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Abstract

Learning workable representations of dynam-
ical systems is becoming an increasingly im-
portant problem in a number of application
areas. By leveraging recent work connect-
ing deep neural networks to systems of dif-
ferential equations, we propose variational
integrator networks, a class of neural network
architectures designed to preserve the geo-
metric structure of physical systems. This
class of network architectures facilitates ac-
curate long-term prediction, interpretability,
and data-efficient learning, while still remain-
ing highly flexible and capable of modeling
complex behavior. We demonstrate that they
can accurately learn dynamical systems from
both noisy observations in phase space and
from image pixels within which the unknown
dynamics are embedded.

1 Introduction

Deep learning has revolutionized application areas, such
as image classification and reinforcement learning, in
part via its ability to obtain representations of data
that generalize well and are useful for downstream
tasks. Deep networks have accomplished this by si-
multaneously being highly expressive, yet capable of
learning effectively from a finite amount of data. A
key determinant in this efficiency is the inductive bias
encoded by the architecture of the network, such as
in convolutional networks for image data, as well as
long short-term memory networks for text and other
sequential data. These structural assumptions allow
the network to learn efficiently, while still enabling it
to capture complex relationships that are prohibitively
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difficult to feature engineer or write down manually.

We are interested in applying such networks to dynam-
ical systems governed by the laws of physics. Such
systems are highly flexible and capable of modeling
complex phenomena. However, they also possess inher-
ent structure, such as conservation laws. In machine
learning, this important structure is often ignored, due
to the black-box nature of off-the-shelf algorithms. To
perform well on a given task, deep neural networks
must learn to conserve these quantities as effectively as
possible. Owing to the precise form of their equations,
such networks generally do not conserve these quanti-
ties exactly (Greydanus et al.| [2019)). |Greydanus et al.
(2019) demonstrated that this flaw harms the networks’
capacity for accurate long-term prediction.

As a workaround, |Greydanus et al.| (2019) proposed
to parameterize the dynamical system’s Hamiltonian
using a neural network, and to learn it directly from
data. The specification of the Hamiltonian fully de-
termines the dynamics. The equations of motion are
then reconstructed from the learned Hamiltonian via
standard techniques from mechanics. One downside
to this approach is the black-box nature of the neural
network, which makes it difficult to encode properties
of the dynamical system, such as its constraints or sym-
metries. Lutter et al.| (2019)) propose an architecture
that imposes Lagrangian mechanics, and is optimized
to minimize the violation of the equations of motion. A
similar idea is also used in (Raissi et al., 2019)) to learn
general non-linear differential equations from physics.
A potential drawback of encoding physical plausibility
through the loss function is the need for training data
that reasonably covers the configuration space.

The continuous-time equations of motion for a dynam-
ical system are given by a set of differential equations
that can be derived from its Lagrangian via variational
calculus. These equations encode the underlying physi-
cal properties, such as conservation laws. In parallel,
a deep residual network can be viewed as an Euler
discretization of a system of ordinary differential equa-
tions, see [Haber and Ruthotto| (2017)), E (2017), and
Chen et al.| (2018).
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In this paper, we aim to bridge the viewpoint of neural
ODEs (Haber and Ruthotto], [2017; [El [2017; |Chen et
al., 2018; |Chang et all 2018; [Ruthotto and Haber,
2018), where neural networks are seen as discretized
dynamical systems, with the viewpoint of geometric
embeddings (Chamberlain et al., 2017} Nickel and Kielal
2017; |Ganea et al.l |2018; Davidson et al., 2018)), which
impose structure on an embedding space. When data is
concentrated on a manifold, [Falorsi et al.| (2018) argued
that it is crucial to ensure the embedding space has the
same topology as this manifold, motivating Lie group
variational auto-encoders (Falorsi et al., 2018; |de Haan
and Falorsi, 2018} [Falorsi et al., 2019).

We propose to model the dynamical system using a
deep neural network, whose architecture matches the
discrete-time equations of motion governing the dy-
namical system. This allows us to re-interpret the em-
bedding learned by the network as a dynamical system
in its own right. We focus on a class of discretiza-
tion methods called variational integration (Marsden
et al., 2001). This gives rise to our proposed varia-
tional integrator networks: a class of flexible neural
network architectures that encode physical laws and
manifold constraints by preserving the underlying ge-
ometry inherent to physical systems. These properties
promote accurate long-term prediction, interpretabil-
ity and more efficient learning than is possible with
comparable black-box function approximators.

We demonstrate their effectiveness on a number of
tasks, including inferring dynamical systems from noisy
observations, and from the pixels of images, both in an
interpretable and data-efficient mannerﬂ

2 Variational Integrators

In this section, we review variational integrators (VIs),
a general class of discretization methods for dynamical
systems. We study physical dynamical systems over a
configuration space Q, with generalized positions and
velocities denoted by ¢g(t), ¢(t). The systems are gov-
erned by the principle of least action, specified via the
Lagrangian L(q(t),q(t)), and expressible in Hamilto-
nian form. A brief review of these and related concepts
of classical mechanics is given in Appendix [A]

VIs approximate the trajectory of a continuous-time
dynamical system by discretizing its action integral

t+h
LHqp quar ) ~ / Lig(r).a(r)dr. (1)

This is a discrete-time quadrature-based approximation,
denoted by L, defined by ¢, = q(t) and g, ,, = q(t+h)

'Code available on GitHub: [HTTPS://GITHUB.COM)/
STEINDORINGI/ VARIATIONAL_INTEGRATOR_NETWORKS

with step size h. From a Lagrangian perspective, we
arrive at the discrete equations of motion

aLd(qt—laqtah) 3Ld(qtaqt+17h)
0q, 0q,

=0, (2)

by using a discrete analog of Hamilton’s principle (Mars-
den et al.l 2001). Following West| (2004)), can be
written in position-momentum form as

_ 8Ld(qt’ qt-&-l’ h)
oq,

8Ld(qtv qt+17 h)
8qt+1

b= ’ (3)

’ pt+1 =

where p, = 0L/0q, are generalized momenta.

Vs are symplectic as they conserve phase-space volume
exactly. Symplectic integrators also approximately con-
serve energy, often only introducing third-order (and
above) discretization error with respect to the energy.
Such integrators yield discrete-time dynamical systems
that closely resemble the continuous-time systems un-
der study, and evolve in a way that is globally consistent
with the true solution.

VlIs are also momentum-preserving. This means that for
any symmetry in the discrete system, there is a quantity
that is exactly conserved. These properties help to
ensure their accuracy. In the dissipative and forced
cases, VIs have been both theoretically and empirically
shown to produce stable long-term predictions and
to capture statistically important quantities, even in
chaotic regimes (Lew et al.l |2004)).

3 Variational Integrator Networks

To define a variational integrator network, we be-
gin with the viewpoint of neural ODEs (Haber and
Ruthottol |2017; |Chen et al.l |2018). In this setting, we
specify an ODE whose right-hand-side is a single-layer
neural network. We then obtain a deep residual net-
work using an Euler discretization scheme, where the
depth of the network is determined by the number of
discretization steps.

We mirror this viewpoint with the goal of developing
network architectures that learn dynamical systems
faithfully, by having their learned embeddings be dy-
namical systems in their own right. Compared to neural
ODEs, we introduce two key differences.

1. Rather than constructing a free-form system of
ODEs, we construct a system of ODEs arising
from the Euler-Lagrange equations governing a
free-form dynamical system.

2. Instead of an Euler discretization, we use a
structure-preserving discretization given by a VI.
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Figure 1: Variational integrator network. Here, (g, p) are the hidden states, and fy is a residual block. The
full variational integrator network is built by stacking free-form residual blocks in the manner prescribed by a

variational integrator to obtain a deep network.

We focus on VIs with explicit discrete update equations
arising from the discrete equations of motion and
(3). This results in network architectures that do not
require fixed-point algorithms to evolve the dynamics.

We begin by considering separable Newtonian networks,
i.e. networks that follow Newton’s laws of physics.
These are constructed by considering a parameterized
Lagrangian of the form

Lo(a,d) = To(@) - Usla) = 54" M — Us(a), (1

where Ty and Uy are the kinetic and potential energy
of the system, and My is a symmetric, positive definite
inertia matrix. We omit time dependence for ease of no-
tation. From a Lagrangian perspective, approximating
the action by the quadrature rule

Ld(qtaqu»h) :hLe(qtvw>7 (5)

we arrive at the Stormer-Verlet (SV) integrator

_10Uy(q
4141 =29, — Q1 — h2Ma 180q( t)~ (6)
t

The symmetric variant of (5]), given by

Ld(qt’qt+1’h) = g(LG (qt, W) (7)

+ Lo (g, B ZB)) g

yields the velocity Verlet (VV) integrator

h? 19Us(q,)

= M, 'q, — =M, ——
qi+1 = q; +hMy q, 2% " aq, (9)
h 10Uys(q,) = OUp(q;iy)
p frd p _ b 10
t+1 t 2 ( aqt 8qt+1 ) ( )

where p, = M;lqt. Compared to @, the VV integra-
tor explicitly incorporates the momentum/velocity.

Combining variational integrators with the neural ODE
viewpoint, we arrive at network architectures that enjoy
the following properties.

1. Physical properties, such as conservation laws, are
automatically enforced by preserving the underly-
ing geometric structure.

2. Flexibility to model complex phenomena is re-
tained, as Uy can be a black-box neural network.
We opt for a single-layer fully connected network.

3. Interpretability is increased, by considering that
the embedding evolves in a phase-space, having
notions of kinetic and potential energy.

4. Modeling specificity is increased, since the mass
term can either be modeled explicitly or taken to
be the identity matrix.

To illustrate how variational integrators enable us to
build further geometric structure into the model, con-
sider a Newtonian rotation network in 2D. The idea is
to exploit the knowledge that a system’s evolution takes
place entirely on a manifold, here the space of rotations,
by incorporating this structure into the network.

For this, we consider a particular class of variational
integrators: Lie group variational integrators (LGVIs).
LGVIs exploit the properties of Lie groups to construct
integrators that automatically evolve on a specified Lie
group. The key idea is to approximate the change in
position over integration steps using group elements
(Leokl, [2007)). Since the state space is closed under the
group action (e.g. matrix multiplication when repre-
sented by matrices), the constraints are automatically
enforced. For instance, the Lie group SO(2) (with
matrix multiplication as the group action) is a natural
way to encode the underlying manifold of 2D rotations,
like the evolution of the angle of a pendulum. A Newto-
nian network in a uniform gravitational potential that
evolves automatically on SO(2) is specified as follows.
Denoting the angle by 1, the corresponding rotation
network is given by

sin AY; = sin AYy_1 + hQW(ﬁ), (11)
19t+1 - 1915 + A'&t, (12)

where 7,(1¢) is a neural network with sin(-) activations
at the last layer. Appendix [B] provides further details.
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Figure 2: Learning the dynamics of a pendulum from pixel observations. Here, a variational autoencoder maps
the pixels into the latent space g using "¢, and maps the latent space back into pixels using f%°. A Lagrangian
variational integrator is used, for which q is the hidden state. Unlike an ordinary residual network, the skip
connections used are intertwined. We display the observations in black, and predicted values given by the decoder
in orange. Experimental details for this setup are given in Section

3.1 Learning VINs from Noisy Observations

Given initial conditions of a system, the state evolution
is given by a solution g(t) to the equations of motion.
Denoting the state in phase space by x: = (g;_1,q;)
from the Lagrangian perspective or x; = (q,, p;) from
the Hamiltonian perspective, VINs represent an approx-
imation to the solution between the initial condition
x1 and terminal state . We represent a layer in the
network by

Ty = fﬂ(wlvha t)v

as a function of the initial condition, step size and time
step (layer index) ¢. Figure [1] gives an illustration of
a VIN. Given a path of noisy observations y,.; of the
state of a system, we specify a Gaussian likelihood

(13)

T

[TV, | 2. 0%T).

t=1

p(Yir | T, 07%) (14)

Define © = (0, x1,0?) where 0 are the parameters of
the VIN, x; is the initial condition , and o2 is the error
variance. We train the model by maximizing the log of
the likelihood with respect to © using stochastic
optimization.

3.2 VINSs for High Dimensional Observations

It is possible that the dynamical system of interest is
not observed directly, but indirectly through a set of
intermediate data not of primary interest. For example,
we can observe a swinging pendulum by seeing images
of its location at a given set of time instances. We pro-
pose to address this problem using variational autoen-
coders (VAEs) (Kingma and Welling 2014} [Rezende
et al., 2014). VAEs enable approximate inference in
latent variable models that model high-dimensional
observations as being generated by some lower dimen-
sional latent space. We aim to combine this setup with

VINs to learn physical systems that evolve in a latent
phase-space.

We start by placing a standard Gaussian pg(xi) =
N (x| 0,1) over the initial condition. The joint distri-
bution over a path is

(15)

po(x1.7) = po(x1)po(T2:T | 1),

which we can sample from by sampling 7 ~ p(x;),
and propagating the samples through the network
xi = xg(x, h,t). Assuming noise-free dynamics the
uncertainty over the dynamics is fully induced by the
distribution of the initial condition.

We specify the joint distribution over observations and
paths in latent space as

T
Po(Yr7, T1r) = o :vlTH (g |2).  (16)

The likelihood py(y, | q,) is parameterized by a decoder
neural network fd“( +), which depends only on the
position component q, of x;.

We aim to approximate the posterior distribution
po(x1.7 | Y1.7), which is intractable due to the non-
linear relationships introduced by the decoder fgec
and the dynamics xy in . In the VAE setup, we
specify an approximation q4(z1.7 | Y;.7) to the poste-
rior, parameterized by an encoder network f§"(y,.1),
where ¢ are called the variational parameters Figure
illustrates the VIN-VAE setup.

We learn the parameters by variational inference. We
choose the variational family

Q¢(m1:T | Y1.10) = Q¢(m1)p9(w2:T | 1),
gp(x1) = N(z1 | my, 57).

Note that the conditional pg(za.r | ®1) is the same
in the variational family as in the model. The mean
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and variance of the initial condition are in general
estimated from the full trajectory y,.; by the encoder
fo"¢. To train the model, we minimize Kullback-Leibler
divergence with respect to the model parameters 6 and
the variational parameters ¢, which is equivalent to
maximizing the evidence lower bound

T
> By () 080y, | ©) —KL[gs(@1) || p(z1)],

t=1

where @} ~ gg(x+(-)) denotes a sample from gg(x)
propagated through the network zy, and KIL [q [l p]
denotes the Kullback-Leibler divergence between ¢ and
p. This objective is maximized with respect to 6 and
¢ jointly using stochastic optimization.

4 Experiments

To study the performance of VINs, we implemented
them for two reference systems: (a) an ideal pendulum,
(b) an ideal mass-spring system. We study the ability
of VINs to infer a useful representation of the system
when given a small quantity of data, in cases where
the dynamical system is observed both directly and
indirectly. Full details for network architectures and
hyperparameters are given in Appendix [C]

4.1 Learning from Noisy Observations

We consider VINs in a noisy setting. Specifically, the
model is given noisy position and velocity measure-
ments from which it needs to learn the dynamics. We
compare our proposed VINs with Hamiltonian neu-
ral networks (HNNs) (Greydanus et all |2019) and
standard feed-forward neural networks (NNs) without
additional structure that would explicitly incorporate
physical or mechanical constraints. We use the VIN
given by @ HNNs are trained on observations of
the form (q;,p,, q,,p,;). We replicate the setup from
Greydanus et al.| (2019)) with one key difference: we
introduce noise in all observations, rather than only
introducing it in (g, p,) and observing (g,, p,) noise
free. This makes the setting more realistic, but sys-
tem identification harder. To account for the noise, we
add a noise variable to all models and maximize the
log-likelihood, rather than only mean-squared error.

We examine two scenarios: (a) a moderate-data regime,
where models are trained using 25 training trajectories
with a total of 750 data points, (b) a low-data regime
using 5 training trajectories with a total of 150 data
points. Figures [3| and (4] show that prediction perfor-
mance differs between the models. In the low-data
regime, despite learning to approximately conserve the
system’s energy, the HNN does not capture the correct
dynamics, and performs poorly on prediction in terms

of RMSE on both systems. On the mass-spring system
(Figure , with sufficient data, the HNN prediction
error is low over a small horizon, but exhibits two large
jumps as the trajectory evolves. We suggest that in
both cases the HNN fits the noise in the training data
(overfits) and fails to identify the underlying system.
The NN baseline performs better than the HNN in
the low-data regime, whereas the HNN demonstrates
better predictive performance in the moderate-data
regime on the pendulum system (Figure [4). The VIN
exhibits good predictive performance, outperforming
the baselines on both systems, in both the low-data
and moderate-data regimes.

Figures [3] and [ show that the energy behaviors of
HNNs, VINs, and NNs differ. Given sufficient data,
both the HNN and VIN learn a model that conserves
a quantity that approximates the energy of the sys-
tem. However, the HNN overfits in the low-data regime
on both systems. The NN baseline incorrectly dissi-
pates/adds energy in both scenarios for the pendulum
system, particularly as time passes, but learns to ap-
proximately conserve energy for the mass-spring system
given 25 training trajectories. This contributes to the
worse predictive performance of the NN baseline com-
pared to the HNN and VIN.

Overall, VINs can effectively identify the system from
noisy observations, even in small-data scenarios, where
HNNs and NNs can overfit. We attribute this to their
architecture: their embedded space is a dynamical sys-
tem in its own right, which enforces physical constraints
automatically when forecasting so that their long-term
predictions better match the true system. In contrast,
the HNN relies on generalization to conserve energy,
as demonstrated by the difference in performance in
the low-data and moderate-data regimes.

4.2 Learning from Pixel Observations

We study VINs in a variational auto-encoder (VAE)
setting, which adds an auxiliary image processing task
to prediction. Here, we observe 28 x 28 pixel images
depicting the mass-spring and pendulum systems; see,
e.g. Figures For the mass-spring, we use @ for
the dynamics (VIN-SV). For the pendulum, we run
experiments using both (9) (VIN-VV) as well as the
dynamics imposing SO(2) manifold constraint in
(VIN-SO(2)). As a baseline, we use a parameter-tied
deep recurrent residual network (ResRNN) having the
same number of layers as the VINs, with each layer shar-
ing the same single-layer neural network. This mirrors
the structure that arises from the time independence of
the Lagrangian in VINs. Each model is trained within
a VAE framework as described in Section [3.21

We evaluate the structure of the latent space learned



Variational Integrator Networks for Physically Structured Embeddings

- 2.5 umJ
5 a0 T T T - 0.0

5 0 5 10 15 20
L >
a _71 - 10 o
Q
— &

-2 T T T T T 10
-2 -1 0 11 20 5 10 15 20
q Time step

Predictions

m
n
1 ~— | ¢
a T T T o
04 05 10 15 20
>
o AN o D anl ooo 3
<
0.45 o
-2 T T T T T T 1
-2 -1 0 1 20 5 10 15 20
q Time step

mmm Ground truth === Baseline NN =ss= HNN == \/|[N-SV

Figure 3: Learning physics from noisy observations for the ideal mass-spring. Given a set of initial conditions, we
forecast a path in configuration space and compare against the ground truth. We show model predictions, total
root-mean-squared error between coordinates and the total energy of the dynamical system in the embedding.

4 S w
s
1%}
5 2 =
fa e
597 0 5 10 15 20
o - 12.5 >
a 27 - 100
—4 4 75 §
T T T T T T
-1 0 1 0 5 10 15 20
q Time step

Predictions

5
4- &
=
2 4 4
a T T T 1 0
0 0 5 10 15 20
N M 125 8
@
-4 4 B0 A0 Od (8 04 A4 c
VIVVVVVVYVVVVVVVY 10.0 i
T T T T T T
-2 0 20 5 10 15 20
q Time step

mmm Ground truth === Baseline NN mssm HNN s \/|N-SV

Figure 4: Learning physics from noisy observations for the ideal pendulum. Given a set of initial conditions, we
forecast a path in configuration space and compare against the ground truth. We show model predictions, total
root-mean-squared error between coordinates and the total energy of the dynamical system in the embedding.

by VIN-SO(2) and compare it with representations
learned by a standard VAE (Kingma and Welling} 2014}
Rezende et al., 2014)), a VAE with free-form dynamics
governed by a feed-forward network (DVAE), and a Lie
group VAE (LG-VAE) (Falorsi et all 2018) with no
dynamic structure. Figure[5|visualizes the latent spaces
after training on 4s (40 observations) and mapping an
additional 80 test images into latent space using the
encoder fg"¢, including the dynamics in the case of
the VIN-SO(2). The VAE captures local structure:
observations close together in image space are mapped
to points close together in latent space. However, it
fails to capture the global structure of the state space
and has discontinuities with respect to the sequential
nature of the dataset. Figure b) shows that adding
an unrestricted neural network to capture the dynamics
does not solve the problem. The LG-VAE captures
the correct global structure by restricting the manifold,
but still exhibits discontinuities with respect to the
time dimension, since it does not model the dynamics.
The embedding for VIN-SO(2) does not have such
discontinuities: it learns both the global structure and
respects the sequential nature of the data due to the
structure encoded by the VIN.

For both systems, we generate 6 seconds of training

observations, sampled at a frequency of 10Hz (60 ob-
servations). Training data is split into overlapping
1s image trajectories (10 observations), matching the
depth of the networks, which was 10 in all experiments.

We assess the models qualitatively by looking at the
properties of their latent spaces. In particular, we
infer a distribution over the initial condition using the
learned encoder f;”c given 10 initial observations from
the pendulum system. We then evolve the learned
system for 20 seconds using the mean of the variational
posterior.

Figure [6] shows how the ResRNN does not learn dy-
namics that match the geometric properties of the
true system (i.e. symplectic) but instead spirals away
from the initial condition (denoted by the large cir-
cle). This is because the Euler discretization scheme
used by residual networks ignores the underlying ge-
ometry. On the other hand, both the VIN-VV and the
VIN-SO(2) models automatically preserve symplectic
structure and evolve strictly on a sub-manifold in their
respective latent phase-spaces. Importantly, while the
flexibility afforded by the decoder allows the ResRNN
setup to generate plausible observations up to some
fixed horizon, the unbounded behavior of the evolution
eventually causes significant failures.
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(a) VAE

(b) DVAE

(d) VIN-SO(2) (e) VIN-SO(2) (fixed) (f) Ground Truth

Figure 5: Example embedded representations of an ideal pendulum system. Black/colored dots represent
embedded train/test images, gray lines connect points sequentially in time. The embeddings learned by the
baseline models fail to capture the global structure (a)—(b) and/or are discontinuous with respect to the time
dimension (¢). The VIN-SO(2) (d)—(e) learns an embedding that is consistent with the ground truth (f). In
(e), we fix the mass matrix, which is not identifiable from pixel data, to the true value. Here, the VIN-SO(2)

faithfully reconstructs the ground truth.

“'_‘....._“‘ P ’ '........‘.
< 10s % 20s ™. ( 20s .,
Vs @ |o10s @' 10s "
& | AE I :
% g *, 58}
’ . 58 *,
PR 15 o L0
1 q q
s ResRNN VIN-VV e VIN-SO(2)

Figure 6: Latent embeddings learned from pixel ob-
servations of an ideal pendulum. Circles denote the
inferred initial condition, dots denote predictions for-
ward in time. Triangles mark 5-second intervals in the
forecasts. The ResRNN fails to capture the underlying
geometric structure and spirals far beyond the initial
condition. VINs preserve this structure automatically.

Figure [7] shows the reconstructions obtained by map-
ping the latent paths from Figure[6]through the decoder
fsec. Between 10s-15s of forecasting, the ResRNN pre-
dictions are unreliable: going through discontinuous
jumps in pixel space, suddenly reversing the dynamics
and generating half-formed pendula (see, e.g. the final
step in Figure @

Conversely, the VINs do not exhibit such non-physical
behavior, since the latent path remains bounded on the
data manifold despite forecasting for effectively arbi-
trary long horizons. The VIN-VV does display signs of
going out of phase with the ground truth around 15s
in Figure [7} becoming more pronounced around the
20s mark. One explanation is that we only consider
the path traversed by the mean of the variational pos-
terior, and ignore the build-up in uncertainty as the
prediction horizon increases. However, looking at the
same reconstructions from the VIN-SO(2) model, we
see that it does not suffer from this problem within the

System  Model RMSE  logp(y | =) x 102
ResRNN 6.1 +0.2 —246.7 £ 79.2
Pendulum VIN-VV 4.3+£0.6 —13.4+5.8
VIN-SO(2) 34+06  —32+19
Mass- ResRNN 6.1 £0.1 —4.7+£24
spring VIN-SV 3.2+0.2 —-0.2+0.0

Table 1: RMSE and log-likelihood (with standard er-
rors) for the pendulum and mass-spring systems over
5s forecasts on pixel observations.

20s prediction horizon. Therefore, we assume that the
error from assuming an Euclidean manifold contributes
to the mismatch as well.

We perform the same qualitative analysis on recon-
structions of the mass-spring system, shown in Figure
Although the underlying system is simpler in this
instance, the performance of the ResRNN deteriorates
even quicker with increasing prediction horizon. The
VIN-SV also exhibits small errors in the reconstruction
at the 10s mark, but captures the underlying dynamics
well, as can be seen by its long-term predictions.

We perform a quantitative analysis with a similar setup
on both systems. Specifically, we run 10 randomized
trials, where we generated 6 seconds of observations to
train on and use the same architectures as before. In
each trial, we then infer a distribution for the initial
condition on the same trajectory and evaluated the
RMSE and log-likelihood for 5s forecasts. We evalu-
ate on the training trajectory to isolate properties of
the dynamics, which is only trained on 1s forecasts
(i.e. having 10 layers). Table [I| shows the results with
standard errors. Both VINs perform significantly bet-
ter than the ResRNN in terms of both RMSE and
log-likelihood. The VIN-SO(2) shows a meaningful
improvement in terms of log-likelihood when compared
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Figure 7: Reconstructions of the pendulum system
from forecasts in latent space, using a step-size of 0.1s,
up to 20 seconds. The ground truth (black) is occluded
by the model predictions, shown in color.

to the VIN-VV, whereas the RMSE is inconclusive.

5 Discussion

VINs can be used to create embeddings that faithfully
represent dynamical systems. This enables them to
learn with less data and provides greater interpretabil-
ity compared to other network architectures, while
facilitating accurate long-term predictions. Provided
their state space is chosen appropriately, VINs preserve
the topological and geometric structure of the dynami-
cal systems they encode. This assists with performance,
mirrors recent developments in VAEs designed to ac-
curately encode physical systems (Gong and Cheng
[2019; Maber and Ruthotto), [2017; Lutter et al.l, 2019
Caterini et all, [2018)), and is well-motivated by recent
theoretical observations made in the context of neural
ODEs (Dupont et al., 2019).

The imposition of additional geometric structure does
not cause VINs to lose their capacity to model flexi-
ble classes of phenomena. In particular, they are still
parameterized by an underlying neural network. This
mirrors the design of residual networks and other ar-
chitectures related to differential equations
[Ruthotto, 2017; |Chen et al., 2018). Thus, VINs are
more interpretable than purely black-box approaches
to network design, while still being highly expressive.
VINs can be trained directly on noisy observations.
They may also be used as part of larger and more
complex learning pipelines, e.g. by incorporating them
into an auto-encoding framework. Performance in both
settings is discussed in Section []

+0.1s +5s +10s +15s +20s

mmmm ResRNN s \/IN-SV mmmm Ground Truth

Figure 8: Reconstructions of the mass-spring system
from forecasts in latent space, using a step-size of 0.1s,
up to 20 seconds. The ground truth (black) is occluded
by the model predictions, shown in color. The mass
oscillates left-and-right based on the initial tension in
the spring (not rendered in images).

A number of directions could be pursued to improve
these ideas. In particular, one could study these ideas
with time-varying Lagrangians, improving expressivity
by greatly expanding the class of dynamical systems
faithfully representable by the embedding. This would
bring VINs closer in line with residual networks and
general neural ODEs (Chen et al., 2018). While we
focused on data efficiency and representation learning
in settings where the underlying dynamics are fairly
simple, it would be interesting to study such networks
on more complex tasks. This could pave the way toward
better performance on currently difficult problems in
areas where the phenomena under study are dynamical
systems, such as robotics and reinforcement learning.

6 Conclusion

In this work, we introduced wvariational integrator net-
works, a class of deep network architectures for creating
neural embeddings, which encode and represent dynam-
ical systems. VINs ensure faithful representation of
dynamical systems by using an embedding that forms a
dynamical system in its own right. This facilitates data-
efficient learning, enhances interpretability, and allows
for accurate long-term predictions when compared to
other classes of networks.

Recent trends in deep learning have sought to improve
the performance of deep networks on physical systems
by designing networks whose behavior is more under-
standable and better matched to the underlying physics.
Variational integrator networks take a step toward pro-
gressing this line of work.
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Variational Integrator Networks for Physically Structured Embeddings

A Appendix: Short Review of Lagrangian and Hamiltonian Mechanics

Hamiltonian and Lagrangian mechanics are two intricately related formulations of classical mechanics. In classical
mechanics, we assume that we are given a continuous-time dynamical system defined on a space Q@ C R?, which we
call the configuration space. A state of the system is taken to be a set of parameters g € Q that uniquely identify
the configuration of the system. Continuous-time evolution of the dynamics in Q yields a path in configuration
space. Lagrangian and Hamiltonian mechanics formulate the laws of physics in terms of properties of these paths.

Specifically, Hamilton’s principle, also called the Principle of Least Action, states that there exists a real-valued
function L such that all paths in configuration space which occur in nature minimize the path integral

T
S(q) = / Lq(t), 4(t)) dt (19)

where ¢ is the velocity, which is the time-derivative of position. For a given L, it can be shown using the calculus
of variations that minimization of A is equivalent to solving a system of partial differential equations

d /0L oL
7(7) ~ 2% o, (20)
dt \9q1? 0qt

called the Fuler-Lagrange Equations, or the equations of motion. Given a set of initial conditions (g(0), ¢(0)), the
solutions to the equations of motion describe the trajectory of the system.

This gives the starting point of Lagrangian mechanics — physical phenomena that satisfy it are called classical,
and span virtually all areas of physics. The behavior of particular phenomena varies according to choice of the
Lagrangian L, which fully characterizes how the system evolves over time.

For example, for g € R, take L(q,q) = T(q,q) — U(q) where T is the kinetic energy, and U is the potential
energy of the system. This describes a conservative Newtonian system.

B Appendix: Lie Group Variational Integrator for SO(2)

We start by formulating a Lagrangian with the Lie group SO(2) using matrix representations. First, define the
map from scalars w € R to 2 x 2 skew-symmetric matrices

sw=o o] (21)

The set of 2 x 2 skew-symmetric matrices forms the Lie algebra s0(2). The matrix exponential map, takes elements
of the Lie algebra to elements of the group SO(2)

cosw —sinw
R(w) = expS(w) = {sinw CosS w ] (22)
Kinematics for group elements R € SO(2) can be written in terms of Lie algebra elements as
R = RS(w), (23)

where w is analogous to angular velocity. A conservative Newtonian Lagrangian in a uniform gravitational
potential can be written in terms of the Lie group SO(2) as

1
L(R,S(w)) = §ml2w2 + mglel Re; (24)

where R = R(0) is a rotation matrix parameterized by 0, g is the gravitational acceleration and e, ey are
orthogonal unit vectors in the inertial frame of reference, e; = [1,0],e2 = [0, 1].

To develop a Lie group variational integrator, define F; € SO(2) such that

Rt+1 = RtFt~ (25)
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Since F; € SO(2), the update enforces R;11 € SO(2) since Lie groups are closed under the group action. Here,
group action is given by matrix multiplication. Then define the discretization of the action integral as

1 hmgl
LRy, Fy) = ooml®(Fi ~LF, ~ 1) + T (el Ryey + el Ry re1), (26)
which approximates the angular velocity as
. Fp-1I
S(f) = —F—=. (27)
h
Using the discrete form of Hamilton’s principle, one obtains (Meyers|, 2009) the equation
T T 2h%g T
(Fe —F;) — (Feyn —Fiyy) — ——S(e3 Riyie1) =0, (28)

which, when taken with 7 defines the Lie group variational integrator. One arrives at , written in terms of
the elements of the matrices, by subsuming the force terms into the neural network.

C Appendix: Hyperparameters for Experiments

C.1 Noisy System Observations

The setup resembles the one of |Greydanus et al.| (2019) closely. The neural network architecture for the baseline
NN, the network that parameterizes the Hamiltonian in HNNs and the one that parameterizes the VIN was
the same throughout. This was a single hidden layer feed-forward network with 200 hidden units and tanh(-)
activations on the hidden layer. The noise added to the observations was sampled from a standard Gaussian
with standard deviation o = 0.1. For the mass-spring system, we set the spring constant and mass to k = m =1,
as was done by |Greydanus et al.[ (2019)). For the pendulum, unlike the original work, we use m =1 = 1, and
g = 9.81. Training trajectories were sampled uniformly from energies ranging from [0.2, 1] for the mass-spring
system and [1.3,2.3] for the pendulum. We trained the models using ADAM with a learning rate of 1073. We
did a hyperparameter search over [2000, 5000, 10000] training steps and chose the best performing models for
comparison.

For predictions with the baseline NN and HNN, we use the procedure of |Greydanus et al.|(2019]), which uses
fourth order Runga-Kutta with an error tolerance of 10~?, implemented in SCIPY.INTEGRATE.SOLVE_IVP. For the
VIN we simply predict forwards in time using the trained network.

C.2 Pixel Observations

In all VAE experiments we used the same encoder and decoder structure. Both the encoder and decoder consisted
of two fully connected hidden layers with a 1000 hidden units and ReLU activation functions.

e Encoder: two fully-connected hidden layers with 1000 units and ReLU activation functions, followed by an
LSTM with a 50 dimensional hidden state that processed the embedded sequence in reverse to give the
variational parameters for the initial condition.

e Decoder: two fully-connected hidden layers with 1000 units and ReLU activation functions.

The dynamics networks (i.e. ResRNN, VIN-VV, VIN-SO(2), VIN-SV) all had a depth of 10 and used 10
observations as input to the encoder. The step size for the networks was chosen to be 1.0 in latent space. The
underlying fully connected network had 1000 hidden units and tanh activation functions.

We train using ADAM with a learning rate of 3.0 x 10~* until the ELBO converges on the training set, up to a
maximum of 6000 epochs through the datasets and use the parameters with the highest ELBO for evaluation.
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