1	NON-STEROIDAL ANTI-INFLAMMATORY DRUGS BUT NOT ASPIRIN
2	ARE ASSOCIATED WITH A LOWER RISK OF POST-COLONOSCOPY
3	COLORECTAL CANCER
4	
5	SHORT TITLE: NSAID AND PCCRC
6	
7	Ka Shing Cheung, MBBS, MPH; ^{1,2} Lijia Chen, B. Med, MPH; ¹ Esther W Chan,
8	PhD; ³ Wai Kay Seto, MD; ^{1,2} Ian CK Wong, PhD; ^{3,4} Wai K Leung, MD ¹
9	
10	¹ Department of Medicine, The University of Hong Kong, Queen Mary Hospital,
11	Hong Kong
12	² Department of Medicine, The University of Hong Kong-Shenzhen Hospital,
13	Shenzhen, China
14	³ Centre for Safe Medication Practice and Research, Department of Pharmacology and
15	Pharmacy, The University of Hong Kong, Hong Kong
16	⁴ UCL School of Pharmacy, University College London, London, United Kingdom
17	
18	Correspondence to:
19	Wai K. Leung, Department of Medicine, Queen Mary Hospital, 102 Pokfulam Road,
20	Hong Kong
21	Email: waikleung@hku.hk
22	Fax: +852 2816 2863
23	Phone: + 852 2255 3348
24	
25	Guarantor of the article: Prof. Wai K Leung

1	Specific author contributions: Dr. Ka Shing Cheung was involved with study
2	concept and design; analysis and interpretation of data; drafting of manuscript; and
3	approval of the final version of the manuscript. Dr. Esther W Chan, Ms Lijia Chen
4	and Dr Wai Kay Seto were involved with acquisition of data; critical revision of the
5	manuscript for important intellectual content; and approval of the final version of the
6	manuscript. Professors Ian CK Wong and Wai K Leung were involved with the study
7	concept and design; analysis and interpretation of data; drafting of manuscript; critical
8	revision of the manuscript for important intellectual content; study supervision; and
9	approval of the final version of the manuscript.
10	
11	Financial support: Health and Medical Research Fund, Food and Health Bureau,
12	The Government of the Hong Kong Special Administrative Region (Reference no:
13	16173001)
14	
15	Conflicts of Interest:
16	EWC has received honorarium from Bayer, Bristol-Myers Squibb, Pfizer and Takeda,
17	
	for work unrelated to this study. ICKW has received grant from Janssen, Pfizer,
18	for work unrelated to this study. ICKW has received grant from Janssen, Pfizer, Bayer, Amgen and Novartis but not related with the present study. WKS received
18 19	
	Bayer, Amgen and Novartis but not related with the present study. WKS received
19	Bayer, Amgen and Novartis but not related with the present study. WKS received honorarium for attending advisory board meetings of AbbVie, Celltrion and Gilead;
19 20	Bayer, Amgen and Novartis but not related with the present study. WKS received honorarium for attending advisory board meetings of AbbVie, Celltrion and Gilead; speaker fees from AbbVie, Astrazeneca, Eisai, Gilead and Ipsen; and research
19 20 21	Bayer, Amgen and Novartis but not related with the present study. WKS received honorarium for attending advisory board meetings of AbbVie, Celltrion and Gilead; speaker fees from AbbVie, Astrazeneca, Eisai, Gilead and Ipsen; and research funding from Gilead. WKL has received speaker fee from Eisai, Ipsen and

1	Word count of abstract: 2	249	
2	Number of tables: 5;	Number of	figures: 2
3	Number of supplementar	y tables: 4;	Number of supplementary figures: 0
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			

1 ABSTRACT

2 Background: Although non-steroidal anti-inflammatory drugs (NSAIDs) reduces 3 colorectal cancer (CRC) risk, its role in preventing post-colonoscopy CRC remains 4 undetermined. 5 Aims: We aimed to investigate whether NSAIDs could reduce PCCRC risk after a 6 negative baseline colonoscopy. 7 Methods: This is a retrospective cohort study based on a territory-wide healthcare 8 database of Hong Kong. All patients (aged 40 or above) who underwent 9 colonoscopies between 2005 and 2013. Exclusion criteria included CRC detected 10 within six months of index colonoscopy, prior CRC, inflammatory bowel disease and 11 prior colectomy. The primary outcome was post-colonoscopy CRC-3y diagnosed 12 between 6 and 36 months after index colonoscopy. Sites of CRC were categorized as 13 proximal (proximal to splenic flexure) and distal cancer. The adjusted hazards ratio 14 (aHR) of post-colonoscopy CRC-3y with NSAID and aspirin use (defined as 15 cumulative use for ≥ 90 days within five years before index colonoscopy) was derived 16 by propensity score (PS) regression adjustment of 22 covariates (including patient's 17 factors, concurrent medication use and endoscopy center's performance). 18 Results: Of 187,897 eligible patients, 21,757 (11.6%) were NSAID users. 854 19 (0.45%) developed post-colonoscopy CRC-3y (proximal cancer:147 [17.2%]). 20 NSAIDs were associated with a lower post-colonoscopy CRC-3y risk (aHR:0.54, 21 95% CI:0.41–0.70), but not CRC that developed >3 years (aHR:0.78, 95% CI 0.56-22 1.09). The aHR was 0.48 (95% CI:0.24–0.95) for proximal and 0.55 (95% CI:0.40– 23 0.74) for distal cancer. A duration- and frequency-response relationship was observed 24 (p-trend<0.001). For aspirin, the aHR was 1.01 (95% CI:0.80–1.28).

1	Conclusions: Non-aspirin NSAIDs were associated with lower post-colonoscopy
2	CRC risk after a negative baseline colonoscopy.
3	
4	Keywords: NSAID, colon cancer, rectal cancer, adenocarcinoma, interval cancer,
5	post-colonoscopy colorectal cancer
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1 INTRODUCTION

2	Colorectal cancer (CRC) is the third most common cancer and second leading cause
3	of death worldwide. ¹ Screening colonoscopy can reduce incidence ²⁻⁴ and mortality of
4	CRC, ⁴⁻⁶ but CRC can still occur after initial colonoscopy in which no cancer was
5	detected. These cancers are termed "post-colonoscopy CRC" by the recent World
6	Endoscopy Organization (WEO) consensus. ⁷ In contrast to interval CRC which refers
7	to cancer that develops shortly after screening/surveillance colonoscopy, post-
8	colonoscopy CRC encompasses cancers that develops after any diagnostic
9	colonoscopy and could account for up to 9% of all diagnosed CRCs, ^{8,9} with a
10	predilection for proximal colon. ¹⁰ The mechanisms for post-colonoscopy CRC
11	development could be accounted by incomplete colonoscopy (due to technical
12	difficulty or luminal obstruction), missed lesions at the index colonoscopy (around
13	50% of the cases), ⁸ incomplete resection of polyps, tumors arising from alternative
14	pathway including the sessile serrated pathway with rapid growth, ¹¹⁻¹³ and tumor
14 15	pathway including the sessile serrated pathway with rapid growth, ¹¹⁻¹³ and tumor seeding by biopsy forceps or needle injectors. ¹⁴
15	
15 16	seeding by biopsy forceps or needle injectors. ¹⁴
15 16 17	seeding by biopsy forceps or needle injectors. ¹⁴ Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to possess
15 16 17 18	seeding by biopsy forceps or needle injectors. ¹⁴ Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to possess chemopreventive effect on CRC. A systematic review of clinical studies showed that
15 16 17 18 19	seeding by biopsy forceps or needle injectors. ¹⁴ Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to possess chemopreventive effect on CRC. A systematic review of clinical studies showed that NSAIDs reduced both adenoma and CRC development. ¹⁵ A recent population-based
15 16 17 18 19 20	seeding by biopsy forceps or needle injectors. ¹⁴ Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to possess chemopreventive effect on CRC. A systematic review of clinical studies showed that NSAIDs reduced both adenoma and CRC development. ¹⁵ A recent population-based case-control study shows that non-aspirin NSAIDs were associated with a duration-
15 16 17 18 19 20 21	seeding by biopsy forceps or needle injectors. ¹⁴ Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to possess chemopreventive effect on CRC. A systematic review of clinical studies showed that NSAIDs reduced both adenoma and CRC development. ¹⁵ A recent population-based case-control study shows that non-aspirin NSAIDs were associated with a duration- dependent risk reduction of CRC with effect persisting up to one year after
15 16 17 18 19 20 21 22	seeding by biopsy forceps or needle injectors. ¹⁴ Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to possess chemopreventive effect on CRC. A systematic review of clinical studies showed that NSAIDs reduced both adenoma and CRC development. ¹⁵ A recent population-based case-control study shows that non-aspirin NSAIDs were associated with a duration- dependent risk reduction of CRC with effect persisting up to one year after discontinuation. ¹⁶ Multiple mechanisms have been proposed. First, NSAIDs induce

1	be associated with tumour angiogenesis, proliferation of tumour cells and immune
2	surveillance inhibition. ¹⁸ Third, inhibition of cyclooxygenase-2 (COX-2) derived PG
3	production inactivates epidermal growth factor receptor (EGFR) signalling. ¹⁹ Other
4	non-COX-mediated mechanisms of NSAIDs in cancer prevention include inhibition
5	of activating pathways of nuclear factor kappa B (NF-kappa B) ²⁰ and insulin-related
6	neoplastic pathways. ²¹ While NSAIDs inhibits both COX-1 and COX-2, aspirin is
7	more selective for COX-1 inhibition, ^{22, 23} which may explain why NSAIDs appear to
8	be more efficacious than aspirin in preventing advanced metachronous neoplasia in
9	patients with previous colorectal neoplasia. ²⁴ In addition, the chemopreventive effect
10	of aspirin requires prolonged use (at least 5 years) in comparison to NSAIDs. ^{15, 25, 26}
11	
12	While there is ample evidence that NSAIDs and aspirin reduce colorectal adenomas
13	and cancer, studies that specifically focus on their chemopreventive role in post-
14	colonoscopy CRC are lacking. NSAIDs/aspirin may not be effective or minimally
14 15	colonoscopy CRC are lacking. NSAIDs/aspirin may not be effective or minimally effective in individuals who have already undergone colonoscopy in which no cancer
15	effective in individuals who have already undergone colonoscopy in which no cancer
15 16	effective in individuals who have already undergone colonoscopy in which no cancer was found and all polyps were removed. Moreover, as NSAIDs are associated with
15 16 17	effective in individuals who have already undergone colonoscopy in which no cancer was found and all polyps were removed. Moreover, as NSAIDs are associated with side effects like gastrointestinal bleeding (GIB), nephrotoxicity, and cardiovascular
15 16 17 18	effective in individuals who have already undergone colonoscopy in which no cancer was found and all polyps were removed. Moreover, as NSAIDs are associated with side effects like gastrointestinal bleeding (GIB), nephrotoxicity, and cardiovascular events, subgroups that will benefit from the chemopreventive effects of NSAIDs
15 16 17 18 19	effective in individuals who have already undergone colonoscopy in which no cancer was found and all polyps were removed. Moreover, as NSAIDs are associated with side effects like gastrointestinal bleeding (GIB), nephrotoxicity, and cardiovascular events, subgroups that will benefit from the chemopreventive effects of NSAIDs
15 16 17 18 19 20	effective in individuals who have already undergone colonoscopy in which no cancer was found and all polyps were removed. Moreover, as NSAIDs are associated with side effects like gastrointestinal bleeding (GIB), nephrotoxicity, and cardiovascular events, subgroups that will benefit from the chemopreventive effects of NSAIDs should be identified.
15 16 17 18 19 20 21	effective in individuals who have already undergone colonoscopy in which no cancer was found and all polyps were removed. Moreover, as NSAIDs are associated with side effects like gastrointestinal bleeding (GIB), nephrotoxicity, and cardiovascular events, subgroups that will benefit from the chemopreventive effects of NSAIDs should be identified. In this study, we aimed to determine the association between use of NSAIDs/aspirin
15 16 17 18 19 20 21 22	effective in individuals who have already undergone colonoscopy in which no cancer was found and all polyps were removed. Moreover, as NSAIDs are associated with side effects like gastrointestinal bleeding (GIB), nephrotoxicity, and cardiovascular events, subgroups that will benefit from the chemopreventive effects of NSAIDs should be identified. In this study, we aimed to determine the association between use of NSAIDs/aspirin and post-colonoscopy CRC development in a large cohort of patients who had
15 16 17 18 19 20 21 22 23	effective in individuals who have already undergone colonoscopy in which no cancer was found and all polyps were removed. Moreover, as NSAIDs are associated with side effects like gastrointestinal bleeding (GIB), nephrotoxicity, and cardiovascular events, subgroups that will benefit from the chemopreventive effects of NSAIDs should be identified. In this study, we aimed to determine the association between use of NSAIDs/aspirin and post-colonoscopy CRC development in a large cohort of patients who had

1 METHODS

2

3 Study design and data source

4 This was a retrospective cohort study with data retrieved from a territory-wide 5 electronic healthcare database, the Clinical Data Analysis and Reporting System 6 (CDARS), which is managed by the Hong Kong Hospital Authority. The Hong Kong 7 Hospital Authority is the only statutory public healthcare provider offering 90% of all 8 primary, secondary and tertiary care services of Hong Kong with a population of 7.3 9 million. The CDARS records all patient's demographics and clinical data including 10 hospitalization, visits to outpatient clinics, investigation procedures and results, 11 endoscopic and surgical procedures, as well as drug prescription and dispensing 12 history. A number of territory-wide studies have been conducted by using the 13 CDARS, with a high degree of coding accuracy (>90%) of the International 14 Classification of Diseases, Ninth Revision (ICD-9) codings.²⁷⁻³³ 15

16 **Outcome definition and study subjects**

17 Individuals aged at least 40 years and had undergone colonoscopy between 2005 and 18 2013 in all public hospitals in Hong Kong were identified. We excluded patients with 19 prior CRC, inflammatory bowel disease, prior colectomy and detected CRC (defined 20 as cancer found within 6 months of the index colonoscopy). The patient selection 21 process is depicted in Figure 1. The primary outcome of interest was post-22 colonoscopy CRC between 6 and 36 months (post-colonoscopy CRC-3y), which is 23 the definition of the World Endoscopy Organization (WEO) consensus on "postcolonoscopy CRC rate for an interval of 3 year".⁷ This definition was also adopted by 24 25 other previous studies.³⁴⁻³⁹ In contrast, detected CRC was defined as CRC diagnosed 26 within 6 months of index colonoscopy, presuming that CRC suspected at index

1	colonoscopy would be confirmed within 6 months. ³⁴ The secondary outcomes of
2	interest were (1) post-colonoscopy CRC-all (i.e. all post-colonoscopy CRC cases
3	developing >6 months after index colonoscopy), and (2) post-colonoscopy CRC >3y
4	(i.e. post-colonoscopy CRC cases developing >36 months after index colonoscopy)
5	(Figure 2). Cancer site was subcategorized into proximal (from caecum to transverse
6	colon [ICD-9 codes 153.4, 153.6, 153.0, 153.1]) and distal colon (from splenic flexure
7	to rectum [ICD-9 codes 153.2, 153.3, 153.7, 154.0, 154.1]).
8	
9	To investigate the primary outcome, we observed patients from 6 months after index
10	colonoscopy (i.e. index date) and censored them at post-colonoscopy CRC-3y
11	diagnosis, death or end of 36 months. For the secondary outcomes, we observed
12	patients from 6 months after index colonoscopy and censored them at CRC diagnosis,
13	death or end of study (31 December 2017).
14	
15	Data validation
16	Due to anonymization of patient's identity in the electronic database, only data on the
17	outcome of post-colonoscopy CRC-3y (n=137) from our own center, Queen Mary
18	Hospital, could be retrieved for validation. The coding accuracy was 97.1%.
19	
20	Study variables
21	The primary exposure of interest was NSAID use before index colonoscopy. Aspirin
22	use was considered as a secondary exposure of interest. Covariates taken into analysis
23	for post-colonoscopy CRC-3y risk included patient's factors and endoscopy centres'
24	performance (annual endoscopy volume and polypectomy rate). ^{34, 36, 37, 40} Specifically,
25	patient's factors included age at index colonoscopy, sex, history of colonic polyps,

1	polypectomy at index colonoscopy, smoking status, heavy alcohol consumption,
2	comorbidities (cardiovascular, metabolic, neurological, renal and liver diseases)
3	(Table 1) and concurrent usage of medications (aspirin, ⁴¹ cyclooxygenase [COX]-2
4	inhibitors ¹⁵ and statins ^{39,42}). eTable 1 provides details of ICD-9 codes of each
5	disease. Smoking was identified by ICD-9 code of V15.82 and by proxy of chronic
6	obstructive pulmonary disease (COPD). Heavy alcohol consumption was inferred
7	from presence of alcohol-related disorders, including hepatic, gastrointestinal,
8	neurological and psychiatric diseases.
9	
10	Medication prescription and dispensing data were traced up to 5 years before index
11	colonoscopy. All medication use including NSAIDs was defined as usage for ≥ 90
12	days as in our previous study. ³⁹ The treatment duration of individual prescription
13	between prescription start date and end date was calculated for a particular drug, and
14	was then summed up as total treatment duration. Effects of individual NSAID
15	(including diclofenac, naproxen, ibuprofen, mefenamic acid, indomethacin, sulindac,
16	piroxicam, and ketoprofen) on post-colonoscopy CRC-3y were also analysed.
17	
18	To study dose-response relationship, duration of NSAID use was categorized into
19	three groups: (i) never use, (ii) ≤ 1 year and (iii) > 1 year. Frequency of NSAID use
20	was also categorized into three groups: (i) never use, (ii) <weekly (iii)<="" and="" td="" use=""></weekly>
21	\geq weekly use. The frequency of use was calculated by dividing the number of days of
22	NSAID use by 5 years.

24 We further explored the association between the timing of NSAID uses before index

25 colonoscopy and post-colonoscopy CRC. Current NSAID users were defined when

1	the last prescription ended \leq 6 months before the index colonoscopy, while past users
2	were defined when the last prescription ended >6 months before the index
3	colonoscopy. NSAID non-users were defined when there was no recorded
4	prescription both before and after index colonoscopy.
5	
6	In addition, we determined the association of post-colonoscopy NSAID use (defined
7	as \geq 90-day use after index colonoscopy) on risks of post-colonoscopy CRC.
8	
9	Statistical analyses
10	All statistical analyses were performed using R version 3.2.3 (R Foundation for
11	Statistical Computing) statistical software. Continuous variables were expressed as
12	median and interquartile range (IQR). Mann-Whitney U-test was used to compare
13	continuous variables of two groups. Chi-square test or Fisher's exact test was applied
14	for categorical variables. Propensity score (PS) regression adjustment was used as the
15	primary analysis method to determine effect of NSAIDs on post-colonoscopy CRC-
16	3y risk. ^{43, 44} PS represented the probability of NSAID use predicted by the 22
17	aforementioned covariates in a logistic regression model. Cox proportional hazards
18	model with PS regression adjustment was used to calculate the adjusted hazard ratio
19	(aHR) of post-colonoscopy CRC-3y with NSAID use.
20	
21	Stratified analysis was performed according to cancer location (proximal or distal
22	colon). Subgroup analysis was performed according to age, sex, history of diabetes
23	mellitus and colonic polyps. To determine effect of NSAIDs on secondary outcomes,
24	the aHR was derived by Cox proportional hazards model with PS regression
25	adjustment.

2	PS matching was also performed to achieve balance in covariates between the two
3	groups.43-45 NSAID users were matched to NSAID non-users in a 1:2 ratio without
4	replacement using a greedy distance-based matching algorithm with the logit of the
5	PS within 0.1 standard deviation. Absolute standardized difference (ASD) allows an
6	objective assessment of the matching result. It was defined as absolute difference in
7	means or proportions divided by pooled standard deviation. Balance of covariates
8	between two groups was achieved if an ASD was less than 0.20.46 A two-sided p-
9	value of <0.05 was used to define statistical significance.
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1 **RESULTS**

2

3	Out of 234,827 patients who had undergone colonoscopy between 2005 and 2013,
4	187,897 (male: 91,961 [48.9%]) patients fulfilled the selection criteria (Figure 1),
5	with a total duration of follow-up of 560,471 person-years. The median age at index
6	colonoscopy was 60.6 years (IQR:52.3-71.9).
7	
8	In total, there were 854 post-colonoscopy CRC-3y cases including 707 (82.8%) distal
9	and 147 (17.2%) proximal cancers with an overall incidence rate of 15.2 per 10,000
10	person-years. The median age of diagnosis of post-colonoscopy CRC-3y was 75.9
11	years (IQR:65.5-83.8); and the median interval between index colonoscopy and post-
12	colonoscopy CRC-3y was 1.2 years (IQR:0.8-1.9).
13	
14	Association between NSAID use and post-colonoscopy CRC-3y
15	There were 21,757 NSAID users and the median duration of NSAID use was 0.7
16	years (IQR:0.4–1.6) within five years preceding index colonoscopy. Among them, 55
17	(0.25%) patients were diagnosed with post-colonoscopy CRC-3y with an incidence
18	rate of 8.4 per 10,000 person-years. For NSAID non-users, the incidence rate of post-
19	colonoscopy CRC-3y was 16.1 per 10,000 person-years.
20	
21	On crude analysis, the HR of post-colonoscopy CRC-3y with NSAID use was 0.53
22	(95% CI: $0.40 - 0.69$). On PS regression adjustment, the aHR of post-colonoscopy
23	CRC-3y with NSAID use was 0.54 (95% CI:0.41–0.70) (Table 2). Stratified analysis
24	shows that NSAID use was associated with a lower post-colonoscopy CRC-3y risk in
25	both proximal (aHR:0.48, 95% CI:0.24-0.95) and distal colon (aHR:0.55, 95% CI:

Patient Characteristics and Risk of post-colonoscopy CRC-3y

2	CI:0.80–1.28;p=0.92).
3	
4	Effects of individual NSAID on post-colonoscopy CRC-3y risk
5	Of the 21,757 NSAID users, 3,545 used more than one type of NSAIDs and were
6	excluded in this analysis. Table 3 shows the effects of individual NSAIDs on post-
7	colonoscopy CRC-3y risk. Diclofenac (n=10,648) and naproxen (n=2,675) were the
8	two NSAIDs found to be associated with a reduced post-colonoscopy CRC-3y risk
9	(diclofenac, aHR: 0.48, 95% CI: 0.33-0.73; naproxen, aHR: 0.38, 95% CI: 0.16-
10	0.92). There were no statistically significant association between post-colonoscopy
11	CRC-3y and other NSAIDs (ibuprofen, mefenamic acid, indomethacin, sulindac,
12	piroxicam and ketoprofen).
13	
14	Duration- and frequency-response between NSAID use and post-colonoscopy
15	CRC-3y
16	Table 4 shows that when compared with never user, a longer duration of NSAID use
17	
	(>1 year) offers greater protection against post-colonoscopy CRC-3y (aHR:0.42, 95%
18	 (>1 year) offers greater protection against post-colonoscopy CRC-3y (aHR:0.42, 95% CI:0.26–0.65) than shorter duration (≤1 year) of NSAID use (aHR:0.53, 95%
18 19	
	CI:0.26–0.65) than shorter duration (≤ 1 year) of NSAID use (aHR:0.53, 95%)
19	CI:0.26–0.65) than shorter duration (≤1 year) of NSAID use (aHR:0.53, 95% CI:0.45–0.62;p-trend <0.001). Similar findings were observed for both proximal and
19 20	CI:0.26–0.65) than shorter duration (≤1 year) of NSAID use (aHR:0.53, 95% CI:0.45–0.62;p-trend <0.001). Similar findings were observed for both proximal and
19 20 21 22	CI:0.26–0.65) than shorter duration (\leq 1 year) of NSAID use (aHR:0.53, 95% CI:0.45–0.62;p-trend <0.001). Similar findings were observed for both proximal and distal cancers.
19 20 21	 CI:0.26–0.65) than shorter duration (≤1 year) of NSAID use (aHR:0.53, 95% CI:0.45–0.62;p-trend <0.001). Similar findings were observed for both proximal and distal cancers. When compared with never user, more frequent NSAID use (≥weekly) also offers
19 20 21 22 23	CI:0.26–0.65) than shorter duration (≤1 year) of NSAID use (aHR:0.53, 95% CI:0.45–0.62;p-trend <0.001). Similar findings were observed for both proximal and distal cancers. When compared with never user, more frequent NSAID use (≥weekly) also offers greater protection against post-colonoscopy CRC-3y (aHR:0.46, 95% CI:0.32–0.67)

0.40–0.74). As for a spirin, the aHR of post-colonoscopy CRC-3y was 1.01 (95%

1

2	Subgroup analysis
3	Table 5 shows that protective effect of NSAIDs was limited to patients aged ≥ 60
4	years (aHR:0.48, 95% CI:0.35-0.66) and patients without diabetes mellitus
5	(aHR:0.55, 95% CI:0.41–0.73). The aHR of post-colonoscopy CRC-3y with NSAIDs
6	was lower in females (aHR:0.43, 95% CI:0.28–0.66) than in males (aHR:0.63, 95%
7	CI:0.44–0.91). NSAIDs were also associated with a significantly lower post-
8	colonoscopy CRC-3y risk in those without history of colonic polyps (aHR:0.46, 95%
9	CI:0.32–0.67) but not in those with history of colonic polyps (aHR:0.67, 95%
10	CI:0.45–1.01).
11	
12	Association between NSAID use and secondary outcomes (post-colonoscopy
13	CRC-all and post-colonoscopy CRC>3y)
14	We further looked into the effects of NSAIDs on post-colonoscopy CRC that
15	developed in different time frames after index colonoscopy. There were a total of
16	1,290 post-colonoscopy CRC-all cases (i.e. all CRC cases diagnosed >6 months after
17	index colonoscopy) including 436 (0.2%) PCCRC >3y (median:5.2 years; IQR:3.7-
18	7.2). While NSAID use was associated with a lower risk of post-colonoscopy CRC-all
19	(aHR:0.58, 95% CI:0.50–0.76; p<0.001), the benefit was not observed for post-
20	colonoscopy CRC>3y (aHR:0.78, 95% CI:0.56–1.09; p=0.149).
21 22	Results from PS matching
23	Before PS matching, the majority of covariates were well balanced (ASD<0.2),
24	except for sex (eTable 2). After PS matching, the cohort number was 64,806
25	including 21,650 NSAID users and 43,156 NSAID non-users, with good balance of
26	all covariates (ASD<0.2). There were 246 (0.4%) post-colonoscopy CRC-3y cases in

1	this matched cohort and	NSAID use was also	o associated with a	lower post-
---	-------------------------	--------------------	---------------------	-------------

- 2 colonoscopy CRC-3y risk (HR:0.57, 95% CI:0.42–0.77).
- 3

4 Effects of current or past NSAID use on post-colonoscopy CRC

- 5 The aHR of post-colonoscopy CRC-3y with current and past NSAID use was 0.55
- 6 (95% CI:0.43–0.71) and 0.58 (95% CI:0.49–0.69), respectively (**eTable 3**). The
- 7 corresponding aHR of post-colonoscopy CRC-all with current and past NSAID use
- 8 was 0.61 (95% CI:0.50–0.74) and 0.65 (95% CI:0.57–0.74), respectively. The aHR of
- 9 post-colonoscopy CRC>3y with current and past NSAID use was 0.74 (95% CI:0.53–
- 10 1.02) and 0.80 (95% CI:0.64–0.99), respectively.
- 11
- 12 Effects of NSAID use after index colonoscopy on post-colonoscopy CRC
- 13 The aHR of post-colonoscopy CRC-3y with post-colonoscopy NSAID use was 0.50
- 14 (95% CI:0.28–0.91), while the aHR of post-colonoscopy CRC-all and post-
- 15 colonoscopy CRC>3y was 0.40 (95% CI:0.28–0.57) and 0.64(95% CI:0.40–1.01),
- 16 respectively (**eTable 4**).
- 17
- 18
- 19
- 20
- 21
- 22

- 24
- 25 26

DISCUSSION

2	Although NSAIDs have been shown to be associated with a lower risk of CRC, ¹⁵
3	studies on the role of NSAIDs in post-colonoscopy CRC (which accounts for up to
4	9% of all diagnosed CRCs) are lacking. ⁸ To our knowledge, this is the first study
5	involving more than 180,000 subjects to demonstrate the potential chemopreventive
6	effects of NSAIDs on post-colonoscopy CRC. We showed that NSAIDs were
7	associated with a 47% lower risk of post-colonoscopy CRC-3y and the benefits were
8	observed for both proximal and distal cancers.
9	
10	Although the magnitude of protection of NSAIDs against post-colonoscopy CRC-3y
11	in our study was similar to that reported in studies on NSAIDs against all CRCs, ¹⁵
12	previous studies failed to stratify cancers into detected CRC and post-colonoscopy
13	CRC. Results from this study would therefore shed new light onto the potential
14	chemopreventive effects NSAIDs on CRC development according to the timing of
14 15	chemopreventive effects NSAIDs on CRC development according to the timing of NSAID uses and colonoscopy. Intuitively, NSAIDs appear to inhibit growth of pre-
15	NSAID uses and colonoscopy. Intuitively, NSAIDs appear to inhibit growth of pre-
15 16	NSAID uses and colonoscopy. Intuitively, NSAIDs appear to inhibit growth of pre- existing neoplastic lesions that are either missed or residual lesions left after
15 16 17	NSAID uses and colonoscopy. Intuitively, NSAIDs appear to inhibit growth of pre- existing neoplastic lesions that are either missed or residual lesions left after polypectomy ^{18, 19, 47} as well as reducing the number and size of colonic adenomas. ^{48,}
15 16 17 18	NSAID uses and colonoscopy. Intuitively, NSAIDs appear to inhibit growth of pre- existing neoplastic lesions that are either missed or residual lesions left after polypectomy ^{18, 19, 47} as well as reducing the number and size of colonic adenomas. ^{48,} ⁴⁹ The effect of NSAIDs on post-colonoscopy CRC>3y however was non-significant
15 16 17 18 19	NSAID uses and colonoscopy. Intuitively, NSAIDs appear to inhibit growth of pre- existing neoplastic lesions that are either missed or residual lesions left after polypectomy ^{18, 19, 47} as well as reducing the number and size of colonic adenomas. ^{48,} ⁴⁹ The effect of NSAIDs on post-colonoscopy CRC>3y however was non-significant on the main analysis. Further studies with even larger sample size may be needed to
15 16 17 18 19 20	NSAID uses and colonoscopy. Intuitively, NSAIDs appear to inhibit growth of pre- existing neoplastic lesions that are either missed or residual lesions left after polypectomy ^{18, 19, 47} as well as reducing the number and size of colonic adenomas. ^{48,} ⁴⁹ The effect of NSAIDs on post-colonoscopy CRC>3y however was non-significant on the main analysis. Further studies with even larger sample size may be needed to
15 16 17 18 19 20 21	NSAID uses and colonoscopy. Intuitively, NSAIDs appear to inhibit growth of pre- existing neoplastic lesions that are either missed or residual lesions left after polypectomy ^{18, 19, 47} as well as reducing the number and size of colonic adenomas. ^{48, 49} The effect of NSAIDs on post-colonoscopy CRC>3y however was non-significant on the main analysis. Further studies with even larger sample size may be needed to avoid possible underpower of the subgroup analysis in this study.
15 16 17 18 19 20 21 22	NSAID uses and colonoscopy. Intuitively, NSAIDs appear to inhibit growth of pre- existing neoplastic lesions that are either missed or residual lesions left after polypectomy ^{18, 19, 47} as well as reducing the number and size of colonic adenomas. ^{48, 49} The effect of NSAIDs on post-colonoscopy CRC>3y however was non-significant on the main analysis. Further studies with even larger sample size may be needed to avoid possible underpower of the subgroup analysis in this study. When individual NSAIDs were analyzed, diclofenac and naproxen were both

25 However, our results on individual NSAID analysis should also be interpreted with

caution due to the small number of events in patients using NSAIDs other than
 diclofenac and naproxen.

3

4 Interestingly, aspirin was not found to be associated with a lower post-colonoscopy 5 CRC-3y risk in this study. First, while COX-2 inhibition is believed to play an important role in the chemopreventive effect of NSAIDs,^{22, 23} aspirin is more selective 6 7 for COX-1 inhibition. Our finding is in line with a recent network meta-analysis 8 which showed that NSAIDs are superior to low-dose and high-dose aspirin in 9 preventing advanced metachronous neoplasia (advanced adenoma and CRC) in 10 patients with previous colorectal neoplasia (odds ratio of 0.37 and 0.71 for NSAIDs and aspirin respectively).²⁴ Second, chemopreventive effect of aspirin depends on 11 12 duration of use and latency period. Both post-hoc analysis of clinical trials and 13 prospective studies have shown that chemopreventive effect of aspirin is evident only after more than 5 years of use with a latency period of at least 10 years.^{25, 26} On the 14 15 other hand, multiple observational studies have demonstrated a much shorter duration of NSAID use might be enough for the chemopreventive effect to exert.¹⁵ 16 17 Collectively, these data might hint that NSAIDs appear to be more potent than aspirin 18 on CRC prevention, particularly over a relatively short period of time as in post-19 colonoscopy CRC prevention. 20 21 In this study, the beneficial effect of NSAIDs was found to be similar in both

22 proximal and distal cancers. In contrast, the chemopreventive effect of statins on

23 post-colonoscopy CRC-3y is limited to proximal cancer as demonstrated in our recent

24 study.³⁹ The current subgroup analysis also shows that beneficial effect of NSAIDs

25 was observed in both sex, but may be higher in females. However, it was only

1	significant among those aged 60 years or above, which may be explained by lower
2	burden of both adenomatous ⁵⁰ and serrated polyps ⁵¹ in younger patients, and hence a
3	lower risk of missed colonic polyps or incomplete resection of lesions. The beneficial
4	effect of NSAIDs was also limited to non-diabetic patients and those without history
5	of colonic polyps. Hyperinsulinemia in diabetic patients, which promotes cancer
6	growth, may override beneficial effect of NSAIDs. However, cautions should be
7	undertaken in interpreting these results due to possible underpower from subgroup
8	analysis, in particular those with history of colonic polyps in which borderline
9	significance was noted. As NSAIDs are associated with gastrointestinal bleeding and
10	cardiovascular diseases, ¹⁵ subgroup analysis provide insights into which subgroup of
11	patients may benefit more from NSAID use. Further studies are warranted to
12	determine whether there are subgroups in which a favorable risk-benefit profile exists.
13	Concomitant use of proton pump inhibitors (PPIs) to reduce risk of upper GIB may
14	also be considered to increase the benefit-risk ratio in at-risk groups, as a recent study
	also be considered to increase the benefit-fisk ratio in at-fisk groups, as a recent study
15	showed that the chemopreventive effect of NSAIDs on CRC was not modified by
15 16	
	showed that the chemopreventive effect of NSAIDs on CRC was not modified by
16	showed that the chemopreventive effect of NSAIDs on CRC was not modified by
16 17	showed that the chemopreventive effect of NSAIDs on CRC was not modified by PPIs.
16 17 18	showed that the chemopreventive effect of NSAIDs on CRC was not modified by PPIs. There are several strengths of this study. First, the use of territory-wide healthcare
16 17 18 19	showed that the chemopreventive effect of NSAIDs on CRC was not modified by PPIs. There are several strengths of this study. First, the use of territory-wide healthcare database, which captured all diagnoses, drug prescription and dispensing history,
16 17 18 19 20	showed that the chemopreventive effect of NSAIDs on CRC was not modified by PPIs. There are several strengths of this study. First, the use of territory-wide healthcare database, which captured all diagnoses, drug prescription and dispensing history, would limit some of the biases common to traditional observational studies including
16 17 18 19 20 21	showed that the chemopreventive effect of NSAIDs on CRC was not modified by PPIs. There are several strengths of this study. First, the use of territory-wide healthcare database, which captured all diagnoses, drug prescription and dispensing history, would limit some of the biases common to traditional observational studies including selection and recall biases. ⁴¹ Importantly, "reverse causality" was minimized by
16 17 18 19 20 21 22	showed that the chemopreventive effect of NSAIDs on CRC was not modified by PPIs. There are several strengths of this study. First, the use of territory-wide healthcare database, which captured all diagnoses, drug prescription and dispensing history, would limit some of the biases common to traditional observational studies including selection and recall biases. ⁴¹ Importantly, "reverse causality" was minimized by defining NSAID exposure as baseline drug use prior to index colonoscopy. This is

focussed on NSAID use before index colonoscopy. Second, no previous studies
 specifically investigated the effect of NSAIDs in patients who had prior colonoscopy
 and negative for CRC.¹⁵

4

5 Certain limitations of this study exist. First, data on some of the risk factors for CRC 6 like family history and lifestyle factors were unavailable in the electronic database. 7 However, the prevalence of positive family history of CRC would unlikely to differ 8 between the NSAID users and non-users as they shared similar baseline 9 characteristics, in particular history of colonic polyps and polypectomy. Although true 10 prevalence of smoking and alcoholism may be underestimated by diagnosis coding, 11 cardiovascular risk factors and diseases were similar between NSAID users and non-12 users (Table 1). Second, drug compliance and over-the-counter NSAID use could not 13 be ascertained, although this is likely a non-differential misclassification bias 14 attenuating result to null. Third, some quality measures related to index colonoscopy 15 such as individual endoscopist's adenoma detection rate, quality of bowel preparation, 16 polyp characteristics (e.g. number, size, histology) were not available in the database. 17 Instead, the center's colonoscopy volume and polypectomy rates, two surrogate 18 markers of center's performances, were considered. It is also unlikely that these 19 characteristics determined NSAID use. Fourth, the causes of post-colonoscopy CRC-20 3y could not be defined, which prevent further delineation of the exact 21 chemopreventive mechanisms of NSAIDs. Fifth, as inherent to all observational 22 studies, residual/unmeasured confounding is possible, although a large number of 23 variables were included to minimize this risk. Sixth, as the majority of our patients are 24 Chinese, generalizability should be corroborated by studies on different ethnic groups. 25

1 CONCLUSION

2	NSAID, but not aspirin, use before colonoscopy were associated with a 46% lower
3	risk in post-colonoscopy CRC-3y risk. As NSAIDs are associated with potential
4	adverse effects, further studies are warranted to identify the subgroup of patients who
5	will benefit more from NSAIDs after considering the risk-benefit profile.
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1 2	FIGURE LEGEND
3	
4	Figure 1: Patient selection flow diagram
5 6	CRC, colorectal cancer; CLN, colonoscopy
7	Figure 2: Study time frame
8	Abbreviations: NSAID, non-steroidal anti-inflammatory drug; CRC, colorectal
9	cancer; CLN, colonoscopy
10	Detected CRC: CRC diagnosed within 6 months after index colonoscopy
11	post-colonoscopy CRC-3y: CRC diagnosed between 6 to 36 months after index
12	colonoscopy
13	post-colonoscopy CRC-all: CRC diagnosed >6 months after index colonoscopy
14	post-colonoscopy CRC>3y: CRC diagnosed >36 months after index colonoscopy
15	
16	
17	
18	
19	
20	
21	

References

2	1.	Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:
3		GLOBOCAN estimates of incidence and mortality worldwide for 36
4		cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
5	2.	Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by
6		colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J
7		Med 1993;329:1977-81.
8	3.	Brenner H, Chang-Claude J, Seiler CM, et al. Protection from colorectal
9	-	cancer after colonoscopy: a population-based, case-control study. Ann
10		Intern Med 2011;154:22-30.
11	4.	Nishihara R, Wu K, Lochhead P, et al. Long-term colorectal-cancer
12		incidence and mortality after lower endoscopy. N Engl J Med
13		2013;369:1095-105.
14	5.	Baxter NN, Goldwasser MA, Paszat LF, et al. Association of colonoscopy
15	-	and death from colorectal cancer. Ann Intern Med 2009;150:1-8.
16	6.	Zauber AG, Winawer SJ, O'Brien MJ, et al. Colonoscopic polypectomy and
17		long-term prevention of colorectal-cancer deaths. N Engl J Med
18		2012;366:687-96.
19	7.	Rutter MD, Beintaris I, Valori R, et al. World Endoscopy Organization
20		Consensus Statements on Post-Colonoscopy and Post-Imaging Colorectal
21		Cancer. Gastroenterology 2018.
22	8.	Sanduleanu S, le Clercq CM, Dekker E, et al. Definition and taxonomy of
23		interval colorectal cancers: a proposal for standardising nomenclature.
24		Gut 2015;64:1257-67.
25	9.	Cheung KS, Chen L, Seto WK, et al. Epidemiology, characteristics, and
26		survival of post-colonoscopy colorectal cancer in Asia: A population-
27		based study. J Gastroenterol Hepatol 2019;34:1545-1553.
28	10.	Singh S, Singh PP, Murad MH, et al. Prevalence, risk factors, and outcomes
29		of interval colorectal cancers: a systematic review and meta-analysis. Am
30		J Gastroenterol 2014;109:1375-89.
31	11.	Burgess NG, Tutticci NJ, Pellise M, et al. Sessile serrated adenomas/polyps
32		with cytologic dysplasia: a triple threat for interval cancer. Gastrointest
33		Endosc 2014;80:307-10.
34	12.	Arain MA, Sawhney M, Sheikh S, et al. CIMP status of interval colon
35		cancers: another piece to the puzzle. Am J Gastroenterol 2010;105:1189-
36		95.
37	13.	Goldstein NS, Bhanot P, Odish E, et al. Hyperplastic-like colon polyps that
38		preceded microsatellite-unstable adenocarcinomas. Am J Clin Pathol
39		2003;119:778-96.
40	14.	Backes Y, Seerden TCJ, van Gestel R, et al. Tumor Seeding During
41		Colonoscopy as a Possible Cause for Metachronous Colorectal Cancer.
42		Gastroenterology 2019;157:1222-1232.e4.
43	15.	Rostom A, Dube C, Lewin G, et al. Nonsteroidal anti-inflammatory drugs
44		and cyclooxygenase-2 inhibitors for primary prevention of colorectal
45		cancer: a systematic review prepared for the U.S. Preventive Services
46		Task Force. Ann Intern Med 2007;146:376-89.
47	16.	Rodriguez-Miguel A, Garcia-Rodriguez LA, Gil M, et al. Population-based
48		case-control study: chemoprotection of colorectal cancer with non-aspirin

1		nonsteroidal anti-inflammatory drugs and other drugs for pain control.
2		Aliment Pharmacol Ther 2019;50:295-305.
3	17.	Rigau J, Pique JM, Rubio E, et al. Effects of long-term sulindac therapy on
4		colonic polyposis. Ann Intern Med 1991;115:952-4.
5	18.	Dannenberg AJ, Lippman SM, Mann JR, et al. Cyclooxygenase-2 and
6		epidermal growth factor receptor: pharmacologic targets for
7		chemoprevention. J Clin Oncol 2005;23:254-66.
8	19.	Shao J, Lee SB, Guo H, et al. Prostaglandin E2 stimulates the growth of
9		colon cancer cells via induction of amphiregulin. Cancer Res
10		2003;63:5218-23.
11	20.	Yamamoto Y, Yin MJ, Lin KM, et al. Sulindac inhibits activation of the NF-
12	0.1	kappaB pathway. J Biol Chem 1999;274:27307-14.
13	21.	Slattery ML, Samowitz W, Hoffman M, et al. Aspirin, NSAIDs, and
14 15		colorectal cancer: possible involvement in an insulin-related pathway.
15	22	Cancer Epidemiol Biomarkers Prev 2004;13:538-45.
16 17	22.	Marcus AJ. Aspirin as prophylaxis against colorectal cancer. N Engl J Med
17	23.	1995;333:656-8. Reeves MJ, Newcomb PA, Trentham-Dietz A, et al. Nonsteroidal anti-
10 19	23.	inflammatory drug use and protection against colorectal cancer in
20		women. Cancer Epidemiol Biomarkers Prev 1996;5:955-60.
21	24.	Dulai PS, Singh S, Marquez E, et al. Chemoprevention of colorectal cancer
22		in individuals with previous colorectal neoplasia: systematic review and
23		network meta-analysis. Bmj 2016;355:i6188.
24	25.	Flossmann E, Rothwell PM. Effect of aspirin on long-term risk of
25		colorectal cancer: consistent evidence from randomised and
26		observational studies. Lancet 2007;369:1603-13.
27	26.	Chan AT, Giovannucci EL, Meyerhardt JA, et al. Aspirin dose and duration
28		of use and risk of colorectal cancer in men. Gastroenterology
29		2008;134:21-8.
30	27.	Cheung KS, Chan EW, Chen L, et al. Diabetes Increases Risk of Gastric
31		Cancer After Helicobacter pylori Eradication: A Territory-Wide Study
32		With Propensity Score Analysis. Diabetes Care 2019;42:1769-1775.
33	28.	Cheung KS, Chan EW, Wong AYS, et al. Metformin Use and Gastric Cancer
34		Risk in Diabetic Patients After Helicobacter pylori Eradication. J Natl
35		Cancer Inst 2019;111:484-489.
36	29.	Cheung KS, Seto WK, Fung J, et al. Epidemiology and natural history of
37		Wilson's disease in the Chinese: A territory-based study in Hong Kong
38 39	20	between 2000 and 2016. World J Gastroenterol 2017;23:7716-7726.
39 40	30.	Seto WK, Lau EHY, Wu JTK, et al. Effects of nucleoside analogue
40 41		prescription for hepatitis B on the incidence of liver cancer in Hong Kong: a territory-wide ecological study.
42	31.	Cheung KS, Chan EW, Wong AYS, et al. Aspirin and Risk of Gastric Cancer
43	51.	After Helicobacter pylori Eradication: A Territory-Wide Study. J Natl
44		Cancer Inst 2018.
45	32.	Wong AY, Wong IC, Chui CS, et al. Association Between Acute
46	01	Neuropsychiatric Events and Helicobacter pylori Therapy Containing
47		Clarithromycin. JAMA Intern Med 2016;176:828-34.
48	33.	Cheung KS, Chan EW, Wong AYS, et al. Statins Were Associated with a
49		Reduced Gastric Cancer Risk in Patients with Eradicated Helicobacter

1		Pylori Infection: A Territory-Wide Propensity Score Matched Study.
2		Cancer Epidemiol Biomarkers Prev 2020;29:493-499.
3	34.	Samadder NJ, Curtin K, Tuohy TM, et al. Characteristics of missed or
4	54.	interval colorectal cancer and patient survival: a population-based study.
т 5		Gastroenterology 2014;146:950-60.
6	35.	Cooper GS, Xu F, Barnholtz Sloan JS, et al. Prevalence and predictors of
7	55.	interval colorectal cancers in medicare beneficiaries. Cancer
8		2012;118:3044-52.
9	36.	Baxter NN, Sutradhar R, Forbes SS, et al. Analysis of administrative data
10	50.	finds endoscopist quality measures associated with postcolonoscopy
10		colorectal cancer. Gastroenterology 2011;140:65-72.
12	37.	Singh H, Nugent Z, Demers AA, et al. Rate and predictors of early/missed
13	57.	colorectal cancers after colonoscopy in Manitoba: a population-based
14		study. Am J Gastroenterol 2010;105:2588-96.
15	38.	Bressler B, Paszat LF, Chen Z, et al. Rates of new or missed colorectal
16	50.	cancers after colonoscopy and their risk factors: a population-based
17		analysis. Gastroenterology 2007;132:96-102.
18	39.	Cheung KS, Chen L, Chan EW, et al. Statins reduce the progression of non-
19	0,11	advanced adenomas to colorectal cancer: a postcolonoscopy study in 187
20		897 patients. Gut 2019.
21	40.	Singh H, Nugent Z, Mahmud SM, et al. Predictors of colorectal cancer after
22	-	negative colonoscopy: a population-based study. Am J Gastroenterol
23		2010;105:663-73; quiz 674.
24	41.	Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer
25		incidence and metastasis: a systematic comparison of evidence from
26		observational studies versus randomised trials. Lancet Oncol
27		2012;13:518-27.
28	42.	Lytras T, Nikolopoulos G, Bonovas S. Statins and the risk of colorectal
29		cancer: an updated systematic review and meta-analysis of 40 studies.
30		World J Gastroenterol 2014;20:1858-70.
31	43.	Glynn RJ, Schneeweiss S, Sturmer T. Indications for propensity scores and
32		review of their use in pharmacoepidemiology. Basic Clin Pharmacol
33		Toxicol 2006;98:253-9.
34	44.	Braitman LE, Rosenbaum PR. Rare outcomes, common treatments:
35		analytic strategies using propensity scores. Ann Intern Med
36		2002;137:693-5.
37	45.	Cheung KS, Leung WK, Seto WK. Application of Big Data analysis in
38		gastrointestinal research. World J Gastroenterol 2019;25:2990-3008.
39	46.	Austin PC. Balance diagnostics for comparing the distribution of baseline
40		covariates between treatment groups in propensity-score matched
41		samples. Stat Med 2009;28:3083-107.
42	47.	Collet JP, Sharpe C, Belzile E, et al. Colorectal cancer prevention by non-
43		steroidal anti-inflammatory drugs: effects of dosage and timing. Br J
44		Cancer 1999;81:62-8.
45	48.	Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and
46		rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J
47	40	Med 1993;328:1313-6.
48	49.	Samadder NJ, Kuwada SK, Boucher KM, et al. Association of Sulindac and
49		Erlotinib vs Placebo With Colorectal Neoplasia in Familial Adenomatous

1 2		Polyposis: Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol 2018;4:671-677.
3	50.	Heitman SJ, Ronksley PE, Hilsden RJ, et al. Prevalence of adenomas and
4		colorectal cancer in average risk individuals: a systematic review and
5		meta-analysis. Clin Gastroenterol Hepatol 2009;7:1272-8.
6	51.	Kim HY, Kim SM, Seo JH, et al. Age-specific prevalence of serrated lesions
7		and their subtypes by screening colonoscopy: a retrospective study. BMC
8		Gastroenterol 2014;14:82.
9		
10		
11		
4.0		
12		
10		
13		

Table 1. Characteristics of NSAID and NSAID non-users

	NSAID users	NSAID non-users
	(n=21,757)	(n=166,140)
Age at index	61.2 (53.9 – 71.7)	60.5 (52.1 - 71.9)
colonoscopy (years)*		
Male sex (n, %)	8503 (39.1%)	83458 (50.2%)
History of colonic	4345 (20.0%)	34721 (20.9%)
polyps (n, %)		
Polypectomy at index	3203 (14.7%)	25521 (15.4%)
colonoscopy (n, %)		
Smoking (n, %)	391 (1.8%)	3483 (2.1%)
Alcohol (n, %)	118 (0.5%)	947 (0.6%)
DM (n, %)	2388 (11.0%)	15547 (9.4%)
Hypertension (n, %)	4302 (19.8%)	24680 (14.9%)
Dyslipidemia (n, %)	1462 (6.7%)	8095 (4.9%)
AF (n, %)	567 (2.6%)	5106 (3.1%)
IHD (n, %)	1770 (8.1%)	11496 (6.9%)
CHF (n, %)	777 (3.6%)	5525 (3.3%)
Stroke (n, %)	878 (4.0%)	6760 (4.1%)
CRF (n, %)	357 (1.6%)	3567 (2.1%)
Cirrhosis (n, %)	96 (0.4%)	1154 (0.7%)
Dementia (n, %)	124 (0.6%)	1134 (0.7%)
Parkinsonism (n, %)	94 (0.4%)	685 (0.4%)
Aspirin (n, %)	3866 (17.8%)	24703 (14.9%)
COX-2 inhibitors (n,%)	237 (1.1%)	141 (0.1%)
Statins (n,%)	3786 (17.4%)	21661 (13.0%)
Annual center	2942 (2054 - 3397)	2892 (2045 - 3363)
endoscopy volume*		
Annual center	25.0%	24.7%
polypectomy rate*	(21.8% - 28.6%)	(21.7% - 28.4%)

* Continuous variables were expressed as median (years) with interquartile range

Drug use was defined as at least 90-day use

DM, diabetes mellitus; AF, atrial fibrillation; IHD, ischemic heart disease; CHF, congestive heart failure; CRF, chronic renal failure; NSAIDs, non-steroidal anti-inflammatory drugs; COX-2, cyclooxygenase-2

1 Table 2. Association between NSAID use and risk of post-colonoscopy CRC-3y for the

2 whole cohort and according to cancer sites (proximal and distal cancer)

		Crude analysis	PS adjustment (n=187,897, post-colonoscopy CRC-3y=854)			
	post-co	(n=187,897, lonoscopy CRC-3y=854)				
All post- colonoscopy CRC-3y	HR	95% CI	AHR*	95% CI		
NSAID non- use	Ref	-	Ref	-		
NSAID use (at least 90 days)	0.53	0.40 - 0.69	0.54	0.41 - 0.70		
	post-co	(n=187,190, lonoscopy CRC-3y=147)	post-col	(n=187,190, onoscopy CRC-3y=147)		
Proximal Cancer	HR	95% CI	AHR*	95% CI		
– NSAID non- use	Ref	-	Ref	-		
NSAID use (at least 90 days)	0.50	0.25 - 0.98	0.48	0.24 - 0.95		
	post-co	(n=187,750, lonoscopy CRC-3y=707)	post-cole	(n=187,750, onoscopy CRC -3y=707)		
Distal Cancer	HR	95% CI	AHR*	95% CI		
– NSAID non- use	Ref	-	Ref	-		
NSAID use (at least 90 days)	0.53	0.39-0.72	0.55	0.40-0.74		

* Adjusted for age at which index colonoscopy was performed, sex, history of colonic polyps, polypectomy at index colonoscopy, smoking status, alcohol consumption, other comorbidities (diabetes mellitus, hypertension, dyslipidemia, atrial fibrillation, ischemic heart disease, congestive heart failure, stroke, chronic renal failure, cirrhosis, dementia, parkinsonism) and concurrent medications (aspirin, cyclooxygenase-2 inhibitors, statins), annual center endoscopy volume and center polypectomy rate

Abbreviations: NSAID, non-steroidal anti-inflammatory drug; HR, hazard ratio; 95% CI, 95% confidence interval; PS, propensity score

- 3
- 4
- 5
- 6

1	
-	
2	

Table 3. Association between individual NSAID and risk of post-colonoscopy CRC-3y

NSAIDs	Number of cohort and post-	AHR*	95% CI	
	colonoscopy CRC-3y			
Diclofenac	n=178,320, PCCRC-3y=822	0.48	0.33 - 0.73	
(n=10,648)				
Naproxen	n=173,347, PCCRC-3y=803	0.38	0.16 - 0.92	
(n=2,675)				
Ibuprofen	n=168,994, PCCRC-3y=802	0.60	0.23 - 1.59	
(n=1,322)				
Indomethacin	n=168,322, PCCRC-3y=803	1.24	0.51 - 2.99	
(n=761)				
Mefenamic acid	n=168,388, PCCRC-3y=799	1.27	1.77 - 9.06	
(n=716)				
Sulindac	N=167,817, PCCRC-3y=799	1.37	0.19 - 9.75	
(n=145)				
Piroxicam	N=168,059, PCCRC-3y=802	1.87	0.70 - 5.01	
(n=387)				
Ketoprofen	N=167,698, PCCRC-3y=798	0.33	n.a.	
(n=26)				

* Adjusted for age at which index colonoscopy was performed, sex, history of colonic polyps, polypectomy at index colonoscopy, smoking status, alcohol consumption, other comorbidities (diabetes mellitus, hypertension, dyslipidemia, atrial fibrillation, ischemic heart disease, congestive heart failure, stroke, chronic renal failure, cirrhosis, dementia, parkinsonism) and concurrent medications (aspirin, cyclooxygenase-2 inhibitors, statins), annual center endoscopy volume and center polypectomy rate

Abbreviations: NSAID, non-steroidal anti-inflammatory drug; HR, hazard ratio; 95% CI, 95% confidence interval

\mathbf{r}
. 1

Table 4. Duration- and frequency response between NSAID use and post-colonoscopy

CRC -3y risk for the whole cohort and according to cancer sites

Duration	AHR*	95% CI	Ptrend	
All post-colonoscopy CRC-3y (n=187,897, PCCRC-3y=854)				
Never use	Ref	-		
\leq 1 year NSAID use	0.53	0.45 - 0.62	<0.001	
> 1 year NSAID use	0.42	0.26 - 0.65		
Proximal Cancer				
(n=187,190, PCCRC-3y=147)				
Never use	Ref	-		
\leq 1 year NSAID use	0.51	0.35 - 0.74	<0.001	
> 1 year NSAID use	0.33	0.10 - 1.04	\0.001	
Distal Cancer (n=187,750, post-colonoscopy CRC-3	v=707)			
Never use	Ref	-		
\leq 1 year NSAID use	0.53	0.45 - 0.63	<0.001	
> 1 year NSAID use	0.43	0.26 - 0.70		
Frequency	AHR*	95% CI	Ptrend	
All PCCRC-3y				
(n=187,897, post-colonoscopy CRC-3	y=854)			
Never use	Ref	-		
< weekly NSAID use	0.53	0.45 - 0.61	<0.001	
\geq weekly NSAID use	0.46	0.32 - 0.67		
Proximal Cancer				
(n=187,190, post-colonoscopy CRC-3	y=147)			
Never use	Ref	-		
< weekly NSAID use	0.50	0.35 - 0.73	<0.001	
\geq weekly NSAID use	0.43	0.17 - 1.05		
Distal Cancer				
(n=187,750, post-colonoscopy CRC-3	y=707)			
Never use	Ref	-		
< weekly NSAID use	0.53	0.45 - 0.63		
≥ weekly NSAID use	0.47	0.31 - 0.71	<0.001	

* Adjusted for age at which index colonoscopy was performed, sex, history of colonic polyps, polypectomy at index colonoscopy, smoking status, alcohol consumption, other comorbidities (diabetes mellitus, hypertension, dyslipidemia, atrial fibrillation, ischemic heart disease, congestive heart failure, stroke, chronic renal failure, cirrhosis, dementia, parkinsonism) and concurrent medications (aspirin, cyclooxygenase-2 inhibitors, statins), annual center endoscopy volume and center polypectomy rate

Abbreviations: NSAID, non-steroidal anti-inflammatory drug; HR, hazard ratio; 95% CI, 95% confidence interval

1 Table 5. Subgroup analysis of the association between NSAID use and post-colonoscopy

2 CRC-3y risk

١.
)

	aHR*	95% CI	
Age			
\geq 60 (n=97,162, PCCRC-3y=694)	0.48	0.35 - 0.66	
< 60 (n=90,735, PCCRC-3y=160)	0.83	0.49 - 1.48	
Sex			
Male (n=91,961, PCCRC-3y=513)	0.63	0.44 - 0.91	
Female (n=95,936, PCCRC-3y=341)	0.43	0.28 - 0.66	
Diabetes mellitus			
Yes (n=17,935, PCCRC-3y=89)	0.45	0.18 - 1.11	
No (n=169,962, PCCRC-3y=765)	0.55	0.41 - 0.73	
History of colonic polyps and/or polypectomy			
Yes (n=45,698, PCCRC-3y=326)	0.67	0.45 - 1.01	
No (n=142,199, PCCRC-3y=528)	0.46	0.32 - 0.67	

* Adjusted for age at which index colonoscopy was performed, sex, history of colonic polyps, polypectomy at index colonoscopy, smoking status, alcohol consumption, other comorbidities (diabetes mellitus, hypertension, dyslipidemia, atrial fibrillation, ischemic heart disease, congestive heart failure, stroke, chronic renal failure, cirrhosis, dementia, parkinsonism) and concurrent medications (aspirin, cyclooxygenase-2 inhibitors, statins), annual center endoscopy volume and center polypectomy rate

Abbreviations: NSAID, non-steroidal anti-inflammatory drug; HR, hazard ratio; 95% CI, 95% confidence interval

1 STROBE Statement—Checklist of items that should be included in reports of *cohort*

studies

	Item No	Recommendation
Title and abstract	1	 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found
Introduction		
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported
Objectives	3	State specific objectives, including any prespecified hypotheses
Methods		
Study design	4	Present key elements of study design early in the paper
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection
Participants	6	 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up (b) For matched studies, give matching criteria and number of exposed and unexposed
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group
Bias	9	Describe any efforts to address potential sources of bias
Study size	10	Explain how the study size was arrived at
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why
Statistical methods	12	 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions
		(c) Explain how missing data were addressed(d) If applicable, explain how loss to follow-up was addressed
		(<u>e</u>) Describe any sensitivity analyses
Results		
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram
Descriptive data	14*	 (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest

		(c) Summarise follow-up time (eg, average and total amount)
Outcome data	15*	Report numbers of outcome events or summary measures over time
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable,
		confounder-adjusted estimates and their precision (eg, 95%
		confidence interval). Make clear which confounders were
		adjusted for and why they were included
		(b) Report category boundaries when continuous variables
		were categorized
		(c) If relevant, consider translating estimates of relative risk
		into absolute risk for a meaningful time period
Other analyses	17	Report other analyses done—eg analyses of subgroups and
		interactions, and sensitivity analyses
Discussion		
Key results	18	Summarise key results with reference to study objectives
Limitations	19	Discuss limitations of the study, taking into account sources
		of potential bias or imprecision. Discuss both direction and
		magnitude of any potential bias
Interpretation	20	Give a cautious overall interpretation of results considering
		objectives, limitations, multiplicity of analyses, results from
		similar studies, and other relevant evidence
Generalisability	21	Discuss the generalisability (external validity) of the study
		results
Other information		
Funding	22	Give the source of funding and the role of the funders for the
		present study and, if applicable, for the original study on
		which the present article is based

2 *Give information separately for exposed and unexposed groups.

4 Note: An Explanation and Elaboration article discusses each checklist item and gives methodological

background and published examples of transparent reporting. The STROBE checklist is best used in

6 conjunction with this article (freely available on the Web sites of PLoS Medicine at

7 http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and

8 Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at

9 http://www.strobe-statement.org.

Covariates				
Lifestyle factors				
Smoking*	491, 492, 496, V15.82			
Alcohol*	291, 303, 305.0, 571.0, 571.1, 571.2, 571.3, 980.8, 980.9			
Cardiovascular and metaboli	c risk factors			
Obesity	278.0, 278.1			
Diabetes mellitus	249, 250			
Hypertension	401-405			
Dyslipidemia	272.0-272.4			
Cardiovascular diseases				
Ischemic heart disease	410-413, 414.0, 414.8, 414.9, 429.7			
Atrial fibrillation	427.3			
Congestive heart failure	402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 428			
Stroke	430-432, 433.01, 433.11, 433.21, 433.31, 433.81, 433.91, 434.01, 434.11, 434.91, 436, 437.0, 437.1			
Renal and liver diseases	•			
Chronic renal failure	585			
Cirrhosis	571.2, 571.5, 571.6, 572.2-572.4, 573.5			
Neurological diseases	·			
Parkinsonism	332			
Dementia	290, 291.2, 292.82, 294.1-294.2			
Gastrointestinal diseases	•			
Inflammatory bowel disease	555, 556			
Colectomy	45.8, 45.81, 45.82, 45.83, V45.89			
* Smoking was identified by the ICD-9 code of V15.82 and by the proxy of chronic obstructive pulmonary disease. Heavy alcohol consumption was inferred from the presence of alcohol-related disorders, including hepatic, gastrointestinal, neurological and psychiatric diseases.				

eTable 1. ICD-9 codes for covariates

			re PS Matching		After PS Matching *		
	All (n=187,897)	NSAID (n=21,757)	Non- NSAID	ASD [#]	NSAID (n=21,650)	Non- NSAID	ASD [#]
Age at	62.1	62.8	(n=166,140) 62.0	0.063	62.8	(n=43,156) 62.8	< 0.001
index	+/- 12.3	+/- 11.5	+/- 12.4		+/- 11.5	+/- 12.5	
colonoscopy	.,	.,	.,		.,	.,	
(years)*							
Male sex	91961	8503	83458	0.229	8473	16872	0.002
(n, %)	(48.9%)	(39.1%)	(50.2%)	0.22)	(39.1%)	(39.1%)	0.002
History of	39066	4345	34721	0.023	4324	8598	0.001
colonic	(20.8%)	(20.0%)	(20.9%)	0.025	(20.0%)	(19.9%)	0.001
	(20.8%)	(20.0%)	(20.970)				
polyps							
(n, %)	20724	2202	25521	<0.001	2104	65 00	<0.001
Polypectom	28724	3203	25521	< 0.001	3184 (14.7%)	6599 (15.3%)	< 0.00
y at index	(15.3%)	(14.7%)	(15.4%)				
colonoscopy							
(n, %)	2074	201	2.492	0.022	200	514	0.011
Smoking	3874	391	3483	0.023	390 (1.8%)	714 (1.7%)	0.011
(n, %)	(2.1%)	(1.8%)	(2.1%)				
Alcohol	1065	118	947	0.004	117 (0.5%)	249 (0.6%)	0.005
(n, %)	(0.6%)	(0.5%)	(0.6%)				
Obesity(n,	774	182	592	0.053	178 (0.8%)	301 (0.7%)	0.011
%)	(0.4%)	(0.8%)	(0.4%)				
DM (n, %)	17935	2388	15547	0.052	2375 (11.0%)	4705 (10.9%)	0.002
	(9.5%)	(11.0%)	(9.4%)		(11.070)	(10.770)	
Hypertensio	28982	4302	24680	0.124	4274	8484 (10.7%)	0.001
n (n, %)	(15.4%)	(19.8%)	(14.9%)		(19.7%)	(19.7%)	
Dyslipidemi	9557	1462	8095	0.074	1452	2786	0.010
a (n, %)	(5.1%)	(6.7%)	(4.9%)		(6.7%)	(6.5%)	
AF (n, %)	5673	567	5106	0.029	562	1143 (2.6%)	0.003
	(3.0%)	(2.6%)	(3.1%)		(2.6%)		
IHD (n, %)	13266	1770	11496	0.045	1761	3473	0.003
	(7.1%)	(8.1%)	(6.9%)		(8.1%)	(8.0%)	
CHF (n, %)	6302	777	5525	0.013	774	1574	0.004
	(3.4%)	(3.6%)	(3.3%)		(3.6%)	(3.6%)	
Stroke	7638	878	6760	0.002	876	1756	0.001
(n, %)	(4.1%)	(4.0%)	(4.1%)		(4.0%)	(4.1%)	
CRF (n, %)	3924	357	3567	0.040	357	759	0.009
	(2.1%)	(1.6%)	(2.1%)		(1.6%)	(1.8%)	
Cirrhosis	1250	96	1154	0.038	93	213	0.009
(n, %)	(0.7%)	(0.4%)	(0.7%)		(0.4%)	(0.5%)	
Dementia	1258	124	1134	0.015	124	246	< 0.00
(n, %)	(0.7%)	(0.6%)	(0.7%)		(0.6%)	(0.6%)	

eTable 2. Baseline characteristics of study cohort before and after propensity score matching	

Parkinsonis	779	94	685	0.003	94	180	0.002
m (n, %)	(0.4%)	(0.4%)	(0.4%)		(0.4%)	(0.4%)	
Aspirin	28569	3866	24703	0.076	3845	7584	0.005
(n, %)	(15.2%)	(17.8%)	(14.9%)		(17.8%)	(17.6%)	
COX-2	378	237	141	0.097	134	137	< 0.001
inhibitors	(0.2%)	(1.1%)	(0.1%)		(0.6%)	(0.3%)	
(n, %)							
Statins	25447	3786	21661	0.115	3754	7505	0.002
(n,%)	(13.5%)	(17.4%)	(13.0%)		(17.3%)	(17.5%)	
Center	2683	2735	2676	0.060	2739	2726	0.002
endoscopy	+/- 953	+/- 975	+/- 950		+/- 949	+/- 928	
volume							
Center	24.9%	25.1%	24.9%	< 0.001	25.0	25.1	0.004
polypectom	+/- 4.5%	+/- 4.5%	+/- 4.5%		+/- 4.5%	+/- 4.4%	
y rate							

, -----

Continuous variables were expressed as mean (years) +/- 1 standard deviation

Categorical variables were expressed as number (%)

Drug use was defined as use for more than 90 days, and expressed as number (%)

Abbreviations: PS, propensity score; ASD, absolute standardised difference; DM, diabetes mellitus; IHD, ischemic heart disease; AF, atrial fibrillation; CHF, congestive heart failure; CRF, chronic renal failure; NSAIDs, non-steroidal anti-inflammatory drugs; COX-2, cyclooxygenase-2; n.a., not available

*). Non-NSAID users were matched to statin users on PS within a caliper width of 0.1. All variables were included in the model for PS estimation

[#] Variables with an ASD > 0.20 is considered to be imbalanced

	Number of cohort and post- colonoscopy CRC	Adjusted HR*	95% CI
Post-colonoscopy			
CRC-3y			
NSAID non-use	n=107,229	Ref	-
	post-colonoscopy CRC-3y=620		
Current NSAID use	n=24,604	0.55	0.43 - 0.71
	post-colonoscopy CRC-3y=67		
Past NSAID use	n=56,064	0.58	0.49 – 0.69
	post-colonoscopy CRC-3y=167		
Post-colonoscopy			
CRC-all			
NSAID non-use	n=107,229	Ref	_
	post-colonoscopy CRC-all=909		
Current NSAID use	n=24,604	0.61	0.50 - 0.74
	post-colonoscopy CRC-all=109		
Past NSAID use	n=56,064	0.65	0.57 - 0.74
	post-colonoscopy CRC-all=272		
Post-colonoscopy			
CRC>3y			
NSAID non-use	n=107,229	Ref	-
	post-colonoscopy CRC-all=289		
Current NSAID use	n=24,604	0.74	0.53 - 1.02
	post-colonoscopy CRC-all=42		
Past NSAID use	n=56,064	0.80	0.64 - 0.99
	post-colonoscopy CRC-all=105		

eTable 3. Effects of current NSAID use, past NSAID use and NSAID-non use on risk of post-
colonoscopy CRC

* Adjusted for age at which index colonoscopy was performed, sex, history of colonic polyps, polypectomy at index colonoscopy, smoking status, alcohol consumption, other comorbidities (diabetes mellitus, hypertension, dyslipidemia, atrial fibrillation, ischemic heart disease, congestive heart failure, stroke, chronic renal failure, cirrhosis, dementia, parkinsonism) and concurrent medications (aspirin, cyclooxygenase-2 inhibitors, statins), annual center endoscopy volume and center polypectomy rate Abbreviations: NSAID, non-steroidal anti-inflammatory drug; HR, hazard ratio; 95% CI, 95%

Abbreviations: NSAID, non-steroidal anti-inflammatory drug; HR, hazard ratio; 95% CI, 95% confidence interval

	Number of cohort and post- colonoscopy CRC	Adjusted HR*	95% CI
Post-colonoscopy	.		
CRC-3y			
NSAID non-use	n=181,738	Ref	-
	post-colonoscopy CRC-3y=843		
NSAID use	n=6,159	0.50	0.28 - 0.91
	post-colonoscopy CRC-3y=11		
Post-colonoscopy			
CRC-all			
NSAID non-use	n=174,127	Ref	-
	post-colonoscopy CRC-all=1260		
NSAID use	n=13,770	0.40	0.28 - 0.58
	post-colonoscopy CRC-all=30		
Post-colonoscopy			
CRC>3y			
NSAID non-use	n=173,284	Ref	-
	post-colonoscopy CRC-all=417		
NSAID use	n=13,759	0.64	0.40 - 1.01
	post-colonoscopy CRC-all=19		
polypectomy at inde (diabetes mellitus, h heart failure, stroke, medications (aspirin center polypectomy	t which index colonoscopy was performe ex colonoscopy, smoking status, alcohol c ypertension, dyslipidemia, atrial fibrillati chronic renal failure, cirrhosis, dementia , cyclooxygenase-2 inhibitors, statins), ar rate JD, non-steroidal anti-inflammatory drug	consumption, other c on, ischemic heart d , parkinsonism) and nnual center endosco	omorbidities isease, congestiv concurrent opy volume and