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Abstract

Until relatively recently, a diagnosis of probable Alzheimer’s disease (AD) and other neurodegenerative disorders
was principally based on clinical presentation, with post-mortem examination remaining a gold standard for disease
confirmation. This is in sharp contrast to other areas of medicine, where fluid biomarkers, such as troponin levels in
myocardial infarction, form an integral part of the diagnostic and treatment criteria. There is a pressing need for
such quantifiable and easily accessible tools in neurodegenerative diseases.
In this paper, based on lectures given at the 2019 Biomarkers in Neurodegenerative Diseases Course, we provide an
overview of a range of cerebrospinal fluid (CSF) and blood biomarkers in neurodegenerative disorders, including
the ‘core’ AD biomarkers amyloid β (Aβ) and tau, as well as other disease-specific and general markers of neuroaxonal
injury. We then highlight the main challenges in the field, and how those could be overcome with the aid of new
methodological advances, such as assay automation, mass spectrometry and ultrasensitive immunoassays.
As we hopefully move towards an era of disease-modifying treatments, reliable biomarkers will be essential to increase
diagnostic accuracy, allow for earlier diagnosis, better participant selection and disease activity and treatment effect
monitoring.
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Background
Considerable progress has been made in the field of fluid
and imaging biomarker research in neurodegeneration
in the last two decades. As a result, the most recent re-
search and clinical guidelines (NIA-AA, IWG-2, NICE) in-
corporate cerebrospinal fluid (CSF) and positron emission
tomography (PET) biomarkers in the diagnostic criteria of
Alzheimer’s disease (AD) and mild cognitive impairment
(MCI) [1–3]. With more clinical trials of potential disease-
modifying treatments shifting the focus towards pre-
clinical stages of neurodegenerative disorders, there is an
urgent need for more easily accessible, sensitive and spe-
cific biomarkers, which could aid earlier diagnosis, patient
selection and tracking of disease activity.
The 2019 Biomarkers in Neurodegenerative Diseases

Course provided attendants with an opportunity to gain
basic and practical knowledge the rapidly developing
field. At the 4-day conference aimed at PhD students, an
international panel of experts discussed the current state
of CSF and blood-derived biomarkers, including emer-
ging technological advances and areas requiring further
research. In this paper, based on the course proceedings,
we will present a brief overview of the most important
fluid biomarkers, focusing on AD, as well as other neu-
rodegenerative disorders. We then outline the current
limitations for use and the most recent technological ad-
vances in the field.

Biomarkers in neurodegeneration
Amyloid and tau
In AD, identification of amyloid β (Aβ) and phosphory-
lated tau (p-tau) as major components of extracellular pla-
ques and neurofibrillary tangles led to establishment of
the core biomarkers for the disease, with a CSF profile
characterised by decreased Aβ42 levels, and elevated levels
of total tau (t-tau) and p-tau (for example at threonine
181) [4]. The reduction in CSF Aβ42 levels likely results
from selective retention of Aβ42 in Aβ plaques, while the
increase in t-tau and p-tau levels in CSF reflect increased
tau secretion and phosphorylation from neurons affected
by AD [4, 5]. A 2016 meta-analysis by Olsson and col-
leagues comprising over 230 studies helped establish that
these biomarkers could help differentiate AD patients
from controls, and individuals with MCI with subsequent
progression to AD from those with stable MCI [6]. Their
high sensitivity and specificity—between 85 and 95% if
combined—has led to their incorporation into research
guidelines and clinical trials and increasingly into clinical
practice in cases when there is a degree of uncertainty
about the AD diagnosis [1–3].

CSF Aβ
CSF Aβ42 is one of the most well-validated biomarkers
in neurodegeneration. CSF Aβ42 is reduced in MCI

patients years before conversion to AD dementia and re-
mains low throughout the disease course [7]. Low CSF
levels strongly correlate with cortical amyloid plaque
load in the neocortex and hippocampus in post-mortem
studies, as well as cortical Aβ deposition measured by
PET [8, 9]. More recently, the CSF Aβ42/Aβ40 peptide
ratio has shown to improve prediction of cortical amyl-
oid deposition and differentiation between AD and other
dementias in comparison to Aβ42 alone, likely by nor-
malising the inter-individual differences in Aβ and re-
lease into CSF [10, 11].
In addition to Aβ42, numerous studies explored the

role of alternatively cleaved Aβ peptides. Aβ43, for ex-
ample, shows comparable diagnostic performance to
CSF Aβ42 [12]. Yet another Aβ peptide is the shorter
Aβ38, with research suggesting an association between
CSF Aβ38 levels and amyloid PET [6, 13].

Blood Aβ
Studies implementing novel techniques, such as mass
spectrometry and ultrasensitive immunoassays, have
shown promise in developing sensitive blood-based Aβ
assays [14]. Plasma Aβ42 measured using single molecule
array (Simoa) technology was shown to be decreased in
AD compared with controls and a ratio of plasma Aβ42/
Aβ40 was reduced in amyloid PET positive cases in a
manner similar to CSF, but according to most studies,
with greater overlap between Aβ-positive and Aβ-
negative patients [15, 16]. In contrast to Simoa, two re-
cent papers utilising immunomagnetic reduction (IMR)
developed by MagQu have demonstrated increase in
plasma Aβ42 in AD patients in comparison to controls,
which correlated negatively with CSF Aβ42 [17, 18]. Sig-
nificant variability between studies remains an issue,
with several potential confounders, including inter-assay
differences and potential peripheral Aβ expression con-
tributing to poor concordance and necessitating further
validation studies to establish the role of plasma Aβ in
AD diagnosis [19].

CSF tau
CSF concentrations of t-tau and p-tau are consistently
increased in AD [6]. Cognitive decline is more strongly
associated with tau pathology than with amyloid path-
ology, with very high CSF t-tau and p-tau levels associ-
ated with worse clinical outcomes [20, 21]. While t-tau
and p-tau concentration broadly reflect disease intensity,
they correlate poorly with the burden of tau pathology
measured by PET or in a post-mortem study [22, 23].
Latest research has focused on the fact that tau pro-

teins can exist in multiple fragments and exhibit differ-
ent phosphorylation patterns, with hope that some of
them might be disease-specific and reflecting the under-
lying pathophysiological processes. In one study, N-
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terminal tau fragment truncated at 224 amino acids (N-
224) colocalised to neurofibrillary tangles in brain ex-
tracts and showed significantly higher levels in CSF from
patients with AD in comparison to controls, with higher
baseline levels predictive of steeper cognitive decline
[24]. More recently, tau N-368 has also been found to be
significantly elevated in CSF of AD patients, with a ratio
of tau N-368 to total tau exhibiting a strong negative
correlation with tau PET [25]. AD pathology also signifi-
cantly affects phosphorylation patterns, with hyperpho-
sphorylation seen of a number CSF tau sites in
comparison to healthy controls. In addition, a distinct
phosphorylation site (T153) has been identified in AD
CSF, which is absent in non-AD CSF [26].
Interestingly, elevated tau levels, including specific

phosphorylated epitopes (P-tau181, P-tau231, and P-
tau199) and N-terminal tau fragments truncated at
224, are not seen in many neurodegenerative diseases
including primary tauopathies, such as frontotemporal
dementia (FTD) or progressive supranuclear palsy
(PSP) [24, 27–29]. A recent study by Sato et al. using
stable isotope labelling method (SILK) to investigate
tau metabolism suggests that the raised t-tau and p-
tau levels seen in AD could be due to active produc-
tion and secretion from neurons in response to Aβ
pathology rather than a direct reflection of a neurode-
generative process [30].

Blood tau
Plasma t-tau was also found to be increased in AD,
though this is not correlated with CSF [31, 32]. Promis-
ing results now exist for plasma p-tau, measured using a
sensitive immunoassay with electrochemiluminescence
detection and showing strong association with tau PET,
as well as high concordance with CSF p-tau in a recent
study by Palmqvist et al. [33, 34]. Several large replica-
tion studies, showing robust correlations with CSF p-tau
and amyloid PET results, were presented during Alzhei-
mer’s Association International Conference 2019 (AAIC)
but have not yet been published.
In conclusion, while raised CSF tau levels are a well-

validated feature of AD, studies examining the biology of
tau, including its processing, secretion and aggregation
are needed to fully understand its role as an AD bio-
marker. There is also a need for further research on tau
pathology biomarkers in other tauopathies, such as PSP.

Neurofilament light
Neurofilament light (NfL) is a type of intermediate fila-
ment seen in the cytoplasm of axons, where it plays an
important role in axonal homeostasis and synaptic trans-
mission [35]. NfL concentrations dynamically increase in
response to concussion, as demonstrated in amateur
boxers and ice hockey players [36, 37]. NfL has also been

used as a biomarker of disease intensity, since it corre-
lates with neuroaxonal damage in a wide range of neuro-
logical disorders [38]. Importantly, CSF and serum NfL
concentrations are highly correlated, hence they will be
discussed together [39, 40].

CSF and blood NfL
Serum NfL concentration is increased in familial AD a
decade prior to symptom onset and correlates with de-
gree of whole-brain atrophy seen on magnetic resonance
imaging (MRI) and cognition [41–43]. In sporadic AD,
high plasma NfL levels distinguish between AD, MCI
and healthy controls, with higher values among MCI
subjects associated with more rapid brain atrophy [44].
Plasma NfL also associates with the degree neurofila-
ment staining and Braak staging at post-mortem [45].
Longitudinal increase in plasma NfL positively correlates
with longitudinal changes in other measures of neurode-
generation, including brain atrophy and cognition [46].
NfL is an useful biomarker in other forms of neurode-

generation. CSF NfL level has been shown to differ be-
tween AD and other forms of dementia—for example,
FTD patients exhibit significantly higher values of CSF
NfL in comparison to AD patients, as reported in recent
post-mortem study [47]. Serum NfL can also discrimin-
ate between idiopathic Parkinson’s disease (PD) and
atypical parkinsonism that is clinically indistinguishable
at the stage of testing [48, 49]. In Huntington’s disease
(HD), plasma NfL levels are closely associated with MRI
brain volume and clinical severity and may be a useful
outcome measure in tracking clinical response to
disease-modifying therapies [50]. High levels of NfL are
also seen in other neurodegenerative disorders, such as
amyotrophic lateral sclerosis (ALS), HIV-associated de-
mentia (HAD) and Creutzfeldt-Jakob disease (CJD) [51].
In addition to very high NfL levels seen in CJD, the rap-
idly progressive disease exhibits unique, multi-fold in-
crease in concentration of multiple other CSF
biomarkers, including total tau, alpha-synuclein and
neurogranin [52–54].
The role of NfL as a biomarker extends beyond the

scope of neurodegeneration, with multiple sclerosis
(MS), a common neuroinflammatory central nervous
system (CNS) disorder being a prominent example. The
levels of NfL are significantly increased in patients with
MS versus healthy controls, and positively correlate with
the burden of disease activity seen on MRI [55, 56].
Conversely, reduction of NfL concentration is seen in
MS patients who commence disease-modifying treat-
ment, or switch from first-line to a more high-potency
treatment [57].
Taken together, the data suggests that CSF, serum and

plasma NfL is a sensitive, but non-specific marker of dis-
ease activity in the CNS and peripheral nervous system
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(PNS), with additional benefit of being able to measure
disease activity and severity, as demonstrated in MS and
HD, as well as treatment response, as shown in MS or
spinal muscular atrophy (SMA) [58, 59].

Neurogranin
It has been widely shown that synaptic dysfunction oc-
curs at early stages of AD, predating the onset of overt
neuronal loss [60]. Neurogranin (Ng), a calmodulin-
binding postsynaptic protein, is highly expressed in brain
regions important in memory processing, such as amyg-
dala and hippocampus, where it plays a crucial role in
long-term potentiation [61].

CSF neurogranin
Since its discovery in the CSF, multiple studies have
shown that Ng is increased in AD and MCI patients com-
pared to controls and that higher levels are predictive of a
steeper degree of cognitive decline, a reduction in cortical
glucose metabolism and hippocampal volume loss [62].
The elevation of CSF Ng seems to be specific for AD

and is not seen in other neurodegenerative disorders be-
side CJD [52, 63, 64]. A recent study examining post-
mortem parietal and temporal cortex tissues found that
the ratio of peptide-to-total full-length Ng was higher in
patients with AD compared to controls, suggesting in-
creased processing of Ng into peptides [65]. Thus, the
mechanisms underlying CSF Ng increase in AD could be
similar to those of increased CSF tau processing and re-
lease in the disease [30].

Blood neurogranin
Few studies have investigated plasma Ng levels and failed
to show a significant difference between AD patients and
healthy controls; however, pilot studies showed that the
concentration of Ng from neuron-derived exosomes is
lower in AD in comparison to controls and was associated
with progression from MCI to AD [66, 67].
Altogether, the current evidence shows that Ng is a

promising biomarker reflecting early synaptic dysfunc-
tion in AD, which can have a predictive value in healthy
controls as well as MCI patients, in a surprisingly AD-
specific manner.

α-Synuclein
α-Synuclein is a short cytoplasmic protein implicated in
synaptic transmission and intracellular trafficking [68].
Misfolding and aggregation of α-synuclein into oligo-
mers and fibrils, with prion-like seeding throughout the
CNS is believed to be central to the pathogenesis of a
range of neurodegenerative disorders, including PD,
LBD and multiple system atrophy (MSA) [68, 69]. It has
been shown that α-synuclein is detectable in a range of
biofluids, such as CSF, serum, saliva or tears [70].

CSF α-synuclein
Total α-synuclein is the most well studied in CSF, with a
meta-analysis showing that the concentrations in pa-
tients with synucleinopathies are lower than those of
healthy controls [71]. However, results are neither sensi-
tive nor specific enough to allow for use of the bio-
marker for diagnostic purposes, with evidence of
significant inter-subject and inter-laboratory variation,
complicated by the fact that blood contamination of the
CSF could significantly raise total α-synuclein concentra-
tion [72]. In addition, one study suggested that PD pa-
tients with an aggressive clinical course tend to have
higher baseline α-synuclein concentration, complicating
the interpretation [73]. In contrast to PD, CSF α-
synuclein levels were found to be raised in AD, with ex-
tremely high levels reported in CJD [74].
More recently, studies utilising prion-like properties of

α-synuclein by measuring a degree of protein aggregation
using real-time quaking-induced conversion assay (RT-
QuiC) accurately distinguished between neuropathologi-
cally confirmed cases of PD or LBD and controls, with
92–95% sensitivity and 100% specificity [75, 76]. Interest-
ingly, one study demonstrated significant α-synuclein ag-
gregation in two control subjects who then went on to
develop PD years after the sample was obtained [77].
In addition to total CSF α-synuclein, levels of the CSF

oligomeric and phosphorylated α-synuclein have both
been reported to be elevated in PD compared to con-
trols, which requires further validation [78].

Blood α-synuclein
The protein is widely expressed in multiple fluids out-
side of the CNS, with red blood cells being a major
source of α-synuclein in the blood and a source of po-
tential contamination [70, 79]. Trials measuring α-
synuclein in whole blood, plasma and serum of PD pa-
tients yielded conflicting results, limiting its utility as a
diagnostic biomarker [78]. However, similarly to CSF,
studies measuring oligomeric or phosphorylated forms
of the protein in the serum and in red blood cells have
shown to be consistently elevated in PD patients in com-
parison to controls [78, 80].
Currently, α-synuclein remains one of the most com-

plex biomarkers to interpret due to several potential
confounding factors. Further research into aggregation
assays, as well as oligomeric and Lewy body-enriched
forms of the protein, is needed to establish it as a clinic-
ally useful biomarker.

Other biomarker candidates
TAR DNA-binding protein 43 (TDP-43) cytoplasmic ac-
cumulation is characteristic feature of ALS and FTD
[81]. TDP-43 pathology is also present in 20–50% of AD
cases, but the protein is difficult to detect in body fluids
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and CSF TDP-43 seems to be primarily blood-derived
[82]. In one study, CSF TDP-43 was raised in ALS and
FTD versus healthy controls, but considerable overlap
between the groups was seen [83]. Another paper
showed raised plasma TDP-43 levels in a proportion of
FTD and AD patients (46% and 22%, respectively) in
comparison to controls [84]. Currently, there are no
fluid-based assays specific for pathological forms of the
protein.
Inflammation contributes to AD pathogenesis and pro-

teins involved in the inflammatory response, such as trig-
gering receptor expressed on myeloid cells 2 (TREM2)
and YKL-40 (also known as chitinase-3-like protein 1),
could be used as potential AD biomarkers. TREM2 is
expressed in microglia, and its soluble form is upregulated
in the CSF of MCI and AD patients [85, 86]. YKL-40 is
expressed in astrocytes, with CSF showing increased con-
centration in AD and predictive of progression of MCI to
AD [87]. Higher levels have also been shown to correlate
with burden of tau pathology [88].
β-Site APP-cleaving enzyme 1 (BACE1) is an endopro-

tease closely involved in amyloid precursor protein
(APP) processing. CSF BACE1 levels have been demon-
strated to be higher in MCI and AD in comparison to
healthy controls, especially in the presence of APOE ε4 al-
lele [89, 90]. In another study, plasma BACE1 levels were
able to indicate future MCI to AD progressors [91].
In addition to Ng, other synaptic proteins, such as

synaptotagmin-1 (SYT-1), synaptosomal-associated
protein-25 (SNAP-25) and growth-associated protein-43
(GAP-43), have been detected in CSF of AD patients and
are a promising group of biomarkers, highlighting the im-
portance of synaptic dysregulation in the disease [92–94].

Current limitations and future perspectives
CSF sampling
In the field of neurodegeneration, most progress has
been made with CSF biomarkers. Lumbar puncture is
considered to be a safe and is generally well tolerated
procedure, but its use can be limited by certain contrain-
dications (e.g. taking anticoagulants), patient non-
compliance or lack of resources [95]. More accessible
biofluids, such as blood or urine, would undoubtedly im-
prove access to sample material and facilitate access to
repeated longitudinal samples that could be valuable for
tracking disease progression. However, concentration of
CNS biomarkers outside of CSF is often extremely low,
making it difficult to detect using standard assays. Other
important factors complicating the analysis include per-
ipheral expression of the protein of interest, endogenous
antibodies interfering with assay results and presence of
proteases which shorten the lifespan of the protein in
peripheral tissues [96].

Sources of variation
The gold standard method for measuring CSF Aβ42 and
tau is with enzyme-linked immunosorbent assays
(ELISA). The methods of handling and storing CSF sam-
ples can differ between centres, and certain factors can
be of critical importance. For example, storage tube ma-
terial, aliquot volume and the number of consecutive
tube transfers the sample is subjected to can significantly
impact the measured biomarker concentration [97].
Variation in CSF measures is also observed within assays
and between centres. Interlaboratory coefficients of vari-
ation (CVs) are observed at 20–30% whereas intra-
laboratory studies report CVs of < 10% [98–100]. Initia-
tives taken to improve analytical standardisation be-
tween centres were discussed, including the introduction
of a certified reference materials for assay standardisa-
tion, an external quality control programme and the use
of fully automated ELISA platforms, which has reduced
intra- and inter-laboratory variation considerably (from
10 to 20% to 1–5%) [98, 101–104].

Ultrasensitive immunoassays
As a result of a selectivity of the blood-brain barrier, as
well as high blood to CSF volume ratio, the concentra-
tion of CNS-derived proteins in blood is much less than
in the CSF. The sensitivity of ELISA is therefore not
high enough to identify and reliably quantify the concen-
tration of CNS biomarkers in the plasma or serum.
However, a number of ultrasensitive immunoassays with
superior analytical sensitivity now exist, including Simoa
(Quanterix), single molecule counting (SMC by Merck),
proximity extension assay (OLINK) and immunomag-
netic reduction (IMR by MagQu) [105].
With increased availability of ultrasensitive immunoas-

says, blood biomarkers hold promise for the future as
less-invasive, cost-effective screening tests for neurode-
generative disorders [16].

Mass spectrometry
Another approach to study biomarkers is mass spec-
trometry (MSp)-based tests, which allow for quantifica-
tion and characterisation of peptides in a wide range of
biofluids, including CSF and serum. MSp combines good
sensitivity and specificity, high multiplexing capacity and
the ability to detect proteins which have been post-
translationally modified or truncated [106].
Two MSp-based reference methods for CSF Aβ42 have

been certified by the Joint Committee for Traceability in
Laboratory Medicine [107, 108].
Recent research utilising mass spectrometry (MSp) in

the field of AD blood biomarker discovery have also
shown promising results. A study by Kaneko et al. re-
ported an almost 90% diagnostic accuracy in classifying
amyloid PET positive and non-positive individuals using
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the ratio of a specific APP fragment (APP669-711) in
plasma to plasma Aβ42 level [109]. More recently, stud-
ies using a more sensitive IP-MSp method detected a de-
creased Aβ42/Aβ40 ratio in plasma and reported a
diagnostic accuracy of almost 90% of plasma Aβ42 /Aβ40
ratio in predicting Aβ PET positivity in AD, MCI and
cognitively normal states [110]. Similar results have been
presented by other groups [111, 112].
This approach represents a potentially cost-effective

and accessible way of measuring Aβ burden in an indi-
vidual; however, further validation and longitudinal stud-
ies, as well as standardisation across institution, are
needed before potential clinical application of the prom-
ising MSp approach.

Proteomics, metabolomics and lipidomics
With the advent of novel proteomic techniques,
proteomics-based approaches have become an important
tool in biomarker discovery that can complement gen-
omic analysis and provide important clues to the patho-
physiology of many neurodegenerative disorders. An
example of a new proteomics tool used in the field in-
cludes proximity extension assay developed by Olink
Proteomics AB, which offers high sensitivity and multi-
plexing ability [113]. A recent large study, utilising Olink
measuring 270 CSF and plasma proteins in AD patients,
identified significant differences in the concentrations of
10 CSF and 6 plasma proteins that take part in a variety
of biological processes, including inflammation and
apoptosis [114]. In addition, plasma biomarkers were
able to distinguish between AD, prodromal AD and
healthy controls with high accuracy. In another study fo-
cusing on atypical parkinsonian syndromes (APS), 11
novel CSF proteins involved were identified that signifi-
cantly differed between APS patients and healthy con-
trols, with 4 protein levels also distinguishing between
APS and PD patients [115]. The identified proteins are
involved in a variety of cellular processes, including cell
proliferation and immune cell migration.
Metabolomics and lipidomics have emerged as prom-

ising approaches for the comprehensive study of com-
plex biological samples and for biomarker discovery
[116, 117]. There have been significant efforts to charac-
terise metabolites and lipids in neurodegeneration, with
hope that the observed lipid and metabolite profiles re-
flect metabolic changes and lipid-mediated mechanisms
associated with disease pathology. These may serve as
characteristic fingerprints of disease state and could po-
tentially reveal therapeutic targets [118].
Over the past decade, targeted and non-targeted ap-

proaches for metabolomics/lipidomics have been signifi-
cantly improved, largely due to improvements of MSp
instrumentation [116, 117]. Several metabolomic studies
have been reported in the context of AD biomarker

discovery, most prominently using a commercial assay
for targeted metabolite and lipid quantification in blood
[119–125]. However, follow-up studies failed to replicate
the findings, which fuelled the Alzheimer Disease Meta-
bolomics Consortium (ADMC) initiative, where a net-
work approach is used to establish a common
metabolomic database of AD [126, 127].
A recent study reported that levels of primary fatty

amides in plasma associated with CSF Aβ and hippo-
campal volume on MRI [128]. Another metabolomic
study on serum bile acid (BA) profiles in AD showed
that serum-based BA metabolites are associated with
CSF Aβ and p-tau [129]. These examples highlight that
well designed both targeted and untargeted metabolomic
and lipidomic studies can reveal new biomarkers for AD
pathology and improve our mechanistic understanding
of AD pathophysiology.

Conclusions
The Biomarkers in Neurodegenerative Diseases Course
provided delegates with an overview of the fluid bio-
marker field. There are now core biomarkers of neuro-
degenerative pathology (amyloid, tau and α-synuclein), a
biomarker of disease intensity (NfL), synaptic function
(neurogranin) and a range of novel analytical platforms
such as Simoa and MSp. Future challenges include refin-
ing pre-analytical and analytical standardisation, measur-
ing other aspects of neurodegenerative pathophysiology
and developing less-invasive fluid biomarkers that can
also be used for screening and tracking purposes.
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