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ABSTRACT
We investigate theexistenceof a two-dimensional invariantmanifold
that attracts all nonzero orbits in 3 species Lotka-Volterra systems
with identical linear growth rates. This manifold, which we call the
balance simplex, is the common boundary of the basin of repulsion
of the origin and the basin of repulsion of infinity. The balance sim-
plex is linked to ecological models where there is ‘growth when rare’
and competition for finite resources. By including alternative food
sources for predators we cater for predator-prey type models. In the
case that the model is competitive, the balance simplex coincides
with the carrying simplex which is an unordered manifold (no two
points may be ordered componentwise), but for non-competitive
models the balance simplex need not be unordered. The balance
simplex of our models contains all limit sets and is the graph of a
piecewise analytic function over the unit probability simplex.
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1. Introduction

Recently in [8] we studied the dynamics of the planar system

ẋ1 = x1(1 − x1 − αx2), ẋ2 = x2(1 − x2 − βx1) (1)

on the first quadrant, where α,β ∈ R, not necessarily positive. Equation (1) differs from
the most general planar Lotka-Volterra model since the two species linear growth rates
are the same and scaled to unity. We showed that when α,β are chosen such that orbits
of (1) are bounded, there exists an invariant manifold � which attracts all points in the
first quadrant minus the origin and that projects radially one-to-one and onto the unit
probability simplex�2 = {(u, 1 − u) : 0 ≤ u ≤ 1}. We named� the balance simplex, as it
is the analogue of the carrying simplex found in competitive systems, and consists of points
on the common boundary of the basin of repulsion of the origin and infinity, but unlike the
carrying simplex it is not typically an unordered manifold (a manifold is unordered if no
two points have coordinates that can be ordered componentwise). The relative simplicity
of (1)meant that we were able to give explicit expressions for the balancemanifold in terms
of Gauss hypergeometric functions.

In a second paper [7] we put forward biologically reasonable conditions for the existence
of a balance simplex in planar Kolmogorov systems with at most one interior equilibrium
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which is then hyperbolic. The conditions include that the origin and infinity are repellers,
there exists exactly one non-zero and hyperbolic equilibrium on each axis and all nonzero
orbits on an axis are attracted to this axial equilibrium, and that there is intraspecific com-
petition which prevents interior periodic orbits. We also presented a series of examples
of systems with a variety of competitive, cooperative and predator-prey interactions to
illustrate our results.

The ecological importance of these findings is that under biologically reasonable con-
ditions, at least in the case where there is at most one coexistence equilibrium, there is
a curve on which the effects of growth when rare, and competition for finite resources
balance; hence the choice of the name ‘balance’ simplex. No community with all species
present can completely collapse – at least one species must remain extant (and finite).

Here we show that a suitably defined and piecewise analytic balance simplex also exists
for the following natural 3-species extension of (1), known as the May-Leonard system
[17]:

ẋi = Fi(x) = xifi(x) = xi(1 − (Ax)i), i = 1, 2, 3 (2)

where x = (x1, x2, x3),A is a real 3 × 3matrix with elements aij for i, j = 1, 2, 3 and aii = 1
for i = 1, 2, 3. Thismodel was studied byMay and Leonard in the context of its heteroclinic
cycles. Since (2) is a model for population dynamics, we restrict to the invariant positive
cone K = R

3+, where R+ := [0,∞). We emphasize that we do not assume that A has non-
negative elements, so that we are not confining our analysis to competitive systems.

Here the balance simplex is defined via:

Definition 1.1: A balance simplex� of a semiflow onK is a subset ofK with the following
properties:

(1) � is invariant, compact, and projects radially 1-1 and onto the unit probability
simplex;

(2) � globally attracts all non-zero points in K and is asymptotically complete (i.e. given
x ∈ K \ {0} there exists a y ∈ � such that ‖x(t)− y(t)‖ → 0 as t → ∞).

(x(t) is the forward evolution of x under the semiflow, and similarly for y).
Definition 1.1 slightly differs from Definition 2.1 in [8] as it includes asymptotic com-

pleteness of the manifold. This is a natural requirement since it ensures that the full flow
of (2) can be approximated by a flow on �, and this approximation is most useful when
orbits approach� rapidly, such as when� is also an inertial manifold.

When � is also unordered, so that no two distinct points x, y of � satisfy x − y ∈ K,
such as when (1) is competitive, the balance simplex coincides with the carrying simplex of
Hirsch [11, 12]. In Figure 1(a) we illustrate the idea of the balance simplex as the common
boundary of the basin of repulsion and infinity that projects radially one-to-one onto the
unit probability simplex. Figure 1(b) shows a carrying simplex and a sample of orbits for
the competitive May-Leonard system (2).

The May-Leonard system was introduced in [17] and has been studied under vari-
ous constraints on the matrix A to include competition, cooperation and predator-prey
interactions (e.g. [6, 22]).
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Figure 1. (a) The balance simplex. (b) A representative example of the carrying simplex and a sample of
orbits for a competitive case (i.e. aij ≥ 0 for i �= j) of the May-Leonard system (2). In both (a) and (b) the
green manifold is the balance simplex and it attracts all nonzero orbits.

2. The result

We recall that a 3 × 3 real matrix A is copositive when x · Ax ≥ 0 for x ∈ K and strictly
copositive when x · Ax > 0 for x ∈ K \ {0}. Note that 2x · Ax = x · (A + AT)x so we need
only check whether the symmetric matrix (A + AT) is copositive or strictly copositive.

Lemma 2.1: The real symmetric matrix B =
(

1 α β
α 1 γ
β γ 1

)
is strictly copositive if and only if

α,β , γ satisfymin{α,β , γ } > −1 and at least one of the following two conditions hold:

α + β + γ + 1 > 0 (3)

1 + 2αβγ − α2 − β2 − γ 2 > 0. (4)

Proof: This follows easily from [10]. �

We recall that the Replicator system on the 2-dimensional unit probability simplex
� = {u ∈ K :

∑3
i=1 ui = 1} for matrix games with 3 strategies is the system of differential

equations [21]

u̇i = ui((Au)i − u · Au), i = 1, 2, 3, u(0) ∈ �. (5)

For a background on this system see, for example, [13].
We recall that given a flow, the basin of attraction of an equilibrium p is the set of

points that converge to p under the flow forwards in time, and the basin of repulsion of
an equilibrium p is the set of points that converge to p under the flow backwards in time.

Here we will prove:

Theorem 2.2: If the 3 × 3 matrix A is strictly copositive, then the system (2) has a balance
simplex and there is a continuous function� : � → R+ such that� = {�(u)u : u ∈ �} ⊂
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K and � is the common boundary relative to K of the basins of repulsion of the origin and
infinity.

If in addition (i) all equilibria of the planar Replicator system (5)with fitness matrix A are
isolated and hyperbolic, and (ii) every trajectory of (5) converges to an equilibrium, then �
is piecewise analytic on �, with discontinuous gradients only possible at equilibria or across
heteroclinic orbits that lie in the interior of�.

3. Existence of the balance simplex

As a first step we introduce new coordinates R and u = (u1, u2, u3) ∈ 
with R = ∑3
i=1 xi

and ui = xi/R for i = 1, 2, 3. Thus we work with total population density R and species
frequencies u. We will assume thatA is strictly copositive so that the mean fitness u · Au >
0 for u ∈ �.

In the new coodinates (2) transforms into the equivalent system

Ṙ = R(1 − u · AuR) (6)

u̇i = Rui(u · Au − (Au)i), i = 1, 2, 3. (7)

We note that (6) is logistic growth of the total population with unit linear growth rate and
time-dependent carrying capacity (u · Au)−1 (which is defined since A is strictly coposi-
tive). On the other hand (7) is the standard replicator system for matrix games, but with
time rescaled and run backwards. We will exploit this partial decoupling of the dynamics
in what follows by scaling time.

The reduction of (2) to (6), (7), which relies on identical linear growth rates is crucial,
has been previously exploited by a number of authors [5, 24].

If A is strictly copositive, by compactness of
 there is a δ > 0 such that u · Au ≥ δ > 0
for all u ∈ 
. From (6) we see that Ṙ < R(1 − δR) which tells us that the total population
R eventually falls below 1

δ
. Thus the assumption that A is strictly copositive implies that all

orbits of (6), (7) and equivalently the original system (2) remain bounded for all forward
time.

Since

−u · Au = ∂

∂R

(
Ṙ
R

)

we may interpret copositivity of A as meaning that the per-capita growth rate averaged
over the whole population decreases as the total population size increases, regardless of
the frequency of each species (even if some, but not all, are extinct).

For a given initial point (u0,R0) ∈ �× R+ we denote the unique trajectory of (6), (7)
by t �→ (u(u0,R0, t),R(u0,R0, t)), t ∈ R+.

The originO is a repeller of (2) and its basin of repulsion is the open set

R(O) =
{
R0u0 : u0 ∈ �,R0 ≥ 0, lim

t→−∞R(u0,R0, t) = 0
}
.

We are interested in the boundary of R(O) relative to K, which we denote by ∂R(O).
Indeed we will show that, under the assumptions of Theorem 2.2, (2) has ∂R(O) as a
balance simplex� with� = ∂R(∞) = ∂R(O).
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For convenience, we will now run time backwards and study, in place of (6), (7), the
system

dS
ds

= S(u · AuS − 1) (8)

dui
ds

= Sui((Au)i − u · Au), i = 1, 2, 3. (9)

The orbits of the systems (6),(7) and (8),(9) are identical, but for the dynamics generated
by (8), (9), O is now an attractor, and we are now interested in the finding the basin of
attraction ofO:

B(O) =
{
S0u0 : u0 ∈ �, S0 ≥ 0, lim

s→∞ S(u0, S0, s) = 0
}
.

The boundary of B(O) relative to K is denoted by ∂B(O).
Fix a u0 ∈ � and S0 > 0 and let s �→ (u(u0, S0, s), S(u0, S0, s)) denote the unique trajec-

tory of (8), (9) through (u0, S0) defined for s ∈ [0, smax(u0, S0)), where smax(u0, S0) is the
maximal range of s for which the orbit of (8), (9) through (u0, S0) is bounded. smax(u0, S0)
may be finite, as it is possible for S(u0, S0, s) to go to infinity in finite s−time.

For each u0, S0 introduce the invertible function τu0,S0 : R+ → R+ by τu0,S0(s) =∫ s
0 S(u0, S0, σ) dσ . There are two possibilities:

(a) τu0,S0(∞) < ∞, (b) τu0,S0(∞) = ∞.

In the case (a), we must have limt→∞ S(u0, S0, t) = 0 since S(u0, S0, ·) is positive and
smooth for S0 > 0 and the origin is an attractor, and so S0u0 ∈ B(O).

This leaves case (b), where τu0,S0(s) → ∞ as s → ∞.
Write S(u0, S0, τu0,S0(s)) = S(u0, S0, s), u(u0, τu0,S0(s)) = u(u0, S0, s) and θ(u0, τ) =

u(u0, τ) · Au(u0, τ). Then for τ ∈ [0, τu0,S0(∞)) = R+

dS
dτ
(u0, S0, τ) = θ(u0, τ)S(u0, S0, τ)− 1 (10)

dui
dτ
(u0, τ) = ui(u0, τ)((Au(u0, τ))i − θ(u0, τ)), i = 1, 2, 3. (11)

By explicit integration, for τ ∈ R+,

S(u0, S0, τ) = e
∫ τ
0 θ(u0,β) dβ

(
S0 −

∫ τ

0
e−

∫ α
0 θ(u0,β) dβ dα

)
. (12)

Define ψ : �× R+ → R+ via

ψ(u0, τ) =
∫ τ

0
e−

∫ α
0 θ(u0,β) dβ dα, u0 ∈ �, τ ∈ R+.

Then for all u0 ∈ �, since A is strictly copositive with u · Au ≥ δ > 0 for u ∈ �,

ψ(u0, τ) ≤
∫ τ

0
e−

∫ α
0 δ dβ dα = 1

δ
(1 − e−δτ ) <

1
δ
.
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For fixed u0, ψ(u0, τ) is an increasing function of τ bounded above by 1/δ and hence we
may pass to the limit

lim
τ→∞

∫ τ

0
e−

∫ α
0 θ(u0,β) dβ dα =

∫ ∞

0
e−

∫ α
0 θ(u0,β) dβ dα <

1
δ
.

Define� : � → R+ by the pointwise limits

�(u0) := lim
τ→∞ψ(u0, τ), u0 ∈ �. (13)

We have, with τ2 > τ1,

max
u0∈�

|ψ(u0, τ2)− ψ(u0, τ1)| = max
u0∈�

∫ τ2

τ1

e−
∫ α
0 θ̄ (u0,β) dβ dα

≤ 1
δ
(e−δτ1 − e−δτ2).

Hence ψ(·, τ) is a uniform Cauchy sequence of continuous functions on� that converges
to a continuous function on� as τ → ∞. Thus� is continuous on�.

For this case (b), τ(s) → ∞ as s → ∞, and we can ask: What is limτ→∞ S(u0, S0, τ)?
Indeed, since we are assuming that A is strictly copositive, so that θ ≥ δ > 0,∫ τ
0 θ(u0, s) ds → ∞ as τ → ∞. If S0 > �(u0) then S(u0, S0, τ) → ∞ by (12) as τ → ∞,
so that S0u0 ∈ B(∞). If S0 < �(u0), then since S > 0, to avoid a contradiction in (12), we
must have τu0,S0 = ∫ ∞

0 S(u0, S0, s) ds < ∞ so that S0u0 ∈ B(O). Consequently S0u0 lies in
∂B(O) if and only if u0 and S0 are related by

S0 = �(u0) =
∫ ∞

0
e−

∫ α
0 θ(u0,β) dβ dα, (14)

and ∂B(O) = ∂B(∞), B(O) = {uR : 0 ≤ R ≤ �(u), u ∈ �}.
Finally we note that � is asymptotically complete by construction: For an orbit x(t) ∈

K \ {0}, the orbit y(t) = (x(t)/‖x(t)‖1)�(x(t)/‖x(t)‖1) ∈ � satisfies (2) and ‖x(t)−
y(t)‖ → 0 as t → ∞.

4. Smoothness properties of the balancemanifold

In order to gain further information about the balancemanifold we utilize Bomze’s classifi-
cation of 3-species dynamics given in [3, 4]. Bomze’s classification enables us to classify all
possible orbits of (11), and this enables us to construct the balance manifold using (10).
Actually, Bomze’s classification enables us to partition � into (planar) stability basins
for (11) which then can be lifted into stability basins for the full system (10), (11).

We first recall the conditions stated in Theorem 2.2 that we now assume: (i) the 3 × 3
matrix A is strictly copositive, (ii) all equilibria of the planar Replicator system (5) with
fitness matrix A are isolated and hyperbolic, and (iii) every trajectory of (5) converges to
an equilibrium.

Let us first consider the stability regions for the dynamics of (11). LetE ⊂ � ⊂ K denote
the set of equilibria of (11). Then since we are assuming that all orbits of (11) converge
to an equilibrium, � = ⋃

pi∈E W
s(pi), where Ws(pi) ⊂ � is the stable manifold associ-

ated with pi ∈ E under the replicator dynamics (11). Moreover, as can be seen from the
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Figure 2. Example 1: balance simplices for the model (1). (a) 1 predator, 2 prey; A =
(

1 −1/3 −1
1/2 1 −1/2
3/4 1/2 1

)

(b) The phase portrait for (11), (c) The plot agrees with that computed via finite difference of the PDE (5)
in [1].

permissible replicator phase portraits (i.e. those that have all orbits converge to equilibria
and all equilibria are isolated and hyperbolic) in Figures 1 and 2 of the Appendix, for the
dynamics of (11), � = ∪piB(pi) where the union is over asymptotically stable equilibria.
In fact,� \ ∪piB(pi) consists of the union of 1-dimensional stable manifolds of equilibria,
and equilibria of the system (11).

Nowwe consider the dynamics of the full system (10), (11).We recall that if u ∈ �, then
u�(u) is the point in� ⊂ R

3+ that projects radially onto u.
If pi ∈ E ⊂ � is asymptotically stable under the planar dynamics (11), whenever p ∈

B(pi) the initial point p�(p) ∈ � converges to pi�(pi) under the full dynamics (10), (11).
In fact the basin of attraction of pi for (11) is the radial projection of the basin of attraction
of pi�(pi) under the full dynamics (10), (11).

By the Stable manifold theorem [18], since (2) has an analytic righthand side, the basin
of attraction of pi�(pi) under the full dynamics (10), (11) is an analytic manifold, and so
� is actually analytic over each basin of attraction of pi ∈ E. Continuous differentiability
of � may be lost across the common boundary of two or more basins of attraction of
asymptotically stable equilibria, but � is nevertheless continuous on �. Reversing time
and substituting B withR we obtain Theorem 2.2.

Although we have shown existence of the balance simplex for 3 species there is nothing
in our construction that does not generalize to d ≥ 1 species andwe have for existence (but
not smoothness):

Theorem 4.1: If the d × d matrix A is strictly copositive, then theMay-Leonard system ẋi =
xi(1 − (Ax)i), i = 1, . . . , d has a balance simplex and there is a continuous function � :
� → R+ such that � = {�(u)u : u ∈ �} ⊂ K and � is the common boundary relative to
K of the basins of repulsion of the origin and infinity.

5. Examples

We now compute a selection of balance simplices using the formula (14) and Bomze’s
classification of replicator dynamics outlined in the Appendix.
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5.1. Example 1

Here A =
(

1 −1/3 −1
1/2 1 −1/2
3/4 1/2 1

)
. This is an example of a two predator, one prey community

where species 1 predates on both species 2 and species 3, and species 2 predates on species 3.
Unlike classic predator-preymodels, in this example when the prey is absent, predator per-
capita growth rate is positive, which reflects a model assumption that there is a secondary

food source present for the predators. Note that (A + AT)/2 =
(

1 1/12 −1/8
1/12 1 0
−1/8 0 1

)
so that

by Lemma 2.1 A is strictly copositive. Moreover, there is no interior equilibrium for (11)
and all off-diagonal elements ofA differ from 1, so that all equilibria are hyperbolic. Hence
by Theorem 2.2, there exists a balance manifold �. Figure 2(a) shows � for this case as
computed from (14), and we note that the plot agrees (formally) with that computed via
finite difference of the PDE (5) in [1] as shown in Figure 2(c). The replicator dynamics (11)
corresponds to a rotated Type 35’ in Figure 2. Note that there are two interior heteroclinic
orbits γ1, γ2 in Figure 2(b) that connect two boundary equilibria and separate basins of
attraction of equilibria. It is not clear whether � is differentiable across γ 1 and γ 2 as the
numerical resolution is insufficient to determine this. It would be interesting to determine
whether� is differentiable across the heteroclinic orbits γ 1, γ 2 but we will not pursue this
further here.

5.2. Example 2

A =
(

1 2 −1/2
1/2 1 −1/2
1/2 1/2 1

)
. This is a 2 predator, 1 prey model where both species 1 and 2 predate

species 3. Now A + AT =
(

2 5/2 0
5/2 2 0
0 0 2

)
so A is strictly copositive. The replicator dynam-

ics (11) corresponds to Type 37’ in Figure 2. Again there is no interior equilibrium of (11)
and all off-diagonal elements of A differ from 1. Hence by Theorem 2.2, there exists a bal-
ance manifold � as depicted in Figure 3(a,c). There is an interior heteroclinic orbit γ in
Figure 3(b) that connects two boundary equilibria and separates basins of attraction of two
equilibria, and it is unclear whether � is differentiable across γ .

5.3. Example 3

As a final example, we consider purely cooperative interactions between 3 species. We take

A =
(

1 −1/6 −1/6
−1/6 1 −1/6
−1/6 −1/6 1

)
. The replicator dynamics (11) corresponds to Type 7’ in Figure 2.

There is now an isolated interior equilibium which is automatically hyperbolic and since
all off-diagonal elements are −1/6, all equilibria are hyperbolic. A is strictly copositive by
Lemma 2.1 (and in fact is positive definite). Hence by Theorem 2.2, there exists a balance
manifold � as depicted in Figure 4(a,c). There are three interior heteroclinic orbits γi,
i = 1, 2, 3 that connect the boundary equilibria midpoint to each edge to the interior equi-
librium and the numerics strongly suggest that � fails to be continuously differentiable
across each γi. In fact on the boundary where x2 = 0 we may use the explicit formulae in
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Figure 3. Example 2: balance simplices for themodel (1). (a) A =
(

1 2 −1/2
1/2 1 −1/2
1/2 1/2 1

)
(b) The phase portrait

for (11), (c) The plot agrees with that computed via finite difference of the PDE (5) in [1].

Figure 4. Example 3: balance simplices for the model (1). (a) A =
(

1 −1/6 −1/6
−1/6 1 −1/6
−1/6 −1/6 1

)
(b) The phase

portrait for (11), (c) (c) The plot agrees with that computed via finite difference of the PDE (5) in [1].

[8] to find

(x1, x3)(T) =
⎧⎨
⎩

2F1(1/7, 1, 13/7,T)(1,T) T ∈ (0, 1)
2F1

(
1/7, 1, 13/7,

1
T

)
(1/T, 1) T ∈ (1,∞).

At the equilibrium (x1, 0, x3) = (6/5, 0, 6/5) the left gradient is 1 and is equal to the right
gradient. However, the signs of the curvatures of each curve are opposite (yielding a cusp),
so that on the boundary x2 = 0 the balance simplex is not differentiable at (x1, 0, x3) =
(6/5, 0, 6/5).

6. Conclusions

The presence of a balance simplex in the 3-species May-Leonard model (2) under the
conditions specified in Theorem 2.2 means that all nonzero orbits are attracted to a two-
dimensional manifold (topological, not necessarily differentiable). Hence, that previous
studies [6, 24] showed long term dynamics of the kind predicted by Poincaré-Bendixson
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theory for 2-dimensional manifolds is perhaps no surprise. Indeed, for this 3-species case,
it is easy to see from the reduction to (6), (7) that the dynamics is essentially driven by a
2-dimensional replicator system whose dynamics are completely classified [3, 4].

The virtue of working with the May-Leonard model (2) is that it has identical linear
growth rates which means that it can be reduced to (6),(7). The May-Leonard system (2)
provides a simple model where the balance simplex can be easily shown to exist, and can
be computed via (14). While the notion of a carrying simplex is traditionally confined to
models where species interactions are all of a competitive nature (so that the invariantman-
ifold identified with the carrying simplex is an unordered manifold), the balance simplex
of (2) allows us to study the effect of a mixture of competitive, cooperative, and predator-
prey interactions and allows for invariant manifolds without the restrictive requirement
that they are unordered. This was achieved at the expense of assuming equal linear growth
rates, which is non-generic, but our study of (2) gives a starting point fromwhich to under-
stand the balance in models with distinct linear growth rates, such those where the linear
growth rates are nearly equal.

Key factors behind the existence of a balance simplex in (2) are that there is growthwhen
species densities are low and sufficiently strong intraspecific competition. Examples 1 and
2 featured predator-prey interactions, but we made the model assumptions that preda-
tors had secondary food sources when their primary prey was absent. This meant that
the assumption of ‘growth when rare’ applied and in (2) the origin is repelling. Sufficient
intraspecific competition prevents population explosion.

The existence of a 2-dimensional balance simplex in 3-species Kolmogorov systems, not
just of the May-Leonard Lotka-Volterra systems discussed here, has strong implications
for the long term dynamics of the community that it models. For example, if the balance
simplex has sufficient smoothness properties, the long term dynamics can be understood
via a study of the restriction of the dynamics on the 2-dimensional balance simplex. Hence
the Poincaré-Bendixson theory applies [18], and the limit sets can only be equilibria, closed
orbits, or unions of equilibria and heteroclinic orbits connecting them. In particular, there
can be no chaos. Indeed, for all the examples of chaos that we are aware of (e.g. [9, 13, 20]),
the origin is a saddle, and not a repeller, thus violating the ‘growth when rare’ condition.

When there are d>3 species, the dynamics of a d−species May-Leonard model can be
much more complicated, even chaotic, as is already known for competitive systems [19].
We are not aware of a classification of replicator dynamics for more than 3 species, so our
approach to studying smoothness of the balance simplex cannot be immediately applied.

It is known that the presence of a carrying simplex, and the fact that it is the boundary
of repulsion basins, can help to understand global stability or repulsion (in the carrying
simplex) in Kolmogorov systems through the Split Kolmogorov method [2, 14, 23] or the
index theorem approach of [16] (and [15] for discrete dynamics), so it would be interesting
to ask what the presence of a balance simplex says in the context of global stability.
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Appendix. Using the classification of Bomze

For Equation (2), on the boundary x3 = 0, ẋ1 = x1(1 − x1)(a12 − 1 + (2 − a12 − a21)x1), so that
for hyperbolicity at the points (1, 0), (0, 1) we need a12 �= 1, a21 �= 1. As noted by Bomze [3], when
both (1, 0) and (0, 1) are hyperbolic, any equilibrium of (11) on the edge joining (1, 0) and (0, 1) is
also hyperbolic. Hence the condition for all boundary points to be hyperbolic is aij �= 1 for i �= j.

Bomze [3] uses that when A =
(

0 0 0
a b c
d e f

)
(and A can always be put in this form by subtracting a

suitable constant cj ofA from column j ofAwithout changing the equations (5)) the dynamics of (5)
are topologically equivalent to those of the Lotka-Volterra system

ẏ1 = y1(a + by1 + cy2), ẏ2 = y2(d + ey1 + fy2). (A1)

In particular, an interior equilibrium p∗ ∈ int(�) of (11) exists if and only an interior equilibrium
y∗ ∈ int(R2+) of (A1) exists if and only if ce−bf, fa−cd, bd−ea are all nonzero and the same sign.
Moreover, p∗ is hyperbolic if and only if y∗ is hyperbolic. The equilibrium y∗ is hyperbolic if and
only

(
y∗1b y∗1c
y∗2e y∗2 f

)
has no eigenvalues with zero real part which is when y∗

1b + y∗
2 f �= 0 (since we already

need that bf − ce �= 0 for an interior equilibrium). Hence wemay conclude (as was done in [3]) that
whenever an interior equilibrium of (11) exists, it is hyperbolic.

Bomze [3, 4] classified all the possible phase portraits of the 3-species Replicator system. Bomze
showed that there are 47 distinct phase portraits up to rotation, reflection and time-reversal. If we
leave out non-generic cases where equilibria are not isolated, we reduce the number of possibilities.

Figure A1. Relevant phase portraits for (7) when all orbits converge to an equilibrium, and all equilibria
are hyperbolic. The asymptotically stable equilbria of the dark solid circles, the saddle equilibria are the
orange circles. Finally the hollow circles are unstable nodes. In the caseswhere there are 2 asymptotically
stable equilbria, the dashed green lines are heteroclinic orbits that make up the common boundary of
the two attraction basins.
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Figure A2. As in Figure A1, but with time reversed. In 7’, 15’, 35’ there are 3 asymptotically stable equi-
libria. Note that 17’ is not relevant as interior points are not convergent, as the omega limit set of the
interior equilibrium is ∂�.

Moreover, if we ask that all trajectories converge to an equilibriumwe can reduce the number of pos-
sible portraits yet further to 20, and we depict these possibilities in Figure A1. The cases in Figure A1
must also be considered with their time reversed so that stable nodes become unstable nodes and
vice-versa. The numbers used for each phase portrait in Figure A1 match the numbering used by
Bomze in [3] and later [4].

In portraits 7, 8, 9, 10, 11, 12, 14, 15, 17 there is a unique interior equilibrium.Of these, in portraits
7, 9, 15, 17 the interior equiilbrium p has B(p) = int(�). In 8, 10, 11, 14 there are two asymptoti-
cally stable equilibria, say p1, p2, and the green dashed arrows and the equilibria that they connect
make up a continuous curve γ that is the common boundary of the basin of attraction of the two
asymptotically stable equilibria. In portrait 12 there are two asymptotically stable equilibria and a
heteroclinic orbit joining two boundary equilibria and that forms the common boundary of the
basins of attraction of the asymptotically stable equilibria.

For the remaining portraits 34–46 there is no interior equilibrium. In 34, 35, 37, 38, 39, 40, 41, 42,
43, 44 there is a unique asymptotically stable equilibrium p and B(p) = �. In portrait 36 there are
two asymptotically stable equilibria p1, p2 on the boundary and the green dashed curve γ toegther
with the equilibria that it connects is the common boundary of the attraction basins of p1, p2.

To comment briefly on two phase portraits in [3] that are not permissible under our assumptions,
in both PP 45 and PP 46 of [3, 4] the bottom left vertex is not a hyperbolic equilibrium and so do
not satisfy condition (i) of Theorem 2.2.

In Figure A2 we indicate the phase portraits with time reversed with a prime, so that portrait 7’
is portrait 7 with time reversed. In 7’ there are 3 asymptotically stable equilibria.
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