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Abstract
Risk modellers in the insurance industry use catastrophe models to estimate the dis-

tribution of possible damage from natural catastrophes. The output from catastro-

phe models is often adjusted to create alternative risk scenarios. These adjustments

are made for many reasons, such as to reflect different scientific hypotheses, differ-

ent interpretations of historical data or different scenarios related to climate vari-

ability and climate change. Models that present the output in a list of simulated

synthetic events with their associated damage (so-called event loss tables) can be

adjusted rather easily, since information about desired adjustments is typically

expressed in terms of changes in the properties of events. Models that present the

output in a list of simulated synthetic years (so-called year loss tables) are harder to

adjust, however, because the occurrences of the events are hard-wired into the sim-

ulated years. A method is described that allows the adjustment of the results in a

year loss table by the application of weights to the years. The weights are calcu-

lated in such a way as to capture the specified changes in properties of the underly-

ing events. The method is demonstrated by applying it to output from a catastrophe

model and using it to quantify the changes in US hurricane wind damage due to

shifts between long-term average, active and inactive levels of hurricane activity. It

is shown that the method works well by comparing the results with more accurate

results derived directly from the underlying event loss table.
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1 | INTRODUCTION

Catastrophe (cat) models are complex computer models that
are used in both private and public sectors to estimate the
distribution of possible damage (hereafter known as loss)
that might be caused by future natural disasters. According

to the review by Friedman (1972), the first such models were
developed in the 1960s by the US insurance company Trav-
elers to quantify the amounts of money that the company
might have to pay out due to hurricanes, earthquakes, floods
and other perils. The models Friedman describes used
ensembles of statistically simulated synthetic natural
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disasters. Simulated values of a particular hazard, such as
wind speeds of hurricanes, were combined with datasets of
the properties of insured buildings (known as exposure) and
estimates of how those buildings might be damaged by the
hazard (known as vulnerability) to create estimates of both
regional and total loss. Cat models are now used throughout
the insurance industry for pricing of insurance and reinsur-
ance, as well as allocation of capital and calculations related
to solvency. Today's cat models, described in textbooks such
as Dong (2001), Mitchell-Wallace et al. (2017) or Michel
(2018), follow a similar design to those described by
Friedman (1972), albeit with higher resolution, more realis-
tic simulations and larger ensembles.

Two particular variations of model design have emerged
and both are commonly used in today's insurance industry.
They differ in terms of how they calculate and present
results: event loss table (ELT) models calculate and report
losses by simulated event, and year loss table (YLT) models
calculate and report losses by simulated year.

1.1 | ELT catastrophe models

An ELT model for a given peril (such hurricane winds or
earthquake) creates output that consists of a set, or ensemble,
of simulated synthetic catastrophic events, with information
about the estimated frequency and loss of each event in the
set. These event sets may contain somewhere from 10,000 to
1,000,000 events for each peril and region combination, in
an attempt to simulate all possible significant events within
some notional level of tolerance. In a commonly used ver-
sion of the ELT design, the events are considered indepen-
dent with frequencies that are Poisson distributed, with each
event having its own Poisson frequency for occurrence rates
per year. The event losses are given by either a single fixed
value for each event or a probability density function (PDF)
for the conditional loss given the occurrence of that event,
known as the distribution of secondary uncertainty. The dis-
tribution of secondary uncertainty is different for different
events: intense events hitting highly populated regions create
a large loss, and weak events hitting thinly populated regions
create a small loss. The secondary uncertainty introduces
some variability around those losses. Only these kinds of
Poisson ELTs are considered in the present study. However,
it is worth noting that ELTs can be extended to support other
frequency distributions such as the negative binomial (moti-
vated by the work on winter storm clustering by, for exam-
ple, Brady (2000), Mailier et al. (2006) and Cusack (2016),
and the work on hurricane clustering by, for example, Jagger
and Elsner (2012)) and certain limited types of dependences
between events, as described by Khare et al. (2015).

The events in an ELT are typically created using complex
statistical or dynamical models that simulate large numbers

of synthetic events with as much physical realism as possi-
ble. These simulations may take months or years to create.
The output from these simulations consists of maps of
hazard values (such as wind speed) for each event, and the
hazard events and vulnerability data are then stored in a
database and distributed to the users of the cat model. The
users calculate losses for their own portfolios of exposures
in a run-time calculation that combines hazard, vulnerability
and exposure and that may take a few hours or days on a
computing cluster running cat modelling software. The out-
put is a table of events with losses that can be used to derive
standard summary statistics such as the average annual loss
(AAL) (i.e. the expected annual damage) and the aggregate
exceedance probability (AEP) (i.e. the probability that the
total annual damage exceeds a certain level). AEP curves are
presented either in terms of annual probabilities or in terms
of annual return periods, defined as 1 divided by the annual
probability.

There are two main benefits to using ELT-based models.
First, the summary statistics listed above, and certain other
summary statistics, can be calculated very precisely given
the event set. Second, adjustments can be made to the out-
put, after losses have been calculated, by adjusting either the
Poisson frequencies or the individual distributions of sec-
ondary uncertainty, event by event, and recalculating the
summary statistics. This second benefit is significant
because calculating losses from cat models can be computa-
tionally expensive, particularly for large portfolios of expo-
sure, and if adjustments to model results can be made
without having to go back to calculating event losses from
the hazard, vulnerability and exposure that is more efficient.
These benefits are counterbalanced by the disadvantage that
the ELT structure does not allow for the inclusion of arbi-
trarily complicated temporal dependence among cat events.
Although Khare et al. (2015) were able to introduce some
simple temporal dependence into the ELT framework, more
complex temporal dependences between events such as the
influence of one flood event on the next (Villarini et al.,
2013), or the influence of the level of repair from one event
on the level of damage of the next event, cannot typically be
reproduced.

1.2 | YLT catastrophe models

The YLT approach is a more general approach that over-
comes the limitations of the ELT structure by simulating
large sets, or ensembles, of coherent years, rather than sets,
or ensembles, of separate events. YLT ensembles may have
between 10,000 and 1,000,000 members. Any simulation
methodology can be used to create the sequence of hazard in
each simulated year, and any temporal dependences can in
principle be accommodated. In practice, however, most YLT
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approaches still assume the existence of discrete events, and
in such cases a YLT consists of a list of years, a list of
events that occur within each year and a single realization of
loss for each event. Only these kinds of event-based YLTs
are considered in the present study.

Although the YLT approach is ultimately more general
than the ELT approach, and hence preferable in many com-
plex applications of cat models, it has two potential short-
comings. The first is that summary statistics are now
calculated from simulated years and so are subject to an
additional source of simulation error relative to the ELT
approach. For large portfolios of exposure (e.g. a set of 1 mil-
lion or more buildings) and loss results at relatively high
levels of probability (i.e. short return periods), such as a
probability of 1 in 10 years, this additional simulation error
is typically small. For individual buildings or for loss results
at relatively low levels of probability (i.e. long return
periods), such as a probability of 1 in 200 years, this addi-
tional simulation error can be large, and further simulations
may be required to achieve adequately stable and converged
results (see Kaczmarska et al. (2018) for a detailed study of
these convergence issues in the context of a cat model for
European flooding).

The second shortcoming of the YLT approach is that
making adjustments to a YLT is more complex than it is for
an ELT. This is for two main reasons. The first is that many
potential adjustments are expressed in terms of the user's
expectations about frequencies and losses (or changes in fre-
quencies and losses) of types of events, rather than in terms
of information about types of years that might occur. Exam-
ples of event-based information that might motivate adjust-
ments include changes in rates due to (a) climate change and
its impacts, e.g. changes in the clustering of tornado fre-
quency (Elsner et al., 2014), (b) long-term climate variabil-
ity, such as the Atlantic multidecadal oscillation forcing
changes in hurricane numbers (Goldenberg et al., 2001) or
Europe winter storm frequency (Peings and Magnusdottir,
2014), and (c) predictable interannual variability, such as for
US tornadoes and hail (Allen et al., 2015) and European
winter storms (Wang et al., 2017). Such event-based infor-
mation can be applied readily to an ELT, since results for
each event are presented separately, but is harder to apply to
a YLT in which events are hard-wired into simulated years.
The methods described below solve this issue by converting
event-based statements like ‘there will be x% more flood
events’ into year-based statements like ‘years with flooding
will become y% more likely’. It is possible to apply event-
based adjustments to a YLT by resimulating the YLT based
on the updated information about the frequencies and losses
of events. However, if the YLT simulation process is itself
very complex this may not be practical. For example, the
flood model described by Kaczmarska et al. (2018) and

Zanardo et al. (2019) simulates the years of the YLT using
the output of continuous temporal simulations of the shallow
water equations. This requires months of computation time
and cannot be easily repeated. The second reason that
adjusting YLTs directly is complex is that YLTs only con-
tain hazard information via the events they contain. For
instance, to adjust sea level (which is a property of a year,
not of any particular event) in a YLT model for storm surge
risk, one would still have to consider the sea level in each of
the events in each year in that model.

1.3 | YLT weighting

In the present study, the difficulty of adjusting YLTs is
addressed by presenting an algorithm for using event-based
information to adjust YLTs without having to resimulate the
years that make up the YLT. The method works by applying
weights to the years in the YLT. The weights are calculated
using a version of the statistical method of importance sam-
pling in order to adjust the frequencies and losses of events
within the simulated years in the desired way. The result is a
weighted YLT, or WYLT.

The use of weights in a YLT, however, can be problem-
atic. For instance, whereas unweighted YLTs (UYLTs) from
independent perils can easily be combined to create esti-
mates of total losses due to all perils by adding them
together year by year, WYLTs are more difficult to combine.
To address this a second stage of the algorithm is described
which consists of a method for approximating the output
WYLT with a new UYLT, which is referred to as the
output UYLT.

1.4 | Testing YLT weighting

The YLT adjustment method is tested on a YLT from a hur-
ricane loss model. The model is a commercial system,
widely used in the insurance industry, which produces both
ELT and YLT output, where the YLT is generated from the
ELT using statistical simulation. The commercial product
has a number of settings and outputs. The initial output used
here consists of an ELT and a YLT that capture a baseline
view of hurricane risk for industry exposure, in which the
annual rates of hurricane occurrence are determined from
long-term averages using data from 1900 to 2017. These
results are referred to as the ‘long-term rates’ (LTR) view of
risk. In the last 70 years, however, hurricane activity has
fluctuated between active and inactive phases, with fewer
hurricanes observed during the period 1970–1995 than either
before or after that period (Goldenberg et al., 2001). The
causes of these fluctuations have been much debated, but
without scientific consensus as to what they reveal about
hurricane activity now or in the future. For instance Kim
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et al. (2018) and Booth et al. (2012) present arguments for
different possible mechanisms that could be driving these
fluctuations, which would in turn suggest different methods
of making predictions. Given this uncertainty, and the
importance of understanding future hurricane risk for the
insurance industry, various methods have been developed by
the industry for making predictions of hurricane risk based
on different possible future scenarios (Jewson et al., 2008).
These methods have been tested and shown to improve pre-
dictions of hurricane landfall rates and loss in hindcasts
(Bonazzi et al., 2014). A simple version of the logic used to
make scenarios would be that, if the inactive phase is consid-
ered unlikely to return, then future risk would be better esti-
mated using a scenario developed by eliminating inactive
years from the statistics. However, if the inactive phase is
considered likely to return, then future risk would be better
estimated using a scenario in which those years are included
in the analysis. Losses calculated from two scenarios
(described in more detail below) designed to capture these
possible variations in hurricane activity will be called the
active and inactive views of risk, and are designed to be rea-
sonable bounds for the range of hurricane losses in the near
future (i.e. in the next few years).

As a straightforward test of the impact of different possi-
ble hurricane activity scenarios, the LTR view of risk as cal-
culated from the YLT output from the cat model is adjusted
using the YLT adjustment method that is presented here to
create the active and inactive views of risk. This example,
however, is unusual in that the losses in the active and inac-
tive scenarios can also be calculated using a more accurate
calculation. Because the LTR YLT to which the adjustment
is applied is itself generated from an underlying Poisson
ELT (which is not always the case for other loss models,
either for hurricane or for other perils), the losses for the
active and inactive views of risk can also be calculated by
adjusting the ELT directly and recalculating summary statis-
tics without simulation of years. The changes calculated in
this way from active and inactive ELTs will be more accu-
rate since they avoid convergence errors due to annual simu-
lation that arise when using YLTs. In fact, in this particular
case, using ELTs would be the preferable way to calculate
the changes in losses for the active and inactive scenarios.
For our current purposes, however, being able to calculate
the results both ways (from adjusted ELTs and from adjusted
YLTs) provides a useful opportunity to test the accuracy of
the YLT adjustment method.

In more general settings in which YLTs are not generated
from underlying ELTs this method for testing the YLT
adjustment method is not available. This is typically the case
for any cat model that attempts to move beyond a simple sta-
tistical representation of the frequency of events and instead
uses physically based simulations to capture frequencies. Of

the various perils represented by cat models, physically
based simulations of frequency are currently most com-
monly used in flood cat modelling, although one might ima-
gine that ultimately all weather-related cat models would be
created this way. In these flood models, events are derived
from the output of continuous simulations of differential
equations, and are locked into place in their simulated years
in order to preserve the overall character and properties of
that year (e.g. see the European flood model described by
Kaczmarska et al. (2018) and Zanardo et al. (2019)). For
these models the YLT adjustment method is a way to adjust
the model while still conserving the properties of the indi-
vidual simulation years.

Figure 1 illustrates the YLT adjustment method, and the
relationships between the ELTs and YLTs used in this paper
to evaluate the YLT adjustment method. In Section 2 the cat
model and the YLT adjustment methodology are described
in more detail, and results based on the LTR, active and
inactive views of risk, all based on ELTs, are presented.
These results are the benchmarks against which the results
of the YLT adjustment method are validated. In Section 3
basic US nationwide results from the YLT adjustment
method are shown and compared with the benchmarks. In
Section 4 further results are presented, looking at
(a) changes in regional modelled losses, which are a tougher
test of the method, and (b) the impact of using different
underlying YLT simulation sets. In Section 5 the method
and results are summarized.

FIGURE 1 The relationships between the datasets used in this
paper. The left column illustrates the year loss table (YLT) adjustment
method being presented and tested in this study, which converts a YLT
for the long-term rates (LTR) view of risk into weighted YLTs
(WYLTs ) for the active and inactive views of risk, and then converts
those into unweighted YLTs ( UYLTs) for the active and inactive
views of risk. The right column illustrates the testing performed. The
adjustment method is tested by starting with an event loss table (ELT)
for the LTR view of risk and uses that to create the LTR YLT. The
LTR ELT is also used to create ELTs for the active and inactive views
of risk, and YLTs for the active and inactive views of risk directly from
those ELTs. The results from steps 1, 2 and 3 in the diagram are
evaluated by comparing with results from 4, 5 and 6
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2 | CATASTROPHE MODEL AND
REWEIGHTING METHODOLOGY

2.1 | Hurricane catastrophe model

The cat model used in this study is a commercial model pro-
duced by Risk Management Solutions Ltd for estimating
wind damage in the mainland United States due to hurri-
canes. It is one of a number of such models that are used in
the insurance industry. Its structure follows a fairly standard
template for the construction of such models, as described
in, for example, Friedman (1972), Michel (2018) or
Mitchell-Wallace et al. (2017). The hurricane wind hazard is
simulated from several components, including models that
simulate locations of hurricane genesis, tracks, intensities
and wind fields. The hazard model contains 29,693 events.
Exposure is represented in a database that captures building
locations, values and attributes, and the vulnerability of dif-
ferent building types is based largely on empirical damage
data from previous hurricanes. Various aspects and versions
of the model have been published in academic journals, such
as the basic formulation of hurricane track modelling (Hall
and Jewson, 2007), aspects of the wind field model (Khare
et al., 2009) and dynamical-modelling-derived components
for hurricane landfall (Colette et al., 2010) and hurricane
transitioning (Loridan et al., 2015). Successive versions of
the model have been peer-reviewed (annually or biannually
from 1996 to the present) by scientists employed by the
Florida government as part of the Florida Commission on
Hurricane Loss Projection Methodology, and many details
of the model are published as part of that process (see www.
sbafla.com).

In the present study generic exposures that capture the
entire US residential building stock, known as a residential
industry exposure database, are used throughout. Since out-
put from the model is in dollars, which quickly become rela-
tively meaningless because of inflation and other changes in
the values of exposures, all results are normalized so that the
nationwide AAL for the LTR view of risk calculated from
the ELT is 100.

2.1.1 | LTR, active and inactive views of risk

The LTR view of risk in the model is based on the average
number of US landfalling hurricanes per year during the
period 1900–2017, which gives 3.89 hurricanes per year
(where the definition of landfalling includes storms which
cause damage over land but for which the eye does not make
landfall). The active and inactive views of risk can be con-
sidered as predictions for how many hurricanes might make
landfall per year, over the next 5 years, under active and
inactive climate scenarios. The predictions are based on the
methods described by Jewson et al. (2008) and Bonazzi

et al. (2014). These methods do not simply average the num-
ber of landfalling hurricanes during the active and inactive
periods, since landfalling hurricane numbers are strongly
affected by the ‘noise’ of weather variability, which makes
signals of climate variability hard to detect. Instead, in an
attempt to make more accurate predictions, they take into
account a number of factors that are considered relevant for
estimating US hurricane landfall rates including sea surface
temperatures in the Indian, Pacific and Atlantic oceans, the
relationships between these sea surface temperatures and
Atlantic basin hurricane numbers (Emanuel, 2005) and esti-
mates of the proportion of Atlantic basin storms that make
landfall (Coughlin et al., 2009). After taking these factors
into account the predictions result in different changes in the
rates of storms by strength and by region, and this leads to
changes in the rates of every storm in the event set. The
active view contains 4.16 hurricanes per year (an increase of
7% relative to the LTR view) and the inactive view contains
3.49 hurricanes per year (a decrease of 10% relative to the
LTR view).

2.1.2 | ELT outputs

The cat model produces ELT output for all three views of
risk (LTR, active and inactive), consisting of frequency and
loss for each event. For each of these three ELTs, the AAL
is calculated as the weighted average of the expected loss
from each event, where the weights are the Poisson rates.
The normalized AAL values are 100 for the LTR view of
risk (by definition), 121.3 for the active view of risk and
82.7 for the inactive view of risk. The changes in loss are
larger than the changes in the number of hurricanes because
loss is disproportionately caused by the major hurricanes,
which vary more between the three scenarios than the over-
all number of hurricanes. The AEPs are calculated from each
ELT using the mathematical result that the Fourier transform
of a sum of independent random variables is the product of
the Fourier transforms of the individual random variables
(see for example Wang, 1998): the individual random vari-
ables are the losses for each event in a particular year, and
their sum is the annual loss. The differences between the
AEP curves for the three views of risk, calculated from the
respective ELTs, are shown in Figure 2a. The vertical zero
line corresponds to the LTR view of risk, the right curve to
the active view of risk, and the left curve to the inactive view
of risk.

These AAL and AEP values derived from ELTs are not
subject to simulation error due to annual simulation
(although they are subject to various other sources of simula-
tion error, such as errors in the simulation of the events
themselves) and are used as synthetic ‘truth’, or exact
values, in the comparisons below. The AAL values and the
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AEP curves show that, not surprisingly, the losses are higher
during periods of higher hurricane activity and lower during
periods of lower hurricane activity.

2.1.3 | YLT outputs

YLT output from the cat model is also generated for all three
views of risk from the corresponding ELT in the following
two-step process. In the first step, 800,000 years of simula-
tion are generated by sampling from the Poisson distribution
for the occurrence of each event and from the distribution of
secondary uncertainty for the loss of each event. 800,000 is
a sufficiently large number of years that the mean numbers
of hurricanes per year in these YLTs match very closely
with the expected numbers of hurricanes implied by the
underlying ELT (3.89, 4.16 and 3.49 hurricanes per year, as
described in Section 2.1.1. above). Different occurrences of
the same event within the 800,000 years are given different
samples of secondary uncertainty. Since all events occur
multiple times within the 800,000 years (for instance, in the
LTR YLT events occur on average 105 times each) the dis-
tribution of secondary uncertainty for each event is well
sampled. The second step then seeks to reduce the size of
the simulation set while still preserving the loss statistics rea-
sonably well. This is achieved by ranking by loss the

800,000 simulated years generated in the first step and
selecting 50,000 years from the 800,000 at equal intervals in
the ranking. This reduced set of 50,000 years of simulation
gives similar results to the 800,000 year set and gives a more
accurate estimate of the AEP than using unreduced simula-
tions to generate 50,000 years directly. This works because
the 800,000 year sets contain many near duplicates of years,
with similar numbers of hurricanes causing similar losses.
The number of near duplicates is reduced in the
50,000 year sets.

The AAL and AEP curves derived from the reduced set
of 50,000 years differ slightly from the values generated
directly from the ELT, because of annual simulation error.
This variability is quantified below by creating multiple ran-
dom versions of each type of YLT, based on different ran-
dom versions of the underlying 800,000 year simulation. In
Section 4.2 the impact on the results of using other methods
for the creation of the YLT that use different numbers of
years of simulation and eliminate the reduction step is also
explored.

For each set of YLT output, the AAL from the model
is calculated as the average of the annual losses from each
simulated year, and the AEP is calculated as 1 minus the
empirical cumulative distribution function based on the sim-
ulated annual losses. The empirical cumulative distribution

(a) (b)

FIGURE 2 (a) Differences in annual US hurricane wind loss (aggregate exceedance probability, AEP), calculated using the Risk Management
Solutions model, and derived from event loss table (ELT) output from the model. The left vertical axis shows Exceedance Probability (EP) and the
right vertical axis shows Return Period (RP).Values are shown as changes relative to the losses calculated from hurricane rates derived from long-
term historical rates (the long-term rates [LTR] view of risk), which therefore correspond to the vertical zero line. The right curve (open circles)
shows the changes in losses due to hurricane rates derived from hurricane activity during active historical periods (the active view of risk) and the
left curve (open squares) shows the changes in losses due to hurricane rates derived from hurricane activity during inactive historical periods (the
inactive view of risk). (b) As in (a) but all based on a single realization of 50,000 years of simulation. The vertical zero line corresponds to the LTR
view of risk derived from this single simulation, and the right and left curves (open circles and squares) are approximations to the right and left
curves in (a) derived by applying the year loss table adjustment method described in the text. Comparison with (a) suggests that the adjustment
method is capturing the differences between the curves well, with some variability at long return periods

6 of 14 JEWSON ET AL.



function is calculated in the usual way by ranking the annual
losses and assigning equally spaced cumulative probabilities
to each.

2.2 | Reweighting scheme stage 1: from YLT
to WYLT

Figure 2a shows the difference between the losses for the
LTR view of risk and the losses for the active and inactive
views of risk, with all calculations based on the corresponding
ELTs. The goal of the present study is to attempt to replicate
the active and inactive results by starting from a simulated
YLT for the LTR view of risk and applying the YLT adjust-
ment method. If by doing so it can be demonstrated that the
results from the YLT adjustment method are reasonably accu-
rate in capturing the impacts of rate changes, then in other
cases where an ELT is not available (such as most flood cat
models: see the discussion in Section 1.4 above) one could
apply the adjustment method with relative confidence.

The YLT adjustment method works as follows. In a stan-
dard YLT, the ensemble members (the individual years of
simulation) have equal weighting (equal to 1 over the
ensemble size): this is an UYLT. A generalization of UYLTs
is to weight the ensemble members differently, with weights
that sum to 1: this is a WYLT.

The addition of weights can be used to adjust the results
of an UYLT. To give a simple example, by increasing the
weights on years that contain large losses and decreasing
the weights on years that contain small losses (such that the
weights still sum to 1), the distribution of loss results will
be shifted towards larger losses. Weighting the years in an
UYLT based on event-level information, however, is not
straightforward, because individual years may contain
some events for which the frequency needs to increase and
some events for which the frequency needs to decrease.
The first stage of the YLT adjustment method is an algo-
rithm that determines yearly weights that adjust the fre-
quencies of all events as desired, while accounting for the
possible occurrence of events of different types within each
year. The algorithm is based on the statistical method of
importance sampling, which is a method that allows sam-
ples from one distribution to be used as samples from a dif-
ferent distribution. Given samples from a PDF or
probability mass function (PMF) g(x) (referred to as the
proposal distribution), then importance sampling allows the
creation of weighted samples from a different PDF or PMF
f(x) (referred to as the target distribution) by weighting each
of the samples from g(x) using a weight f(x)/g(x). This
method is discussed in detail in many places in the statistics
literature such as Todkar and Kass (2010) and Wasserman
(2003). Intuitively, the method works because it puts
weights greater than 1 on values of x which are more likely

in the target distribution f than in the proposal distribution
g, and weights of less than 1 on values of x which are less
likely in f than g.

In our case, the random variable x describes a year of
hurricane activity by listing how many times each event
from the event set occurs in that year. The proposal distribu-
tion is the PDF or PMF for the LTR version of the model,
while the target distribution is the PDF or PMF for either the
active version or the inactive version. The weights f(x)/g(x)
are calculated for each year in the YLT simulation and are
then applied to the YLT to create WYLTs that approximate
the distribution of hurricane properties, and hence loss, for
the active and inactive views from the model.

The details of the method for calculating the probabilities
g and f for the proposal and target distributions work as fol-
lows. Since the changes being specified between the LTR
and active/inactive views are changes in frequencies of
events, the probabilities can be calculated using the fre-
quency component of the statistical model given by the
ELT, which specifies a Poisson distribution for the occur-
rence of each event. Since the Poisson distribution takes
only discrete values for the random variable, it uses a PMF
rather than a PDF. The PMF value of a year in the YLT can
be calculated as the product of the PMF values of the occur-
rence of each event in the event set, using the Poisson PMF.

To illustrate how this would work in a simple case, ima-
gine an event set with just three hurricanes, A, B and C, and
that year 1 in the LTR YLT contains just a single occurrence
of hurricane A, year 2 contains just a single occurrence of hur-
ricane B and year 3 contains single occurrences of both hurri-
canes A and B. The weight on year 1 would be based on the
product of the target distribution probabilities of hurricane A
occurring and hurricanes B and C not occurring, divided by
the product of the proposal distribution probabilities of hurri-
cane A occurring and hurricanes B and C not occurring. Simi-
larly, the weight on year 2 would be based on the ratio of
probabilities for hurricane B occurring and hurricanes A and C
not occurring, while the weight on year 3 would be based on
the ratio of probabilities for hurricanes A and B both occurring
and hurricane C not occurring. Over many years of simulation
this leads to convergence onto the target distribution for the
rates of occurrence of each of the hurricanes A, B and C.

In fact there are 29,693 events in the ELT and so the cal-
culation of the PMF for each individual year involves the
product of 29,693 Poisson PMF values. For the proposal dis-
tribution this gives a probability mass gi for year i of:

gi =
YN

j=1
Poisson nij;λj

� �

=
YN

j=1

e−λjλjnij

nij!
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where the index j runs over all N events in the model (where
N = 29,693),Poisson(a; b) indicates the PMF of the Poisson
distribution for random variable a and parameter b, nij is the
number of occurrences of hurricane j in year i of the LTR
YLT, and λj is the Poisson parameter for hurricane j in the
proposal distribution (the LTR model). Similarly for the tar-
get distribution, the PMF fi for year i is given by:

f i =
YN

j=1
Poisson nij;μj

� �

=
YN

j=1

e−μjμj
nij

nij!

The only difference between the expressions for the pro-
posal and target distributions is the Poisson rate, where μj is
now the Poisson parameter for hurricane j in the target distri-
bution (which in our example comes from either the active
or inactive scenarios).

The ratio of these probability masses for year i gives the
weight for year i as:

wi =
f i
gi

=

QN
j=1e

−μjμj
nij

QN
j=1e

−λjλjnij

=
YN

j=1

e−μjμj
nij

e−λjλjnij

The numerical values are very small, and everything is
calculated using logs to avoid underflow.

2.3 | Reweighting scheme: From WYLT to
adjusted UYLT

The second stage of the YLT adjustment method is an algo-
rithm that approximates the output WYLT produced in the
first stage with a new unweighted YLT that is called the out-
put UYLT. There are various ways this could be done. Per-
haps the simplest way would be to sample years randomly
from the WYLT, taking the weights into account in the sam-
pling. It was found, however, that this leads to poorer results
than other methods tested because it introduces considerable
randomness. To illustrate this problem, consider a member
in the WYLT with a weight of a 2.3/50,000. In a random
sampling scheme to create a 50,000 year UYLT from this
WYLT, this year would be expected to occur 2.3 times on
average over many repeats of 50,000 years. Since UYLTs
only allow an integer number of occurrences for each year,
the WYLT will be approximated most closely, for this year,
if it occurs exactly twice. However, in an individual

50,000 year sample created by random sampling it might
occur 0, 1, 2, 3, 4 or more times, depending on the random
sampling for that realization. If it occurs anything other than
twice, the simulated UYLT is losing information unnecessar-
ily relative to the WYLT. To reduce this randomness and
loss of information that occurs in random sampling schemes,
the WYLT is converted to an UYLT using a simple non-
random sampling scheme. The years in the WYLT are
ordered by the annual loss and used to create an empirical
cumulative distribution function. Fifty thousand regularly
spaced values are drawn from the interval from 0 to 1, and
the inverse of the empirical cumulative distribution function
is used to convert these values from probabilities into years.
Numerical comparisons of this method vs. random sampling
were performed, and this method was found to be more
accurate (not shown).

3 | RESULTS FOR US LOSSES FOR
ACTIVE AND INACTIVE VIEWS
OF RISK

Results from applying and testing the YLT adjustment
method described above are now presented. In this
section all results represent US nationwide losses. Regional
losses are discussed in Section 4.1. Figure 2b shows curves
that correspond to the curves in Figure 2a but are now based
on simulation and application of the adjustment method. The
vertical zero line represents the AEP for the LTR view, now
based on a single realization of the LTR YLT. The right
(left) curve in Figure 2b is the difference from this LTR
AEP for the active (inactive) view, generated from the out-
put UYLT created from the LTR simulation by applying the
YLT adjustment method. By comparing with Figure 2a it
can be seen that, qualitatively, the YLT adjustment method
is working: the differences in the AEP curves for the active
and inactive views based on 50,000 years of simulation
(Figure 2b) agree well with the differences generated from
the ELTs (Figure 2a).

A further 49 random realizations of the LTR YLT are
then created (each of 50,000 years, and each created from a
new 800,000 year simulation, but all based on the same
LTR ELT) to understand the level of variability in the results
due to annual simulation. This leads to 50 versions of the
LTR AEP curve, which are shown relative to the exact LTR
AEP as the narrow central envelope in Figure 3a. It can be
seen that the results based on different realizations show
some slight spread around the benchmark, because of vari-
ability due to the use of random simulations.

Each of the 50 LTR YLT realizations can then be
separately converted using the YLT adjustment method to
generate active and inactive output UYLTs and
corresponding AEP curves. The 50 resulting active and
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inactive AEP curves, their variability and how accurately
they replicate the benchmarks can be illustrated in various
ways. First, in Figure 3a, the 50 active and inactive AEP
curve changes are shown (as the right and left envelopes),
along with the benchmark active and inactive AEP
changes copied from Figure 2a (as the right and left bold

lines). It can be seen that there is some spread of losses
around the exact values, but that all the simulated curves
capture well the basic impact of shifting rates from LTR
to active or inactive.

Second, the changes from each of the 50 LTR AEP cur-
ves to each of the active and inactive AEP curves derived by

(a) (b)

FIGURE 3 In (a) the two darker lines (with circles and squares) are the same as in Figure 2a. The 50 fine lines around the vertical zero line
show changes in losses for the long-term rates (LTR) view of risk when generated from 50 realizations of 50,000 years of simulation, relative to the
exact LTR view of risk. The 50 fine lines around the right (left) dark line show changes in losses generated by applying the adjustment method
separately to each of the 50 central lines. One from each set was shown as the right and left lines in Figure 2b. In (b) the 50 fine lines on the right
(left) of zero show differences between corresponding pairs of fine lines in (a), and thus show 50 realizations of the size of change from the LTR
view of risk to the active (inactive) view of risk as estimated by the year loss table adjustment method. The solid lines show the same changes
derived from the benchmark results from Figure 2a, for comparison
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FIGURE 4 The mean and the standard deviation of the percentage errors due to the year loss table (YLT) adjustment method, corresponding
to the results shown in the previous figures. Errors are calculated by comparing the results from the adjustment method with exact results derived
from active and inactive versions of the event loss table
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applying the YLT adjustment method can be calculated.
These 50 changes are shown in Figure 3b, along with the
exact changes derived from the benchmarks (bold lines).
This figure shows more clearly that the changes calculated
via the adjustment method agree with the benchmark
changes, with some variability, although the variability is
significantly less than the changes themselves. The variabil-
ity around the adjusted results is largest at long return
periods.

From the changes shown in Figure 3b various diagnostics
can be derived to investigate the performance of the method
more quantitatively. First the mean and standard deviations
of the percentage errors in annual losses for each probability
level, which are referred to as the bias and the standard devi-
ation of the errors, are calculated. These are shown in
Figure 4. There is relatively little bias, and the standard devi-
ation increases with return period. In addition, the ratio of
the absolute value of the mean change to the standard devia-
tion can be calculated, which is referred to as the signal-to-
noise ratio and summarizes the performance of the method.
Figure 5 (dark lines) shows this signal-to-noise ratio: values
above 5 for all return periods up to 500 years show that, con-
sistent with Figure 3, the change is captured cleanly.

Corresponding results for the AAL are also shown.
Figure 6 shows the AALs of the 50 YLTs generated for the
LTR view of risk, and also the AALs of the 50 output
UYLTs derived from them using the YLT adjusted method

(Figure 6c for active and 6e for inactive), along with the true
AALs determined directly from the corresponding ELTs
(dashed lines). It can be seen that the change in AAL is well
captured by the adjustment method, with only a little vari-
ability relative to the size of the changes.

Figure 6a also shows the range of AAL values that are
given by simulating 50 realizations of 50,000 years directly
from active and inactive ELTs (Figure 6b and 6d), rather
than via the YLT adjusted method. The variability in the
AAL in these curves is roughly half the variability in the
AAL calculated for the output UYLT created using the YLT
adjustment method. This shows that the YLT adjustment
method introduces extra variability relative to simulating
from adjusted ELTs, in this case roughly doubling the vari-
ability. It can be concluded that, if simulating from adjusted
ELTs is an option, it gives more accurate results than simu-
lating from an unadjusted ELT and applying the YLT adjust-
ment method to the resulting YLT. In many models,
however, an ELT is not available and adjusting the YLT is
the only option.

3.1 | Results for WYLT to adjusted UYLT:
impact of the second stage

The separate impacts of the two stages of the adjustment
method on the variability in the results are now considered,
to understand whether the variability in the results arises
from the first stage of the method (calculating the weights
that convert the YLT to the output WYLT) or the second
stage of the method (approximating the output WYLT with
the output UYLT), and whether the second stage degrades
the results to any significant extent. Figure 5 shows the
signal-to-noise ratio for AEP curves calculated from the
results of both stage 1 on its own (output WYLT: grey lines)
and stages 1 and 2 together (output UYLT: darker lines). For
both active and inactive views the two curves are very close,
suggesting that although the output UYLT results are pre-
sumably slightly less accurate because of the approximation
involved this is not creating noticeable extra variability in
the results. The conclusion can be drawn that approximating
the output WYLT with the output UYLT does not noticeably
degrade the results.

4 | SENSITIVITY AND
UNCERTAINTY

4.1 | Regional results

It has been shown above that the YLT adjustment method
works well for US nationwide loss results, based on weights
that adjust the frequencies of hurricanes at a nationwide
level. A tougher test is whether the weights derived at a
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FIGURE 5 The signal-to-noise ratio for the errors in the
weighting method described in the text, derived as the ratio of the mean
change (shown by the solid lines in Figure 2b) to the standard deviation
shown in Figure 4b. These are shown both for the first stage of the
method alone (from the year loss table [YLT] to the weighted YLT
[WYLT]) and for both stages of the method together (from the YLT to
the output unweighted YLT [UYLT]). It can be seen that the ratio is
similar for both stages, and hence it can be concluded that the second
stage does not significantly degrade the results
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nationwide level also give good regional loss results. The
coastal United States is split into six regions and each region
is considered separately. In Figure 7a, results are shown for
the regions with the best and the worst results, ranked
according to the level of signal-to-noise ratio, with best
meaning the highest ratio and worst meaning the lowest

ratio. Results are only shown for the change from LTR to
active, since the results for the change from LTR to inactive
show a similar pattern. Comparison with the nationwide
results shown in Figure 5 shows that the regional results are
poorer: the signal-to-noise ratio is smaller than for the
nationwide results. However, the signal-to-noise ratios are

(a) (b) (c) (d) (e)

FIGURE 6 Average annual loss (AAL) values based on 50 realizations of 50,000 years of simulation for (a) the long-term rates (LTR) view,
(b) the active view, simulated directly from an active view event loss table (ELT), (c) the output unweighted year loss tables (UYLTs) derived by
applying the YLT adjustment method for active rates to the LTR simulations, (d) as (b) but for the inactive view, (e) as (c) but for the inactive view.
By comparing (b) and (c), or (d) and (e), it can be seen that the results from the adjustment method suffer from greater variability than from just
calculating the AAL directly from simulations from an adjusted ELT, but that the variability is still small enough, by a large margin, to distinguish
the signal from the variability
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FIGURE 7 (a) As Figure 5 but now for two regions in the United States (Florida and mid-Atlantic). The values for the mid-Atlantic are lower
(i.e. worse) than for Florida, as would be expected since the mid-Atlantic experiences fewer hurricanes and so signals are less well resolved.
Comparison with Figure 5 shows that for both regions the signal-to-noise values are lower than for the United States as a whole, again as would be
expected based on overall numbers of hurricanes in the different regions. (b) As Figure 5 but now for alternative simulation sources, as described in
the text
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all still above 1, even at the longest return periods, indicating
that the method is still identifying the correct sign and
approximate magnitude of change clearly above the noise.

4.2 | Effect of the method used to generate the
initial YLT

All the above results were derived from a YLT based on
50,000 years of simulation created by reduction from
800,000 years, as described in Section 2.1.3 above. The
question of whether the use of a different underlying simula-
tion methodology, and the size of the YLT ensemble, makes
a difference to the variability in the results is now investi-
gated. To this end 50 realizations of each of three alternative
LTR YLTs were created from the same LTR ELT, and the
YLT adjustment method was applied to each. For the first of
these sensitivity tests the alternative YLTs were generated
using 50,000 years of unreduced simulation. For the second
test the YLTs were generated from 800,000 years of simula-
tion, reduced to 200,000 years using the same reduction
algorithm as was used to generate the main 50,000 year set,
and for the third test the YLTs were generated from
200,000 years of unreduced simulation.

Figure 7b shows the signal-to-noise ratios for these three
sensitivity tests, along with values for the main case, which
are the same as those shown in Figure 5 (solid dark lines).
Only results for the LTR to active adjustment are shown. It
can be seen that the signal-to-noise ratio depends heavily on
the underlying simulation set used: the first sensitivity test,
based on 50,000 years of unreduced simulation, gives the
worst results, while the second sensitivity test, based on
200,000 years of reduced simulation, gives the best results,
with the highest signal-to-noise ratios.

5 | CONCLUSIONS

The most general way to present the distribution of possible
future disaster losses is to use large ensembles of simulated
future years (or any other time period of interest), containing
simulated disasters and their losses. These types of ensem-
bles are known as year loss tables (YLTs). Often, it is of
interest to be able to understand the sensitivity of the results
in a YLT to various changes, e.g. possible changes due to
climate change or changes in modelling methodology. How-
ever, YLTs are time-consuming to produce, involving
months or years of modelling work, and it is generally not
possible to create multiple alternative versions of a YLT
based on differing assumptions. There is therefore a need for
methods that allow users of YLTs to be able to adjust the
output to estimate sensitivities without having to rerun the
entire modelling calculation. However, many adjustments
that users might consider making come in the form of

information about changes in the frequency or severity of
individual events or types of events, rather than in the form
of information about the changes in likely frequency of
occurrence of certain types of years. Also, even when adjust-
ments come in the form of information about years, they
may be difficult to apply directly since YLTs consist of lists
of events. For these two reasons, applying adjustments to
YLTs can be difficult. A method based on importance sam-
pling that addresses this challenge and that allows event-
based adjustments to be applied to a YLT has been
described. The method works by applying weights to the
years in the YLT. The weights are determined according to
the probability density function or probability mass function
of the years before and after adjustment, which can be calcu-
lated from knowledge of the model and the adjustments
required. Applying weights calculated in this way allows for
the adjustment of rates of events, even in situations where
there are multiple events within a year that need to be
adjusted in different ways. By using this method, the losses
in different scenarios can be calculated without having to
recalculate event losses, or regenerate ensemble members, or
recalculate annual losses, which makes the calculation very
fast and vastly more feasible than rebuilding the model from
scratch with new assumptions.

The first stage of the method produces a weighted YLT,
which may be sufficient for some applications. For cases in
which unweighted YLTs are preferred, a second stage con-
sisting of a method by which the weighted YLT can be
approximated with an unweighted YLT has been described,
and shown to work well. An unweighted YLT created in this
way is similar to the original unweighted YLT but with
some years repeated and others deleted in such a way as to
capture the desired adjustment.

The YLT adjustment method has been applied to output
from a hurricane loss model and used to understand the
impact on hurricane losses of modelling using US hurricane
landfall rates based on either active or inactive periods of
hurricane behaviour instead of the average behaviour over
long historical records. Because of the way the hurricane
loss model is constructed, it is also possible to calculate the
exact results (where exact means exact given a fixed event
set). This allows the weighting method to be evaluated in a
way which would not be possible in most loss models, for
which exact results would not be available. It was found that
the weighting method performs well overall. The best results
are for short return periods, for the largest ensembles, for
reduced simulation ensembles and for US nationwide
results. For these results, the estimated changes in loss calcu-
lated by applying the YLT adjustment method are highly
accurate, with little sampling variability due to the use of
annual simulations. The worst results are for long return
periods, for the smallest ensembles tested, for unreduced
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simulations and for regional results. However, even in the
worst results presented (for 1,000 year return period regional
losses, based on a 50,000 member unreduced YLT) the
method successfully identifies the sign and approximate
magnitude of the changes due to periods of active and inac-
tive hurricane activity, albeit with significant variability.

The example presented is for a cat model that uses
Poisson frequencies. However, the method could equally
well be applied to cat models with more complex frequency
models, such as negative binomial. For models in which the
temporal variability is determined from dynamical simula-
tions, rather than from an explicit statistical model, empirical
frequency distributions could be used. Changes expressed in
terms of changes in the severity of events can also be applied
simply by representing them in terms of changes in fre-
quency at different levels of severity.

This method is proposed as an efficient and general pur-
pose scheme for applying changes to cat model results, for
situations in which the model results are presented in YLTs.
In particular, the method is a promising candidate for
addressing the urgent need for methods to evaluate the
impact of climate change and climate variability on damage
due to natural catastrophes, in that it allows scientific
hypotheses relating to the changing frequencies and sever-
ities of events to be applied to cat models without having to
rebuild the model, which is rarely feasible.
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