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ABSTRACT

The surprising predictability of source code has triggered a boom

in tools using language models for code. Code is much more pre-

dictable than natural language, but the reasons are not well under-

stood. We propose a dual channel view of code; code combines a

formal channel for specifying execution and a natural language

channel in the form of identifiers and comments that assists human

comprehension. Computers ignore the natural language channel,

but developers read both and, when writing code for longterm use

and maintenance, consider each channel’s audience: computer and

human. As developers hold both channels in mind when coding,

we posit that the two channels interact and constrain each other;

we call these dual channel constraints. Their impact has been ne-

glected. We describe how they can lead to humans writing code

in a way more predictable than natural language, highlight pio-

neering research that has implicitly or explicitly used parts of this

theory, and drive new research, such as systematically searching

for cross-channel inconsistencies. Dual channel constraints provide

an exciting opportunity as truly multi-disciplinary research; for

computer scientists they promise improvements to program analy-

sis via a more holistic approach to code, and to psycholinguists they

promise a novel environment for studying linguistic processes.
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1 INTRODUCTION

Code is dual channel: it combines an algorithmic (AL) channel spec-

ifying computer execution and a natural language (NL) channel that

explains the purpose and context of that execution. The AL channel

derives its meaning from the semantics of the code; it is computed.

Comments and identifier names are primary examples of the NL

channel. They do not affect how the program runs; their purpose is

to communicate to other humans [12]. For instance, developers use

names to avoid the costly cognitive process of mentally executing

code: compare the ease of reading a function name correctly called

quicksort against manually stepping through the algorithm.

The two channels differ in their audiences. The NL channel

targets humans. The AL channel targets both CPUs, which execute
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Figure 1: A human developer (1) writes (2) some code (3) on (4) an IDE (5).
The code is intended for dual purposes; first, it runs inter alia, on a com-
puter (6); second, it is written to read (7) by other humans (8). This human-
human channel engenders high-levels of predictability in code, which a ma-
chine learner can capture (9) into a model (10); this model, incorporates (11)
into the IDE (5) and allows the IDE to leverage its predictions, rankings, and
associations to better support the developer (1).

it, and humans, who must understand and maintain it. Because

developers hold both channels in mind when coding, we posit

the channels are never truly separate. When a developer writes

a function, she does not choose cryptic variable names or ignore

typesetting; the choices for correct implementation, informative

names, and clear and concise writing are all in effect at the same

time. The AL and NL channels of code interact and constrain each

other, forming dual channel constraints (DCC).

Evidence for DCC lies in both folklore and practice. The precept

of good practice, give identifiers names that reflect their purpose

and use, is just one example of the former. The practice of using

coding conventions, such as PEP8 for Python1 or Google’s guide for

Java2, exemplifies the latter. When the audience is other humans,

the channels combine to form a human-to-human (H2𝐻 ) commu-

nication medium. To date, research and tools have focused on each

channel in isolation and neglected cross-channel interactions. This

is a missed opportunity. Programming analysis that ignores the NL

channel cannot exploit the hints and signposts within it that may

help the analysis scale better, or find more errors more quickly by

focusing on code where the two channels have fallen out of sync,

i.e. in the form of misleading function names or stale comments.

In Figure 1, we clarify how a developer codes in full conscious-

ness of both channels. The AL channel ensures that her code com-

piles and runs, and can be analyzed within her IDE; she writes

her code in ways conducive to readers’ expectations across both

channels, adding signposts to the NL channel to clarify the AL

channel. These code patterns are amenable to being learned by a

model, which an IDE can incorporate to assist with coding work.

AL channel constraints on the NL channel also provide a unique

environment for studying human communication. The foundational

1https://www.python.org/dev/peps/pep-0008t/.
2https://google.github.io/styleguide/javaguide.html.
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research of Hindle et al. showed that code has more repetition than

natural language that is exploitable to improve SE tools [10]. More

recent work has shown that this repetition is not fully attributable to

merely code syntax and grammar; humansmust choose towrite code

in amanner more predictable than general natural language [5], and

that despite the opportunity to write expressions with equivalent

meaning in the AL channel, developers tend to settle on limited

options [4]. Thus, there are good reasons to believe that AL channel

constraints cause humans to process language decisions differently.

However, the precise mechanisms that drive these choices are not

yet well understood, and a better grasp of them will help both refine

linguistic theories of language comprehension and provide insight

into writing more comprehensible code.

DCC theory invites multidisciplinary research. For computer sci-

entists, elaborating and tightening a DCC theory not only promises

insights into understandable code but also improvements on tasks

like defect localization, porting, analysis, and reverse engineering.

For psycholinguists, it provides opportunities to test theories about

human language comprehension not possible in natural language

texts. In short, adopting and studying the DCC theory promises:

• New analyses and techniques that target cross-channel dis-

crepancies and mismatches to find bugs or smells Ð making

a CPU aware of, and able to exploit, the NL channel;

• New prioritization techniques for allocating scarce testing

and analysis, both static and dynamic, resources;

• A novel setting, leveraging equivalence in the AL channel,

for testing utterance selection theories in linguistics.

2 THEORY AND METHODOLOGY

Languages let humans communicate intended meanings through

valid utterances. In natural languages, like English, valid utterances

convey meaning through the hierarchical combination of words

into sentences, sentences into paragraphs, etc. In programming

languages, they can be any program that compiles. Programming

languages are (usually) precise and unambiguous. They are also ex-

pressive; despite being Turing-complete (capturing any computable

function), the same calculation can be expressed in many different

syntactic ways. Nevertheless, humans read and write programs,

potentially using many of the same cognitive/neural mechanisms

as in natural language [7].

Thus, we argue that the H2𝐻 communication channel for code

is inherently noisy, drawing on similar arguments from Psycholin-

guistics [14]. This noisy channel has imprecision in transmission.

Noisy channel models of language have a long history, but gen-

erally these models assume the channel𝑚
𝑒𝑛𝑐𝑜𝑑𝑒
−−−−−−→ 𝑙

𝑑𝑒𝑐𝑜𝑑𝑒
−−−−−−→𝑚′

where a meaning𝑚 from a speaker is encoded into an utterance 𝑙

and then is decoded by a listener into𝑚′, with noise arising from

imperfections in both conversions. Moreover, natural language also

contains ambiguity, unlike (correct and valid) code. Thus, a listener

must utilize as many sources of knowledge as possibleÐincluding

their full knowledge of the language, their best guesses about the

noise model of the environment/transmission process, and their

real-world knowledgeÐin order to probabilistically decode the most

likely meaning for the utterance given the context.

While the noisy channel theory is well established for natural

language, how does it apply to programming languages? Consider

a developer who wants to express some semantic meaning𝑚 in a

program, implementing it through some syntactic expression ℓ𝑚 . In

the H2𝑀 channel, noise nicely captures the developer’s imperfect,

partial understanding of a program’s execution, which encompasses

bugs and undefined behavior. In decoding, however, because the se-

mantics are unambiguous given a choice of compiler and platform,

there is no possibility of the machine making a łnoisyž interpre-

tation of ℓ𝑚! That is, from the machine ‘readers’ perspective, one

interpretation has probability 1.0, and the others are impossible.

However, for any given𝑚, there may be several alternative choices

for ℓ𝑚 , and the writer will have to choose one; whatever implemen-

tation they choose makes no difference to the machine’s ability to

make exactly the same interpretation in each case.

The H2𝐻 channel for code (unlike H2𝑀) is quite different. De-

velopers do not precisely compute the meaning of code like a ma-

chine does; instead they use cues in the text 𝑙𝑚 of the code, to guess

the intended meaning𝑚, avoiding if possible the high cognitive

load to compute each and every statement, thus giving rise to a con-

dition distribution 𝑝 (𝑚′ | 𝑙𝑚) over meanings𝑚′ given program 𝑙𝑚 .

TheseH2𝐻 cues reside in both NL (𝑙𝑛𝑙𝑚 , denoting comments, vari-

able name choices) and AL (𝑙𝑎𝑙𝑚 denoting well-suited, familiar, code

construction) components of the code; thus 𝑙𝑚 = (𝑙𝑛𝑙𝑚 , 𝑙𝑎𝑙𝑚 ). Even

with many possible choices of encoding𝑚 into 𝑙𝑚 , these choices

are not equally efficacious as cues on theH2𝐻 channel.

Most programmers, based on their own prior experience, would

find certain ways ofwriting code and naming variables better suited

and more evocative for certain computations. A capricious, odd im-

plementation choice ℓ̃ , comprising odd structuring, weird variable

names and comments (in ℓ̃𝑛𝑙 ) or unconventional coding choices

(in ℓ̃𝑎𝑙 ) will very likely vitiate easy reading by another developer,

and lower the probability 𝑝 (𝑚 | ℓ̃); a very clear implementation,

with well-chosen variable names, good commenting, and familiar

coding forms, ℓ̂ , will yield much higher 𝑝 (𝑚 | ℓ̂).

A programmer, writing code, would, of course, be conscious of

this phenomenon - they themselves may read the code later! Given

the strong prevalence of coding idioms and style norms, there is

good reason to believe these considerations for writing and reading

effort will interact and influence the programmer to write code

in very conventional ways. In other words, given a meaning 𝑚,

while the set of choices L𝑚 to implement𝑚 may be quite large,

the actual choices ℓ̂ 𝜖 L𝑚 that programmers pick are quite limited.

Thus, the actually observed conditional joint distribution of NL and

AL constructions 𝑝 (ℓ̂𝑛𝑙 , ℓ̂𝑎𝑙 | 𝑚) for any given meaning𝑚 is highly

skewed. Given𝑚, developers will make specific concurrent choices

in code structuring forms (ℓ̂𝑎𝑙 ) and variable naming and comments

(ℓ̂𝑛𝑙 ) that interact in expected ways to inform readers, separately

and together. Untangling the mutual and independent information

in the comments, variable names, and code structures is part of the

excitement inherent to the DCC model of code.

Thus far, the theory of the H2𝐻 channel discussed here fits

within a large body of psycholinguist literature showing more

predictable natural language is both easier to produce and to com-

prehend [15]. However, as previously noted, code is more extreme

than (most) natural language in its preference for more predictable

forms [5]. This opens up questions about why human cognitive

processing of code is in some ways similar to and in some ways
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different from human natural language processing. We propose that

some of these differences stem from the existence of the two chan-

nels operating simultaneously in code. Moreover, code can produce

an interesting comparison case with natural language, which will

be of interest to researchers in linguistics and cognitive science [7].

3 RELATED WORK

Some software engineering research has explicitly relied on DCC.

One example is RefiNym [6]. Some programs suffer from primitive

obsession, i.e. the overuse of simple and underspecified types. Two

examples are using strings to hide complicated structures from

the type checker or to represent both usernames and passwords.

The latter practice prevents the compiler from warning a developer

should a password flow into a username. Conceptual types are the

types that a developer had in mind while developing, here username

and password; program types are the types the developer actually

defined and used, here string. RefiNym clusters identifier names that

share a program type to recover conceptual types and suggest their

use. They call this analysis łbimodal because it intermixes semantics

information (flows) and syntactic information (names)ž [6]. In this

paper, we have intentionally chosen łdual channelž over bimodal

because the two channels are distinct and contemporaneous, not

different, mutually exclusive states of a single entity.

Casalnuovo et al. [4] also invoked an argument of bimodality to

understand how code’s highly repetitive nature manifests under ex-

pressions with equivalent meaning. They transformed expressions

into meaning equivalent alternatives, and showed language models

could capture developer’s preferences controlled by meaning in a

cross project environment. Moreover, though the effects vary by

transformation type, they persist across programming language,

language model, and identifier abstraction. They demonstrated that

these language model preferences correlated with human prefer-

ence via controlled experiment, expanding upon their prior evi-

dence [5] that human choice drives much of the repetition in code.

However, the question of why human choices might be more re-

strictive in code than natural language remain open.

Several papers have also implicitly used similar ideas to benefit

the software engineering community. The code-comment consis-

tency problem, which seeks to find inconsistencies between aligned

comment and code pairs, is an inherently dual channel problem. A

line of work by Tan et al. (e.g. [17]) explores this problem. It uses NL

techniques to extract topics and rules from comments and compares

them with static analysis results to check for inconsistencies. We

believe the DCC suggests new directions for solving this problem.

(See Section 4). AsDroid [11] mapped user interface text in Android

apps to an analysis of what effects (e.g. SMS texts) these actions

actually performed. Discrepancies between the text and the code

enabled them to more efficiently discover malicious behavior.

Finally, one recent paper suggests using a metaprogramming

framework to more formally capture łmeaningž (in terms of the

semantic meaning of classes and methods). The paper provides an

example formulation to address the machine’s asymmetrical lack

information from the NL channel, incorporating both AL and NL

information into program analysis [16].

4 IMPLICATIONS AND FUTUREWORK

Dual Channel Constraints provide a compelling explanation for

how humans process code and explain code artifacts. We conclude

with ways to improve tools by taking advantage of the asymmetrical

relationship of the two channels as well as implications for both

code and language comprehension.

Implications for Program Analysis. For program analysis

and software engineering tools, DCC theory suggests interactions

between the NL/AL channels can be exploited to a) find defective

and misunderstood code/documentation and b) leverage NL infor-

mation to prioritize limited analysis resources in AL techniques.

AL/NL channel discrepancies: The DCC theory implies that dis-

crepancies between the NL and AL channels strongly indicate that

a developer has produced confusing or outright defective code. As

developers write in theH2𝐻 medium, DCC require that they main-

tain both a mental model of how the machine operates and how

other developers will interpret it. Since a developer’s understanding

of both of their łaudiencesž is imperfect (or noisy), the NL and AL

channels can become desynchronized. How might this happen?

The difficulty of mentally simulating computation in the AL

channel likely leads to reliance on NL signals reduce cognitive load,

and even when fully simulating the AL channel developers may do

so imprecisely. Such imprecise mental models of the machine are

susceptible to being faulty, even when the developers are highly

experienced. For example, consider the Spectre class of security

vulnerabilities, which allowed hackers to expose arbitrary memory

locations and access sensitive data within an application. These

attacks took advantage of speculative execution, where the CPU

executes branch instructions prior to the results being needed in

order to obtain better performance. Relevant to DCC, this attack

was possible because even the highly experienced engineers imple-

menting speculative execution did not fully understand the security

assumptions in the AL channel other developers relied on [13]. Un-

defined behavior in C is another case where a developer’s mental

model of the AL channel may break down, because it violates the

usual expectation of unambiguous semantics.

If information from the NL channel can be passed to AL tools,

such misunderstandings can be mitigated. Expanding upon the ex-

ample of the code-comment consistency problem [17], a renewed

and more comprehensive focus with modern statistical models of

code (e.g. [1]) could provide ways to filter which comments are

relevant and explanatory, create probabilistic specifications of code,

and better identify bugs. Beyond just comments, identifiers and

other NL elements in theH2𝐻 channel can provide warning of po-

tentially buggy code. For example, two regions of code broadcasting

similar meaning in the NL channel, but behaving very differently

in the AL channel, may indicate poorly structured code.

Analysis of the NL channel can likewise benefit from facts in

the AL channel. Limitations in the ability of humans to model pro-

gram execution extend to the way developers obtain feedback on

the correctness of the code. When writing code, developers can

get feedback from other developers on the correctness and design,

from explicit feedback in code reviews and pull requests, online

communications, and more casually simply through conversation.

H2𝐻 feedback systems are tuned to the way human minds work;

their interactivity and ability to quickly correct misunderstandings
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enable faster and more comprehensive understanding. In contrast,

messages from the compiler or automated checking tools are static

and limited. We believe that combining statistical models that learn

from the interactions in human communications and those that

leverage the code itself can improve the interactivity and presenta-

tion in the error feedback from such tools.

Prioritizing Resources using DCC: Traditional processes for an-

alyzing code, which operate along the AL channel, can provide

strong guarantees on soundness, but suffer when applied to real-

world code as their abstractions either over-approximate the code

(in static analyses), or require execution to provide weaker, under-

approximated assurances based on the set of observed runs (in

dynamic analyses). Statistical language modeling of code provides

a way to limit static analysis over-approximations without running

the code, drawing hints from the NL channel. In a non-adversarial

setting, names and comments can prioritize the allocation of re-

sources to testing and analyzing the AL channel. For instance, for

dynamic analysis, incorporating NL information could help to seed

values in fuzz testing and explore likely avenues to find new pro-

gram states. Alternatively, in static analysis, this information could

give probabilistic guarantees, e.g. pointer analysis could raise a

warning if a pointer whose name includes łownerž pointed at an

object with multiple owners or if the points-to set of a pointer

name including łuniquež was not a singleton. Moreover, including

the NL channel could help reduce false positives common in static

over-approximations and produce more useful output to developers.

Implications for Linguistics. A major linguistics concern is

łWhy do people choose to say things in the way they choose to say

them?ž. An implicit premise behind that question is that there are a

lot of ways to verbally convey the same idea. But, in practice, this

turns out to be difficult to study in natural language because any

change in the wording of an idea probably comes with at least a

small change in meaning (maybe at the level of connotations).

Because of DCC, code provides an interesting test case because,

in the AL channel, we can frequently identify expressions that are

exactly equivalent in meaning. So for example, in natural language,

people say łbread and butterž about 99% of the time, but 1% of

the time they will say łbutter and breadž. Was the rare ordering

chosen to convey something different (e.g. a joke along the lines

of łWould you like some bread with your butter?ž) or was it just a

mistake? Code provides an interesting comparison case. We could

use language models to predict how strongly people should prefer

equivalent expressions in natural language (łbread and butterž vs.

łbutter and breadž) and in code (i+1 vs 1+i). If we take matched

samples of natural language and code (in terms of LM-predicted

preference) and find that in practice people deviate more from the

LM preference in natural language than in code, that would suggest

that the pressure for expressivity in natural language drives people

to use the unpredicted formmore often. In contrast, if people deviate

from LM-predicted preferences equally often in natural language

and code, that would suggest that these deviations are not driven

by expressivity but merely by the noisiness of human cognition.

More questions arise on whether code’s predictability is driven

by production pressures (e.g. more predictable code is easier for the

writer to produce [3]) or by comprehension pressures (e.g. readers

comprehend more predictable code more easily, and the writer an-

ticipates this [9]). In natural language, these two pressures have

proven difficult to disentangle [2, 8]. Code may provide new oppor-

tunities for testing this question by providing cases where these

pressures conflictÐfor instance, when a developer’s personal pre-

ferred style conflicts with the style of a project.

Or, we could simply accept the fact that production and com-

prehension pressures are often aligned and, rather than trying

to disentangle them, treat them as co-present and use their com-

bined force to ask questions about the programmer’s cognitive

model of predictability (assuming production and comprehension

tasks largely share this model). For example, to what extent does

whitespace influence how programmers interpret code? Are special

characters treated differently than alphanumeric characters?

Finally, we return to asking why code is more predictable than

natural language. Is this from the extra cognitive load posed by the

programmers’ awareness of the AL channel? Or does the explicit,

unambiguous semantics of the AL channel discourage programmers

from using the small connotative differences possible in alternate

phrasings of the same ideas in natural language? Regardless of the

answers, the DCC theory provides a framework to address these

questions and drive novel and multidisciplinary research.
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