
GREASE: A Generative Model for Relevance Search over
Knowledge Graphs

Tianshuo Zhou
National Key Laboratory for Novel
Software Technology, Nanjing

University, China
tianshuo.zhou@smail.nju.edu.cn

Ziyang Li
National Key Laboratory for Novel
Software Technology, Nanjing

University, China
zyli@smail.nju.edu.cn

Gong Cheng
National Key Laboratory for Novel
Software Technology, Nanjing

University, China
gcheng@nju.edu.cn

Jun Wang
Department of Computer Science,
University College London, UK

j.wang@cs.ucl.ac.uk

Yu’Ang Wei
National Key Laboratory for Novel
Software Technology, Nanjing

University, China
weiyuang@smail.nju.edu.cn

ABSTRACT
Relevance search is to find top-ranked entities in a knowledge
graph (KG) that are relevant to a query entity. Relevance is am-
biguous, particularly over a schema-rich KG like DBpedia which
supports a wide range of different semantics of relevance based
on numerous types of relations and attributes. As users may lack
the expertise to formalize the desired semantics, supervised meth-
ods have emerged to learn the hidden user-defined relevance from
user-provided examples. Along this line, in this paper we propose
a novel generative model over KGs for relevance search, named
GREASE. The model applies to meta-path based relevance where a
meta-path characterizes a particular type of semantics of relating
the query entity to answer entities. It is also extended to support
properties that constrain answer entities. Extensive experiments
on two large-scale KGs demonstrate that GREASE has advanced
the state of the art in effectiveness, expressiveness, and efficiency.

1 INTRODUCTION
Background. In a knowledge graph (KG), nodes are entities asso-
ciated with attributes and interconnected with binary relations as
edges. Increasingly many KGs have emerged for various domains,
some available as Linked Open Data. KGs for a focused domain of-
ten have a simple schema, e.g., the LinkedIn KG1 describes members,
companies, and other entities in the professional domain. There
are also generic KGs providing encyclopedic knowledge and hence
having a rich schema consisting of thousands of types of relations
and attributes, such as DBpedia [10]. We illustrate a KG in Fig. 1 as
the running example in this paper. It describes movies, their actors
and directors, and awards.

An established data mining task for KG-based applications is
relevance search [1, 5–7, 9, 15, 17, 18, 20, 22–24]. The task is es-
sentially to find entities in a KG that are the most relevant to an
input query entity. However, relevance has a broad range of mean-
ings, particularly over a schema-rich KG. For example, given Tom
Hardy as the query entity, the user may search for actresses that
co-starred with him, or for American directors that collaborated
with him. Unfortunately, non-expert users lack the expertise to

1https://www.linkedin.com/pulse/machine-learning-linkedin-knowledge-graph-qi-
he/

Matt Damon
- gender: M
- country: US

Dave Chappelle
- gender: M
- country: US

Tom Hardy
- gender: M
- country: UK

George Clooney
- gender: M
- country: US

Bradley Cooper
- gender: M
- country: US

Julia Roberts
- gender: F
- country: US

Lady Gaga
- gender: F
- country: US

Leonardo DiCaprio
- gender: M
- country: US

Christopher Nolan
- gender: M
- country: UK
- country: US

Marion Cotillard
- gender: F
- country: FR

stars
director

award

A Star Is Born
- genre: Drama
- genre: Music
- genre: Romance

Inception
- genre: Action
- genre: Sci-Fi

Suburbicon
- genre: Comedy

Ocean's Eleven
- genre: Crime

Golden
Globe

stars

stars

stars

stars

stars

director

director

award
stars

stars

stars

stars

Figure 1: An example of a knowledge graph, where each en-
tity is associated with a bulleted set of attributes.

formally characterize the desired semantics of relevance because
the formal query language and the rich schema of the KG are both
difficult to learn.

Problem. To bridge the gap between non-expert users and struc-
tured KGs, one practical solution is to request a small number of
examples from the user, and then to learn user-defined relevance
from user-provided examples [1, 3, 5, 6, 9, 15, 22, 24]. The user can
specify an example in the form of an ordered query-answer entity
pair to illustrate the desired semantics of relevance [9, 15, 22]. For
example, two different users may provide different sets of examples:

S1 = {⟨Dave Chappelle, Lady Gaga⟩,
⟨Matt Damon, Julia Roberts⟩} ,

S2 = {⟨Dave Chappelle, Bradley Cooper⟩,
⟨Matt Damon, George Clooney⟩} .

(1)

The user providing S1 aims to find entities that are relevant to Tom
Hardy just as how Lady Gaga is relevant to Dave Chappelle and
as how Julia Roberts is relevant to Matt Damon. The underlying
semantics could be actors—preferably American actresses—that
co-starred with Tom Hardy. In this case, Marion Cotillard and
Leonardo DiCaprio are acceptable answers. The user providing S2

ar
X

iv
:1

91
0.

04
92

7v
1

 [
cs

.I
R

]
 1

1
O

ct
 2

01
9

https://www.linkedin.com/pulse/machine-learning-linkedin-knowledge-graph-qi-he/
https://www.linkedin.com/pulse/machine-learning-linkedin-knowledge-graph-qi-he/

WSDM ’20, February 03–07, 2020, Houston, TX Zhou, et al.

has a different need and is looking for American male directors
and/or actors that collaborated with Tom Hardy. Now, Leonardo
DiCaprio and Christopher Nolan become good answers.

Challenges. It has been common to assume that the user-defined
relevance can be represented by one or more meta-paths [3, 6, 9,
15, 18, 20, 22, 24]. A meta-path is a sequence of relation types,
i.e., a path at the schema level. For example, the co-starring relation
underlying S1 is characterized by the following meta-path:

P1 : [query]
stars←−−−−− · stars−−−−−→ [answer] . (2)

The collaboration relation underlying S2 is characterized partially
by P1 and partially by

P2 : [query]
stars←−−−−− · director−−−−−−−−→ [answer] . (3)

The key challenge to these methods is the selection and weight-
ing of meta-paths. Existing methods train discriminative models to
directly learn the weights of meta-paths from user-provided exam-
ples [3, 6, 9, 15, 22, 24], but have exhibited the following limitations.
• Their discriminative models rely on negative examples that
are sampled automatically as the user only provides positive
examples. Identifying high-quality negative examples is al-
gorithmically challenging and computationally demanding.
• They are focused on meta-path based relevance, but can-
not support the representation of properties, such as gender
and nationality in the above example. Their capability of
characterizing user needs is somewhat limited.

Contributions. In this work we address the two challenges
and propose GREASE, a novel Generative model for RelEvAnce
SEarch over KGs. Our implementation has been open source.2 Our
contributions are summarized as follows.
• We treat the weight of a meta-path as a posterior probability,
and devise a generative model with cost-effective approxima-
tions. Our model does not rely on negative examples, and
has outperformed existing methods in both effectiveness and
efficiency in the experiments.
• We extend the model to support not only meta-path based
relevance of answer entities to the query entity, but also
properties that constrain answer entities. The extension allows
to represent more expressive user-defined relevance.

Organization.We formulate the problem in Section 2. Our gen-
erative model is described in Section 3, and is extended to support
properties in Section 4. Based on that, our search algorithm is given
in Section 5. We report experiments in Section 6, compare related
work in Section 7, and finally conclude the paper in Section 8.

2 PROBLEM FORMULATION
Let R denote the set of all real numbers. We assume countable pair-
wise disjoint sets of entitiesV , relation types R, attribute types A,
and attribute values L.

Definition 2.1 (Knowledge Graph). A knowledge graph (KG) is a
directed graph denoted by G = ⟨V ,E,Ψ⟩, where
• V ⊆ V is a finite set of entities represented as nodes,
• E ⊆ V × R × V is a finite set of relations between entities
represented as directed edges, and

2http://ws.nju.edu.cn/relevance/grease/

• Ψ : V 7→ P(A × L), where P(·) represents power set, is a
function that associates each entity v ∈ V with a finite set
of attributes Ψ(v) ⊆ A × L.

For an entity v ∈ V , its properties consist of

Φ(v) = {⟨a, l⟩ : ⟨a, l⟩ ∈ Ψ(v) or ⟨v,a, l⟩ ∈ E} . (4)

For example, in Fig. 1, the properties of Suburbicon consist of an
attribute ⟨genre, Comedy⟩ and two relations ⟨stars, Matt Dameon⟩
and ⟨director, George Clooney⟩.

We define path in a standard way. It is acyclic, and its edges
are not required to follow the same direction. However, in the
remainder of the paper we always write right arrows and rewrite

left arrow
r←− as r−1−−−→, where r−1 represents the inverse of r ∈ R. We

write a path p : v0
r1−−→ v1

r2−−→ · · ·
rl−−→ vl from v0 to vl as v0 ⇝p vl

for short. The length of a path is the number of its edges.

Definition 2.2 (Meta-Path). A meta-path is a sequence of relation
typesP : r1r2 · · · rl , where r1, . . . , rl ∈ R are relation types (or their
inverses), and l is called the length of P denoted by len(P) = l .
A path p in a KG follows P, denoted by p |= P, if p is in the form
of p : v0

r1−−→ v1
r2−−→ · · ·

rl−−→ vl .

For example, the two meta-paths shown in Eq. (2) and Eq. (3) are
formalized as follows:

P1 : stars−1 stars , P2 : stars−1 director . (5)

Their lengths are both 2. P2 is followed by path

Tom Hardy
stars−1−−−−−−−→ Inception

director−−−−−−−−→ Christopher Nolan .
(6)

Definition 2.3 (Relevance Search). Given a KG denoted by G =
⟨V ,E,Φ⟩, let rel : V × V 7→ R be a user-defined real-valued
function. For u,v ∈ V , rel(u,v) returns the relevance of v to u.
Let k < |V | be a predetermined positive integer. For an input query
entity q ∈ V , relevance search is to find top-k answer entities
Ans(q) ⊆ (V \ {q}) that are the most relevant to q in terms of rel.

Following [9, 15, 22], we assume the user provides a small number
of ordered query-answer entity pairs as examples, to exemplify the
desired rel which is not directly accessible to the search system.

Definition 2.4 (Relevance Search by Example). Extending Defi-
nition 2.3, the problem turns into learning a function rel under
the supervision of a set of user-provided examples denoted by S .
Each example is an ordered query-answer entity pair ⟨s, t⟩ ∈ V ×V ,
where s is called the source entity and t is the target entity, such
that v ∈ Ans(q) is relevant to q just as how t is relevant to s .

For example, S1 and S2 in Eq. (1) are two sets of examples for the
query entity Tom Hardy. They indicate different rel functions.

3 GENERATIVE RELEVANCE MODEL
Following Definition 2.4, the rel function is conditioned on a set
of user-provided examples S , so we rewrite rel(q,v) as rel(q,v |S).
Previous research computes meta-path based relevance [3, 6, 9,
15, 18, 20, 22, 24]. Along this line, we decompose rel into a linear

http://ws.nju.edu.cn/relevance/grease/

GREASE: A Generative Model for Relevance Search over Knowledge Graphs WSDM ’20, February 03–07, 2020, Houston, TX

combination of weighted relevance over a set of meta-paths denoted
by Ωmp = {P1, . . . ,Pn }:

rel(q,v |S) =
∑
Pi ∈Ωmp

γ (q,v |Pi) · Pr(Pi |S) · J(Pi) , (7)

where γ (q,v |Pi) measures the real-valued relevance of v to q w.r.t.
a particular meta-path Pi , Pr(Pi |S) represents the weight of Pi ,
and J(Pi) is a regularization term to prevent overfitting. Meta-paths
and their weights are to be learned from S . For example, with S1
in Eq. (1), the meta-path P1 in Eq. (5) should have a large weight
because for every example in S1, there exists a path in Fig. 1 that
follows P1 and connects the source entity to the target entity.

To establish rel, below we describe the selection of Ωmp, and
the computation of γ , Pr, and J.

3.1 Meta-Path Selection
As rel is exemplified by S , we select Ωmp based on S . Our Ωmp
contains all possible meta-paths that can be derived from S . A
meta-path Pi is in Ωmp if there exists a path in the KG such that it
follows Pi and it connects the source entity to the target entity in
some user-provided example:

Ωmp =
⋃
⟨s,t ⟩∈S

{P : ∃p |= P, s ⇝p t} . (8)

3.2 Meta-Path Based Relevance
Extensive research has been conducted to measure the relevance
of v to q w.r.t. a particular meta-path Pi [9, 17, 19, 20, 23]. This is
outside the focus of this paper, and we extend path count [19] as
our measure:

γ (q,v |Pi) = min{pc(q,v,Pi), αmp} ,
pc(q,v,Pi) = |{p : p |= Pi and q ⇝p v}| , (9)

where pc(q,v,Pi) represents the number of paths in the KG that
follow Pi and connect q to v , and αmp > 0 is a parameter to limit
the value of pc and prevent highly skewed values. For example, in
Fig. 1, for P2 in Eq. (5) we have

pc(Tom Hardy, Christopher Nolan, P2) = 1 , (10)

because there is only one path shown in Eq. (6) that follows P2 and
connects Tom Hardy to Christopher Nolan.

3.3 Generative Meta-Path Weighting
Weighting scheme is the key to the effectiveness of the rel function,
and is the focus of our work. Different from existing discriminative
methods [3, 6, 9, 15, 22, 24], we treat weight Pr(Pi |S) as a posterior
probability and propose a novel generative model. In the following,
we will also use Pr(·) to denote the probability of an event. We
estimate probabilities based on the KG and learn Pr(Pi |S) from S .

Specifically, we rewrite Pr(Pi |S) using Bayes’ theorem:

Pr(Pi |S) =
Pr(Pi) · Pr(S |Pi)

Pr(S) ∝ Pr(Pi) · Pr(S |Pi) , (11)

where the posterior Pr(Pi |S) is proportional to the prior Pr(Pi)
times the likelihood Pr(S |Pi). Below we separately compute the
prior and the likelihood.

Computation of the Prior. For the prior Pr(Pi), recall that a
meta-path is a sequence of relation types Pi : r1r2 · · · rl . We as-
sume the probability of observing the i-th relation type ri in the
context history of the preceding (i − 1) relation types r1r2 · · · ri−1
can be approximated by the probability of observing it in the short-
ened context history of the preceding relation type ri−1, i.e., the
first-order Markov property. This assumption is reasonable and also
common on graphs. Specifically, random walks on graphs satisfy
this property. Formally, we have

Pr(Pi) = Pr(r1r2 · · · rl) = Pr(r1)
l∏
i=2

Pr(ri |r1r2 · · · ri−1)

≈ Pr(r1)
l∏
i=2

Pr(ri |ri−1) ,

(12)

which in turn will give rise to the following estimation of Pr(Pi) if
we estimate Pr(r1) and Pr(ri |ri−1) from frequency counts:

Pr(Pi) ∝ pc(r1)
l∏

i=2

pc(ri−1ri)
pc(ri−1)

, (13)

where pc(P) represents the number of paths in the KG that follow
meta-path P:

pc(P) = |{p : p |= P}| . (14)

In Eq. (13), computing pc according to Eq. (14) is inexpensive
because those meta-paths are very short, being not longer than 2.
For example, in Fig. 1, for P1 and P2 in Eq. (5) we have

pc(P1) = 18 , pc(P2) = 7 . (15)

Meanwhile, as the reverse direction of Pi is also meaningful, we
can use the probability of observing the i-th relation type ri in the
context history of the succeeding relation type ri+1, and then make
assumptions and estimate probabilities in a similar way:

Pr(Pi) ∝ pc(rl)
l−1∏
i=1

pc(riri+1)
pc(ri+1)

. (16)

To improve the robustness of our model, we take the arithmetic
mean of Eq. (13) and Eq. (16) as the final value of Pr(Pi).

This arithmetic mean also provides an approximation of pc(P)
for a long meta-path P. The approximation is useful because it may
be infeasible to compute the exact frequency count in Eq. (14) on a
large KG when P is long. Formally, for P : r1r2 · · · rl , let apc(P)
denote this approximation of pc(P). We have

apc(P) =
{
pc(P) len(P) ≤ 2 ,
1
2 (apcstart(P) + apcend(P)) len(P) > 2 ,

(17)

where apcstart and apcend denote the right-hand side of Eq. (13)
and Eq. (16), respectively. This approximation will be used later.

Computation of the Likelihood. For the likelihood Pr(S |Pi),
the user-provided examples in S are trivially considered to be con-
ditionally independent given Pi :

Pr(S |Pi) =
∏
⟨s,t ⟩∈S

Pr(⟨s, t⟩|Pi) . (18)

WSDM ’20, February 03–07, 2020, Houston, TX Zhou, et al.

Pr(⟨s, t⟩|Pi) represents the probability that a path following Pi
connects s to t , which we estimate from frequency counts:

Pr(⟨s, t⟩|Pi) ≈
pc(s, t ,Pi)
apc(Pi)

, (19)

where pc(s, t ,Pi) is computed by Eq. (9), and apc(Pi) is an approx-
imation of pc(Pi) computed by Eq. (17).

To improve the robustness of our model, smoothing is needed
to avoid cases where pc(s, t ,Pi) = 0 which in turn will lead to
Pr(S |Pi) = 0. In such a case, we replace the zero value of pc(s, t ,Pi)
with the following small non-zero value:

apc(Pi)
|ST(s)| · |ST(t)| , (20)

where apc(Pi) is computed by Eq. (17), and ST(·) denotes the set of
entities that have the same (most specific) type as a given entity.
Type is an attribute appearing in almost every KG. The above value
represents the average number of paths that follow Pi and connect
two entities of the same type as s and as t .

3.4 Regularization
Long meta-paths are complex and may overfit user-provided exam-
ples. We impose a penalty on the complexity of Pi . Specifically, we
penalize long meta-paths with the following regularization term:

J(Pi) = e−β ·len(Pi) , (21)

where len(Pi) denotes the length of Pi , and β > 0 is a decay factor.

4 EXTENDED FACET-BASED RELEVANCE
Previous research only computes meta-path based relevance [3,
6, 9, 15, 18, 20, 22, 24]. We extend meta-paths to facets. A facet is
either a meta-path or a property that constrains answer entities.
Accordingly, we extend the rel function in Eq. (7) by adding a
linear combination of weighted relevance over a set of properties
denoted by Ωprop = {⟨a1, l1⟩, . . . , ⟨an , ln⟩}:

rel(q,v |S) =
∑
Pi ∈Ωmp

γ (q,v |Pi) · Pr(Pi |S) · J(Pi)

+
∑

⟨ai ,li ⟩∈Ωprop

γ (q,v |⟨ai , li ⟩) · Pr(⟨ai , li ⟩|S) ,
(22)

where γ (q,v |⟨ai , li ⟩) measures the real-valued relevance of v to q
w.r.t. a particular property ⟨ai , li ⟩, and Pr(⟨ai , li ⟩|S) represents the
weight of ⟨ai , li ⟩. A property is already simple and hence regu-
larization is not needed. Properties and their weights are also to
be learned from S . For example, with S1 in Eq. (1), two properties
⟨gender, F⟩ and ⟨country, US⟩ should have large weights because
they constrain all the target entities in S1.

To establish the extended rel, below we describe the selection
of Ωprop, and the computation of γ and Pr for properties.

4.1 Property Selection
A property ⟨ai , li ⟩ is in Ωprop if it constrains the target entity in
some user-provided example:

Ωprop =
⋃
⟨s,t ⟩∈S

Φ(t) . (23)

4.2 Property-Based Relevance
We measure the relevance of v w.r.t. ⟨ai , li ⟩ according to whether
⟨ai , li ⟩ is a property that constrains v , which is independent of q:

γ (q,v |⟨ai , li ⟩) =
{
αprop ⟨ai , li ⟩ ∈ Φ(v) ,
0 ⟨ai , li ⟩ < Φ(v) ,

(24)

where αprop > 0 is a parameter to tune the importance of properties
relative to meta-paths in the computation of the extended rel.

4.3 Generative Property Weighting
Similar to our generative model for weighting meta-paths, we treat
weight Pr(⟨ai , li ⟩|S) as a posterior probability, and rewrite it using
Bayes’ theorem:

Pr(⟨ai , li ⟩|S) ∝ Pr(⟨ai , li ⟩) · Pr(S |⟨ai , li ⟩) , (25)

where the posterior Pr(⟨ai , li ⟩|S) is proportional to the prior Pr(⟨ai , li ⟩)
times the likelihood Pr(S |⟨ai , li ⟩). Below we separately compute
the prior and the likelihood.

Computation of the Prior. For the prior Pr(⟨ai , li ⟩), it repre-
sents the probability that the property ⟨ai , li ⟩ constrains an entity
in the KG, which we estimate from frequency counts:

Pr(⟨ai , li ⟩) =
|{v ∈ V : ⟨ai , li ⟩ ∈ Φ(v)}|

|V | , (26)

where V is the set of entities in the KG.
Computation of the Likelihood. For the likelihood Pr(S |⟨ai , li ⟩),

similar to Eq. (18), the user-provided examples in S are trivially
considered to be conditionally independent given ⟨ai , li ⟩:

Pr(S |⟨ai , li ⟩) =
∏
⟨s,t ⟩∈S

Pr(⟨s, t⟩|⟨ai , li ⟩) =
∏
⟨s,t ⟩∈S

Pr(t |⟨ai , li ⟩) ,

(27)

where the last equation holds because the property ⟨ai , li ⟩ con-
strains answer entities which correspond to the target entity t in
a user-provided example, and hence ⟨ai , li ⟩ is independent of the
source entity s in the example.

Pr(t |⟨ai , li ⟩) represents the probability that an entity constrained
by ⟨ai , li ⟩ is t , which we estimate from frequency counts:

Pr(t |⟨ai , li ⟩) =
{

1
| {v ∈V :⟨ai ,li ⟩∈Φ(v)} | ⟨ai , li ⟩ ∈ Φ(t) ,
0 ⟨ai , li ⟩ < Φ(t) .

(28)

To improve the robustness of ourmodel, smoothing is also needed
here to avoid cases where Pr(t |⟨ai , li ⟩) = 0 which in turn will lead
to Pr(S |⟨ai , li ⟩) = 0. In such a case, we replace the zero value
of Pr(t |⟨ai , li ⟩) with a small non-zero value 1

|V | .

5 SEARCH ALGORITHM
Finally, we present an efficient implementation to support learning
the proposed model from user-provided examples in an online
environment and returning answer entities promptly.

5.1 Algorithm
The full GREASE algorithm is presented in Fig. 2. MPSearch (line 1)
finds Ωmp which is defined by Eq. (8). It performs |S | bidirectional
searches—one for each example in S , starting simultaneously from
the source entity and the target entity. The search space is restricted

GREASE: A Generative Model for Relevance Search over Knowledge Graphs WSDM ’20, February 03–07, 2020, Houston, TX

Input: A KGG = ⟨V ,E,Ψ⟩, a query entity q, a set of user-provided
examples S , an upper bound L on the length of allowable meta-
paths, and a positive integerm.

Output: k top-ranked entities that are relevant to q.
1: Ωmp ←MPSearch(G, S,L);
2: Ωprop ←

⋃
⟨s,t ⟩∈S Φ(t);

3: Ω ← Ωmp ∪ Ωprop;
4: for all Ωi ∈ Ω do
5: Compute Pr(Ωi |S);
6: end for
7: Ωtop ←m meta-paths in Ωmp with the largest weights;
8: C ← ⋃

Pi ∈Ωtop {v ∈ V : ∃p |= Pi , q ⇝p v};
9: for all v ∈ C do
10: Compute rel(q,v |S);
11: end for
12: return k top-ranked entities in C

Figure 2: The GREASE algorithm.

to meta-paths that are not longer than L, which is a predetermined
upper bound. Then we find Ωprop (line 2) which is defined by
Eq. (23). Ωmp and Ωprop comprise Ω (line 3), namely all the facets
to consider for computing rel in Eq. (22). For each facet Ωi ∈ Ω, we
compute Pr(Ωi |S) according to Section 3.3 and Section 4.3 (lines 4–
6). Them meta-paths in Ωmp with the largest weights are denoted
by Ωtop (line 7). All the entities that are connected from q by a
path following a meta-path in Ωtop form candidate answer entities,
denoted by C (line 8). Here, we only usem meta-paths to identify
candidate answer entities for efficiency considerations. For each
candidate answer entity, its extended relevance to q is computed
(lines 9–11), and the k top-ranked ones are returned.

5.2 Indexing
To support efficient computation in an online environment, we
precompute and index the following statistics.

We index the frequency counts for all the meta-paths in the KG
that are not longer than 2, so their pc values defined by Eq. (14) are
retrievable in O(1), and for any other meta-path, its approximate
pc value (i.e., apc) defined by Eq. (17) is computable in O(L).

We also index the frequency counts for all the properties in the
KG, so Eq. (26) and Eq. (28) are computable in O(1).

We index the frequency counts for all the entity types in the KG,
so |ST(·)| in Eq. (20) is computable in O(1).

5.3 Complexity Analysis
Let ∆ be the maximum degree of the nodes in the KG. Let Ξ be the
maximum number of properties that constrain an entity in the KG.
Ωmp is computed in O(|S | · ∆ ⌈

L
2 ⌉) using bidirectional search, and

Ωprop is computed in O(|S | · Ξ).
To compute the posterior Pr(Ωi |S), when Ωi is a meta-path Pi ,

the prior Pr(Pi) is computed by Eq. (13) and Eq. (16) in O(L), and
the likelihood Pr(S |Pi) is computed by Eq. (18) inO(L + |S |) where
pc(s, t ,Pi) has been computed duringMPSearch.WhenΩi is a prop-
erty ⟨ai , li ⟩, the prior Pr(⟨ai , li ⟩) is computed by Eq. (26) in O(1),
and the likelihood Pr(S |⟨ai , li ⟩) is computed by Eq. (27) in O(|S |).

Table 1: Statistics about KGs

KG Entity Relation Relation Attribute
Type Type

DBpedia 2016-10 5,900,558 18,746,174 661 2,065(Mappingbased Objects)
YAGO 3.1 4,295,825 12,430,700 37 1(yagoFacts)

The candidate answer entities C are computed in O(m · ∆L).
The computation of the rel function does not further increase

the asymptotic time complexity of the algorithm.
To conclude, in practice, the running time of the entire algorithm

is probably dominated by MPSearch.

6 EXPERIMENTS
We empirically compared our approach with several state-of-the-
art methods based on a variety of queries over two popular KGs.
Both effectiveness and efficiency were tested.

6.1 Datasets
Knowledge Graphs. Our experiments were based on two popular
large-scale KGs: DBpedia [10] (version 2016-10) and YAGO [13]
(version 3.1). For DBpedia, we obtained a KG from two files: Map-
pingbased Objects and Instance Types. For YAGO, we obtained a KG
from two files: yagoFacts and yagoSimpleTypes. The files are in RDF
format, where RDF literals and types were treated as attributes, and
the other RDF triples became relations. Some statistics about these
KGs are summarized in Table 1. Note that YAGO was to be used
with the queries created in [6] where attributes are not involved.
So we followed [6] to only import yagoFacts and yagoSimpleTypes
which contain relations but no attributes except for type.

Queries. We reused 320 query instances3 given in [6] which
were divided into 8 groups (D11–D14 and Y1–Y4). However, this
dataset is still limited in two aspects. First, attributes are not consid-
ered. Second, the query entity is required to appear as the source
entity in every user-provided example, because the method pro-
posed in [6] was specifically designed for this scenario. To overcome
these two limitations, we created 800 query instances4 which were
divided into 10 groups (D1–D10).

Our creation of D1–D10 followed a common practice in related
work [6, 22]. Compared with D11–D14 and Y1–Y4 created in [6],
our D1–D10 are more generalized as they allow the source entity in
a user-provided example to be different from the query entity, and
they are more challenging as D6–D10 involve properties. In general,
their desired semantics of relevance are more complex than all the
known queries used in the literature.

Specifically, each group of D1–D10 contains 80 query instances,
and their desired semantics of relevance are represented by the
same set of predefined facets. We sampled 100 random source-
target entity pairs from DBpedia as a pool such that their relevance
conformed to the predefined semantics. We chose 20 random pairs
from the pool and took their source entities as our query enti-
ties. For each query entity, based on the predefined semantics of

3http://ws.nju.edu.cn/relevance/relsue/
4http://ws.nju.edu.cn/relevance/grease/

http://ws.nju.edu.cn/relevance/relsue/
http://ws.nju.edu.cn/relevance/grease/

WSDM ’20, February 03–07, 2020, Houston, TX Zhou, et al.

Table 2: Query Groups with Examples

Desired Semantics (Facets) Example Query and Answers
Query Entity User-Provided Examples Query Intent Answer Entities

D1 starring−1 director Howard Duff ⟨Stephen Wight, Susan Tully⟩ director of a movie starring Howard
Duff

George Sherman
⟨Vijay Chavan, Kedar Shinde⟩ Andre deToth

D2 almaMater−1 foundedBy−1 Bowdoin College ⟨Duke University, Duolingo⟩ organization founded by a Bowdoin
alumnus

Netflix
⟨Yale University, Allied Corp⟩ Pure Software

D3 starring starring−1 Charlie Chaplin ⟨Bam Margera, Brandon Novak⟩ actor and also director of a movie star-
ring Charlie Chaplin

Mack Swain
starring director−1 ⟨Rahul Bose, Koel Purie⟩ Lloyd Bacon

D4 almaMater almaMater−1 Hagan Bayley ⟨Ewan Birney, Antony Galione⟩ Hagan Bayley’s schoolmate that won
the same award

John Mollon
award award−1 ⟨George Porter, Charles Coulson⟩ Henry Gilman

D5 architecturalStyle architecturalStyle−1 De Rohan Arch ⟨Morson’s Row, PaceKing House⟩ architecture with the same style and lo-
cation as the De Rohan Arch

Hompesch Gate
location location−1 ⟨Evergreen (Virginia), Greer House⟩ La Borsa

D6 starring−1 director director−1 Tanya Chisholm ⟨Casey Kasem, Fantastic Max⟩ comedy directed by the director of a
movie starring Tanya Chisholm

The Last Halloween
⟨genre, Comedy⟩ ⟨Michael Milhoan, Party Down⟩ A Fairly Odd Summer

D7 almaMater almaMater−1 foundedBy−1 Vitalik Buterin ⟨Peter Clyne, SpringSource⟩ software company founded by Vitalik
Buterin’s schoolmate

Databricks
⟨industry, Software⟩ ⟨Felix Villars, Lightbend Inc.⟩ Waterloo Maple

D8 influenced−1 influenced Leo Strauss ⟨Denis Diderot, Leonhard Euler⟩ physicist influenced by the same person
as Leo Strauss

Isaac Newton
⟨field, Physics⟩ ⟨Herbert Feigl, Albert Einstein⟩ David Hilbert

D9 affiliation affiliation−1 Carleton College ⟨Viterbo University, Fisk University⟩ private school affiliated with the same
organization as Carleton College

Manhattan College
⟨type, Private school⟩ ⟨Verdon College, DePaul University⟩ Drake University

D10 museum−1 author Metropolitan Museum of Art ⟨National Gallery, Georges Seurat⟩ Parisian artist with artworks housed by
Metropolitan Museum of Art

Georges Seurat
⟨birthPlace, Paris⟩ ⟨Van Gogh Museum, Robert Delaunay⟩ Jacques-Louis David

relevance, we labeled gold-standard answer entities, and created
4 query instances by choosing different numbers of random pairs
from the pool as user-provided examples: |S | ∈ {2, 3, 4, 5}. Table 2
illustrates each group with one query instance under |S | = 2 and
two of its gold-standard answer entities.

The creation of D11–D14 and Y1–Y4 in [6] adopted a similar
procedure, and we refer the reader to [6] for details. D11–D14 are
based on DBpedia, and Y1–Y4 are based on YAGO. Each group
contains 40 query instances.

6.2 Baselines
To compare with the state of the art, we chose five strong baselines:
PRA [9], RelSim [22], RelSUE [6], ProxE [11], and D2AGE [12]. We
intended to also compare with FSPG [15], but we could not obtain
its implementation from its authors and we failed to re-implement
it due to some missing details in the algorithm.

All the chosen baseline methods except for RelSUE could be
tested with all the query instances in our experiments. RelSUE
requires the query entity to appear as the source entity in every
user-provided example, so it could only be tested with D11–D14
and Y1–Y4 created by the authors of RelSUE.

We obtained implementations of RelSUE, ProxE, and D2AGE
from their authors, and we re-implemented PRA and RelSim. For
PRA, RelSim, ProxE, and D2AGE, we consistently set their bounds
on meta-path length to 3, being sufficiently large for representing
all the semantics of relevance in our experiments. RelSUE automat-
ically generated meta-paths of varied lengths.

PRA, RelSim, and RelSUE automatically sampled 10 · |S | negative
examples for training. For ProxE and D2AGE, a training example is
a triple ⟨u,v,w⟩ where entity v is more relevant to query entity u
than entityw . We generated 100 such triples for each query instance
by extending our positive example ⟨u,v⟩ with a random entityw
having the same type as v .

Table 3: NDCG@10 on D1–D5

Method |S | = 2 |S | = 3 |S | = 4 |S | = 5
PRA 0.535 0.636 0.599 0.639

RelSim 0.452 0.562 0.555 0.575
ProxE 0.484 0.467 0.480 0.503
D2AGE 0.549 0.509 0.555 0.637
GREASE 0.782 0.737 0.734 0.763

GREASE-np 0.846 0.850 0.865 0.862

Table 4: NDCG@10 on D6–D10

Method |S | = 2 |S | = 3 |S | = 4 |S | = 5
PRA 0.295 0.293 0.337 0.339

RelSim 0.329 0.403 0.428 0.439
ProxE 0.445 0.440 0.450 0.426
D2AGE 0.366 0.381 0.397 0.401
GREASE 0.831 0.840 0.866 0.874

6.3 Configuration and Variant of GREASE
For our proposed approach GREASE, by default we set αmp = 5 in
Eq. (9), αprop = 2 in Eq. (24), β = 10 in Eq. (21), L = 3 andm = 3 in
Algorithm 2. A parameter study will be reported in Section 6.5.

For D1–D5, D11–D14, and Y1–Y4 where only meta-paths but
no properties are involved, we implemented a variant of GREASE
using only meta-paths as facets, denoted by GREASE-np.

6.4 Effectiveness Evaluation
Evaluation Metric. For each query instance, the gold standard is
a set of relevant answer entities. Each tested method computed
k top-ranked answer entities. Their quality was measured by the
Normalized Discounted Cumulative Gain (NDCG) at rank posi-
tion k , referred to as NDCG@k . Due to space limitations, we only
present NDCG@10 scores (i.e., k = 10).

GREASE: A Generative Model for Relevance Search over Knowledge Graphs WSDM ’20, February 03–07, 2020, Houston, TX

Table 5: NDCG@10 on D11–D14

Method |S | = 2 |S | = 3 |S | = 4 |S | = 5
PRA 0.465 0.520 0.550 0.568

RelSim 0.644 0.656 0.654 0.666
RelSUE 0.901 0.952 0.948 0.971
ProxE 0.410 0.402 0.410 0.371
D2AGE 0.627 0.672 0.746 0.697
GREASE 0.971 0.978 0.953 0.973

GREASE-np 0.995 0.968 0.942 0.968

Table 6: NDCG@10 on Y1–Y4

Method |S | = 2 |S | = 3 |S | = 4 |S | = 5
PRA 0.215 0.144 0.144 0.181

RelSim 0.274 0.336 0.357 0.367
RelSUE 0.770 0.843 0.873 0.880
ProxE 0.568 0.592 0.562 0.608
D2AGE 0.670 0.637 0.735 0.647
GREASE 0.724 0.861 0.860 0.900

GREASE-np 0.673 0.677 0.674 0.703

Results on D1–D5. The average NDCG@10 scores on D1–D5
are presented in Table 3. The results are categorized by number
of user-provided examples (i.e., |S |). GREASE outperformed all
the baselines by at least 0.101–0.233 under different values of |S |.
GREASE-np achieved even higher scores, exceeding the baselines
by at least 0.214–0.297. Recall that for the query instances in D1–D5,
their desired semantics of relevance are represented by only meta-
paths. Therefore, the superiority of GREASE-np over the baselines
demonstrated the effectiveness of our proposed generative model
for weighting meta-paths.

Compared with GREASE-np, the small drops in GREASE’s scores
suggested that its extendedmodelmistakenly assigned largeweights
to some properties. The extended model is expressive in character-
izing user-defined relevance but is then more prone to errors due
to the expansion of the search space. Nevertheless, the satisfying
performance of GREASE showed that it achieved a good trade-off
between expressiveness and accuracy.

Another finding was GREASE and GREASE-np already achieved
high scores when |S | = 2. Their performance did not increase
notably when |S | increased. It indicated that using our approach,
users can obtain quite accurate answers with a small effort.

Results onD6–D10. The average NDCG@10 scores on D6–D10
are presented in Table 4. Query instances in D6–D10 require using
properties that constrain answer entities. Not surprisingly, GREASE
largely surpassed all the baselines by at least 0.386–0.435 under
different values of |S |, as it was the only method that explicitly pro-
cessed properties. It confirmed the expressiveness of our extended
model in supporting the representation of user-defined relevance.

Results onD11–D14 andY1–Y4.The averageNDCG@10 scores
on D11–D14 and Y1–Y4 are presented in Table 5 and Table 6, respec-
tively. Query instances in D11–D14 and Y1–Y4 represent a special
case of our problem, where the query entity appears as the source
entity in every user-provided example. RelSUE was specifically

L=1 L=2 L=3 L=40.0

0.2

0.4

0.6

0.8

1.0

N
D
C
G
@
10

GREASE/D1-D5 GREASE-np/D1-D5 GREASE/D6-D10

m=2 m=4 m=60.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

αprop=1 αprop=3 αprop=5 αprop=70.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

β=2 β=6 β=10 β=14 β=18 β=220.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
D
C
G
@
10

αmp=2 αmp=4 αmp=6 αmp=80.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 3: Influence of parameters on our approach.

optimized for this scenario and represented the state of the art. Its
scores were very high on D11–D14, in the range of 0.901–0.972
under different values of |S |. GREASE performed even better, al-
though their differences were not large: 0.002–0.070. On Y1–Y4,
GREASE led when |S | = 3 and |S | = 5, whereas RelSUE was better
when |S | = 2 and |S | = 4. We concluded that GREASE was com-
parable with RelSUE in this special setting. It demonstrated the
effectiveness and generalizability of our approach.

6.5 Parameter Study
In Fig. 3, we present the influence of the five parameters on our
approach: L,m, αprop, β , and αmp.

L andm in Algorithm 2 tune the trade-off between expressive-
ness and efficiency in our approach. L bounds the length of allow-
able meta-paths, and m bounds the number of meta-paths used
to identify candidate answer entities. All the desired semantics of
relevance in our experiments can be represented by meta-paths not
longer than 3. GREASE exactly peaked when L = 3. Its scores did
not change much when L increased to 4. That would give us more
flexibility in practice. As tom, our approach achieved good results
whenm was small, owing to the high quality of the computed meta-
paths with the largest weights. When m was larger, more noise
could be introduced, but the performance of our approach appeared
rather stable.

αprop in Eq. (24) tunes the importance of properties relative to
meta-paths. On D1–D5 where properties are not needed, larger
values of αprop led to poorer results. The setting of this parameter
would depend on the needs of the application.

β in Eq. (21) tunes the degree of penalizing long meta-paths to
prevent overfitting. αmp in Eq. (9) bounds the value of path count
to prevent highly skewed values. The performance of GREASE was
more sensitive to β on D1–D5 than on D6–D10, because D1–D5
totally rely on meta-paths. The performance was generally not
very sensitive to αmp unless it was inappropriately set to 1 which
disabled path count.

WSDM ’20, February 03–07, 2020, Houston, TX Zhou, et al.

D1-D5 D6-D10 D11-D14 Y1-Y4
0.1

1
10

100
1000

10000

 R

un
ni

ng
 T

im
e

(s
)

PRA RelSim RelSUE ProxE D2AGE GREASE

Figure 4: Average running time per query instance.

6.6 Efficiency Evaluation
Our experiments were performed on a 3.40GHz Xeon. The pre-
computed indexes for GREASE only used 190MB for DBpedia and
123MB for YAGO.

In Fig. 4, for each method we report its average running time per
query instance. GREASE satisfyingly completed a search task in
less than 1s on DBpedia (D1–D14), at least an order of magnitude
faster than all the baselines. It used less than 10s on YAGO (Y1–Y4),
being comparable with RelSUE which was optimized for this special
scenario. The results demonstrated the efficiency of our approach.

PRA, RelSim, and GREASE ran slower on YAGO than on DBpedia.
These methods search the KG to generate all possible meta-paths of
a bounded length. YAGO contains much more paths to explore than
DBpedia—about 40 times in our experiments, due to the existence
of hub nodes in YAGO.

In Fig. 5, we show the influence of |S | on the efficiency of GREASE.
The influence was not significant on DBpedia (D1–D14), which sug-
gested the scalability of our approach. However, on YAGO (Y1–Y4),
the running time exhibited a linear correlation with |S |.

7 RELATEDWORK
7.1 Unsupervised Similarity Search
Relevance search originates from similarity search, for which meth-
ods are mainly based on random walks. ObjectRank [2] computes
the stationary probability that a random surfer starting from the
query entity is at a particular entity as their similarity. PathSim [20]
requires random walks to follow a predefined meta-path, to com-
pute similarity with a specified type of semantics. JoinSim [23]
uses a slightly different measure. PReP [18] extends PathSim and
JoinSim. It computes cross-meta-path synergy, which goes beyond
a linear combination of meta-paths. In [7], meta-path is extended
to meta-structure which is a directed acyclic graph.

These methods have found application in entity resolution and
entity clustering [21] where similarity measurement is the core task.
However, similarity is only one special type of relevance. Without
the supervision of the user, these methods are not suitable for the
more generalized relevance search because they cannot distinguish
between a wide range of semantics of relevance on a KG.

7.2 Supervised Relevance Search
Relevance is rather ambiguous on a schema-rich KG. Unfortunately,
users may not have the expertise to formally characterize the de-
sired semantics of relevance, due to the complexity of the query

|S| = 2 |S| = 3 |S| = 4 |S| = 50.0

0.1

0.2

0.3

R
un

ni
ng

 T
im

e
(s

)

D1-D5 D6-D10 D11-D14

|S| = 2 |S| = 3 |S| = 4 |S| = 55

6

7

8

9
Y1-Y4

Figure 5: Average running time of GREASE per query in-
stance.

language or the richness of the schema. In order to learn user-
defined relevance, existing methods are mainly supervised by user-
provided examples. An early work is SRW [1], which leverages
user-provided examples to supervise random walks for computing
relevance. In [3, 24], predefined meta-paths are used to constrain
random walks, and user-provided examples are used to learn the
weights of the meta-paths. However, it is unrealistic to predefine
meta-paths for all possible types of information needs that users
may have on a schema-rich KG. It is also difficult for a non-expert
user to identify appropriate meta-paths from numerous candidates.

To tackle the problem, PRA [9] and RelSim [22] automatically
generate all possible meta-paths but they have to bound the length
of an allowable meta-path because the number of possible meta-
paths increases exponentially with length. In [5], length-bounded
meta-path is extended to size-bounded meta-graph. In FSPG [15]
and RelSUE [6], there is no explicit length bound, but long meta-
paths are penalized and hence are more likely to be pruned in their
greedy search algorithms. All these methods train a discriminative
model to learn the weight of each meta-path or meta-graph from
user-provided positive examples and randomly sampled negative
examples. By contrast, we present a generative model which does
not rely on negative examples. It outperforms the above discrimina-
tive methods in the experiments, in both effectiveness and efficiency.
Moreover, our approach generalizes meta-paths into facets which
also include properties that constrain answer entities, and hence it
supports more expressive representation of user-defined relevance.

Some recent efforts learn graph embedding models for rele-
vance [11, 12]. However, they did not show better performance
than other methods in our experiments. Their complex models may
be more suitable for the link prediction task [4, 14], where large
training sets are available. In relevance search, a user is not likely
to provide many examples to supervise.

7.3 Other Related Problems
Other related problems include graph query by example [8] and
exemplar query answering [16], but their technical challenges and
methods are fundamentally different. Their input is a tuple of enti-
ties [8] or a keyword query [16] provided by the user as an example.
The example is expanded [8] or mapped [16] into a subgraph of the
KG, called a query graph, to capture the user’s query intent. The
output is a set of other top-ranked subgraphs of the KG that are
similar to the query graph. By contrast, relevance search is mainly
focused on the selection, weighting, and combination of meta-paths
to represent the user-defined relevance between the source entity
and the target entity in the user-provided examples.

GREASE: A Generative Model for Relevance Search over Knowledge Graphs WSDM ’20, February 03–07, 2020, Houston, TX

8 CONCLUSIONS
We proposed GREASE, a new approach to relevance search over
KGs. Compared with existing methods, GREASE is distinguished
by its more effective generative model for weighting meta-paths,
its more expressive facet-based representation of relevance with
properties, and its efficient implementation. These technical contri-
butions have been demonstrated in an extensive evaluation.

One limitation of our approach is that our estimation of proba-
bilities is largely based on frequency counts in the KG. However,
KGs in the real world may be inexact or incomplete, which may
affect the accuracy of our estimation. We have used smoothing
methods to partially address this issue, but further attempts may
be helpful, e.g., using external knowledge. In future work, we will
also consider using ontological schemata and reasoning services to
handle more complex semantics of relevance.

REFERENCES
[1] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting

and recommending links in social networks. In Proc. WSDM. 635–644. https:
//doi.org/10.1145/1935826.1935914

[2] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. 2004. Objec-
tRank: Authority-Based Keyword Search in Databases. In Proc. VLDB. 564–575.

[3] Shaoli Bu, Xiaoguang Hong, Zhaohui Peng, and Qingzhong Li. 2014. Inte-
grating meta-path selection with user-preference for top-k relevant search
in heterogeneous information networks. In Proc. CSCWD. 301–306. https:
//doi.org/10.1109/CSCWD.2014.6846859

[4] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2018. A
Comprehensive Survey of Graph Embedding: Problems, Techniques, and Ap-
plications. IEEE Trans. Knowl. Data Eng. 30, 9 (2018), 1616–1637. https:
//doi.org/10.1109/TKDE.2018.2807452

[5] Yuan Fang, Wenqing Lin, Vincent Wenchen Zheng, Min Wu, Kevin Chen-Chuan
Chang, and Xiaoli Li. 2016. Semantic proximity search on graphs with metagraph-
based learning. In Proc. ICDE. 277–288. https://doi.org/10.1109/ICDE.2016.
7498247

[6] Yu Gu, Tianshuo Zhou, Gong Cheng, Ziyang Li, Jeff Z. Pan, and Yuzhong Qu.
2019. Relevance Search over Schema-Rich Knowledge Graphs. In Proc. WSDM.
114–122. https://doi.org/10.1145/3289600.3290970

[7] ZhipengHuang, Yudian Zheng, Reynold Cheng, Yizhou Sun, NikosMamoulis, and
Xiang Li. 2016. Meta Structure: Computing Relevance in Large Heterogeneous
Information Networks. In Proc. SIGKDD. 1595–1604. https://doi.org/10.1145/
2939672.2939815

[8] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez Elmasri. 2015.
Querying Knowledge Graphs by Example Entity Tuples. IEEE Trans. Knowl. Data
Eng. 27, 10 (2015), 2797–2811. https://doi.org/10.1109/TKDE.2015.2426696

[9] Ni Lao and William W. Cohen. 2010. Relational retrieval using a combination of
path-constrained random walks. Machine Learning 81, 1 (2010), 53–67. https:
//doi.org/10.1007/s10994-010-5205-8

[10] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia - A large-scale, multilingual
knowledge base extracted from Wikipedia. Semantic Web 6, 2 (2015), 167–195.
https://doi.org/10.3233/SW-140134

[11] Zemin Liu, Vincent W. Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2017. Semantic Proximity Search on Hetero-
geneous Graph by Proximity Embedding. In Proc. AAAI. 154–160.

[12] Zemin Liu, Vincent W. Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan
Chang, Minghui Wu, and Jing Ying. 2018. Distance-Aware DAG Embedding for
Proximity Search on Heterogeneous Graphs. In Proc. AAAI.

[13] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2015. YAGO3: A
Knowledge Base from Multilingual Wikipedias. In Proc. CIDR.

[14] Víctor Martínez, Fernando Berzal, and Juan Carlos Cubero Talavera. 2017. A
Survey of Link Prediction in Complex Networks. ACM Comput. Surv. 49, 4 (2017),
69:1–69:33. https://doi.org/10.1145/3012704

[15] Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda
Zhang. 2015. Discovering Meta-Paths in Large Heterogeneous Information
Networks. In Proc. WWW. 754–764. https://doi.org/10.1145/2736277.2741123

[16] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.
2016. Exemplar queries: a new way of searching. VLDB J. 25, 6 (2016), 741–765.
https://doi.org/10.1007/s00778-016-0429-2

[17] Chuan Shi, Xiangnan Kong, Philip S. Yu, Sihong Xie, and BinWu. 2012. Relevance
search in heterogeneous networks. In Proc. EDBT. 180–191. https://doi.org/10.

1145/2247596.2247618
[18] Yu Shi, Po-Wei Chan, Honglei Zhuang, Huan Gui, and Jiawei Han. 2017. PReP:

Path-Based Relevance from a Probabilistic Perspective in Heterogeneous Infor-
mation Networks. In Proc. SIGKDD. 425–434. https://doi.org/10.1145/3097983.
3097990

[19] Yizhou Sun, Rick Barber, Manish Gupta, Charu C. Aggarwal, and Jiawei Han. 2011.
Co-author Relationship Prediction in Heterogeneous Bibliographic Networks. In
Proc. ASONAM. 121–128. https://doi.org/10.1109/ASONAM.2011.112

[20] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-
Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information
Networks. PVLDB 4, 11 (2011), 992–1003.

[21] Yizhou Sun, Brandon Norick, Jiawei Han, Xifeng Yan, Philip S. Yu, and Xiao
Yu. 2012. Integrating meta-path selection with user-guided object clustering
in heterogeneous information networks. In Proc. SIGKDD. 1348–1356. https:
//doi.org/10.1145/2339530.2339738

[22] Chenguang Wang, Yizhou Sun, Yanglei Song, Jiawei Han, Yangqiu Song, Lidan
Wang, and Ming Zhang. 2016. RelSim: Relation Similarity Search in Schema-Rich
Heterogeneous Information Networks. In Proc. SDM. 621–629. https://doi.org/
10.1137/1.9781611974348.70

[23] Yun Xiong, Yangyong Zhu, and Philip S. Yu. 2015. Top-k Similarity Join in
Heterogeneous Information Networks. IEEE Trans. Knowl. Data Eng. 27, 6 (2015),
1710–1723. https://doi.org/10.1109/TKDE.2014.2373385

[24] Xiao Yu, Yizhou Sun, Brandon Norick, Tiancheng Mao, and Jiawei Han. 2012.
User guided entity similarity search using meta-path selection in heterogeneous
information networks. In Proc. CIKM. 2025–2029. https://doi.org/10.1145/2396761.
2398565

https://doi.org/10.1145/1935826.1935914
https://doi.org/10.1145/1935826.1935914
https://doi.org/10.1109/CSCWD.2014.6846859
https://doi.org/10.1109/CSCWD.2014.6846859
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/ICDE.2016.7498247
https://doi.org/10.1109/ICDE.2016.7498247
https://doi.org/10.1145/3289600.3290970
https://doi.org/10.1145/2939672.2939815
https://doi.org/10.1145/2939672.2939815
https://doi.org/10.1109/TKDE.2015.2426696
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.1007/s10994-010-5205-8
https://doi.org/10.3233/SW-140134
https://doi.org/10.1145/3012704
https://doi.org/10.1145/2736277.2741123
https://doi.org/10.1007/s00778-016-0429-2
https://doi.org/10.1145/2247596.2247618
https://doi.org/10.1145/2247596.2247618
https://doi.org/10.1145/3097983.3097990
https://doi.org/10.1145/3097983.3097990
https://doi.org/10.1109/ASONAM.2011.112
https://doi.org/10.1145/2339530.2339738
https://doi.org/10.1145/2339530.2339738
https://doi.org/10.1137/1.9781611974348.70
https://doi.org/10.1137/1.9781611974348.70
https://doi.org/10.1109/TKDE.2014.2373385
https://doi.org/10.1145/2396761.2398565
https://doi.org/10.1145/2396761.2398565

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Generative Relevance Model
	3.1 Meta-Path Selection
	3.2 Meta-Path Based Relevance
	3.3 Generative Meta-Path Weighting
	3.4 Regularization

	4 Extended Facet-based Relevance
	4.1 Property Selection
	4.2 Property-Based Relevance
	4.3 Generative Property Weighting

	5 Search Algorithm
	5.1 Algorithm
	5.2 Indexing
	5.3 Complexity Analysis

	6 Experiments
	6.1 Datasets
	6.2 Baselines
	6.3 Configuration and Variant of GREASE
	6.4 Effectiveness Evaluation
	6.5 Parameter Study
	6.6 Efficiency Evaluation

	7 Related Work
	7.1 Unsupervised Similarity Search
	7.2 Supervised Relevance Search
	7.3 Other Related Problems

	8 Conclusions
	References

