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Abstract
Proton imaging is a promising technology for proton radiotherapy as it can be used for: (1) direct
sampling of the tissue stopping power, (2) input information for multi-modality RSP
reconstruction, (3) gold-standard calibration against concurrent techniques, (4) tracking motion
and (5) pre-treatment positioning. However, no end-to-end characterization of the image quality
(signal-to-noise ratio and spatial resolution, blurring uncertainty) against the dose has been done.
This work aims to establish a model relating these characteristics and to describe their relationship
with proton energy and object size. The imaging noise originates from two processes: the Coulomb
scattering with the nucleus, producing a path deviation, and the energy loss straggling with
electrons. The noise is found to increases with thickness crossed and, independently, decreases with
decreasing energy. The scattering noise is dominant around high-gradient edge whereas the
straggling noise is maximal in homogeneous regions. Image quality metrics are found to behave
oppositely against energy: lower energy minimizes both the noise and the spatial resolution, with
the optimal energy choice depending on the application and location in the imaged object. In
conclusion, the model presented will help define an optimal usage of proton imaging to reach the
promised application of this technology and establish a fair comparison with other imaging
techniques.

1. Introduction

Within the last two decades, proton and heavier hadron radiotherapy have experienced a surge of interest as
a novel, potentially favourable, treatment option for complicated tumours near critical structures. This is
mainly due to the advantageous dose deposition profile of protons known as the Bragg peak. The Bragg peak
produces a dose peak highly focused at the end of the proton range, leaving a low entry dose and almost no
dose in the distal region beyond it. On the other hand, proton therapy is limited by (1) a larger beam
penumbra than photons for deep-seated tumours, (2) range mixing caused by complex heterogeneity and
(3) scattered secondary radiation (Gottschalk 2012, Gottschalk et al 2014). Nevertheless, the potential for
increased survival rates through dose escalation in the target volume, as well as the decreased toxicity due to
the potential for reduced dose in the organ at risk have sparked the interest with many new centres starting
treatments (Jermann 2015).

However, proton therapy’s main advantage comes at the cost of limited robustness against uncertainties
in treatment planning. Range uncertainties may push back, or project forward the Bragg-peak, leading to
excessive dose delivered to the organ at risk and/or under-dosage of the target volume. Inter-fraction
morphological changes, anatomical deformation due to intra-fraction motion, and treatment planning
uncertainties (due to the empirical conversion of x-ray CT attenuation coefficients to relative stopping
power) are the major causes of the range uncertainties (Yang et al 2012, Paganetti 2012). To improve
robustness, non-optimal beam directions are often chosen to spare critical organs at risk, partially negating
the advantages of proton therapy.
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Proton imaging has been proposed as a potential solution to these problems (Hanson et al 1981). Proton
images are acquired by measuring the residual energy of a beam of protons exiting a patient. Higher entrance
energy is required than for treatment to cross the patient. Previous studies have demonstrated that protons
may have a significantly lower noise level and lower dose to the patient (Schulte et al 2005, Depauw and
Seco 2011) than the conventional x-ray CT imaging. It could, therefore, be used more frequently for the same
end-point dose, minimizing the risk of unaccounted for inter-fraction morphological changes. Furthermore,
proton therapy imaging is acquired with the same beam that is used for treatment and samples directly the
relative stopping power, minimizing uncertainties in the conversion of an imaged quantity to stopping power
(Schneider et al 2004). However, protons suffer a significant amount of elastic scattering with nuclei through
their trajectory in the form of multiple Coulomb scattering (MCS), reducing severely the spatial resolution of
proton imaging (Schneider and Pedroni 1994). Advanced trajectory estimation methods have successfully
helped address the problem of MCS in proton imaging, ameliorating the spatial resolution (Collins-Fekete
et al 2017, Schulte et al 2008, Collins-Fekete et al 2015, Williams 2004). Thus, daily proton tomography
(Bashkirov et al 2007, Bashkirov et al 2009), or the combination of daily proton radiography with
conventional x-ray CT (Collins-Fekete et al 2016, Takatsu et al 2016, Schneider et al 2005, Doolan et al 2015),
are currently investigated to minimize the effect of range uncertainties, patient positioning uncertainties
(Schneider and Pedroni 1995, Poludniowski et al 2015, Depauw et al 2014) and breathing motion effects
(Han et al 2011).

To understand and optimize the use of proton imaging in proton therapy, Schulte et al (2005) have
investigated the density resolution achievable by this modality. They have shown that the noise-to-dose is
expected to be lower or equivalent to x-ray CT at low to middle energy. They, however, neglected the
components of scattering in their noise estimate and assumed that the full image noise is due to straggling.
The MCS component of the noise was investigated by Rädler et al (2018) to help better fluence-field
modulated proton CT. They have shown that the MCS noise may be very important at high-gradient region
within the images, often overtaking the straggling noise contributions.

Although the noise characteristics are now better understood, no full characterization of their relation to
spatial resolution, energy and energy loss has been done. This work perform an end-to-end characterisation
of the proton imaging signal-to-noise (SNR) ratio and spatial resolution against delivered dose and entrance
energy for the different existing proton interactions. By investigating these characteristics, a model of proton
imaging’s statistical limitations is defined and a relation between these factors and range uncertainties is
established. The endpoint of this work is to propose a coherent framework that integrates the different noise
sources and predict the optimal spatial resolution and noise level for a given beam and detector
characteristics.

2. Theory andmodel

The purpose of this work is to model a computed tomography scan using a set of projections from a proton
beam which is passed through an object and to understand the relationship between the delivered dose, the
noise, the signal and the spatial resolution. The expected energy loss and noise is defined through the
transport theory of protons. The noise is found for a projection and then extrapolated by back-projection to
a tomograph. The signal-to-noise ratio is investigated in the middle of a uniform cylinder and related to dose
and pixel size. Last, the spatial resolution degradation due to the uncertainty in the path estimate is
investigated. Monte Carlo simulations are performed to validate the model and the simulation’s setup is
detailed at the end of this section.

2.1. The inverse problem
In proton medical imaging, the relevant reconstructed quantity is the ratio of the stopping power (RSP) of a
material to the stopping power of water since it can be used to predict particle’s range and it varies by less
than 0.7% above 70 MeV (Arbor et al 2015). The local energy loss at a point r in space can be expressed as:

dE

dl
= RSP(r)Sw(E(r)) (1)

where RSP(r): R3 → R represents the local RSP, Sw represents the proton stopping power in water given by
the Bethe-Bloch equation (Bethe and Ashkin 1953) for a given mean excitation energy and local energy
(E(r): R3 → R). A proton will suffer a series of Coulomb interactions that deflect it from a linear path.
Therefore, the inverse problem must be defined along the proton’s path, namely Γ ∈ R3, rather than along a
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Figure 1. Geometry of the reconstruction problem.

Cartesian axis. By integrating both sides of the expression, the inverse problem is given by:

ˆ
Γ

RSP(r)dl=

ˆ Ein

Eout

dE

Sw(E(r))
=WET(Ein,Eout) (2)

where the variable WET represents the water equivalent thickness of the projection which is the quantity
required in proton imaging to reconstruct the tomograph. The exact proton path Γ is generally unknown but
may be estimated by approaches such as a cubic spline fitted path (Collins-Fekete et al 2015) or a Bayesian
likelihood maximization (Schulte et al 2008).

2.2. Geometry and definition
The problem will be approached on a 2D plane geometry neglecting the third dimension without loss of
generality. An object is described by a function RSP(r) on this plane, where r is a two dimensional vector
with component x and y. Furthermore, it will become useful to define a rotated orthogonal basis with axis t
and s at an angle θ to the original system. This basis transformation will be used to define the projection at a
fixed angle. The geometry is schematized in figure 1.The transformation between the (x, y) and (t, s) space,
which is a rigid rotation of angle θ, is given by:(

x
y

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
t
s

)
(3)

The determinant of the Jacobian between the two bases is unity, thus dtds= dxdy.

2.3. Transport theory for proton imaging
In proton imaging, the measured signal is the energy loss (f E(t)) which is converted to WET (fWET(t))
subsequently (equation (2)). A definition of the noise in term of energy loss will help separate the
contributions of the scattering and straggling processes. The signal will be expressed in energy in the first
part of this work.

For a beam of particle, the measured signal and noise vary with the beam scattering distribution, which is
a function of 1) the detector type and the number of detection point (Krah et al 2018) and 2) the particle
charge/mass ratio and velocity (or initial energy) (Collins-Fekete et al 2017). The scattering distribution is
illustrated in figure 2-black curve for a scenario with two detection points with no detection uncertainty. The
measured signal in an exit pixel is the energy loss of particles that have followed that scattering distribution,
interacted with the object it passes through, and were measured in that exit pixel.
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Figure 2. Schematic representation of the scattering function of a beam of protons crossing a phantom with two trackers at the
entrance and exit of the object. The lateral scale is exaggerated for representation purposes. The blue shape represents the imaged
object. The area delimited by the black lines represent one standard deviation of the scattering probability distribution. The
distribution decreases to zero at both measurements point on the trackers. The scattering function is calculated at each depth, and
a single realization is shown in the zoom box. The red line represents an iso-probable path. The probability bin is represented by
the transparent red area in the zoom-box and the red dot represents the mean position from which the iso-probable path is
extracted.

In this work, we introduce a method to rapidly calculate the convolution of the particles scattering and
energy loss with the underlying object. It is important to first note that the scattering distribution is
approximated as a Gaussian normal distribution for which the standard deviation is calculated by the
Fermi-Eyges equation (Eyges 1948) at a specific depth. When normalized, the distribution represents the
probability of finding a particle as a function of lateral deviation.

To estimate the measured signal in an exit pixel, we integrate the scattering distribution over the
probability. For each depth in the object, we first construct a histogram which is the probability density
function of lateral displacement at that depth. The probabilities is discretized in 200 bins covering a range
defined by the± 5σ region. Then, for each bin in the numerical integral representing a discrete probability
interval (red transparent box in figure 2), the procedure goes as follow: for a specific depth, the lateral
scattering distribution is calculated and normalized to represent probabilities. The lateral deviation for this
probability bin is found from the Gaussian distribution. Then, a trajectory is constructed by pairing the
depth position and the lateral position (red dot in figure 2) and repeating the process for each depth.
The constructed trajectories are named iso-probable paths. In this work, 1 mm depth interval are used to
calculate iso-probable paths. An example of an iso-probable path is represented in figure 2 by the red line. The
iso-probable path is defined as Γiso(p,Y0,Y2). The expected output signal is then:

fE(t) = E[∆E] =

ˆ
∆E(Γiso(p,Y0,Y2))dp. (4)

In (equation (4)), p represents a fixed probability for which the iso-probable path Γiso is derived. The lateral
scattering distribution at each depth is calculated with the Fermi-Eyges theory of charged particle scattering
(Eyges 1948).∆E(Γiso(p,Y0,Y2)) represents the energy loss along the path and is calculated with the
continuous slowing-down approximation (CSDA). A feature of interest is that the expected energy loss
measured is dependent upon the path uncertainty, which itself depends on the tracker precision and the
properties of the particle (i.e. charge to mass ratio and energy). For example, higher uncertainty on the
trackers may lead to a larger scattering function (Krah et al 2018). In an heterogeneous object, this larger
uncertainty would yield a different expected energy loss compared to a less uncertain tracker.
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The model is validated for this work on proton radiographs binned: at the entrance trackers, exit tracker
and reconstructed using both tracker. The expected energy loss for the entrance and exit tracker
reconstruction method are calculated using (equation (4)) for every single tracker position. The radiograph
with both trackers is produced by calculating the probability integral over every possible entrance/exit
position combination.

Collins-Fekete et al (2016) approach will be used here for tomography. They propose to use a normal
back-projection reconstruction algorithm on the deblurred radiographs. As mentioned earlier,
the back-projected quantity is the WET which is found from the energy loss through (equation (2)).
A back-projection operator is defined as:

B{ fWET,θ(t)}=
M∑
i=1

fWET,θi(t)∆θi (5)

where∆θ= 2π/M is the increment in projection angle andM is the number of projections. (Equation (5))
represents a discrete angular integration. The range of the integral is 2π, because of the asymmetry of the
scattering function of a proton with energy loss. From the theory of tomographic reconstruction, the
back-projection of a line integral convolved with a suitable filtering function (h(t)) should return an estimate
of the original quantity:

ˆRSP(x,y) = B{ fWET,θ(t)⊛ h(t)} (6)

The difference between the original quantity (RSP(x, y)) and the measured one ( ˆRSP(x,y)) comes from the
blurring of the signal distorted by the multiple Coulomb scattering of the particles. Importantly, this means
the blurring alters the reconstructed signal in the form of a systematic shift and thus proton imaging is not a
perfect quantity preserving tomographic reconstruction method.

2.4. Noise in proton radiography
The variance in energy loss due to the path’s uncertainty is defined as

σ2
E,MCS = E[∆E2]− E[∆E]2. (7)

The expectation operator is defined as in (equation (4)). A perfectly-known entrance energy is assumed
(σE0 = 0). Due to the linearity of the expectation operator, the variance in exit energy is equivalent to the
variance in energy loss, i.e. σ2

∆E = σ2
Eout . This result represents the noise inter-path.

For two protons following an almost identical trajectory through a medium, the amount of energy loss is
subject to two other sources of fluctuations. The number of proton-electron collisions and the energy loss in
each collision can fluctuate statistically. The energy variation introduced by these fluctuations is called energy
straggling. Energy straggling has been described thoroughly by Vavilov (1957) and more recently
approximated by Tschälar (Tschalar 1968, Tschalar and Maccabee 1970). The energy straggling standard
deviation is defined by the Tschalar equation (Tschalar and Maccabee 1970):

σ2
E,strag(Eout) = k21(Eout)

ˆ Eout

E0

k2(Eout)

k31(Eout)
dE (8)

where k1 and k2 are defined as:

k1 =
K

β2(E)

[
ln

(
2mec2

I(s, t)

β2(E)

1−β2(E)

)
−β2(E)

]
, k2 = ηeK

1− 1/2β2(E)

1−β2(E)
(9)

In this equation, c is the speed of light, β is the proton velocity relative to the speed of light, ηe is the relative
electron density of the medium to the electron density of water,me is the relativistic electron rest mass, I(s, t)
is mean excitation energy of the medium, and the constant K = 170 MeV cm−1 combines various fixed
physical parameters. Straggling is calculated as a function of the exit energy. For the distribution of exit
energies observed by an exit detector position, the straggling must be calculated and weighted for each path
probability:

σ2
E,strag(t) =

ˆ
σ2
E,strag(∆E(Γ(p,Y0,Y2))dp (10)

The Coulomb scattering and straggling cross sections both depend on energy and energy loss and hence
are correlated. In a first approximation, we assume that the covariance is null. The impacts of this
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assumption are discussed in section 4. For our assumption, the combined error is the root of the sum of the
squared individual standard deviation (σ2

Eout = σ2
E,strag +σ2

E,MCS). The reconstructed quantity used in proton
imaging reconstruction is the WET and the noise should also be expressed in these units. The WET is related
to the energy of the exiting particle by (equation (2)), and the error is calculated through the error
propagation formula. If higher-order terms are neglected, the WET variance can be expressed as:

σ2
WET = σ2

Eout

(
∂WET

∂E

∣∣∣∣
E=Eout

)2

=
σ2
Eout

Sw(Eout)2
(11)

The noise is expressed as standard error on the mean, i.e. divided by the number of detected protons (ND).

2.5. Noise in proton tomography
The noise in proton tomography has been recently described by Rädler et al (2018). Briefly, if one neglects
interpolation effects required when a limited number of projections is acquired, the variance can be
expressed as the back-projection of the variance convolved with the square filter:

σ2(x,y) = B{
σ2
θ,WET(t)

ND(t)
⊛ h2(t)}. (12)

2.6. Signal to noise ratio
In this section, the SNR is determined in the centre of a uniform radially symmetric object. We assume that
the number of protons detected in the centre bin is constant over all projections as the object is uniform and
cylindric, i.e. ND,θ(t) = ND. First, let us define the SNR as:

SNR=
⟨ ˆRSP(x,y)⟩
σ(x,y)

=
B{ fθ(t)⊛ h(t)}√

B{σ2
θ,WET(t)⊛ h2(t)}

(13)

The first estimate of the object RSP ( ˆRSP(t, s)) is obtained by back-projecting the radiographs using the
operator presented in (equation (5)). The noise in the middle of the phantom can be calculated by
acknowledging that the noise in the middle should be similar for all projections since the object is radially
symmetric:

B{σ2
θ,WET(t0)⊛ h(t)2}=

σ2
θ,WET(t0)

ND
B{h(t)2}

=
σ2
θ,WET(t0)

ND

M∑
i=1

h2(t)

(
2π

M

)2

=
π2

3Ma2
σ2
Eout(t0)

NDSw(Eout)2
(14)

where the sum of the filter’s intensity, when using the Ram-Lak convolution filter (Ramachandran and
Lakshminarayanan 1971), is equal to 1/12a2 where a2 is the pixel size (Gore and Tofts 1978). The SNR
equation in the middle of the phantom is:

SNR=

(
3Ma2

π2

)1/2
Sw(Eout)

√
ND

ˆRSP

σEout

(15)

2.7. Dose in the middle of a cylindrical object
The dose in the middle of a uniform water cylinder of diameter d has been derived by Schulte et al (2005).
However, for this study, the results are calculated through Monte Carlo simulation. This allows us to extend
the dose results to heavier particles for which a defined model does not exist that accounts for all secondaries.
Precisely, the average dose deposited per particle in a voxel at a position r is calculated and denoted by
SMC(E, r). The equation for the dose in the middle of a phantom is:

Dc =
M

ρ
ΦMC(Ec,d/2)SMC(Ec,d/2) (16)

where Ec is the energy of the proton in the middle of the phantom and ΦMC(Ec,d/2) represent the flux of
particles at the centre of the phantom for a single projection and all others variables are defined as before.
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The flux halfway through the cylindrical object due to nuclear reactions can be described from the measured
number of protons detected as:

ΦMC(Ec,d/2) =
ND

a2
gMC(σnuc) (17)

where ND is the number of detected protons at the exit detector and a is the pixel size. The flux loss through
nuclear reactions is denoted by the variable gMC(σnuc) and is calculated through Monte Carlo simulations, by
extracting the fraction of particles that crosses the middle voxel but suffer nuclear annihilation. This leads to
a final expression for the dose in the centre of the phantom as a function of the detected number of
protons (ND):

Dc =
MNDgMC(σnuc)

a2ρ
SMC(Ec,d/2) (18)

If the number of protons detected (ND) is substituted into (equation (15)), the final relationship between the
dose, the SNR, the energy and the pixel size (a) can be defined as:

Dc =
π2SNR2σ2

EoutgMC(σnuc)

3a4ρSw(Eout)2 ˆRSP
2 SMC(Ec,d/2) (19)

This equation is valid for any ion, given that the average dose deposited in the voxel per particle
(SMC(Ec,d/2)) and the attenuation (gMC(σnuc)) are replaced by quantities specific for that ion species. If one
considers only the electromagnetic interaction component of deposited dose, then (equation (19)) can be
rewritten as:

Dc =
π2SNR2σ2

EoutgMC(σnuc)

3a4ρSw(Eout)2

(
RSP

ˆRSP
2

)
Sw,MC(Ec,d/2) (20)

where the impact of the blurring of the measured quantity on the SNR is outlined by the ratio between each.

2.8. Spatial resolution: pixel size and scattering effect
Spatial resolution is an important imaging metric for treatment planning as well as diagnostics. As in other
imaging techniques, the spatial resolution of proton imaging is affected by the detector, the reconstruction
algorithm, as well as the sampling resolution of the signal. However, in addition to those effects, the spatial
resolution in proton imaging is affected by the non-linear trajectory followed by the protons, which is caused
by MCS. For the scope of this work, only the sampling resolution and MCS effect on the modulation transfer
function (MTF) are investigated, both separately and in combination.

Firstly, the MCS effect leads to trajectory estimation uncertainty. The process can be understood by
considering the imaging of a Dirac function object. Due to the uncertainty region displayed in figure 2, the
reconstructed image must be the convolution of the Dirac function with the scattering function width,
evaluated at all depths in the object. The scattering function, following the Fermi-Eyges scattering theory, is a
normal distribution with a standard deviation defined by σscatt . The MCS component of the spatial
resolution can be derived by taking the Fourier transform of the convolution of the Dirac function and the
scattering. It will be represented by a centred Gaussian function with standard deviation σMTF =

1
2πσscatt

, as
expressed by Plautz et al (2016). The spatial resolution will furthermore be limited by the pixel size
denoted a. The pixel size effect may be represented by a rect function in the spatial domain and a sinc
function in the frequency domain:

B(ϵ) = F {b(x)}= F
{
1

a
rect

(x
a

)}
= sinc(ϵa) (21)

The sampling will be represented by a multiplication of the rect function with a Dirac comb (IIIa). Let us
define the MCS MTF component as the function g(x) in the spatial domain and G(ε) in the frequency
domain as calculated at the position r. The output MTF will be the result of the convolution between the
Gaussian spread due to the MCS, the pixel size, and the sampling frequency:

MTF(ϵ) = F{[g(x)⊛ (b(x)IIIa)]}
= sinc(ϵa)exp(−2π2σscatt(r)

2ϵ2)⊛ III1/a (22)

Except at the edge of the phantom, the blurring of the signal due to MCS will degrade the spatial frequency
more rapidly than the sampling frequency (pixel size). Thus, the effect of the comb function is neglected.
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The size of the scattering function spread will vary with depth and the optimal pixel size may depend on the
reconstructed region within the object. The pixel size will be investigated where the scattering is largest in the
phantom, therefore imposing a minimal spatial resolution correlated with minimal noise.

2.9. Geant4MC simulations
Monte Carlo simulations were carried out to produce projection data to validate the model described in this
paper. MC simulations in this work were implemented using Geant4 MC code version 10.2.1 (Agostinelli
et al 2003).

2.9.1. Physics package
In this work, parameterized interactions with nuclei and elastic/inelastic ion interactions are considered
exclusively for the extra dose involved, but are tagged and removed when evaluating the electromagnetic
noise. The model aims to represent electromagnetic interactions only and the introduction of nuclear
interactions would introduce unnecessary uncertainties against the goal of the model. Furthermore, it is
expected that nuclear interactions can be filtered out of the signal using the recent dE-E filter developments
proposed by Volz et al (2018) for proton imaging, and would affect only the noise. The processes
considered include electromagnetic energy loss and straggling (following Bethe-Bloch theory) and MCS
based on Lewis theory (Goudsmit and Saunderson 1940) using the Urban model (Urban 2006) as well as
elastic/inelastic nuclear interactions. In precise terms, for all particles the following physics
lists were used: the standard electromagnetic option 3 for high accuracy of electron and ion tracking and the
ions elastic model (G4HadronElasticPhysics). For inelastic interactions, the binary cascade models
(G4IonBinaryCascadePhysics) is used for protons and the quantum-molecular-dynamics (QMD)
model for heavier ions (G4IonQMDPhysics). Radioactive decays module is used for all ions
(G4RadioactiveDecayPhysics). These physics lists were chosen based on recommendations from Lechner et al
(2010). The energy straggling and MCS processes were inactivated in some simulations to evaluate the noise
coming from each component as well as the cumulative noise. Step limiter cuts were set to 1 mm.

2.9.2. Beam setup
Protons (n= 107 protons/simulation) were simulated through water cylinders of 10 and 15 cm radius with
initial energy varying between 110 and 300 MeV in steps of 10 MeV. The initial beam flux was distributed
evenly along the lateral side of the simulation world, centred on the water cylinder. No initial angular
deviation was given to the protons.

2.9.3. Acquisition setup
The simulation world is defined as either a 30 cm3 (40 cm3) air box in which a 10 cm (15 cm) radius water
cylinder sits in the middle, with height matching the world size. Projections are binned at the rear tracker. Bin
size of 1 mm was chosen for every reconstruction. Protons are recorded at the exit planar detector located at
the distal edge of the simulation world. In both scenarios, this yields a minimal air gap of 5 cm between the
frontal/distal detectors on either side of the phantom. A schema of the acquisition setup is shown on figure 3.

3. Results

In this section, the proposed framework is first validated against Monte Carlo simulations. From there
onward, the focus is put on analytically produced results. The implications of the previously developed
model is then investigated. The parameters that are studied in the noise profiles are the proton initial energy
as well as the diameter of the water cylinder. Noise profiles are separated into noise due to the scattering and
straggling physical processes, as well as the total combined noise. Spatial resolution is investigated by
evaluating the relative effect on the pixel size and the proton MCS spread as a function of the entrance energy
and cylinder size. (Equation (19)) shows the relationship between the SNR, the dose, the exit energy as well as
the pixel size. The effect of the pixel size in this model is investigated by producing a nomogram of the model
with a fixed entrance energy. The effect of the entrance energy is also investigated by fixing the pixel size.

3.1. Noise profile in radiography
The model predicts both the mean energy loss and the noise. To evaluate the accuracy of our model, the
modeled noise of radiographic projections is compared against MC simulations. The noise projections from
our model are binned at the front, rear and both trackers and shown against MC simulations for a beam of
protons of 200 (300) MeV crossing a 10 cm (15 cm) phantom here below in figure 4. A difference plot shows
the precision of the model against the MC reference. First, noise profiles are shown for the front and rear
tracker. Similar results are already demonstrated by Rädler et al (2018). We extend further the analysis to a
scenario including both trackers as well as the analysis of the tomographic noise and its variation with energy.
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Figure 3. Schematic representation of the Monte Carlo simulation geometry. Dimensions are not to scale but shown for clarity
purposes. The position, direction and energy is measured both before and after the phantom. No detector uncertainties are
considered.

Figure 4. Comparison of noise projections binned at the rear (RT), front (FT) and both trackers (BT) for 1) the model proposed
here (full line) against 2) list-mode Monte Carlo simulations generated following the protocols described in section 2.9 (dotted
line). The comparison is shown for a beam of 200 (300) MeV crossing a cylinder of 10 cm (15 cm) of water on the left (right). The
error in the noise projection between the model and the MC are shown below each projection. The model with both trackers uses
the reconstruction method described in Collins-Fekete et al (2016).

The noise profile on the rear tracker displays a significantly increased noise at the edge, due to the MCS
contributions. Apart from the edge of the phantom where the Fermi–Eyges model of the scattering is
expected to fail, the maximal difference is found to be below 0.1 cmWET. This allows us to conclude that the
model predicts accurately the expected exit energy and the noise. The noise profile in the front tracker is
significantly different from the noise profile seen in the rear tracker. The noise is considerably lower, with
minor contributions from the MCS noise seen on the two wings around the central position on figure 4. The
middle bin noise level is equivalent to that of the rear tracker, but lower everywhere else. This is seen on both
energies for both phantom radius. The noise profile for both trackers is similar to the noise seen on the front
tracker only, although surprisingly slightly higher. (figure 4), with a much lower impact from the scattering
and the noise being mostly dominated by the straggling.
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Figure 5. Noise profile as a function of the position on the lateral axis for proton radiography reconstructed at the rear
tracker(left) and the front tracker (right). The noise is due to the different electronic interaction processes experienced by protons
while crossing the cylinder. Shown here are the noise due to proton straggling, the noise due to the multiple Coulomb scattering
and the combined total noise. The noise is shown for a water cylinder of 15 cm radius with proton initial energy of 300 MeV.

3.1.1. Noise due to individual physical processes
The radiographic noise profiles are shown in figure 5 as a function of the lateral axis. They are separated into
three components: (1) the noise due to the straggling effect, (2) the noise due to the scattering effect, and
(3) the combined total noise. The radiographic noise profiles are shown for a 300 MeV beam crossing
respectively a 15 cm radius water cylinder.

A notable feature is a drastic increase of scattering noise closer to the edge of the cylindrical object for the
rear tracker noise (figure 5). Similar features appear for the front tracker noise but are negligible against the
straggling noise. Furthermore, the scattering noise is minimal in the middle whereas the straggling noise is
maximal at the same position. In both cylinders, the straggling noise in the middle is very similar in size to
the total noise, being the major component of it. This explains the accuracy of the results seen by Schulte
et al (2005).

3.2. Noise profile in tomography
The next step is to study the variation in the noise as a function of the entrance energy at different radial
positions in tomographic reconstruction. To do so, the radiographic analytical model of the noise is
back-projected using a square filter (B{σ2

θ,WET(t)⊛ h2(t)}) for different entrance energies. Results are shown
in figure 6 for the 10 and 15 cm radius cylinder respectively.

The noise profile for both the front tracker (not shown here) and the dual trackers methods (dotted line
on figure 6) are highly similar, decreasing with decreasing energy.

Recent studies in particle imaging (Schulte et al 2005) indicated that a lower entrance energy correlates
with lower noise, due to an increase in the signal caused by the higher energy loss in the cylinder which
manifests itself in the energy loss-WET conversion (equation (2)). Our results corroborate those findings in
the middle of the cylinder for all three methods evaluated here. In the case of front tracker binning and dual
trackers, this conclusion holds true away from the center. In the case of rear tracker binning, the noise
increases drastically away from the center of the cylinder, due to the scattering component becoming
dominant.

3.3. Spatial resolution
The combined effects on the transfer function of the pixel size and the scattering function were evaluated. To
fix the effect of the particle energy loss and the width of the scattering function, the pixel size is expressed in
term of the standard deviation of the Gaussian scattering function at the center of the phantom. The transfer
function is going to be dominated by the Gaussian scattering. The left panel of figure 7 shows the apodising
effect of the pixel size on the Gaussian scattering component. The right panel shows the scattering
components of the MTF as a function of the entrance energy for both cylinders. The results shown in figure 7
are produced by solving the σscatt equation for two measurement points as detailed in section 2.3 in the
middle position of the phantom.
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Figure 6. Tomographic noise as a function of beam entrance energy for a beam of proton crossing a 15 cm radius water cylinder
binned at the rear (right) and using both trackers (left). The binning using the entrance detector is similar to the latter and
omitted here for clarity. The noise is shown at different radial distances from the middle of the cylinder to demonstrate the effect
of MCS noise as a function of the position within the cylinder.

Figure 7. Combined effect of the MCS and pixel size on the MTF. On the left, the modulation transfer function is shown for pixel
size and expressed as a multiple of the Gaussian standard deviation. On the right, the scattering modulation transfer function is
shown against entrance energy for protons crossing a 10 or 15 cm radius water cylinder with the MTF10% of a fixed pixel-size
clinical x-ray CT shown for comparison purposes only.

In light of the results shown in figure 7, it seems that a pixel size of one standard deviation of the
scattering width will not severely affect the transfer function (∆MTF10% ≈ 4%). These results can be
anchored to absolute spatial resolution by investigating the Gaussian scattering transfer function component
at different energies. This is shown in figure 7 where the MCS component of the MTF10% (independent of
the pixel size) is shown for protons crossing a 10 or 15 cm radius water cylinder, as a function of the entrance
energy. Since the MCS component is the major MTF limiting factor, particularly at the middle of the
phantom, it is possible to approximate the spatial resolution of a reconstructed image. A tomographic
reconstruction of a 200 MeV proton beam crossing a 10 cm radius water cylinder, choosing a pixel size of one
SD (≈ 0.5 mm), would yield a MTF10% 4% below the 5.6 lp/cm (right panel of figure 7) level in an otherwise
perfect setup. This result is lower than the result found by Plautz et al (2016) for a 197 mm thickness
phantom (6.3 lp/cm). It is slightly higher than the results produced in the recent work by Collins-Fekete et al
(2016) (4.53 lp/cm) although their setup has a larger water equivalent thickness than the one studied here
and they use a reconstruction algorithm that may reduce the spatial resolution. Similarly, Li et al (2006)
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Figure 8. Nomograms expressing the SNR/dose relationship as a function of the pixel size (fixed energy of 200 MeV - left) and
energy (fixed pixel size of 1 mm - right). The beam of protons crossed a 10 cm radius water cylinder. The nomograms are derived
based on the physics of the interaction of protons with the cylinder and do not account for detector interaction effects. The
nomogram for a 75 keV mono-energetic beam of photons and derived from the Barrett models (Barrett et al 1976) is shown for
comparison purposes.

produces reconstructed images using the MLP around 5 lp/cm, again using a tomographic reconstruction
technique that may lower the theoretical achievable spatial resolution. Those results represent only the
achievable spatial resolution without any other effects such as detector resolution, reconstruction algorithm
precision, contamination of the detected signal with large-angle scattering events and energy resolution of
the detector. In a real scenario, a lower spatial resolution is expected.

3.4. Dose nomograms
Finally, the impacts of the pixel size and entrance energy on the Dose/SNR relationship are studied for a
central pixel. To do so, nomograms are produced by fixing one of these parameters. The nomogram for a
fixed energy and a fixed pixel size are shown in figure 8. Firstly, for a fixed dose, decreasing the pixel size has a
high cost on the SNR with a minor impact on the spatial resolution (figure 7). This is due to the inverse
fourth-power relationship with the pixel size seen in (equation (19)) and well known in x-ray imaging.

The energy nomogram (figure 8) shows results in-line with what has been found by Schulte et al (2005).
This comes to no surprise as the difference with this framework and their model is the inclusion of MCS,
which is minimal at the centre of the phantom. Alongside the proton nomograms is shown a mono-energetic
75 keV photon beam nomogram, as derived from the Barrett (Barrett et al 1976) model. The total noise in
the middle of a phantom monotonically decreases with energy, consequently increasing the SNR. However, it
is important to point out that this property will not be preserved at a different radial position and the
nomograms will differ, following the relationship shown in figure 6.

3.5. Noise and spatial resolution limitations as a function of energy
Finally, given the definition of the noise, the spatial resolution, and their relation with dose through the
model developed in this work, we combine these results in figure 9 to present the full picture of spatial
resolution and noise as a function of the energy. The anti-correlated nature of spatial resolution and noise
against energy is clearly outlined. In all cases, as the energy increases, the SNR decreases and the MTF
increases. A lower proton beam energy (lower spatial resolution) will introduce range mixing (Espana and
Paganetti 2011) and increase the blurring of the measured signal (Sawakuchi et al 2008) due to a larger
scattering distribution, which will impact and distort the Bragg peak, thus affecting the range uncertainty.
A higher beam energy will increase the noise level, which will impact the range margins required to ensure
adequate target coverage in proton therapy.

4. Discussion

In this paper, we have presented a framework for modelling the effects of the statistical characteristics of the
imaging process on the image quality in proton beam CT. The approach is informed by the model for
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Figure 9. The figure demonstrate the impact of beam energy against the SNR(noise) and spatial resolution for a 200 MeV beam
crossing a 20 cm cylinder phantom. On the left-axis, the SNR is plotted against dose. The spatial resolution (red) is shown on the
right-axis. The figures demonstrates that the inverse relationship of SNR and spatial resolution against energy. An higher energy
leads to a higher spatial resolution and an higher noise. Pixel size is defined as the standard deviation of the scattering distribution
as defined earlier (section 2.8).

describing x-ray CT by Barrett et al (1976). In Barrett’s work, they describe these effects for x-rays in term of
the relationship between dose, spatial resolution, signal and noise (with the latter described as the SNR).
Gore and Tofts (1978) explored the statistical limitations in x-ray CT and arrived at an expression for the
standard deviation of the attenuation coefficient as a function of imaging parameters including pixel size and
the number of incident particles. X-ray CT involves a binary process where x-rays either pass through the
object unhindered or are absorbed or scattered and do not contribute to the imaged signal. In the case of
protons, the particles used for image reconstruction are assumed to have passed through the object but are
subject to multiple scattering. Although some particles suffer nuclear elastic and inelastic reactions, they are
rejected using recent advanced filtering techniques (Volz et al 2018). The scattering leads to spatial
uncertainty in the path of the proton and hence a source of spatial uncertainty in imaging not seen in x-ray
CT. Schulte et al (2005) built on the work of Gore and Tofts and arrived at a model describing density
resolution in proton CT. Their work did not include consideration of multiple Coulomb scattering (MCS),
which forms a significant effect. Recently, Rädler et al (2018) have characterized the MCS component of the
noise and described how the total noise affects the reconstruction of the fluence-modulated pCT algorithm.
Their work, however, did not include any spatial resolution effects in their model nor analyzed the
degradation of the expected signal as a function of the scattering. One of the purposes of our work is to
include MCS in a novel manner that incorporates the systematic shift and stochastic noise as well as the
effects of the spatial resolution on the noise.

The framework developed has been used to generate noise estimates for measurement of radiographic
projections of uniform cylindrical objects on the rear and front tracker and reconstructed using both
trackers. These noise estimates are in the context of energy straggling noise and noise due to MCS. As of now,
the different sources of noise in the imaging process are considered independent. The model could be
developed by investigating the covariance between the straggling noise and MCS noise, however, the
accuracy of the results (figure 4) seem to indicate that the correlation is low when propagating the straggling
noise through the scattering distribution (equation (10)). The effects over M projections with a
back-projection filter have been modelled to generate data relevant to both proton radiography and CT. A
noise model was developed by Rädler et al (2018) to incorporate in a fluence modulated proton projection
and CT. However, their model did not seem to account fully for the variation close to the cylinder edge as an
underestimation of the noise is seen compared to MC noise away from the centre pixel.
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The projection data are shown here for rear-binned trackers, front-binned trackers, and dual-trackers
reconstruction. A tomograph is produced using dual-trackers radiographs as input in a classical
back-projection x-ray algorithm (Collins-Fekete et al 2016). The inclusion of a MLP path algorithm in the
tomographic reconstruction (Penfold et al 2010, Rit et al 2014) will reduce the scattering function (figure 2).
However, since the scattering has a minimal impact on the total noise (figure 6), including advanced
reconstruction technique should not alter significantly our results. An interesting feature shown here is the
slightly lower noise in front tracker radiography compared to dual-trackers reconstructed radiograph. This
potentially indicates that for a low noise proton tomograph reconstruction, a front tracker may be sufficient
at the cost of a lower spatial resolution.

Equation 20 details the relationship between dose, SNR, signal degradation and pixel size, for a central
pixel. Then, (equation (22)) describes the relationship between pixel size and spatial resolution. An
important difference between proton and x-ray CT is that with x-ray CT, the spatial resolution can, in
principle, be made arbitrarily high, at the expense of high dose, by having a very small pixel size. In the case
of proton CT, the spatial resolution is limited by the finite uncertainty in particle trajectory caused by MCS,
effectively producing a limiting spatial resolution. Furthermore, the scattering suffered by the particles
induces a blurring in the reconstructed quantity which reduces the SNR for a fixed dose (equation (20)). In
this work, we have suggested a limiting pixel size of one SD of the Gaussian spread of the MCS distribution
(figure 7), which may be useful as a lower limit for future detectors development, when combined with
detector position/sampling effects on the MLP/MTF described by Krah et al (2018).

In figure 8 we present nomograms relating dose and SNR as a function of both pixel size (expressed as a
function of the SD of the MCS spread) and incident proton energy. Again, the general picture for proton CT
is more complex than for x-ray with energy being a variable that affects the noise 1) directly through WET
conversion effects and 2) indirectly through intrinsic spatial resolution/pixel size effects and thus number of
particles contributing to noise in this pixel. This framework shows that there is a complex trade-off between
the noise effects of energy straggling and those of MCS (figure 9). This trade-off changes with incident
energy, object size and location in the object being imaged (see figure 6). As a consequence, the optimum
imaging parameters will depend on object size and the location of the area of interest in the object. Hence for
a given patient diameter, the optimum imaging parameters will be different for a tumour region located in
the centre and for one closer to the surface. Nevertheless, it is, as of now, difficult to define recommendations
for parameters in proton imaging given that the impact of the imaging quality metrics on range uncertainties
is not yet fully understood.

A major difference between this model and previous work (Schulte et al 2005) is the introduction of the
SNR metric which includes the expected reconstructed signal. As shown in our framework, the expected exit
energy is a superposition of the energy loss of protons following the scattering distribution across the objects
(equation (4)) which results in a blurring of the measured quantity. This blurring alters the reconstructed
signal, especially in the case of small inserts, a feature observed by Piersimoni et al (2018). The
signal-to-noise ratio is reduced by 1) the noise in the image due to straggling and scattering, and 2) by the
blurring of the measured quantity due to scattering.

The noise and spatial resolution characteristics presented in this work will be important when
considering the use of proton imaging for its main purpose, i.e. radiotherapy and range uncertainties. The
presence of noise is expected to increase the stochastic errors in the measured quantities requiring a wider
margin to ensure coverage of the target. The noise should therefore be minimised, through the use of a lower
energy for imaging. However, a lower energy is correlated with a higher blurring and a lower spatial
resolution. The lower spatial resolution may induce partial volume effects that produce range mixing
(Paganetti 2012) (figure 9). The blurred signal may induce systematic error, translating into a systematic shift
of the expected proton range. It is therefore not clear which energy would benefit proton radiotherapy
treatment the most. Nevertheless, the proposed framework may be useful to predict the limits of proton CT
as a treatment planning imaging tool as a function of the imaging parameters but those limits will be highly
application-dependent.

Furthermore, we have corroborated results found earlier by Rädler et al (2018) that the noise is minimal
in the middle part of the cylindrical phantom (figure 5). This is caused by the minimal variation in WET
seen by protons crossing this section of the cylinder. However, a human body is hardly a perfect cylinder of
water and the conclusions drawn here must be nuanced in the application to patient imaging. Human body
regions that are highly heterogeneous such as head and neck and lung will have higher scattering variations
and therefore higher total noise than what is seen here.

There is a range of options for CT reconstruction in proton tomography. Firstly, a range of
back-projection filter types is available for tomography. In this work we have assumed the filter has the
characteristics as described by others ( Barrett et al (1976), Gore and Tofts (1978), Chesler et al (1977))
leading to the key step that we may separate the noise component for radially symmetrical objects in the
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middle (equation (14)). All filters in CT are by nature closely related to a ramp filter and hence will have
those characteristics as discussed by Chesler. Secondly there are a range of methods of determining the path
of a particle through the object being imaged, including most likely path approaches (Schneider and Pedroni
(1994), Williams (2004), Schulte et al (2008), Collins-Fekete et al (2015, 2017), Erdelyi (2009), Wang et al
(2010)). In essence these approaches involve a set of fixed, known points where sensors are placed to measure
each particle’s position (and possibly energy) and a model to describe the path between these known points,
with associated spatial uncertainty. This framework uses the uncertainty in the path between the known
points to describe the spatial uncertainty caused by MCS. For different reconstruction models, this translates
to different spreads in the scattering distribution.

This work has made no assumptions about the characteristics of the detection system. There are a range
of proton CT systems in development (Scaringella et al 2013, Poludniowski et al 2014, Johnson 2018,
Bashkirov et al 2009, Civinini et al 2013) with a range of strategies. However, most combine position sensitive
sensors to measure the path into and out of the object, coupled with a range telescope or calorimeter to
measure the particle energy. Our presentation assumes this general approach. Detector response of the
imaging system could easily be incorporated into this framework. The choice of different arrangements of
tracking and energy detectors could also be incorporated. For instance, to have a single spatial tracker at the
exit of the object would produce zero spatial uncertainty at this point and a Gaussian spread of increasing
width towards the entrance of the object. This has been investigated recently by Krah et al (2018).

A final point related to imaging systems for proton CT reported in the literature is that some systems
modulate the energy across the object to get sufficient energy to cross the object, reducing the need for thick
and costly residual energy/range detectors. Our results suggest that, in this scenario, the detector precision
becomes paramount and highly related to the image quality. Whereas a lower energy drastically increased the
noise for a rear tracker binning, the same scenario resulted in a lower noise for a tomographic reconstruction
including the MLP. In the case of a dual tracking detector system, the minimal energy that crosses the
phantom while keeping and exit energy in the RSP range of validity will minimize the noise, at the cost of
spatial resolution. Whether this would lead to an overall lower range uncertainty is not yet validated.

The findings of this work should be considered when using proton CT as a gold-standard for imaging for
proton radiotherapy. In most situations proton CT will have poorer spatial resolution than other imaging
methods such as x-ray CT. Also, the noise characteristics and expected signal will change across the field of
view and so the choice of a gold standard may be problematic with a combination of imaging modalities
and/or the use of priors likely to be a good strategy. Future applications of this framework include
optimisation of beam energy and profile for proton radiography and CT of an object of known size and a
known location of the area of interest, quantitative comparison and optimisation of imaging with different
charged hadron species and modelling the combination of hadron and x-ray projections in CT for
priors-based tomography in hadron radiotherapy.

5. Conclusion

A computed tomography scan using a set of projections from a proton beam which is passed through an
object has been modelled and the relation between the delivered dose, the noise, the signal and the spatial
resolution has been summarized. The optimal energy to minimize noise is the minimal energy that crosses
the thickest section of the phantom while yielding an exit energy above the 70 eV threshold. Using this
minimal energy will come at the cost of spatial resolution. Energy modulation as a function of the phantom
thickness decreases the noise but decrease the spatial resolution, with the consequences of that choices not
fully understood.
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