0 (0, c21) (r21, 0) 0

... ...
0 0 (1, 1) 0 0 (r33, c33)

ª®®®®®®®¬
Table 4: An example of an asymmetric meta game payoff table

meta-table for both players by means of an example shown in Table
4, which corresponds to the general NFG shown in Table 3.
Let’s have a look at the first entry in Table 4, i.e., [(1, 1), 0, 0].
This entry means that both agents (i and j) are playing their first
strategy, expressed by Ni1, j1, meaning the number of agents Ni1
playing strategy π 1

i in the first population equals 1 and that the
number of agents Nj1 playing strategy π 2

j in the second popula-
tion equals 1 as well. The corresponding payoff for each player
Ui1, j1 equals (r11, c11). Now lets have a look at the discrete pro-
files: [(1, 0), (0, 1), 0] and [(0, 1), (1, 0), 0]. The first one means that
the first player is playing its first strategy while the second player
is playing their second strategy. The corresponding payoffs are
r12 for the first player and c12 for the second player. The profile
[(0, 1), (1, 0), 0] shows the reverted situation in which the second
player plays his first strategy and the first player plays his second
strategy, yielding payoffs r21 and c21 for the first player and second
player respectively. In order to turn the table into a similar format
as for the symmetric case, we can now introduce p meta-tables, one
for each player. More precisely, we get Tables 5 and 6 for players 1
and 2 respectively.

P =

©«

Ni1, j1 Ni2, j2 Ni3, j3 Ui1, j1 Ui2, j2 Ui3, j3
2 0 0 r11 0 0

... ...
1 1 0 r12 r21 0

... ...
0 0 2 0 0 r33

ª®®®®®®¬
Table 5: A decomposed asymmetric meta payoff table for Player 1.

Q =

©«

Ni1, j1 Ni2, j2 Ni3, j3 Ui1, j1 Ui2, j2 Ui3, j3
2 0 0 c11 0 0

... ...
1 1 0 c12 c21 0

... ...
0 0 2 0 0 c33

ª®®®®®®¬
Table 6: A decomposed asymmetric meta payoff table for Player 2.

One needs to take care in correctly interpreting these tables. Let’s
have a look at row [1, 1, 0] for instance. This should now be inter-
preted in two ways: one, the first player plays his first strategy
while the other player plays his second strategy and he receives a
payoff of r12, two, the first player plays his second strategy while
the other player plays his first strategy and receives a payoff of
r21. The expected payoff r i (x) can now be estimated in the same
way as explained for the symmetric case as we will be relying on
symmetric replicator dynamics by decoupling asymmetric games
in their symmetric counterparts (explained in the next section).
3.3 Linking symmetric and asymmetric games
Here we summarize the most important results on the link between
an asymmetric game and its symmetric counterpart games. For a
full treatment and discussion of these results see [13]. In a nutshell,
this work proves that if x ,y is a Nash equilibrium of the bimatrix
game (A,B) (where x and y have the same support1), then y is a
1x and y have the same support if Ix = Iy where Ix = {i | xi > 0} and Iy =
{i | yi > 0}
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Nash equilibrium of the single population, or symmetric, game A
and x is a Nash equilibrium of the single population, or symmetric,
game B⊤. Both symmetric games are called the counterpart games
of the asymmetric game (A,B). The reverse is also true: If y is a
Nash equilibrium of the single population game A and x is a Nash
equilibrium of the single population game B⊤ (and if x and y have
the same support), then x ,y is a Nash equilibrium of the game
(A,B). In our empirical analysis, we use this property to analyze
an asymmetric games (A,B) by looking at the counterpart single
population games A and B⊤.

4 THEORETICAL INSIGHTS
As illustrated in the previous section the procedure for empirical
meta-game analysis consists of two parts. Firstly, one needs to con-
struct an empirical meta-game utility function for each player. This
step can be performed using logs of interactions between players,
or by playing the game sufficiently enough. Secondly, one expects
that analyzing the empirical game will give insights in the true
underlying game itself (i.e. the game from which we sample).This
section provides insights in the following: howmuch data is enough
to generate a good approximation of the true underlying game? Is
uniform sampling over actions or strategies the right method?

4.1 Main Lemma
Sometimes players receive a stochastic reward Ri (π 1, . . . ,πp ) for a
given joint actionπ . The underlying gamewe study is r i (π 1, . . . ,πp ) =
E
[
Ri (π 1, . . . ,πp )

]
and for the sake of simplicity the joint action

of every player but player i will be written π−i . In the two follow-
ing definitions, we introduce the concept of Nash equilibrium and
ϵ-Nash equilibrium in p-player games (as we only introduced it in
the 2-player case):

Definition : A joint strategy x = (x1, . . . ,xp ) = (x−i ,x−i ) is a
Nash equilibrium if for all i:

Eπ∼x
[
r i (π )

]
= max

π i
Eπ−i∼x −i

[
r i (π i ,π−i )

]
Definition : A joint strategy x = (x1, . . . ,xp ) = (x−i ,x−i ) is an

ϵ-Nash equilibrium if for all i:

max
π i

Eπ−i∼x −i
[
r i (π i ,π−i )

]
− Eπ∼x

[
r i (π )

]
≤ ϵ

When running an analysis on ameta game, we do not have access
to the average reward function r i (π 1, . . . ,πp ) but to an empirical
estimate r̂ i (π 1, . . . ,πp ). The following lemma shows that a Nash
equilibrium for the empirical game r̂ i (π 1, . . . ,πp ) is an 2ϵ-Nash
equilibrium for the game r i (π 1, . . . ,πp ) where ϵ = supπ ,i |r̂ i (π ) −
r i (π )|.

Lemma: If x is a Nash equilibrium for r̂ i (π 1, . . . ,πp ), then it
is an 2ϵ-Nash equilibrium for the game r i (π 1, . . . ,πp ) where ϵ =
supπ ,i |r i (π ) − r̂ i (π )|.

Proof:
First we have the following relation:

Eπ∼x
[
r i (π )

]
= Eπ∼x

[
r̂ i (π )

]
+ Eπ∼x

[
r i (π ) − r̂ i (π )

]

Then:
Eπ−i ∼x−i

[
r i (π i , π−i )

]
= Eπ−i ∼x−i

[
r̂ i (π i , π−i )

]
+ Eπ−i ∼x−i

[
r i (π i , π−i ) − r̂ i (π i , π−i )

]
max
π i

Eπ−i ∼x−i
[
r i (π i , π−i )

]
≤ max

π i
Eπ−i ∼x−i

[
r̂ i (π i , π−i )

]
+max

π i
Eπ−i ∼x−i

[
r i (π i , π−i ) − r̂ i (π i , π−i )

]
Finally,

max
π i

Eπ−i ∼x−i
[
r i (π i , π−i )

]
− Eπ∼x

[
r i (π )

]
≤ max

π i
Eπ−i ∼x−i

[
r̂ i (π i , π−i )

]
− Eπ∼x

[
r̂ i (π )

]
︸                                                         ︷︷                                                         ︸

=0 since x is a Nash equilibrium for r̂ i

+max
π i

Eπ−i ∼x−i
[
r i (π i , π−i ) − r̂ i (π i , π−i )

]
︸                                                         ︷︷                                                         ︸

≤ϵ

−Eπ∼x
[
r i (π ) − r̂ i (π )

]︸                          ︷︷                          ︸
≤ϵ

□
This lemma shows that if one can control the difference between

|r i (π ) − r̂ i (π )| uniformly over players and actions, then an equilib-
rium for the empirical game r̂ i (π 1, . . . ,πp ) is almost an equilibrium
for the game defined by the average reward function r i (π 1, . . . ,πp ).

4.2 Finite Samples Analysis
This section details some concentration results. In practice, we
often have access to a batch of observations of the underlying game.
We will run our analysis on an empirical estimate of the game
denoted by r̂ i (π ). The question then will be either with which
confidence can we say that a Nash equilibrium for r̂ is a 2ϵ-Nash
equilibrium, or for a fixed confidence, for which ϵ can we say that
a Nash equilibrium for r̂ is a 2ϵ-Nash equilibrium for r . In the case
we have access to game play, the question is how many samples
n do we need to assess that a Nash equilibrium for r̂ is a 2ϵ-Nash
equilibrium for r for a fixed confidence and a fixed ϵ . For the sake
of simplicity, we will assume that all payoff are bounded in [0, 1].

4.2.1 The batch scenario. Here we assume that we are given
n(i,π ) independent samples to compute the empirical average r̂ i (π ).
Then, by applying HoeffdingâĂŹs inequality we can prove the
following result:

P
(
sup
π ,i

|r i (π ) − r̂ i (π ) | < ϵ
)
≥

∏
i∈{1, . . .,p}

∏
π

(
1 − 2e

(
−2ϵ2n(i,π )

) )
4.2.2 uniform sampling. In this section we assume that we have

a budget of n samples per joint actions π and per player i . In that
case we have the following bound:

P
(
sup
π ,i

|r i (π ) − r̂ i (π ) | < ϵ
)
≥

(
1 − 2e

(
−2ϵ2n

) ) |S1 |×···×|Sp |×p

Then, If we want supπ ,i |r i (π ) − r̂ i (π )| < ϵ with a probability of

at least 1 − δ we need at least n = −
ln
(
1−(1−δ )

1
|S1 |×···×|Sp |×p

)
2ϵ 2

5 EXPERIMENTS
This section presents experiments that illustrate the meta-game ap-
proach and its feasibility for examining strengths and weaknesses
of higher-level strategies in various domains, including AlphaGo,
Colonel Blotto, and the meta-game generated by PSRO. Note that



A Generalised Method for Empirical Game Theoretic Analysis AAMAS’18, July 2018, Stockholm, Sweden

we restrict the meta-games to three strategies, as we can nicely visu-
alise this in a phase plot, and these still provide useful information
about the dynamics in the full strategy spaces.
5.1 AlphaGo
The data set under study consists of 7 AlphaGo variations and a
a number of different Go strategies such as Crazystone and Zen
(previously the state-of-the-art). α stands for the algorithm and the
indexes r ,v,p for the use of respectively rollouts, value nets and
policy nets (e.g. αrvp uses all 3). For a detailed description of these
strategies see [10]. The meta-game under study here concerns a 2-
type NFG with |S | = 9. We will look at various 2-faces of the larger
simplex. Table 9 in [10] summarises all wins and losses between
these various strategies (meeting several times), from which we
can compute meta-game payoff tables.

5.1.1 Experiment 1: strong strategies. This first experiment ex-
amines three of the strongest AlphaGo strategies in the data-set,
i.e., αrvp ,αvp ,αrp . As a first step we created a meta-game payoff
table involving these three strategies, by looking at their pairwise
interactions in the data set (summarised in Table 9 of [10]). This
set contains data for all strategies on how they interacted with
the other 8 strategies, listing the win rates that strategies achieved
against one another (playing either as white or black) over sev-
eral games. The meta-game payoff table derived for these three
strategies is described in Table 7.

©«

αrvp αvp αrp Ui1 Ui2 Ui3
2 0 0 0.5 0 0
1 0 1 0.95 0 0.05
0 2 0 0 0.5 0
1 1 0 0.99 0.01 0
0 0 2 0 0 0.5
0 1 1 0 0.39 0.61

ª®®®®®®®¬
Table 7:Meta-game payoff table generated from Table 9 in [10] for
strategies αrvp, αvp, αrp
In Figure 1 we have plotted the directional field of the meta-game
payoff table using the replicator dynamics for a number of strategy
profiles x in the simplex strategy space. From each of these points
in strategy space an arrow indicates the direction of flow, or change,
of the population composition over the three strategies. Figure 2
shows a corresponding trajectory plot. From these plots one can
easily observe that strategy αrvp is a strong attractor and consumes
the entire strategy space over the three strategies. This restpoint
is also a Nash equilibrium. This result is in line with what we
would expect from the knowledge we have of the strengths of these
various learned policies. Still, the arrows indicate how the strategy
landscape flows into this attractor and therefore provides useful
information as we will discuss later.

5.1.2 Experiment 2: evolution and transitivity of strengths. We
start by investigating the 2-face simplex involving strategies αrp ,
αvp and αrv , for which we created a meta-game payoff table simi-
larly as in the previous experiment (not shown). The evolutionary
dynamics of this 2-face can be observed in Figure 4a. Clearly strat-
egy αrp is a strong attractor and dominates the two other strategies.
We now replace this attractor by strategy αrvp and plot its evolu-
tionary dynamics in Figure 4b. What can be observed from both
trajectory plots in Figure 4 is that the curvature is less pronounced
in plot 4b than it is in plot 4a. The reason for this is that the dif-
ference in strength between αrv and αvp is less obvious in the

presence of an even stronger attractor than αrp . This means that
αrvp is now pulling much stronger on both αrv and αvp and con-
sequently the flow goes more directly to αrvp . So even when a
strategy space is dominated by one strategy, the curvature (or curl)
is a promising measure for the strength of a meta-strategy.

What is worthwhile to observe from the AlphaGo dataset, and
illustrated as a series in Figures 3 and 4, is that there is clearly an
incremental increase in the strength of theAlphaGo algorithm going
from version αr to αrvp , building on previous strengths, without
any intransitive behaviour occurring, when only considering a
strategy space formed by the AlphaGo versions.

Finally, as discussed in Section 4, we can now examine how good
of an approximation an estimated game is. In the AlphaGo domain
we only do this analysis for the games displayed in Figures 4a and
4b, as it is similar for the other experiments. We know that αrp is a
Nash equilibrium of the estimated game analyzed in Figure 4a (meta
Table not shown). The outcome of αrp against αrv was estimated
with nαrp,αrv = 63 games (for the other pair of strategies we have
nαvp,αrp = 65 and nαvp,αrv = 133). Because of the symmetry of
the problem, the bound in section 4.2.1 is reduced to:

P
(
sup
π ,i

|r i (π ) − r̂ i (π ) | < ϵ
)
≥

(
1 − 2e

(
−2ϵ2nαrp ,αrv

) )
×
(
1 − 2e

(
−2ϵ2nαvp ,αrp

) )
×
(
1 − 2e

(
−2ϵ2nαvp ,αrv

) )
Therefore, we can conclude that the strategy αrp is an 2ϵ-Nash

equilibrium (with ϵ = 0.15) for the real game with probability at
least 0.78. The same calculation would also give a confidence of
0.85 for the RD studied in Figure 4b for an ϵ = 0.15 (as the number
of samples are (nαrv ,αvp ,nαvp,αrvp ,nαrvp,αrv ) = (65, 106, 91)).

5.1.3 Experiment 3: cyclic behaviour. A final experiment inves-
tigates what happens if we add a pre-AlphaGo state-of-the-art al-
gorithm to the strategy space. We have observed that even though
αrvp remains the strongest strategy, dominating all other AlphaGo
versions and previous state-of-the-art algorithms, cyclic behaviour
can occur, something that cannot be measured or seen from Elo
ratings.2 More precisely, we constructed a meta-game payoff table
for strategies αv , αp and Zen (one of the previous commercial state-
of-the-art algorithms). In Figure 5 we have plotted the evolutionary
dynamics for this meta-game, and as can be observed there is a
mixed equilibrium in strategy space, around which the dynamics
cycle, indicating that Zen is capable of introducing in-transitivity,
as αv dominates αp , αp dominates Zen and Zen dominates αv .
5.2 Colonel Blotto
Colonel Blotto is a resource allocation game originally introduced
by Borel [2]. Two players interact, each allocatingm troops over
n locations. They do this separately without communication, after
which both distributions are compared to determine the winner.
When a player has more troops in a specific location, it wins that
location. The player winning the most locations wins the game.
This game has many game theoretic intricacies, for an analysis
see [5]. Kohli et al. have run Colonel Blotto on Facebook (project
Waterloo), collecting data describing how humans play this game,
with each player having m = 100 troops and considering n = 5
2An Elo rating or score is a measure to express the relative strength of a player, or
strategy. It was named after Arpad Elo and originally introduced to rate chess players.
For an introduction see e.g. [3]
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Figure 1: Directional field plot for the 2-face
consisting of strategies αrvp, αvp, αrp

Figure 2: Trajectory plot for the 2-face consist-
ing of strategies αrvp, αvp, αrp

(a) Trajectory plot for αv , αp , and αr

(b) Trajectory plot for αrv , αv , and αp

Figure 3

(a) Trajectory plot for αrp , αvp , and αrv

(b) Trajectory plot for αrvp , αvp , and αrv

Figure 4

(a)

Figure 5: Intransitive behaviour for αv , αp , and
Zen.

battlefields. The number of strategies in the game is vast: a game
withm troops and n locations has

(m+n−1
n−1

)
strategies.

Based on Kohli et al. we carry out a meta game analysis of
the strongest strategies and themost frequently played strategies on
Facebook. We have a look at several 3-strategy simplexes, which
can be considered as 2-faces of the entire strategy space.
An instance of a strategy in the game of Blotto will be denoted
as follows: [t1, t2, t3, t4, t5] with

∑
i ti = 100. All permutations σi

in this division of troops belong to the same strategy. We assume
that permutations are chosen uniformly by a player. Note that in
this game there is no need to carry out the theoretical analysis of
the approximation of the meta-game, as we are are not examining
heuristics or strategies over Blotto strategies, but rather these strate-
gies themselves, for which the payoff against any other strategy
will always be the same (by computation). Nevertheless, carrying
out a meta-game analysis reveals interesting information.

5.2.1 Experiment 1: Top performing strategies. In this first ex-
periment we examine the dynamics of the simplex consisting of the

Strongest strategies
Strategy Frequency Win rate
[36, 35, 24, 3, 2] 1 .74
[37, 37, 21, 3, 2] 17 .73
[35, 35, 26, 2, 2] 1 .73
[35, 34, 25, 3, 3] 3 .70
[35, 35, 24, 3, 3] 13 .70

Table 8: 5 of the strongest strategies played on Facebook.

three best scoring strategies from the study of [5]: [36, 35, 24, 3, 2],
[37, 37, 21, 3, 2], and [35, 35, 26, 2, 2], see Table 8. In a first step we
compute a meta-game payoff table for these three strategies. The
interactions are pairwise, and the expected payoff can be easily com-
puted, assuming a uniform distribution for different permutations
of a strategy. This normalised payoff is shown in Table 9.

©«

s1 s2 s3 Ui1 Ui2 Ui3
2 0 0 0.5 0 0
1 0 1 0.66 0 0.34
0 2 0 0 0.5 0
1 1 0 0.33 0.67 0
0 0 2 0 0 0.5
0 1 1 0 0.75 0.25

ª®®®®®®®¬
Table 9: Meta-game payoff table generated for strategies s1 =
[36, 35, 24, 3, 2], s2 = [37, 37, 21, 3, 2], and s3 = [35, 35, 26, 2, 2].
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Most played strategies
Strategy Frequency
[34, 33, 33, 0, 0] 271
[20, 20, 20, 20, 20] 235
[33, 1, 33, 0, 33] 127
[1, 32, 33, 1, 33] 97
[35, 30, 35, 0, 0] 68
[0, 100, 0, 0, 0] 67
[10, 10, 35, 35, 10] 58
[25, 25, 25, 25, 0] 50

Table 10: The 8 most frequently played strategies on Facebook.

Using table 9 we can compute evolutionary dynamics using the
standard replicator equation. The resulting trajectory plot can be ob-
served in Figure 6a. The first thing we see is that we have one strong
attractor, i.e, strategy s2 = [37, 37, 21, 3, 2] and there is transitive
behaviour, meaning that [36, 35, 24, 3, 2] dominates [35, 35, 26, 2, 2],
[37, 37, 21, 3, 2] dominates [36, 35, 24, 3, 2], and [37, 37, 21, 3, 2] dom-
inates [35, 35, 26, 2, 2]. Although [37, 37, 21, 3, 2] is the strongest
strategy in this 3-strategy meta-game, the win rates (computed
over all played strategies in project Waterloo) indicate that strategy
[36, 35, 24, 3, 2] was more successful on Facebook. The differences
are minimal, and on average it is better to choose [37, 37, 21, 3, 2],
which was also the most frequently chosen strategy from the set of
strong strategies, see Table 8. We show a similar plot for the evolu-
tionary dynamics of strategies [35, 34, 25, 3, 3], [37, 37, 21, 3, 2], and
[35, 35, 24, 3, 3] in Figure 6b, which are three of the most frequently
played strong strategies from Table 8.

5.2.2 Experiment 2: most frequently played strategies. We com-
pared the evolutionary dynamics of the eight most frequently
played strategies and present here a selection of some of the re-
sults. The meta-game under study in this domain concerns a 2-type
repeated NFGGwith |S | = 8. Wewill look at various 2-faces of the 8-
simplex. The top eight most frequently played strategies are shown
in Table 10. First we investigate the strategies [20, 20, 20, 20, 20],
[1, 32, 33, 1, 33], and [10, 10, 35, 35, 10] from our strategy set. In Table
11 we show the resulting meta-game payoff table of this 2-face sim-
plex. Using this table we can again compute the replicator dynamics
and investigate the trajectory plots in Figure 7a.We observe that the
dynamics cycle around a mixed Nash equilibrium (every interior
rest point is a Nash equilibrium). This intransitive behaviour makes
sense by looking at the pairwise interactions between strategies and
the corresponding payoffs they receive from Table 9. The expected
payoff for [20, 20, 20, 20, 20], when playing against [1, 32, 33, 1, 33]
will be lower than the expected payoff for [1, 32, 33, 1, 33]. Simi-
larly, [1, 32, 33, 1, 33] will be dominated by [10, 10, 35, 35, 10] when
they meet, and to make the cycle complete, [10, 10, 35, 35, 10] will
receive a lower expected payoff against [20, 20, 20, 20, 20]. As such,
the behaviour will cycle around a the Nash equilibrium.

©«

s1 s2 s3 Ui1 Ui2 Ui3
2 0 0 0.5 0 0
1 0 1 1 0 0
0 2 0 0 0.5 0
1 1 0 0 1 0
0 0 2 0 0 0.5
0 1 1 0 0.1 0.9

ª®®®®®®®¬
Table 11: Meta-game payoff table generated for strategies s1 =
[20, 20, 20, 20, 20], s2 = [1, 32, 33, 1, 33], and s3 = [10, 10, 35, 35, 10].

An interesting question is where human players are situated in
this cyclic behaviour landscape. In Figure 7b we show the same

trajectory plot but added a red marker to indicate the strategy
profile based on the frequencies of these 3 strategies played by
human players. This is derived from Table 10 and the profile vector
is (0.6, 0.25, 0.15). If we assume that the human agents optimise
their behaviour in a survival of the fittest style they will cycle along
the red trajectory. In Figure 7c we illustrate similar intransitive
behaviour for three other frequently played strategies.
5.3 PSRO-generated Meta-Game
We now turn our attention to an asymmetric game. Policy Space
Response Oracles (PSRO) is a multiagent reinforcement learning
process that reduces the strategy space of large extensive-form
games via iterative best response computation. PSRO can be seen as
a generalized form of fictitious play that produces approximate best
responses, with arbitrary distributions over generated responses
computed by meta-strategy solvers. One application of PSRO was
applied to a commonly-used benchmark problem known as Leduc
poker [11], except with a fixed action space and penalties for taking
illegal moves. Therefore PSRO learned to play from scratch, without
knowing which moves were legal. Leduc poker has a deck of 6
cards (jack, queen, king in two suits). Each player receives an initial
private card, can bet a fixed amount of 2 chips in the first round, 4
chips in the second round, with a maximum of two raises in each
round. A public card is revealed before the second round starts.

In Table 12 we present such an asymmetric 3 × 3 2-player game
generated by the first few epochs of PSRO learning to play Leduc
Poker. In the game illustrated here, each player has three strategies
that, for ease of the exposition, we call {A,B,C} for player 1, and
{D,E, F } for player 2. Each one of these strategies represents an
approximate best response to a distribution over previous opponent
strategies. In Table 13 we show the two symmetric counterpart
games (see section 3.3) of the empirical game produced by PSRO.

D E F
A −2.26, 0.02 −2.06, −1.72 −1.65, −1.43
B −4.77, −0.13 −4.02, −3.54 −5.96, −2.30
C −2.71, −1.77 −2.52, −2.94 −6.10, 1.06

Table 12: Asymmetric PSRO meta game applied to Leduc poker.

A B C
A −2.26 −2.06 −1.65
B −4.77 −4.02 −5.96
C −2.71 −2.52 −6.10

D E F
D 0.02 −1.72 −1.43
E −0.13 −3.54 −2.30
F −1.77 −2.94 1.06

Table 13: Left - first counterpart game of the PSRO empirical game.
Right - second counterpart game of the PSRO empirical game.

Again we can now analyse the equilbrium landscape of this game,
but now using the asymmetric meta-game payoff table and the de-
composition result introduced in section 3.3. Since the PSRO meta
game is asymmetric we need two populations for the asymmetric
replicator equations. Analysing and plotting the evolutionary asym-
metric replicator dynamics now quickly becomes very tedious as we
deal with two simplices, one for each player. More precisely, if we
consider a strategy profile for one player in its corresponding sim-
plex, and that player is adjusting its strategy, this will immediately
cause the second simplex to change, and vice versa. Consequently,
it is not straightforward anymore to analyse the dynamics.

In order to facilitate the process of analysing the dynamics we
can apply the counterpart theorems to remedy the problem. In Fig-
ures 8 and 9 we show the evolutionary dynamics of the counterpart
games. As can be observed in Figure 8 the first counterpart game has
only one equilibrium, i.e., a pure Nash equilibrium in which both
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(a) (b)
Figure 6: (a) dynamics of [36, 35, 24, 3, 2], [37, 37, 21, 3, 2], and [35, 35, 26, 2, 2]. (b) dynamics of [35, 34, 25, 3, 3], [37, 37, 21, 3, 2], and [35, 35, 24, 3, 3].

(a) (b) (c)
Figure 7: Dynamics of 3 2-faces of the 8-simplex: (a) Nash eq. (b) Human play (c) Another example of intransitive behaviour

players play strategy A, which absorbs the entire strategy space.
Looking at Figure 9 we see the situation is a bit more complex in the
second counterpart game, here we observe three equilibiria: one
pure at strategy D, one pure at strategy F , and one unstable mixed
equilibrium at the 1-face formed by strategies D and F . All these
equilibria are Nash in the respective counterpart games3. By apply-
ing the theory of section 3.3 we now know that we only maintain
the combination ((1, 0, 0), (1, 0, 0)) as a pure Nash equilibrium of the
asymmetric PSRO empirical game, since these strategies have the
same support as a Nash equilibrium in the counterpart games. The
other equilibria in the second counterpart game can be discarded
as candidates for Nash equilibria in the PSRO empirical game since
they do not appear as equilibria for player 1.

Figure 8: Trajectory plot of the first CP game.

Finally, each joint action of the game was estimated with 100
samples. As the outcome of the game is bounded in the interval
[−13, 13] we can only guarantee that the Nash equilibrium of the
meta game we studied is a 2ϵ-Nash equilibrium of the unknown
underlying game. It turns out that with n = 100 and ϵ = 0.05, the
confidence can only be guaranteed to be above 10−8. To guarantee
a confidence of at least 0.95 for the same value of ϵ = 0.05, we
would need at least n = 886 × 103 samples.
3Banach solver (http://banach.lse.ac.uk/) is used to check Nash equilibria [1]

Figure 9: Trajectory plot of the 2nd CP game.

6 CONCLUSION
In this paper we have generalised the heuristic payoff table method
introduced by Walsh et al. [14] to two-population asymmetric
games. We call such games meta-games as they consider complex
strategies instead of atomic actions as found in normal-form games.
As such they are well suited to investigate real-world multi-agent
interactions, as they summarize behaviour in terms of high-level
strategies rather than primitive actions. We have shown that a Nash
equilibrium of the meta-game is a 2ϵ Nash equilibrium of the true
underlying game, providing theoretical bounds on how much data
samples are required to build a reliable meta payoff table. As such
our method allows for an equilibrium analysis with a certain confi-
dence that this game is a good approximation of the underlying real
game. Finally, we have carried out an empirical illustration of this
method in three complex domains, i.e., AlphaGo, Colonel Blotto
and PSRO, showing the feasibility and strengths of the approach.
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