Body composition during outpatient treatment of severe acute malnutrition: Results from a randomised trial testing different doses of ready-to-use therapeutic foods

Suvi T. Kangas a, b, *, Pernille Kaestel d, Cécile Salpêtrier b, Victor Nikièma c, Leisel Talley d, André Briand a, e, Christian Ritz a, Henrik Friis a, Jonathan C. Wells f, g

a Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
b Expertise and Advocacy Department, Action Against Hunger (ACF), Paris, France
c Nutrition and Health Department, Action Against Hunger (ACF) Mission in Burkina Faso, Burkina Faso
d Centers for Disease Control and Prevention, Atlanta, USA
e Center for Child Health Research, University of Tampere School of Medicine, FIN-33014 Tampere University, Tampere, Finland
f Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
g Population, Policy, and Practice Programme, UCL Great Ormond Street Institute of Child Health, London, UK

1. Introduction

Severe acute malnutrition (SAM) affects 19 million children under 5 years of age globally and at any time, contributing to over 500 000 annual deaths [1]. Children presenting with SAM without medical complications are treated as outpatients [2] with a routine

* Corresponding author. 14/16 Boulevard Douaumont, CS 80060, 75854 Paris CEDEX 17, France
E-mail address: suvi_kangas@hotmail.com (S.T. Kangas).

https://doi.org/10.1016/j.clnu.2020.02.038
0261-5614/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Materials and methods

2.1. Study design

This study was nested in the MANGO trial, a randomized controlled clinical trial comparing the efficacy of a reduced RUTF dose to a standard RUTF dose in the management of uncomplicated SAM in children 6–59 months of age admitted to outpatient care, using a non-inferiority study design. The MANGO trial was performed in accordance with the principles in the Declaration of Helsinki. The research protocol obtained ethical clearance from the national ethics committee (Comité d’éthique pour la recherche en santé (CERS)) and the clinical trials board (Direction Générale de la Pharmacie, du Médicament et des Laboratoires (DGPML)) of Burkina Faso. An independent Data Safety Monitoring Board composed of one paediatrician and one statistician was responsible for monitoring serious adverse events and conducted five complete data reviews during the course of the study. Caregivers provided verbal and written consent prior to enrolment and were made aware of their right to withdraw from the study at any time. The trial was registered at the ISRCTN registry with the number ISRCTN50039021 on 13 May 2016.

2.1.1. The original study

As previously described [15], the study was conducted in the Fada N’Gourma health district in the Eastern region of Burkina Faso where the prevalence of wasting (WHZ < –2) was 10% in 2016 [16]. Study participants were recruited from children presenting with SAM at the 10 participating health centres. Children 6–59 months of age were eligible if: WHZ < –3 and/or MUAC < 115 mm, positive appetite test, and absence of oedema or medical complications. Exclusion criteria included having received treatment for SAM within 6 months, caregiver unable to comply with the weekly check-up schedule, known peanut or milk allergy, or disability affecting food intake.

After confirming eligibility and obtaining consent, children were randomised individually stratified by health centre, as previously described [15]. SAM treatment followed the Burkina national CMAM guidelines except for the RUTF dose: from the third treatment week onwards, children who were randomised to reduced dose received either 1 or 2 sachets per day if weighing <7 kg or ≥7 kg, respectively (Table 1). Children randomised to the standard dose received the standard RUTF dose throughout treatment. Weekly anthropometric measurements and a clinical examination were performed from admission to discharge.

Nutritional recovery was defined as: WHZ ≥ –2 for those admitted with a WHZ < –3 only, MUAC ≥ 125 mm for those admitted with a MUAC < 115 mm only, or WHZ ≥ –2 and MUAC ≥ 125 mm for those admitted with WHZ < –3 and MUAC < 115 mm, on two consecutive visits and absence of any illness. Maximum treatment duration was 16 weeks after which children were classified as non-response to treatment, if the recovery criteria were still not achieved.

2.1.2. The present study

Body composition measurements started 5 months after launch of the main study. The body composition sub-study sample included the main study participants that were enrolled or recovered after February 7, 2017 until the end of the main study in December 2018. Body composition was measured among all children at admission and recovery. In addition, a total of 100 community controls were selected among children presenting for growth monitoring activities in the same 10 health centres and were stratified by sex and age to match the admission distribution of children in the main trial. Community control inclusion criteria

Please cite this article as: Kangas ST et al., Body composition during outpatient treatment of severe acute malnutrition: Results from a randomised trial testing different doses of ready-to-use therapeutic foods, Clinical Nutrition, https://doi.org/10.1016/j.clnu.2020.02.038
Mass (FM, kg) was calculated as the difference between weight and bone. Fat-free mass (FFM) includes both lean mass and bone. Standing height subtracting 0.7 cm from recumbent measurements. For this purpose, height was standardised as a scale from 1 (very poor) to 5 (ideal) in terms of child’s position (see Table 1).

Anthropometrics were measured in duplicate: weight using an electronic scale (SECA 876) to the nearest 100 g, height (recumbent for <24 months of age; standing for ≥24 months of age) using a wooden measuring board (locally made) to the nearest 1 mm, and MUAC using a non-stretchable colourless measuring tape to the nearest 1 mm.

2.2. Outcomes

BIA measurements (R, Xc) were used to estimate body composition. Where two acceptable BIA measurements were available, the mean R and Xc were calculated, otherwise the single measurement was used. Impedance (Z) was calculated as the square root of (R² + Xc²). Fat-free mass (FFM) was calculated using an equation predicting FFM from the impedance index (FFM = 1.93 + 0.669*(height²/Z)) in Gambian children measured using another single frequency tetrapolar device (Body Stat, Douglas, Isle of Man), calibrated against the deuterium dilution technique [17]. For this purpose, height was standardised as standing height subtracting 0.7 cm from recumbent measurements. Calculated this way, FFM includes both lean mass and bone. Fat Mass (FM, kg) was calculated as the difference between weight and FFM. FFM and FM were adjusted for height in metres squared to give fat-free mass index (FFMI) and fat mass index (FMII), expressed as kg/m². Impedance index was calculated as height (in cm) squared divided by impedance (cm²/Z). 1/Z was also calculated (multiplied by 1000) as an alternative to FFMI [18].

2.3. Data analysis

Data were collected electronically via tablets using the Open Data Kit (ODK1 software). Baseline characteristics of the study population are summarised as percentage or mean ± standard deviation. Significance tests were conducted for baseline differences between children in the reduced and standard dose arm, as groups are based on non-random sampling of participants included in the main trial. Linear mixed regression models were used to compare body composition outcomes. Participant id, study sites and research teams were included in the models as random effects. Unadjusted models as well as models adjusted for sex, age and outcome measurements at admission were fitted. Model checking was based on residual plots and normal probability plots.

Interactions between treatment and age group (<12 months vs. ≥12 months), sex, MUAC category (<115 vs. ≥115 mm), WHZ category (<−3 vs. ≥−3) and stunting (HAZ < −2 vs. HAZ ≥ −2) at admission, were evaluated for FFM and FM by means of likelihood ratio tests. Only significant interaction terms led to subgroup analyses. A significance level of 0.05 was used. All analyses were performed in STATA 15 (StataCorp, College Station, TX, USA).

3. Results

3.1. Data cleaning and quality

To reduce noise in the body composition data, three data cleaning steps were undertaken. First, BIA measurements with poor hand or foot resistance (R = 0 or R > 300), as per the Nutriguard manual, were discarded as they indicated poor electrode adhesion resulting in higher overall R and consequently underestimation of FFM (n = 20). Second, outliers defined as R > 1600 Ω, R < 300 Ω or Xc > 500 Ω were discarded as implausible (n = 1). Third, BIA measurements with a quality score < 4 were discarded as they were judged less than optimal in accuracy (n = 46). These were labelled erroneous measurements and were 24 in reduced arm, 40 in standard arm and 3 in community controls.

3.2. Baseline

A total of 802 children were initially randomised to reduced (n = 402) or standard (n = 400) RUTF dose between October 2016 and July 2018. By the time the sub-study was started in February 2017, 140 children (70 in reduced arm and 70 in standard arm) had already been enrolled in the main trial. Thereafter, we obtained successful body composition measurements from a total of 452 (68%, 215 in reduced and 237 in standard arm) out of 661 children admitted after sub-study launch and 259 (64%, 122 in reduced and 137 in standard arm) out of 402 children recovered after sub-study launch (Fig. 1). In total, 179 children had both data points available: 80 in the reduced and 99 in the standard arm. The children included in the body composition sub-study did not differ from those not included in terms of age, sex, anthropometrics and socioeconomic factors (p > 0.05, data not shown). Community controls were measured between April and November 2018.

At admission, mean age was 14 months, 52% were male, mean weight was 6.3 kg, mean FFM was 4.9 kg and mean FM was 1.4 kg. There were no baseline differences in anthropometrics or body composition characteristics between children receiving the reduced and standard RUTF dose (Table 2).

Please cite this article as: Kangas ST et al., Body composition during outpatient treatment of severe acute malnutrition: Results from a randomised trial testing different doses of ready-to-use therapeutic foods, Clinical Nutrition, https://doi.org/10.1016/j.clnu.2020.02.038
3.3. Change from admission to recovery

Community controls had similar age (13.7 ± 9.7 months) and sex (52% male) distribution, but differed from children with SAM in terms of socio-economic status: they were from wealthier households and living closer to health centre. At admission, children with SAM had on average 2.47 kg lower weight than community controls, with 0.93 kg less FFM and 1.57 kg less FM (Table 3). This corresponds to 15% lower FFM and 59% lower FM, compared to community controls (Fig. 2). During SAM treatment the average weight increased by 1.20 kg with FFM increasing by 0.55 kg and FM by 0.67 kg, representing 45% and 55% of weight gained, respectively. Z decreased by 125 (SE = 8 Ω) during treatment. The intra-individual variability of Z (SD) in terms of change from admission to recovery was 87 and inter-individual variability at each time point was 71 (SD).

At recovery, children treated for SAM had a 1.27 kg lower weight, 0.38 kg lower FFM, 0.90 kg lower FM and 1.5 kg/m² lower FMI compared to community controls, representing 6% lower FFM and 34% lower FM than community controls. However, their FFMI was no longer different from community controls (D = 0.2 kg/m²; 95% CI −0.1, 0.4; p = 0.14).

Table 2
Baseline characteristics of 452 children included in the body composition sub-study by intervention group.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>RUTF dose</th>
<th>Standard</th>
<th>Difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>215</td>
<td>237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, months</td>
<td>13.6 ± 9.6</td>
<td>14.1 ± 9.8</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Male, % (n)</td>
<td>51.6 (111)</td>
<td>51.5 (122)</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Weight, kg</td>
<td>6.3 ± 1.3</td>
<td>6.3 ± 1.4</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Height, cm</td>
<td>69.3 ± 8.2</td>
<td>69.5 ± 8.6</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Mid-upper arm circumference, mm</td>
<td>113.2 ± 6.8</td>
<td>113.5 ± 6.4</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Weight-for-height z-score</td>
<td>−3.1 ± 0.7</td>
<td>−3.1 ± 0.7</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Height-for-age z-score</td>
<td>−2.4 ± 1.2</td>
<td>−2.5 ± 1.3</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>−3.5 ± 0.8</td>
<td>−3.6 ± 0.8</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Impedance, Ω</td>
<td>991 ± 133</td>
<td>1001 ± 129</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>Impedance index, cm²/Ω</td>
<td>4.9 ± 1.2</td>
<td>4.8 ± 1.3</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Fat-free mass, kg</td>
<td>5.2 ± 0.8</td>
<td>5.2 ± 0.8</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Fat mass, kg</td>
<td>1.1 ± 0.7</td>
<td>1.1 ± 0.8</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Admission criteria, % (n)</td>
<td>31.2 (67)</td>
<td>26.2 (62)</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Weight-for-height z-score only</td>
<td>38.6 (83)</td>
<td>39.7 (94)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-upper arm circumference only</td>
<td>30.2 (65)</td>
<td>34.2 (81)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All values are means ± SD unless otherwise indicated.
mass index (FMI) at admission to treatment and recovery from SAM compared to MUAC category or stunting status at admission.

and FFMI were higher with the reduced dose. No interactions were when adjusting for sex, age and outcome at admission. However, Z with reduced and 1.91 kg with standard RUTF dose at recovery,

3.4. Difference between study arms

No differences were observed between study arms for FFM, FM and FFMI at admission to treatment and recovery from SAM compared to community controls when adjusting for age and sex.

3.5. Sensitivity analysis

In addition to the initial 3 data cleaning steps, further cleaning approaches were tested excluding measurements where no duplicate was available and measurements with poor precision defined as large difference between repeated measurements (R/ height difference > 25, Xc/height difference > 7, PA difference > 0.51). However, further cleaning neither increased precision nor changed the findings. Furthermore, unadjusted analysis of the difference between dose arms gave similar results to the models adjusted for sex, age and outcome measure at admission (S1 Table).

4. Discussion

In this study we have shown that approximately half of the weight gained by children with SAM during home-based treatment with RUTF is FFM. We also showed that the FFM of treated children at recovery was similar to community controls when adjusting for height while their FM remained lower. This indicates incomplete FM recovery during SAM treatment.

We also observed that reducing the RUTF dose during treatment resulted in similar FFM, FM and FFMI but a significantly lower Z (p = 0.003) and higher FFMI (p = 0.007) at recovery. Z is a composites marker of body water and cell mass and is inversely correlated with FFM. A lower Z thus reflects a higher FFM. From a clinical perspective the observed 0.11 kg difference in FFM (p = 0.078) in favour of the reduced dose seems small,

Table 3
Comparision of anthropometric and body composition outcomes between children with SAM at admission and at recovery and community controls.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>At admission to SAM treatment (A)</th>
<th>At recovery from SAM (B)</th>
<th>Community control (C)</th>
<th>Deficit at admission (A–C)</th>
<th>Gain during treatment (B–A)</th>
<th>Deficit at recovery (B–C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>452</td>
<td>259</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, kg</td>
<td>6.33</td>
<td>7.53</td>
<td>8.80</td>
<td>−2.47 (−2.64; −2.31)</td>
<td>1.20 (1.14; 1.26)</td>
<td>−1.27 (−1.44; −1.10)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>69.7</td>
<td>70.6</td>
<td>73.6</td>
<td>−3.8 (−4.7; −3.0)</td>
<td>0.9 (0.7; 1.0)</td>
<td>−3.0 (−3.8; −2.1)</td>
</tr>
<tr>
<td>Mid-upper arm circumference, mm</td>
<td>113.4</td>
<td>130.2</td>
<td>143.6</td>
<td>−30.3 (−31.8; −28.7)</td>
<td>16.9 (16.1; 17.7)</td>
<td>−13.4 (−15.0; −11.8)</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>−3.5</td>
<td>−2.2</td>
<td>−0.8</td>
<td>−2.8 (−3.0; −2.6)</td>
<td>1.3 (1.3; 1.4)</td>
<td>−1.4 (−1.6; −1.3)</td>
</tr>
<tr>
<td>Height-for-age z-score</td>
<td>−2.4</td>
<td>−2.3</td>
<td>−0.9</td>
<td>−1.6 (−1.9; −1.3)</td>
<td>0.1 (0.1; 0.2)</td>
<td>−1.5 (−1.7; −1.2)</td>
</tr>
<tr>
<td>Weight-for-height z-score</td>
<td>−3.1</td>
<td>−1.3</td>
<td>−0.3</td>
<td>−2.8 (−3.0; −2.6)</td>
<td>1.8 (1.7; 1.9)</td>
<td>−1.0 (−1.2; −0.8)</td>
</tr>
<tr>
<td>Impedance, Ω</td>
<td>999</td>
<td>874</td>
<td>867</td>
<td>132 (107; 156)</td>
<td>−125 (−140; −110)</td>
<td>7 (−19; 32)</td>
</tr>
<tr>
<td>Impedance index, cm²/Ω</td>
<td>4.9</td>
<td>5.7</td>
<td>6.2</td>
<td>0.8 (0.7; 0.9)</td>
<td>−1.4 (−1.6; −1.2)</td>
<td>−0.6 (−0.8; −0.4)</td>
</tr>
<tr>
<td>1/Impedance (×1000), Ω</td>
<td>1.02</td>
<td>1.16</td>
<td>1.17</td>
<td>0.14 (0.12; 0.16)</td>
<td>−0.15 (−0.18; −0.12)</td>
<td>−0.01 (−0.04; 0.02)</td>
</tr>
<tr>
<td>Fat-free mass, kg</td>
<td>5.20</td>
<td>5.75</td>
<td>6.13</td>
<td>−0.93 (−1.05; −0.81)</td>
<td>0.55 (0.47; 0.63)</td>
<td>−0.38 (−0.51; −0.25)</td>
</tr>
<tr>
<td>Fat mass, kg</td>
<td>1.13</td>
<td>1.80</td>
<td>2.69</td>
<td>−1.57 (−1.70; −1.44)</td>
<td>0.67 (0.60; 0.74)</td>
<td>−0.90 (−1.03; −0.76)</td>
</tr>
<tr>
<td>Fat-free mass index, kg/m²</td>
<td>11.0</td>
<td>11.8</td>
<td>11.6</td>
<td>−0.6 (−0.8; −0.4)</td>
<td>0.7 (0.6; 0.9)</td>
<td>0.2 (−0.1; 0.4)</td>
</tr>
<tr>
<td>Fat mass index, kg/m²</td>
<td>2.2</td>
<td>3.5</td>
<td>5.0</td>
<td>−2.8 (−3.1; −2.6)</td>
<td>1.4 (1.2; 1.5)</td>
<td>−1.5 (−1.7; −1.2)</td>
</tr>
</tbody>
</table>

All values are means or mean differences (95% CI) when using linear mixed models with id, study site and team as random effects and adjusting for sex and age.

Fig. 2. Deficit in fat-free mass (FFM), fat mass (FM), fat-free mass index (FFMI) and fat mass index (FFMI) at admission to treatment and recovery from SAM compared to community controls when adjusting for age and sex.

Table 4

Body composition outcomes at recovery among children treated with reduced and standard RUTF dose.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>RUTF dose</th>
<th>Difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduced (A)</td>
<td>Standard (B)</td>
<td>Values</td>
</tr>
<tr>
<td>n</td>
<td>80</td>
<td>99</td>
<td>0.03 (−0.09; 0.15)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>7.69</td>
<td>7.65</td>
<td>−0.22 (−0.39; 0.15)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>71.3</td>
<td>71.5</td>
<td>0.25 (−0.84; 1.33)</td>
</tr>
<tr>
<td>Mid-upper arm circumference</td>
<td>130.5</td>
<td>130.2</td>
<td>0.05 (−0.07; 0.17)</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>−2.1</td>
<td>−2.2</td>
<td>−0.05 (−0.13; 0.04)</td>
</tr>
<tr>
<td>Height-for-age z-score</td>
<td>−2.2</td>
<td>−2.2</td>
<td>0.14 (0.00; 0.28)</td>
</tr>
<tr>
<td>Weight-for-height z-score</td>
<td>−1.2</td>
<td>−1.4</td>
<td>−0.12 (−0.81; −1.22)</td>
</tr>
<tr>
<td>Impedance, Ω</td>
<td>860</td>
<td>895</td>
<td>0.05 (0.01; 0.09)</td>
</tr>
<tr>
<td>Impedance index, cm²/Ω</td>
<td>5.9</td>
<td>5.7</td>
<td>0.2 (−0.12; 0.4)</td>
</tr>
<tr>
<td>1/Impedance (×1000), Ω</td>
<td>1.18</td>
<td>1.13</td>
<td>0.35 (0.10; 0.661)</td>
</tr>
<tr>
<td>Fat-free mass, kg</td>
<td>5.86</td>
<td>5.75</td>
<td>0.09 (−0.22; 0.03)</td>
</tr>
<tr>
<td>Fat mass, kg</td>
<td>1.82</td>
<td>1.91</td>
<td>0.35 (0.10; 0.661)</td>
</tr>
<tr>
<td>Fat-free mass index, kg/m²</td>
<td>11.9</td>
<td>11.5</td>
<td>0.15 (−0.40; 0.10)</td>
</tr>
</tbody>
</table>

All values are means and mean difference (95% CI) when using linear mixed models with study site and team as random effects and when adjusting for sex, age and outcome measure at admission.

Please cite this article as: Kangas ST et al., Body composition during outpatient treatment of severe acute malnutrition: Results from a randomised trial testing different doses of ready-to-use therapeutic foods, Clinical Nutrition, https://doi.org/10.1016/j.clnu.2020.02.038
representing <2% of total weight. The higher FFMI in the reduced dose at recovery is explained by the combination of the small height difference (0.22 cm) in favour of the standard dose and the higher FFMI in the reduced dose. Indexing the slightly higher FFMI by the slightly lower height results in higher FFMI. Therefore, we conclude that the differences in the body composition parameters are trivial and do not provide evidence for worse body composition outcomes when providing less RUTF.

Previous studies on acutely malnourished children have reported diverse FFMI proportions of the total weight gained during treatment: 94% [19] during treatment of moderate acute malnutrition (MAM) in Burkina Faso and approximately 60% in inpatient treatment of SAM in Peru and India [10,20]. These are higher than the 45% observed in the current trial. The proportion of different tissue accretion depends on nutritional status at admission [20,21] and on the type of diet used [22–24]. Depending on the initial weight deficit, in quantity and type of tissue, different weight gain patterns can be expected [21]. Compared to children with MAM, children with SAM have a greater WHZ deficit at start of treatment and can be expected to have lost relatively more FM prior to SAM diagnosis. Subsequently, more FM would be gained during treatment [23]. Also, compared to the previously mentioned studies, we only discharged recovered children (65% of all discharged children who potentially have a different weight gain pattern to non-recovered; in a study in Mali, children who recovered from MAM gained proportionally more FM than non-recovered [25]. Indeed, the weight gain pattern observed in the current study can likely be considered the “best case” while non-recovered children would present with a less adequate tissue accretion. Also, to gain a gram of FFMI there is a comprehensive need for many supporting nutrients but relatively little (~2 kcal/g) energy, in contrast to FM gain which has a substantial energy cost (~8 kcal/g) but very low demand for other nutrients [26,27]. Thus, a different diet during rehabilitation can have an impact on the type of tissue deposited [22–24].

We observed a similar FFMI among children recovered from SAM when compared to community controls, similar to that reported in DRC by Bahwere et al. [14]. However, Bahwere et al. (2016) also reported a similar FM among children at discharge from SAM treatment when compared to community controls, unlike our observation of a deficient endpoint FM and FFMI. This discrepancy might be due to the differences in the study protocols where Bahwere et al. included and discharged children only based on MUAC and oedema resulting in a higher endline WHZ in DRC than reported here: −0.6 vs. −1.3 z-scores, respectively. With a WHZ approaching that of community controls, FFMI and FM, composing the WHZ, can also be expected to approach that of community controls.

The observation that the FFMI of children recovered from SAM is similar to community controls is reassuring and provides much needed evidence on the potential of RUTFs in promoting functional tissue accumulation during SAM treatment. There has been concern about potential excess fat deposition during SAM treatment, related to the high fat content of RUTF and the quick weight gain pattern [26]. The current findings point to the contrary: FM has not been caught up by the end of treatment and remains below that of community controls and British reference data [29]. Which tissue type gain, FFMI or FM, provides the greatest short-term benefit is an outstanding question. Two recent studies suggest that low adiposity as evidenced by low leptin levels predicted mortality among children with SAM and medical complications [30,31]. The post-discharge growth trajectories should be investigated to study the relationship between body composition outcomes and relapse and observe if weight and FM are caught up in the longer term. A recent follow-up study of survivors of SAM in Malawi found that 7 years post discharge from inpatient treatment children presented a lower FFMI but a similar FMI to community and sibling controls [32]. Whether there is a need for a longer treatment time, or specific post-discharge interventions to accompany treated children to recover fully, remains to be tested. There is also a need and increasing demand for body composition data from malnourished children to help reveal the relationship between early life exposure and later disease [33].

In this trial, and in the absence of internationally applicable standards, we used a convenience sample of age and sex matched non-malnourished community controls to act as reference in terms of body composition parameters. While the inclusion criteria to this community control group included a MUAC >125 mm and a WHZ >−2 and absence of oedema and illness, these children cannot be considered a perfect reference in terms of optimal health and nutrition status. Indeed, further research is warranted to develop body composition standards that reflect the normal variability to be able to compare malnourished children’s growth trajectories against a real standard. This would also help determine what part of the tissue gains can simply be expected based on normal growth of children and what part is the additional catch-up growth accompanying recovery from SAM. In the current study, the community control trajectories only measured once and thus normal tissue growth patterns during the 2 month mean treatment duration are unknown in this context.

The main strength of this study is that we obtained measurements both at admission and at recovery from SAM, which enables the evaluation of change in body composition parameters. This circumvents the difficulty of estimating absolute values of FFMI and FM but gives a more reliable estimation of the average composition of weight change. We also measured a sample of non-malnourished children from the same communities, which allowed us to estimate which tissue has the greatest deficit in children starting SAM treatment, and what deficits remain at the end of the treatment. The study was nested in an RCT and implemented by well-trained research staff measuring body composition with a BIA device that is easy to operate. The measures were quality-assessed to improve precision and reduce error. We did not include oedematous cases which reduces error as fluid disturbances are known to influence both BIA deuterium results [34].

The study also has limitations. Firstly, for reasons related to ease of implementation and cost, we opted for measuring body composition via BIA instead of the current gold standard of deuterium dilution technique. Obtaining additional deuterium dilution data would have enabled us to cross-validate the FFMI equations and this way refine and confirm the absolute FFMI values. Different BIA equations provide slightly different FFMI and FM estimates, with both ethnicity and nutritional status potentially relevant [35,36]. With no equation calibrated for malnourished nor Burkinabé children, the absolute FFMI values obtained from any specific BIA equation should therefore be treated with caution. However, the equation we used was calibrated among Gambian children of similar age, thus limiting bias from this source. To estimate the robustness of our estimations derived from the Gambian equation, we compared them with those obtained from applying other equations calibrated among children [37–42]: the % of FM from the total weight gain during treatment varied between 44% and 69%. Our estimation of 45% of weight gain during treatment being FFMI obtained with the Gambian equation falls towards the lower end of the spectrum, and this might be an accurate result as none of the other equations were calibrated in African populations. Importantly however, analyses of crude HT2/Z and FMI, or 1/Z and FFMI, demonstrate near-identical results in statistical models as they differ only in terms of constants. Therefore, we do not expect a
more accurate FFM estimation to have changed the main conclusions of there being no difference in the body composition of children at recovery from SAM after treatment with different doses of RUTF, and FMI but not FFM remaining lower among children recovered from SAM compared to non-malnourished community controls. Nonetheless, we recommend future studies to use several body composition techniques to increase accuracy of tissue mass assessment.

Secondly, because we staggered the sub-study to start 5 months into the main study and due to a proportion of BIA measurements being unsuccessful, we only obtained body composition from a sub-sample of trial participants and were underpowered to conclude on the non-inferiority of the reduced dose on body composition outcomes. Thirdly, we only managed to obtain representative data from children that were discharged recovered from SAM treatment. Recovered and non-recovered children probably display different body composition changes during treatment and the current results can only be considered as the best response to treatment. Having data on non-recovered children would have enabled us to investigate how the body composition change differs from recovered children and observe if the reduced dose impacted their body composition differently. Lastly, and as discussed in the previous paragraph, community controls were only measured once and thus we cannot ignore the normal tissue deposition patterns among them and thus cannot conclude whether the catch-up growth tissue gain pattern among children with SAM is considerably different from normal tissue gain patterns.

The study findings are generalizable to contexts with similar SAM profile consisting of children primary <24 months of age and with access to similar complementary foods. Body composition changes are strongly related to age and thus a reduced dose of RUTF among older children might result in different tissue gain patterns. Additionally, the weight gain and tissue accretion patterns could possibly be different in a context with different complementary foods being offered to children. Depending on the nutrient density of the complementary foods used, a reduced RUTF dose could result in different tissue gain patterns.

In conclusion, we observed that half of the weight gained by children treated for SAM with RUTF was of FFM and that by recovery their FMI was similar to community controls. However, the FMI remained lower at recovery. Additionally, we found no evidence of a sub-optimal effect of a reduced RUTF dose on the body composition of children by recovery. This indicates that in a relatively food secure context a reduction in the RUTF dose can result in similar body composition by recovery.

Funding sources

This trial was funded by Action Against Hunger France, European Commission’s Civil Protection and Humanitarian aid Operations, Children’s Investment Fund Foundation, European Commission’s Civil Protection and Humanitarian aid Operations Enhanced Response Capacity and Humanitarian Innovation Fund, a programme managed by Enhancing Learning and Research for Humanitarian Assistance. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Data availability

The dataset used and analysed during the current study is available from the Zenodo data repository: http://doi.org/10.5281/zenodo.3522237.

Conflict of interest

HF has received research grants from ARLA Food for Health Centre, Danish Dairy Research Foundation and also has research collaboration with Nutriset. JW has received BIA devices from BodyStat used in other research projects but not in the current one. Other authors declare no conflicts of interest.

CRediT authorship contribution statement

Suvi T. Kangas: Writing - original draft, Supervision, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Visualization, Writing - original draft, Writing - review & editing. Pernille Kaestel: Writing - review & editing, Conceptualization, Investigation, Methodology, Supervision, Validation. Cecile Salpeautre: Writing - review & editing, Conceptualization, Funding acquisition, Project administration, Resources. Victor Nikiema: Writing - review & editing, Supervision, Data curation, Investigation. Leisel Talley: Writing - review & editing, Conceptualization, Investigation, Methodology, Supervision, Validation. Andre Briend: Writing - review & editing, Conceptualization, Investigation, Methodology, Supervision, Validation. Christian Ritz: Methodology, Supervision, Validation, Writing - review & editing. Henrik Fris: Conceptualization, Investigation, Methodology, Supervision, Validation, Writing - review & editing. Jonathan C. Wells: Writing - review & editing, Conceptualization, Investigation, Methodology, Supervision, Validation.

Acknowledgements

We thank the research teams for their everyday efforts in implementing the trial and the study participants and caregivers for participating in the trial.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.clnu.2020.02.038.

References

