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AbstractEstimation of attenuation from PET data only is of N guantitative positron emission tomography (PET) imag-
interest for PET-MR and systems yvhere CT is not 6_.V8.I|ab|e or ing, photon attenuation and Compton scatter must be taken
recommended. However, when using data from a single energy i account. Errors in the attenuation image can signi cantly

window, emission-based non-TOF PET attenuation correction ffect PET i cati ially in ti h th
(AC) methods suffer from ‘cross-talk’ artefacts. Based on earlier afiec quanti cation, especially In ussues such as the

work, this manuscript explores the hypothesis that cross-talk Ung, where density values vary considerably among patients
can be reduced by using more than one energy window. We (up to a factor 2), and during the respiratory cycle [1], [2].

propose an algorithm for the simultaneous estimation of both Although the problem of AC of PET images can be regarded
activity and attenuation images as well as the scatter component as solved to a large extent for hybrid PET/CT scanners, it

of the measured data from a PET acquisition, using multiple till t . for PET/MR t .
energy windows. The model for the measurements is 3D and Sull-represents an Issue for Systems as mapping

accounts for the nite energy resolution of PET detectors; it is MR image intensities to PET 511 keV attenuation coef -
restricted to single scatter. The proposed MLAA-EB-S algorithm cients is extremely challenging in the thorax [3]. In current
is compared with simultaneous estimation from a single energy clinical practice, MR-based attenuation correction consists

window (MLAA-S). The evaluation is based on simulations using ¢ segmenting MR images into three or four tissue classes
the characteristics of the Siemens mMR scanner. Phantoms of . .
namely air, lung, fat and soft-tissue followed by the

different complexity were investigated. In particular, a 3D XCAT ? . . )

torso phantom was used to assess the inpainting of attenuation @ssignment of population-based density values to each tissue

values within the lung region. Results show that the cross- class. One of the main limitations of this approach is the

talk present in non-TOF MLAA reconstructions is signicantly  neglect of the inter/intra-patient heterogeneity of attenuation

reduced when using multiple energy windows and indicate that ef cients within each class [4]. These methods are however

the proposed approach warrants further investigation. . . h . . .
very successful in brain imaging, where intra-patient variation

tlnotl'ex Tﬁrmst'Pos:\t/:otnh Edmisgo?_ Torrlpgrargly, 'Tagff ReCOQ' is relatively small. Other MR-based AC methods include

struction, Iterative ethoas, imisation, uant cation an H ; H

Estimation, Attenuation Estimati%n, Scatter atlas/mapping techniques [5]_ and MR/CT learning [6]. These
methods can benet from different MR sequences, such as
UTE [7] and ZTE [8] offering improved soft tissue contrast

|. INTRODUCTION and the possibility of an accurate bone segmentation. However,

these advantages come at the cost of longer acquisition times
compared to other MR sequences [9]. For thorax acquisitions,
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nd a solution by successive estimates to t the measurddformation content in the scattered photons. Furthermore,
PET data. In addition to adequately modelling the statisticRET scatter is inherently 3D.
nature of the data, the other advantages offered over thdn this paper, we investigate the feasibility of a more
analytic algorithms include the possibility of modelling morgoractically relevant method for the joint reconstruction activity
complicated system geometries and physical processes, saitl attenuation distributions from multiple energy window
as Compton scattering. measurements by using a maximum likelihood framework.
The most popular method amongst the iterative algorithrRarticular interest was given to the inpainting of the attenuation
is Maximum Likelihood reconstruction of Activity and Atten-values within the lung region; this was investigated with 3D
uation (MLAA) introduced in Nuytt al. [14], a (penalised) phantom simulations where the attenuation values outside the
maximum likelihood-based iterative algorithm that alternatésng were assumed to be known.
between activity and attenuation estimation. However, in theOverall, the improvements on previous research studies
absence of time-of- ight (TOF) information, the joint esti-include: (a) accounting for the uncertainty in the energy
mation problem is strongly ill-posed [15]; as a consequenameasurements to a large extent; (b) considering the presence
the activity and attenuation images estimated from non-TO&f both scattered and unscattered events in the photopeak
MLAA suffer from cross-talk artefacts, where the features afindow; (c) simulating 3D input and output according to
the activity map propagate into the attenuation map and vieristing scanner geometry and speci cations; (d) optimising
versa. On the other hand, TOF-MLAA has great potential fame unique objective function.
PET/MR applications [16], [17], but recent work has shown This manuscript is organised as follows. We rst cover the
that it is necessary to re-estimate the photopeak scatter dunngthematical theory relevant to the framework, then give an
TOF-MLAA iterations for best results [18]. overview of the proposed algorithm (with some details in the
Attenuation and scatter are intrinsically linked both on appendices). We nally present results from simulated data and
physical level and when deriving the scatter and attenuatiprovide a comparison of the proposed method against MLAA
estimates. Scattered events are normally estimated by a f8ém a single energy window acquisition. Similarly to previous
model-based simulation [19], [20]. Quantitative errors in theublished work [28] [30], the current study is restricted to
attenuation image propagate in the scatter estimation, agidgle scatter only.
therefore in the reconstructed activity distribution. This effect
is non-negligible in the thorax, as scatter events can represent
up to 40%of the total recorded coincidences [21]. o )
This linking has led several authors to attempt to udd Objective Function
information contained in the scattered counts to estimateA reasonable statistical model for PET measurements is to
attenuation. As Compton scattering decreases the energydeécribe the measured datas independent Poisson variables.
the scattered photon, this could be achieved by using datesuming that the scanner allows energy discrimination of the
acquired in several energy windows. Energy-based methatigected photons:
for attenuation estimation have rst been investigated in Single )
Photon Emission Computed Tomography (SPECT) [22] [24] O Poissonfgy(; )g; b =1;2;:::5B @)
using an upper (photopeak) and a lower (scatter) energy Wipaere g s the number of detection bins, characterised by
dow. Howeyer, all of these approg_ches assumed the possibiﬁ%ir detector pair and energy window pair,2 R™ and
of distinguishing gamma rays exiting the patient that have ngtpn, are vectors that represent the activity and attenuation

been scattered from those that are scattered. distributions of the object, respectively, aggd(; ) is the

The idea of deriving additional information from scatter haéxpected value of the" measurement. Taking the logarithm
also been applied to PET [25], [26]. Although initial studiegnd ignoring the terms independent of and , the log-

Il. THEORY

were restricted to simple 2D phantoms and perfect enerfalinood of the measured dag , [g:::::gs]is given
resolution such that scattered events can be distinguished frgy;
those that are not scattered, the possibility of reconstruct-
ing a 3D attenuation distribution from scattered data only Lgja(; )= Blogg(; ) o ) )

(with known activity) was demonstrated with realistic energy b

measurement scenarios [27]. Re_cently, B_ertederal. [28], The joint maximum-likelihood reconstruction ofand is
[29] proposed a joint reconstruction algorithm from Scatt‘?FaditionaIIy achieved by solving:

and unscattered data. To be able to handle high attenuat-

ing (or large) objects, a four-step algorithm was proposed (" y=argmax L(gja(; ) (3)
alternating between various activity and attenuation image 00

reconstruction steps. However, convergence of an alternating

algorithm with each step optimising a different objectivd8. Optimisation

function can be problematic [30]. In addition, the evaluation of o ~5mmon approach for maximising a joint likelihood such

[29] used 2D phantoms and disregarded energy-measuremeniay consists of updating and  in an alternating order:
uncertainties. In practice however, current PET scanners have

an energy resolution in the order of 10% or worse, leading to K+l zargmax , L@ jg(; X))
the presence of scatter in the photopeak window and reduced k1 zargmax , L(g jg( ;) (4)
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This requires two inner sub-algorithms to estimateand 2) Scattered EventsThe forward model for the scatter is
separately. Alternatively, both variables can be updateth extension of the SSS model proposed in [19] to the case
simultaneously  similar to [31] to avoid complications of a multiple energy window acquisition, see Appendix A for

related to the settings of inner loop parameters: details. For computational ef ciency, the scatter simulation is
performed in low spatial resolution.
N . Np N po .
=argmax L(g j g( )) (5) LetP 2 R.” t())e a prolongation operator that maps
0 from low resolution iy total number of detector pairs) to

o ) . high resolution sinograms fntotal number of detector pairs).
where =[ ;]2 Rv.The latter approach is used in thisrhen the scatter component is given by:

work.
Oay( )= PSuy() )
C. Optimisation of the scatter component with Syy () indicating an operator that computes the expected

In PET, the expected count§; ) are often expressed as:Scatter at each energy window pir,y), de ned in Appendix
A. For the results presented in this manuscript, the prolonga-

a(; )= A() +g*+d (6) tion operatorP consists of a cubic B-spline interpolation.

where A() 2 R7°" v is a matrix mapping from image lIl. ALGORITHMS

space to data space, denoting the probability of detecting nonin this section, we describe the algorithms used for the
scattered coincidencesp is the number of detector pairs,joint reconstruction of the activity and the attenuation images.
ny is the number of voxels in the image agé andg" are Inputs for the reconstruction are the measured dasmd an
the expected scatter and random sinograms, respectively. Esémate of the-map, for instance on a PET-MR scanner
scatter component is generally considered as a backgro@itiained via MR-AC.

term, here we account for its dependency on the activity and .. . . .

attenuation distributions. This res?JItsgﬁC byeing replaced gy A” Initialisation via OSEM/SSS

g(; ). Initial activity ™ and photopeak scatter estimates
LsJ(i,Jlmt gLSJCU( init ), with init — [ init : init ], are obtained

from the photopeak data as follows: (i) set initial scatter

D. Multiple energy window acquisition model estimate to zero, (ii) reconstruct the activity image with OSEM

In the proposed method, we assume that each photon 0(f7.asub_sets, 70 sub—itgrations), (iii) estimate photopgak scatter
photon pair is assigned to either the photopeak window (U) thth Single Scatter Simulation (SSS). This process is repeated

to a lower energy window (L), resulting in the measuremefferatively (seeAlgorithm 1).

of four different 3D sinograms, one for each energy window

combination (gu, QuL, 9iu, Ou ). For all (w;y) 2 f U;Lg?, B. MLAA-EB-S

the observed counts,y can be described as a Poisson processyere we describe the main Energy-Based simultaneous
centred ingwy, given by the sum of expected scatte@g},  Maximum Likelihood reconstruction of Activity and Atten-
and unscattered evergg;> . In the current work, we assumeyation with photopeak Scatter re-estimation (MLAA-EB-S),
that the lower energy window excludes amscattere®vents. symmarised inAlgorithm 2. It can be seen as an evolution
In addition, we restrict the study to single scatter coincidences. MLAA-EB [30], improved on two main aspects: (i) the
Therefore, we disregardu as it is expected to contain fewggorithm optimises one unique objective function, (ii) the
single scatter events [27]. The expected counts are therefgegyity and attenuation images are updated simultaneously.

given by: In particular, both unknown distributions and are recon-
structed from all the available datgyy , gur andgy -
. y= qunsc(- sc (- r Special attention was given to reducing computational ef-
duu () gdg G )+ agu )+ gl fort. The scatter gradient is computed during the reconstruction
gu ;) o (; )+ gl @) only for theUL andLU windows. The photopeak scatter esti-
mategy;, is iteratively updated via a one-step-late approach.
gu(; ) o (; )+ gl In addition, the input data in the low energy windows were

downsampled to low resolution, given the presence of only
The following sections cover the forward scattered arstattered events ibL andLU (7).

unscattered model used in this research study. Image updates: The optimisation strategy follows (5),
1) Unscattered Eventsin PET, the expected photopealeading to the simultaneous estimation of the two variables
unscattered eventy)j°(; ) are often expressed as: [; 1= , using a previous estimate of the scatter in the
photopeak window. The objective function is given by the sum
gunse(: )= A() 8) of each log-likelihood at a given energy window pair:

where A() is the detection probability matrix, taking the Lo (), L(guu jouse( )+ g3 ( Pev))+

attenuation into account. LGS i Su( N+ L@ i Sw()) (10)
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with g?vy and denoting respectively the downsampled sinds. Stopping Criteria

gram and the down-sampling factor, anl®" indigating an  The photopeak scatter is re-estimated every outer iteration.
estimate of at previous iteration. Please note th’aff’—go = The reconstruction algorithms rely on three main stopping
criteria: normalised difference between two consecutive image
The activity and the attenuation estimates are updated wihktimates and norm of the projected gradient. Default values
bounded limited-memory Broyden-Fletcher-Goldfarb-Shanror the L-BFGSB implementation were used. At rst iteration,
(L-BFGS-B) [32]. Every update consists of a line-search stepe line search step is initialised by:
in a quasi-Newton direction: - _ 1 L 1
(1 g Lo a 0 =M G (o 42
wherer L™ is the gradient of the objective functioB, is A maximum number of inner (MaxInnerlter) and outer
an approximation of the inverse Hessian matrixLdf at iterations (MaxOuterlter) were set. See Sec. IV-C for details.
and is the step-size found by a line-search.

C. MLAA-S Algorithm 1: Pseudo-code for OSEM/SSS.

To fairly compare our approach with a single energy win- InPut guu. ™ . 55™ =0
dow acquisition, we implemented a simultaneous Maximum Output: Initial activity estimate
Likelihood reconstruction of Activity and Attenuation with 0%  850™
photopeak Scatter re-estimation (MLAA-S). The algorithm for i =0::::: MaxOSEMandSSSiter 1 do
relies on the following strategy: (i) simultaneous optimisation
of both activity and attenuation maps with LBFGS-B (as
for MLAA-EB-S), (ii) photopeak scatter re-estimation (as for oout PSw ()
MLAA-EB-S), (iii) single energy window input data. The main &"d
difference between MLAA-S and MLAA-EB-S lies in the 't MaxOSEMandSSSiter 1
input data (one vs multiple energy window). This implies that
no scatter gradient is computed during MLAA-S iterations,
as the only scatter information comes from the photopeak
window where the scatter is updated using a one-step-la/gorithm 2: Pseudo-code for MLAA-EB-S.

| OSEM(guu: ™M™ 10%)

approach. Pseudo code for MLAA-S is shownAlgorithm Input: guy , g9, . gf,, M, M gonn
3. Output: Estimated actlwty and attenuation images vectdtt
8 [ init ; |n|t]
D. MLAA gscO gsc;init
. . uu uu

In this study, a version of MLAA was also used: the ¢ \ _q..... maxOuterlter 1 do
framework follows the one of MLAA-S, without the photo o
peak scatter re-estimation. This method was rst proposed in | 0" k=0 Maxinneriter 1 do
[31]. ko1 LBFGS-B(guu ., 90, » 90y + k- QEJCL:Jt)

end

E. LBFGS-AC t+l lt\llaxlnnerlterl

An LBFGS emission reconstruction using the true attenua- ngCqu PSuu ( Maxnnertiers )

tion map (LBFGS-AC) was also used as further comparison.eng
The algorithm outputs an estimate of the activity image and et =~ Maxoutertierd
inputs: (i) ground truth attenuation imagé™®, (ii) ground

truth photopeak scatteg;y, *° , (iii) photopeak window pro-

jection datagyy .

IV. EVALUATION

F. Implementation The performance of MLAA-EB-S was evaluated with digital
The overall algorithm framework was written in MATLAB phantoms of differing complexity. Simulations were conducted

(The MathWorks, Natick, MA; version R2018a). The implein 3D.

mentation of L-BFGS-B employed in this study is summarised

in [32]. B is constructed with a history length & (in- A. 3D Phantoms

ner) iterations. The objective and gradient functions for the A rst investigation was conducted on a cylindrical phantom

unscattered model were implemented in MATLAB, whilstith a conical insert (Fig. 1). The conical shape was chosen to

those related to the scatter model were written in C++ amstmulate the lung. The image size was 30x30x8 and the voxel

implemented in open source software for PET and SPE@imensions were equal to 1.2x1.2x3.25%m

reconstruction (STIR) [33]. See Appendix C for further details. The algorithm was also tested in a more realistic scenario. A

The Simpli ed Wrapper and Interface Generator (SWIG) [343D volume from the XCAT torso phantom [35] was generated,

was used to call the STIR functions from MATLAB. cropped to a 60x60x8 matrix with voxel size of 0.8x0.8x3.25
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Algorithm 3: Pseudo-code for MLAA-S. Data UL
INput: Guw , Mt init gsciinit é 5
Output: Estimated activity and attenuation images vect8t =10
8 [ init . init ] §15
' 20
sc;0 sc;init 50 100 150 200 250 300 5 10 15 20 25 30
ww ww Tangential Position Tangential Position
for t =0;:::; MaxOuterlter 1 do Data UU (profile) Data UL (profile)
30 4+
for k =0;:::; MaxInnerlter 1do ‘gzo — Prompts E — Prompts
t t scit o] ——Random + Scatter Q 2 -|—Random
Y.,  LBFGS-B(gww, . Omi S0 ©
end 0 0
50 100 150 200 250 300 5 10 15 20 25 30
t+l t Tangential Position Tangential Position
0 MaxInnerlter 1
O~ PSww (| )
Maxinneriter 1 Fig. 3. XCAT Phantom simulated data for MLAA-EB-&IU data (rst
end column, andUL data (second column). For display purpose: 2D sinograms
est MaxOuterlter 1 obtained by summing over the rings ( rst row) and relative pro les (second
MaxInnerlter 1 rOW).
-t -t -t -t .. . . . .
| DI | S | G ground truth activity image (taking attenuation into account)
o e o o into sinograms, using the Siemens mMR geometry and speci-
cations [8], [36]: 252 views and 344 tangential positions. The
0 0 0 o number of rings was downsampled to 8 to match the image
voxel size.

p-true p-true p-true p-true

A AN E - A The scatter component was computed in low resolution
with 21 views, 31 tangential positions and 8 rings from

e e e p— the analytical model given in (9). Simulations used in-plane

! ! ! : detector pairs only. The energy resolution was set to 16%.
0 0 0 0 Experiments were conducted with both one and two energy
, , , windows. For the single window acquisition, we investigated

the case of a standard window, as well as the case of a wide
A-true iiz -)\-true.i‘_5 l A-true H:S A-true Iils energy W|nd0\M/VW, WheregWW - gUU + gUL + gLU + gLL .
° Energy thresholds are shown in Table I. Please note that the
Fig. 1. Cylindrical Phantoms of increasing diameters: 8 cm ( rst column)‘?nergy windowUsiq was introduced to have a fair comparison

16 cm (second column), 24 cm (third column), 32 cm (forth column). Firddith the standard energy window used in mMR.
and second rows: attenuation image axial and sagittal view. Third and fourth

rows: activity image, axial and sagittal view. The attenuation is expressed in TABLE |
cm? | the activity is in arbitrary units.
My IS itrary units ENERGY WINDOW THRESHOLDS[KEV]
) ) ) . L Usd U W
cme. Axial and sagittal views of the phantom are shown in 350 460 | 430 610 | 460 570 | 350 570

Fig. 2. Please note that both cylindrical and XCAT phantoms
have the same length in z-direction, covering the length of theWhen simulating data from XCAT, a uniform background
scanner (26 cm) and the activity distribution is expressed was added in all the energy windows to simulate random

arbitrary units. coincidences equal to 39%f the total number of counts of
the noise-free prompt data. Poisson noise was added to the
B. Projection Data XCAT simulated data. The total count level was chosen based
Unscattered data were simulated by forward projecting ti@ & 240-second PET/MR FDG thorax scan acquired in our
institution.
MRAC (axial view) p~true (axial view) A-true (axial view) p-mask (axial view)

o o ' .« C. Reconstruction Parameters
@ - YN,  Both activity and attenuation updates within MLAA-EB-
, , , , S use L-BFGS-B (Sec. llI-B). In the current results, lung

segmentation was incorporated in the algorithm by only updat-
MRAC (sagittal view)  p-true (sagittal view)  )-true (sagittal view) p-mask (sagittal view) . . - . .
= l3'35 '- .'.'2'85 '». . ﬂ o ing the attenuation values within the inner cylinder/lung mask
0 o o o during iterations. This constraint is not used for the emission
, _ o o update, for which we only assumed the absence of activity
Fig. 2. XCAT Phantom. First row: axial view. Second row: sagittal view. Fronbutside the phantom (Fig. 2). Reconstruction parameters are

left to right: MR-AC used as initialisation ™ |, true attenuation ™€ | true . o ;
activity ™ | Jung mask M2k . The attenuation is expressed in &ém the Shown in Table Il. No further regularisation was added at this

activity in arbitrary units. stage, as it was not the object of this study.
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TABLE Il

= = D=24 D=32
RECONSTRUCTIONPARAMETERS WAL D =16 em - -
Phantom| MaxOSEMandSSSltef MaxInneriter | MaxOuterlter L""(E'E":(;;f‘)) . oo k=602 [ o[ k=175 [ oga k=170%6 JI o x=wse |
Cylinder 3 40, 100 30 s 0 (S ° s 0 s 0
-0.02 -0.02 ‘ -0.02 i -0.02
XCAT 3 100 15 -0.2 o 0 0.2 '0:5 ] 0.2 -0.2 P 0.2 -0.2 0 0.2
LVl g (4, UDZ’ x:::.m Y | x:;:zg = - K:‘?:\Hl 7 ool n:rs.u
. . TEEERD) | o ® ol 2 o 2 o
D. Initial Conditions - e ol
An MR-based attenuation map was generated by decreas ... U S - U S
the lung attenuation values 20%with respect to the ground | +g=<aay | e[t ]| om[x=308 71 om0 7 gop x=ioos
. T . S0 S o) S0 B
truth. In order to avoid dependency on initialisation for th J
different algorithms, all the reconstructions were initialise 02 oo e e o2 w2 00z 020 02
with the same activity estimate, obtained by iterating betwe: "0 | ooy S o SR T S R Py
OSEM (3 subsets, 70 sub-iterations) and SSS [19] (See Ta +weg"an |5 o 2 0 & o 2 o
+3° (4, 1) -0.02 J 0.02 o o d -0.02
”) +1M@ A 02 o0 02 02 0 02 02 0 02 02 o0 02
+3° 4w) Y 1y oA SA
E. Analysis

1) CyIindricaI Phantom: Initially, we assessed the effectsFig- 4. Log-likelihood plots for cylindrical phantoms. From left to right: the
f th . f th hant d th hoi f ind diameter increases. From top to bottom: the energy window varigslicates
Y €size o € phantom an € choice of energy WINAOWs congition number of each contour plot.
with a two-variable analysis. In this exemplar problem, the

algorithm only estimates two values: the mean activity and

the attenuation in the insert. For each phantom, we compuigddel. The increased curvature and a lower condition number
the log-likelihood functions for each energy window pair and gemonstrate that the incorporation of the scatter information
the sum of them. Furthermore, the relative condition numberimproves the Conditioning of the prob|em, with |arger benet
was obtained from the aspect ratio of the ellipse tted to thgy Jower energy thresholds (third row) and multiple energy
contour plot. For this particular study, the energy resolutiaRindows (fourth row). With regard to the effect of the size of
was set to 1%, so that it was easier to understand the natif€ phantom, this analysis showed that the contours rotate and

of the joint problem under near-ideal conditions. elongate until becoming almost parallel lines as the diameter
Then, the performance evaluations of MLAA-EB-S anghcreases, leading to a larger condition numbers.

MLAA-S were assessed for different iteration schemes (Tabletpe change in orientation of the objective function gives an

Il). Analyses were conducted in terms of Mean Percentage fgsjght on the expected activity and attenuation cross-talk, i.e.

ror (MPE) in the lung of the estimated images over_|terat|on§, the extreme case where a valley is placed along one of the
2) XCAT Torso Volumest-or the XCAT reconstruction, 100 o axes, higher errors are expected in the image along which

noise rgallsatlons were u_sed to compute the (voer-W|se)_ MRk valley lies. Ideally, a prior knowledge of the expected

image in both and  with respect to the ground truth im- cross-talk would be useful for improving on the reconstruction

ages. The variance and covariance images, dendd&(),  output; in practice, it is not possible to draw contour plots for

VAR(), COV(; ) were also obtained. A numerical ROlhigh dimensional problems.

analysis was also computed onand (mean estimate over 1) Reconstruction Results - Noise free datéle tested

all the noise realisations). The mean bias (MB) was calculatﬁ% stability of the solution under ideal conditions

as. on the cylindrical phantoms in a noise-free scenario, when

W W varying the number of iterations before re-computing the
MB( ) = est true (13) scatter. Fig. 5 shows the MPE in the volume of interest, the
n=1 n=1 inner cylinder (lung), for every outer iteration of both MLAA-

with N being the number of voxels in the ROI. A similar> and MLAA"_EB'S' WE_’ only rePO” CUIVES pertaining to the 8
de nition applies toMB( ). Mean variance and covariance a_nd_ 32cm cylmders,_smce the mtermepllate diameters fO||OW a
were also calculated within the same ROI. similar trend. According to the two-variable problem analysis
conducted in the previous section, reconstructing the larger
phantoms is challenging. Nevertheless, MLAA-EB-S manages
to nd the correct and stable solution for different iteration
A. Cylindrical Phantoms schemes and for all the phantom sizes. By contrast, MLAA-
Exemplar two-variable problem:Fig. 4 shows the log- S was not able to converge to the true solution, with results
likelihood contour plots for different energy windows fordepending on the exact iteration scheme.
cylinders of diameters ranging between 8 and 32 cm. The rst At the last iteration (N=30), MLAA-EB-S achieved a max-
row shows the objective function contour plots for a singlemum MPE in the attenuation image of 1.25%h6d 1.44%
energy windowdU when the scatter component is considereid the activity image for the 32 cm diameter. For the same
as a known (and correct) background. In the second, thjphantom, MLAA-S showed a maximum MPE of 9.418%
and fourth row instead, the dependency of scatter on thed 12.42%n the estimated attenuation and activity images,
activity and attenuation was taken into account in the forwardspectively (Fig. 5, purple curve).

V. RESULTS
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Fig. 5. MPE over outer iterations for the attenuation (left) and activity (right)
estimations. First row: MLAA-S. Second row: MLAA-EB-S.

B. XCAT Reconstruction - Noisy Data Fig. 6. Error metrics in the XCAT images for different reconstruction algo-
. . . ._rithms: MLAA (UU gq ), rst column; MLAA-S (UU gq ), second column;
Axial views of the mean error images from all the noisgiLaa-s (ww), third column; MLAA-EB-S, fourth column; LBFGS-AC,

realisations for MLAA (from a standard energy window),fth colu_mn. From the top to t_he bottom: MPE images _[%]‘(a-d) and ve_lriance
MLAA-S (from both standard and wide energy windows)(%) (0 o 1 a1Chusten Tom 100 toe feaiatine, WP Wnages
MLAA-EB-S and LBFGS-AC at the last iteration wherejmages (s-v).
convergence is reached are shown in Fig. 6. The ROI
mean values in the lung region for relative bias, variance, and
covariance are also reported in Fig. 7.
Results showed that MLAA and LBFGS-AC achieved the
worst and best results, respectively, amongst all the four
reconstruction methods. MLAA-S outperforms MLAA, thanks
to the photopeak scatter re-estimation over iterations, with
better results from wider energy window{V ). MLAA-EB-
S further improves on MLAA-S in terms of stability of the
solution. In particular, MLAA showed a higher bias in both the
estimated attenuation (Fig. 6a) and activity (Fig. 6e) images,
whilst both MLAA-EB-S and MLAA-S converged in mean
to a similar solution (Fig. 6b-d, Fig. 6f-h), all showing a
higher noise level in the lung region compared to the one from
an LBFGS-AC (Fig. 6i). However, MLAA-EB-S achieved a
lower variance with respect to MLAA-S (WW) and MLAA-S Fig. 7. Mean bias (MB) and standard deviation (STD), indicated as error
(UUgq) and MLAA for both the attenuation (Fig. 6j-m) andbars, in the estimated attenuation (a) and activity (b); covariance (c). Obtained
activity distributions (Fig. 6n-r). Fur.thermort'a, MLAA—EB-S‘Q’A‘S'L'\Q'I;@/;_(A%L_J;H? %Zﬁlﬁgﬁe&u;g‘% l'm“gtf\eﬁ'ﬁvg?':’hve)iu“rf'gAR/EwEer
was found to have the lowest covariance (Fig. 6s-v) betwegB2s0 and ~t'e = 0 :02865
the four algorithms, demonstrating that the joint variability of
the two unknown images is reduced.
Results from Fig. 7 show that MLAA-EB-S converged to istributions are updated simultaneously, whilst the photopeak
solution with mean relative bias and standard deviation compgeatter estimate uses a one-step-late approach.
rable to the one obtained with an LBFGS-AC reconstruction. gection V-A investigated the bene ts of incorporating the
Finally, we compared the error in the photopeak scallggater information into the system model with an exemplar
estimate for MLAA-S (WW), MLAA-S (UU ) and MLAA-  yyo.variable-problem study where different energy windows
EB-S (Fig. 8). MLAA-EB-S shows the lowest error in theang phantom sizes were used, and only two variables were esti-

photopeak scatter estimate. mated. The results indicate that accounting for the dependency
of scatter on both unknown distributions changes the shape
VI. DISCUSSION of the objective function compared to the standard MLAA

We have proposed a new method for the joint reconstrugroblem (Fig. 4). Re-estimating the scatter could therefore
tion of PET activity and attenuation, named MLAA-EB-Sguide an MLAA-like algorithm towards a more stable solution.
The algorithm takes into account the mutual dependence Iofthe case of one-energy-window acquisitions, larger bene ts
scatter, activity and attenuation. The activity and attenuatiame present for lower energy thresholds. This is likely due to
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