Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3 deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data.

Since its initial association with a neurological disorder, it has become apparent that disruption of the ATAD3 cluster, and more specifically ATAD3A (MIM: 612316), is a significant cause of pediatric disease. Variants at this locus are associated with a wide phenotypic spectrum, including pontocerebellar hypoplasia, hereditary spastic paraplegia, and a syndromic neurological disorder characterized by peripheral neuropathy, hypotonia, cardiomyopathy, optic atrophy, cerebellar atrophy, and seizures: Harel-Yoon syndrome (HAYOS [MIM: 617183]). The different phenotypes can be attributed to a spectrum of disease-causing variants that includes bi-allelic hypomorphic variants, bi-allelic deletions, and monoallelic dominant-negative missense variants. Here, we report two de novo intergenic duplications in the ATAD3 cluster identified in five unrelated neonates with shared phenotypes including corneal clouding, cardiomyopathy, hypotonia, and white matter changes, thus expanding the genotype spectrum of ATAD3-related disorders.

The ATAD3 cluster is composed of three paralogs with extensive sequence homology, formed through tandem segmental duplication: ATAD3A, ATAD3B (MIM: 612317), and ATAD3C (MIM: 617227). ATAD3A and ATAD3B are protein-coding genes of near identical sequence, differing primarily due to a stop-loss mutation in ATAD3B that extends the protein by 62 amino acids; ATAD3C is not known to be expressed. ATAD3A is a transmembrane ATPase, which is predicted to form hexamers,

1Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; 2Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter EX2 5DW, UK; 3Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; 4Biodonostia Health Research Institute, 20014 San Sebastián, Spain; 5Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK; 6Department of Genetic and Metabolic Diseases, Hodasah-Hebrew University Medical Center, Jerusalem 91120, Israel; 7Department of Pediatrics, Division of Genetic, Genomic, and Metabolic Disorders, Wayne State University School of Medicine, Children’s Hospital of Michigan, Detroit, MI 48201, USA; 8Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; 9South West Thames Regional Genetics Service, St George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK; 10St George’s University of London, London SW17 0RE, UK; 11Department of Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8EN, UK; 12Department of Paediatric Cardiology, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8BJ, UK; 13Clinical Genetics Service, NHS Grampian, Aberdeen Royal Infirmary, Aberdeen AB25 2ZA, UK; 14Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; 15Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; 16Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; 17Texas Children’s Hospital, Houston, TX 77030, USA; 18MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; 19IRIBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; 20CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain

Correspondence: sian.ellard@hns.net
https://doi.org/10.1016/j.ajhg.2020.01.007.
© 2020 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
a fraction of which is found at contact sites between the inner and outer mitochondrial membranes in complex with TSPO, CYP11A1, and OPA1. ATAD3 has also been shown to interact with mitochondrial nucleoprotein complexes and to play roles in mtDNA organization and replication. More recently it has been shown to interact with Drp1/DNM1L to support Drp1-induced mitochondrial division, a process that drives mtDNA segregation. Concordantly, ATAD3 dysfunction and deficiency have a wide range of effects on mitochondrial structure and function, characterized by disturbed mitochondrial morphology and fission dynamics, loss of cristae, perturbed mtDNA and cholesterol metabolism, impaired mitochondrial steroidogenesis, and decreased levels of some mitochondrial oxidative phosphorylation (OXPHOS) components. It is not clear whether the disruption to the inner mitochondrial membrane, mtDNA, and OXPHOS complexes are due directly to the absence of ATAD3 or whether they are consequences of changes to membrane architecture resulting from an altered cholesterol content or a combination of the two.

We report de novo ATAD3 duplications identified in five unrelated neonates through exome sequencing. Clinical exome sequencing failed to identify any alternative molecular diagnosis potentially causative of the phenotype, which is characterized by seizures (four of the five neonates) and fetal akinesia and contractures (in three case subjects). A clinical summary is shown in Table 1 and clinical case reports are detailed in the Supplemental Note. Informed consent was obtained and all processes adhered to local and national ethical standards. The duplication in the ATAD3 cluster was also detected by arrayCGH for those subjects studied (subjects four and five).

Table 1. Clinical Features of Individuals with Duplication in ATAD3 Gene Cluster

<table>
<thead>
<tr>
<th>Subject 1</th>
<th>Subject 2</th>
<th>Subject 3</th>
<th>Subject 4</th>
<th>Subject 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>male</td>
<td>female</td>
<td>male</td>
<td>female</td>
</tr>
<tr>
<td>Gestation</td>
<td>term</td>
<td>38 weeks</td>
<td>term</td>
<td>33+3 weeks</td>
</tr>
<tr>
<td>Apgars at birth</td>
<td>3</td>
<td>poor</td>
<td>1</td>
<td>5,8,9</td>
</tr>
<tr>
<td>Chronological age at death</td>
<td>3 days</td>
<td>6 weeks</td>
<td>5 days</td>
<td>6 weeks</td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>HCM</td>
<td>DCM</td>
<td>DCM; cardiomegaly</td>
<td>HCM; cardiomegaly</td>
</tr>
<tr>
<td>Congenital cataracts</td>
<td>✓</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Corneal opacity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Postnatal hypotonia</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Abnormality of the external genitalia</td>
<td>cryptorchidism and micropenis</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Seizures</td>
<td>✓</td>
<td>diffuse abnormalities on EEG</td>
<td>ND</td>
<td>diffuse abnormalities on EEG</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>✓</td>
<td>ND</td>
<td>✓</td>
<td>ND</td>
</tr>
<tr>
<td>Brain findings</td>
<td>ND</td>
<td>white matter changes; simplified gyral pattern; cerebellar atrophy (MRI)</td>
<td>widespread hypoxic brain damage (post-mortem)</td>
<td>diffuse bilateral abnormal subcortical, periventricular, and deep white matter; abnormal MR spectroscopy</td>
</tr>
<tr>
<td>Contractures/ fetal akinesia</td>
<td>fetal akinesia</td>
<td>ND</td>
<td>contractures</td>
<td>ND</td>
</tr>
<tr>
<td>Edema/fetal hydrops</td>
<td>ND</td>
<td>fetal hydrops; edema</td>
<td>fetal hydrops</td>
<td>ND</td>
</tr>
<tr>
<td>Metabolic investigations</td>
<td>increased excretion of fumarate, malate, 2-ketoglutarate, 3-methylglutaconate, and 3-methylglutarate</td>
<td>lactic acidosis</td>
<td>ND</td>
<td>lactic acidosis; increased excretion of 2OH butyrate, fumarate, and 3OH isobutyrate</td>
</tr>
<tr>
<td>Prior genetic investigations</td>
<td>ArrayCGH; Prader-Willi; SMA</td>
<td>prenatal aneuploidy</td>
<td>ND</td>
<td>arrayCGH; 202 gene mitochondrial panel</td>
</tr>
</tbody>
</table>

HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; SMA, spinal muscular atrophy; ND, not detected.
non-allelic homologous recombination (NAHR) between regions of high sequence homology in ATAD3C and ATAD3A (Figure 1A) and encompasses ATAD3C exons 8–12, ATAD3B, and ATAD3A exons 1–11 (Figures 1B, S1, and S2).

PCR and Sanger sequencing confirmed the presence of the duplications, which showed a 1.2 kb proband-specific amplicon (1.6 kb for subject four due to alternative primer design; data not shown). No PCR product was amplified in DNA derived from unaffected parents, consistent with a de novo event, and proband-parent relationships were confirmed for all case subjects during exome analysis. The 5′ end of the PCR amplicon was derived from ATAD3A exon 10, while the 3′ was derived from ATAD3C intron 7. The breakpoints of the duplication identified in subject four were found to differ from those identified in the other case subjects. The duplications are considered functionally equivalent as their protein products are predicted to be identical, differing at a single intronic nucleotide. These results are consistent with tandem duplication without inversion, as described by NC_000001.11 (GRCh38): 1456616_1524663dup (subjects 1–3 and 5) and NC_000001.11 (GRCh38): 1456890_1524937dup (subject 4). The duplications are predicted to maintain the copy-number of ATAD3A and ATAD3C, duplicate ATAD3B, and create a fusion gene, ATAD3A-C, composed of ATAD3A (UniProt: Q9NVN17-2, residues 1–405) and ATAD3C (UniProt: QST2N8-1, residues 231–411) (Figures 1B and 1C).

We performed multiple complementary in silico analyses to characterize the effect of the duplication. Multiple sequence alignment of ATAD3A (NC_000001.11 [GRCh38]: 1512151–1534687) and ATAD3C (NC_000001.11 [GRCh38]: 1449689–1470158) showed the genes have an overall sequence identity of approximately 56%. The duplications occur at a 673 bp region with near-complete sequence identity between ATAD3A and ATAD3C (Figure 1A). In silico splicing analysis of ATAD3A-C showed that the splice sites are maintained (Figure S3). Pairwise alignment of ATAD3A (GenBank: NM_001170535.2; Q9NVN17-2) and ATAD3A-C (UniProt: Q9NVN17-2, residues 1–405, and UniProt: QST2N8-1, residues 231–411) primary amino acid sequences showed that they are of identical length and differ at 29 residues (Figure S4). Seven of the variants (p.Val450Ile, p.Asn454Cys, p.Gln502Arg, p.Ser516Leu, p.Val518Ile, p.Ala574Gly, p.Gly576Arg, p.Arg579Pro, p.Gly580Glu, p.Ala561Phe, p.Lys568Met, p.Cys570Arg, p.Glu529Lys, and p.Glu545Lys) or within a functional domain (p.Glu482Ala, p.Phe489Leu, p.Asp490Asn, p.Asp465Asp, p.Arg466Glu, p.Glu469Val) lie within the ATPase domain (residues 348–474; Pfam: PF00004) (Figure 1D, underline; Figure 1E), while the remaining 22 are present outside of a known functional domain (p.Glu482Ala, p.Glu482Asp, p.Asp465Glu, p.Glu470Arg, p.Glu470Lys, and p.Glu470Glu) or within a region of predicted intrinsic disorder (p.Thr556Ala, p.Arg557Cys, p.Lys568Met, p.Cys570Arg, p.Ala561Phe, p.Lys568Glu, p.Arg579Pro, p.Arg579Phe, p.Glu580Glu, p.Pro583Gln, p.Ser584Ser, and p.Pro585Pro). DeepLoc (v1.0) was used to predict the subcellular localization of

Figure 1. NAHR between ATAD3C Exon 8 and ATAD3A Exon 11 Produces a Fusion Gene, with Variants at Key Functional Residues within the ATPase Domain

Gene intron-exon structures are shown in cartoon format; open boxes indicate UTRs while closed boxes indicate coding regions. Arrows following the gene name indicate reading direction, and the first exon is labeled. Genes are shown in their relative position on chromosome 1 in a 5′ to 3′ direction from left to right.

(A) Nucleotide sequence identity between ATAD3A (chr1:1512151–1534687:1) and ATAD3C (chr1:1449689–1470158:1) in a sliding 500 bp window. ATAD3A and ATAD3C exon positions are represented below according to their relative position within the KAlign alignment; this includes alignment gaps. The 398 bp region of 100% sequence identity is marked in yellow. (B) Reference arrangement of the ATAD3 cluster showing the exon structures of ATAD3C (purple), ATAD3B (orange), and ATAD3A (green). The duplicated region is highlighted in red.

The American Journal of Human Genetics 106, 272–279, February 6, 2020
ATAD3A and ATAD3A-C. The tool was able to correctly predict that ATAD3A is transported into the mitochondrial membrane. There was no change in this prediction for ATAD3A-C. Together, these analyses indicate that the fusion transcript is likely to be correctly transcribed and translated and maintain the signals necessary for native subcellular localization. We next modeled the composition of ATAD3 hexamers using a binomial distribution based on two copies of ATAD3A and one copy of ATAD3A-C. It is predicted that 8.8% of ATAD3 hexamers would be comprised solely of wild-type ATAD3A monomers, while 91.2% would contain at least one copy of the ATAD3A-C fusion protein (Figure S5).

To experimentally assess the predictions of the in silico analyses we amplified a ~1.8 kb product by reverse transcription PCR on RNA extracted from fibroblasts (subject 4), using a primer pair specific to ATAD3A and ATAD3C. Sanger sequencing of this product showed a sequence identical to the predicted ATAD3A-C transcript (Figure S6). We found that the 5' region of the ATAD3A-C fusion transcript corresponds to that of ATAD3A, splicing isoform two. Western blotting showed that fibroblasts (subject 1) harboring the duplication had higher expression of ATAD3, compared to controls (Figures 2A and 2B). The upper of the two bands is where ATAD3B migrates and so the increased signal is attributed to the additional copy of ATAD3B. As ATAD3A is not fully duplicated, the increased signal of the lower band suggests that the ATAD3A-C protein product is expressed and stable. ATAD3 is an established mitochondrial protein, and antibody labeling of ATAD3 in fibroblasts of subject 1 revealed a distribution similar to control cells and to the mitochondrial outer membrane protein TOMM20 (Figure S7). Therefore, both the duplicated ATAD3B and the ATAD3A-C fusion gene protein product appear to be targeted to the mitochondria.

Variants in bor, an ATAD3A homolog in Drosophila melanogaster, are associated with a reduction in the number of mitochondria and mitochondrial structural abnormalities and impaired cholesterol metabolism in human fibroblasts. Therefore, we assessed mitochondrial morphology and cholesterol levels in our cellular models. In subject 1-derived fibroblasts, free-unesterified cholesterol assessed by filipin staining was significantly higher than control subjects and was similar to cells with pronounced ATAD3 deficiency caused by bi-allelic ATAD3 cluster deletions (Figures 2C and 2D). Many fibroblasts (subject 1) showed aggregations of mitochondria, and swollen and rounded organelles (Figure 3A; circled). Nevertheless, cells with an extensive and interconnected mitochondrial network were also apparent (Figure 3A). Immuno-staining for ATAD3 revealed that ATAD3 is an established mitochondrial protein with the fusion gene being expressed and stable. Data are the results of 8 independent experiments for subject 1 and control subject(s) and n = 6 for the “deletion.” Error bars show 1 standard deviation (***p < 0.001; **p < 0.01; one-way ANOVA).

(D) Representative images of filipin-stained cells. Scale bar 10 μm.
The phenotype of the neonates with ATAD3 duplications shows overlap with the previously reported cases associated with pathogenic variation at this locus noting corneal clouding, cardiomyopathy, hypotonia, white matter changes, seizures, fetal akinesia, and contractures. All subjects with duplication died within 6 weeks of life. Although four neonates had low Apgar scores and required intensive clinical management from birth, subject 4 was born prematurely (33 + 3 weeks), achieved high Apgar scores, had a less severe perinatal course, and presented 3 weeks later with severe lactic acidosis (Table 1 and Supplemental Note). The subjects did not present with obvious signs of mitochondrial distress, and this study highlights the importance of considering mitochondrial genes even in atypical cases, such as these.

The ATAD3A-C fusion protein is uniquely associated with the severe neonatal phenotype and therefore is likely causal. It is expressed and stable (Figures 2A, 2B, and S6) and has the correct subcellular localization (Figure S7). The fusion protein differs from ATAD3A at 29 amino acid residues within the C-terminal region, including a highly conserved residue within the ATPase domain, p.Arg466Cys (Figure 1D; arrow and Figure 1E). The equivalent residue is conserved residue within the ATPase domain, p.Arg466Cys (Figure 1D; arrow and Figure 1E). The equivalent residue is

Figure 3. Abnormal Mitochondrial Morphology and mtDNA Organization in Cells with an ATAD3 Gene Cluster Duplication

(A) Confocal images showing the mitochondria of control cell lines (C2) and fibroblasts from subject 1 (S1) labeled with an antibody against TOMM20 (red). Proportion of cells with clumped mitochondria for subject 1 versus 2 control subjects (n = 2 independent experiments, ≥50 cells per cell line, per experiment). (B) Fibroblast cells from control subject (C1) and subject 1 (S1) labeled with an antibody against TOMM20 (red), a DNA antibody (green), and DAPI (blue); arrows indicate mtDNA aggregation. Scale bars 10 μm. Error bars show 1 standard deviation.

...
autosomal-dominant hereditary spastic paraplegia (SPG4 [MIM: 182601]). These variants have been shown to result in the complete loss of SPAST ATPase activity, leading to disease through a dominant-negative mechanism.

We suggest that the ATAD3 duplications described here act through the same mechanism: through incorporation of a non-functional monomer derived from the novel fusion protein into more than 90% of ATAD3 hexamers (Figure S5).

Our data suggest that the generation of the fusion protein causes this lethal neurological disorder through disruption of mitochondrial and cholesterol metabolism (Figures 2C, 2D, and 3). This reinforces the links between ATAD3, cholesterol, and mtDNA metabolism. Considering the majority of the cholesterol in mitochondrial membranes co-purifies with mtDNA, and increasing or decreasing cholesterol availability markedly alters mtDNA organization, then cholesterol dyshomeostasis evidently disrupts mtDNA metabolism. ATAD3 has links to cholesterol metabolism through partner proteins, TSPO, CYP11A1, and SPTLC. ATAD3 also co-purifies with the mitochondrial protein synthesis machinery, mtDNA, and mitochondrial cholesterol, and there is evidence that the mitochondrial nucleoprotein complexes are interlinked. Hence perturbed cholesterol-containing micro-domains could be the common factor linking all the features associated with ATAD3 deficiency.

Copy number variants (CNVs) pose a practical challenge in genomic analysis, in both their detection and interpretation. Determining how to analyze and interpret rare CNVs which intersect common benign CNVs is not trivial. The high frequency of benign duplications seen in the ATAD3 region coupled with high sequence homology of the three genes means that pathogenic duplications could potentially be missed. This study highlights the importance of systematic CNV analysis, particularly of genomic intervals prone to instability, where a clinical presentation is consistent with a monogenic disorder.

The high frequency at which this specific ATAD3 duplication was identified within this cohort suggests that for all clinical suspicions of severe neonatal disorder of unknown origin, negative for known mitochondrial variants and mitochondrial nuclear genome panels, the ATAD3 locus should be carefully evaluated for single nucleotide, copy-number, and structural variants.

Supplemental Data
Supplemental Data can be found online at https://doi.org/10.1016/j.ajhg.2020.01.007.

Acknowledgments
We acknowledge funding from Wellcome (200990). S.E. is a Wellcome Senior Investigator. U.F.P. is supported by a predoctoral fellowship from the Basque Government (PRE_2018_1_0253). M.M.O. is supported by a predoctoral fellowship from the University of the Basque Country (UPV/EHU, PIF 2018). I.J.H. is supported by the Carlos III Health Program (PI17/00380), and Pais Vasco Department of Health (2018111043; 2018222031). A.S. is supported by the UK Medical Research Council with a Senior Non-Clinical Fellowship (MC_PC_13029). T. Harel is supported by the Israel Science Foundation grant 1663/17. W.H.Y. is supported by the National Institute of General Medical Sciences of the National Institutes of Health through grant 5 P20 GM103636-07. J.R.L. is supported by the US National Institute of Neurological Disorders and Stroke (R35NS105078), the National Institute of General Medical Sciences (R01GM106373), and the National Human Genome Research Institute and National Heart Lung and Blood Institute (NHGRI/NHBLI) to the Baylor-Hopkins Center for Mendelian Genomics (BHCMG, UM1 HG006542). R.W.T. is supported by the Wellcome Centre for Mitochondrial Research (203105/Z/16/Z), the Medical Research Council (MRC) International Centre for Genomic Medicine in Neuromuscular Disease, Mitochondrial Disease Patient Cohort (UK) (G0800674), the UK NHRI Biomedical Research Centre for Aging and Age-related disease award to the Newcastle
upon Tyne Foundation Hospitals NHS Trust, the MRC/EPsRC Molecular Pathology Node, The Lily Foundation, and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003). This study makes use of DECIPHER, which is funded by Wellcome. See Nature PMID: 25533962 or https://www.ddduk.org/access.html for full acknowledgment.

Declaration of Interests

Baylor College of Medicine (BCM) and Miraca Holdings have formed a joint venture with shared ownership and governance of Baylor Genetics (BG), which performs clinical microarray analysis and clinical exome sequencing. J.R.L. serves on the Scientific Advisory Board of BG. J.R.L. has stock ownership in 23andMe, is a paid consultant for Regeneron Pharmaceuticals, has stock options in Lasergen, and is a co-inventor on multiple United States and European patents related to molecular diagnostics for inherited neuropathies, eye diseases, and bacterial genomic fingerprinting. The other authors declare no competing interests.

Received: September 2, 2019
Accepted: January 10, 2020
Published: January 30, 2020

Web Resources

DECIPHER, https://decipher.sanger.ac.uk/
EBI KAlign, https://www.ebi.ac.uk/Tools/msa/kalign/
EBI MUSCLE, https://www.ebi.ac.uk/Tools/msa/muscle/
OMIM, https://www.omim.org/
Uniprot, https://www.uniprot.org/

References

