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However, the commonest form of human TB, and the one that leads to transmission, is apical 251 

pulmonary disease (27). This occurs most frequently in young adults between the ages of 20-252 

25 with the strongest recall response to Mtb antigens, as measured by the Mantoux test (28). 253 

Therefore, these clinical observations demonstrate that infection results in a stable symbiosis 254 

between host and pathogen in the majority of individuals, and a pronounced immune 255 

response associates with the subsequent development of infectious pulmonary disease. The 256 

recently emerging clinical phenomenon of TB rapidly developing after initiating anti-PD-1 257 

immunotherapy (5-15) further reinforces that an excessive immune response in TB can be 258 

harmful. 259 

 260 

PD-1 is expressed on T cells at the site of TB disease and PD-1 expression on circulating 261 

CD4+ T cells associates with bacterial load (29). PD-1 expression is elevated in circulating 262 

CD4 T cells in TB (30) and has been proposed to limit an effective host immune response.  263 

Consequently PD-1 inhibition has been advanced as a therapeutic target to accelerate 264 

clearance of infection (4, 30-34). However, from an evolutionary perspective, PD-1 is 265 

proposed to limit immunopathology in the face of chronic antigenic stimulation (35). 266 

Therefore, it is equally plausible, and indeed perhaps more logical, that PD-1/PD-L1 pathway 267 

up-regulation in TB is a physiologically appropriate response to the persistent pathogen. We 268 

found that hypoxia further up-regulated the PD-1/PD-L1/2 axis, consistent with hypoxia 269 

increasing expression in cancer (19), and TB lesions are hypoxic both in model animals and 270 

human lesions (18, 36).  Analysis of the effect of hypoxia is complicated that both host and 271 

pathogen physiology are altered, with hypoxia causing reduced Mtb growth (37-39) but also 272 

causing diverse host physiological changes.    PD-1 may be particularly important in limiting 273 

excessive inflammation and pathology in conditions of low oxygen tension.  TB reactivation 274 

following immune checkpoint blockade, and the extreme susceptibility of PD-1 deficient 275 
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Luminex Analysis 491 

Samples were sterilised by filtration through a 0.22��M Durapore membrane (MerkMillipore). 492 

Concentrations of cytokines (ThermoFisher, UK) were determined using a Bioplex 200 493 

platform (Bio-�5�D�G�����8�.�����D�F�F�R�U�G�L�Q�J���W�R���W�K�H���P�D�Q�X�I�D�F�W�X�U�H�U�¶�V���S�U�R�W�R�F�R�O and quantified per 494 

milligram of total protein measured by Bradford assay (Biorad).  495 

Statistical analysis 496 

All experiments were performed on a minimum of 2 occasions from separate donors as 497 

biological replicates and on each occasion with a minimum of 3 technical replicates.  Some 498 

donor-to-donor variation occurred in terms of absolute RLU, as expected in the analysis of 499 

primary human cells, but the direction of effects were always consistent.  Data presented are 500 

from a representative donor and include the mean and SEM. Analysis was performed in 501 

Graphpad Prism v7.05. Students t-test was used to compare pairs and ANOVA w�L�W�K���7�X�N�H�\�¶�V��502 

correction for multiple comparisons for groups of 3 or more groups where it was appropriate. 503 

For the flow cytometric analysis of clinical samples, data were analysed using Mann-Whitney 504 

test for comparing pairs and Kruskal-�:�D�O�O�L�V���W�H�V�W���Z�L�W�K���'�X�Q�Q�¶�V���P�X�O�W�L�S�O�H���F�R�P�S�D�U�L�V�R�Q�V���W�H�V�W���I�R�U������505 

or more group.     506 
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Figure Legends  714 

Figure 1:  PD-1 is expressed in human TB granulomas. (A) Analysis of PD-1 expression by T cells 715 

in the lung and peripheral circulation of thirty-five TB patients undergoing medically indicated lung 716 

resection. PD-1 shows a trend towards higher expression by lung CD4+ (i) and is significantly higher 717 

on lung CD8+ (ii) T cells. Significance analysed by one-tailed unpaired Mann-Whitney test. (B) Flow 718 

cytometric analysis of lung parenchyma CD4+ (i) and CD8+ (ii) T cells from TB patients based on the 719 

expression of PD-1, CD69 and CD103 demonstrates increased PD-1 expression in the resident T cells 720 

in the lung parenchymal cells. Significance analysed by Kruskal-�:�D�O�O�L�V�� �W�H�V�W�� �Z�L�W�K�� �'�X�Q�Q�¶�V�� �P�X�O�W�L�S�O�H��721 

comparison test. (C) Immunohistochemical staining for PD-1+, CD4+ and CD8+ expression in human 722 

lung TB granulomas. PD-1 is expressed around the central macrophage core in the same region as 723 

CD4+ (ii) and CD8+ (iii) T cells. Co-localization of PD-1 (blue), CD4+ (red) and CD8+ (yellow) using 724 

false colour of the immunostaining shows co-localisation of PD-1 with both CD4+ and CD8+ cells 725 

���S�X�U�S�O�H�� �D�Q�G�� �J�U�H�H�Q�� �U�H�V�S�H�F�W�L�Y�H�O�\���� ���L�Y������ �6�F�D�O�H�� �E�D�U�� ���������P����(D) PD-1 is not expressed in caseating 726 

granulomas where immunopathology is present in human lung biopsies (i).  Six biopsies taken as part 727 

of routine clinical care were studied.  CD4+ (ii) and CD8+ (iii) expressing cells are present in the same 728 

area, and so absence of PD-�����L�P�P�X�Q�R�U�H�D�F�W�L�Y�L�W�\���L�V���Q�R�W���G�X�H���W�R���O�D�F�N���R�I���Y�L�D�E�O�H���F�H�O�O�V�������6�F�D�O�H���E�D�U�����������P�� 729 

Figure 2: The PD-1/ PD-L1 axis is upregulated in the 3D TB granuloma system. (A) Still images 730 

from time-lapse microscopy imaging demonstrating increasing cellular aggregation of PBMC around 731 

a focus of ultraviolet killed Mtb H37Rv in the 3D granuloma system at times 0, 12, 24 and 48h post 732 

encapsulation in the matrix.  The Z projection shows the cells contained within the designated volume 733 

in a 2D reconstruction.  Full time course in Video 1. (B) Gene expression of PD-1 and its ligands in 734 

the 3D microsphere model. RNA was extracted from live Mtb-infected PBMC and relative expression 735 

investigated by qRT-PCR at day 4 post infection. Open bars, normoxia, filled bars 1% hypoxia.  PD-736 

L1 and PD-L2 are upregulated by Mtb infection, and in 1% hypoxia PD-1 expression is increased and 737 

PD-L2 expression further augmented (n=4). Results are normalised against the housekeeping genes 738 

�*�$�3�'�+���� ��-�0�L�F�U�R�E�X�O�L�Q�� �D�Q�G�� �)�$�1�7�$�� �D�Q�G�� �V�K�R�Z�H�G�� �V�L�P�L�O�D�U�� �U�H�V�X�O�W�V���� ��-microglobulin used for (B). 739 

*p<0.05, **p<0.01. (C-E) Surface expression of PD-1 and PD-L1.  PBMCs were decapsulated from 740 
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Mtb-infected microspheres at day 7 and surface expression of PD-1 and its ligand PD-L1 were 741 

analysed by flow cytometry. PD-1 is expressed in CD4+ (C) and CD8+ (D) T cells in PBMC from Mtb 742 

infected microspheres incubated in normoxia.  PD-1 expression was significantly upregulated in 1% 743 

hypoxia.  Representative flow cytometry plots and level of expression of PD-1 by the CD4+ and CD8+ 744 

T cell fractions are shown (n=4). (E) PD-L1 expression on CD14+CD11b+ cells within PBMC in Mtb 745 

infected microspheres is upregulated in both normoxia and 1% hypoxia at day 7 (n=4). Significance 746 

of *p<0.05. (F) Growth of Mtb H37Rv ffLux+ in microspheres in normoxia and 1% hypoxia 747 

measured at day 3, 7 and 14.  Hypoxia reduces Mtb growth. (G) �+�\�S�R�[�L�D���L�Q�G�X�F�L�E�O�H���I�D�F�W�R�U�����.�� ���+�,�)-748 

���.���� �P�5�1�$���O�H�Y�H�O�V���Z�H�U�H���L�Q�F�U�H�D�V�H�G���L�Q���0�W�E-infected microspheres incubated in 1% hypoxia. RNA was 749 

extracted from decapsulated microspheres and normalised to uninfected microspheres in the same 750 

�H�Q�Y�L�U�R�Q�P�H�Q�W���� �5�H�V�X�O�W�V�� �Z�H�U�H�� �Q�R�U�P�D�O�L�V�H�G�� �W�R�� �W�K�H�� �K�R�X�V�H�N�H�H�S�L�Q�J�� �J�H�Q�H�V�� �*�$�3�'�+���� ��-microglobulin and 751 

FANTA to check the housekeeping gene are not affected by hypoxia. Similar results all three of the 752 

�K�R�X�V�H�N�H�H�S�L�Q�J���J�H�Q�H�V������-microglobulin used for this graph.  Significance *** p<0.001. 753 

Figure 3: PD-1 pathway inhibition increases Mtb growth. (A) Inhibition of PD-1 receptors by 754 

small chemical inhibitor 1 increases Mtb growth in a dose-response manner (1-1000nM). Inhibitor 755 

concentration 1nM (green), 10nM (purple), 100nM (blue) and 1µM (red). (B) Inhibitor 1 was not 756 

toxic to Mtb-infected PBMC, analysed by CytoTox-Glo assay (Day 7). (C) Cellular toxicity was no 757 

different at day 14 as analysed by LDH release. Concentration 1 and 1000nM were analysed for 758 

toxicity.  (D) Spartalizumab, a therapeutic monoclonal anti-PD-1 antibody, progressively increased 759 

Mtb growth in microspheres in normoxia in a dose-dependent manner.  (E) Spartalizumab also 760 

increased Mtb growth in hypoxia. Media (black), isotype (blue), spartalizumab 20µg/ml (green) and 761 

200µg/ml (red). (F) The anti-PD-1 antibody had no effect on cell survival in microspheres in 762 

normoxia (clear bars) and 1% hypoxia (filled bars). Cytotoxity is determined by measuring LDH 763 

release at day 14 and normalized by the control. ****p<0.0001. 764 

Figure 4: PD-1 inhibition increases secretion of multiple cytokines and growth factors. PD-1/PD-765 

L1 signalling was inhibited by Spartalizumab, a humanized IgG4 anti-PD1 monoclonal antibody, in 766 

Mtb-infected microspheres at 20 and 200µ/ml in normoxia. Supernatants were collected at day 14 and 767 
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accumulation of cytokines and growth factors was analysed by Luminex 35-multiplex assay. 768 

Concentrations were normalized to secretion by Mtb infected microspheres to demonstrate relative 769 

fold change, and individual concentrations are shown in Supplementary figure 6. The experiment was 770 

performed twice with three replicates.   Red font:  ** p<0.001 for Spartalizumab versus isotype 771 

control.  772 

Figure 5: Addition of TNF-�.�� �L�Q�F�U�H�D�V�H�V���0�W�E���J�U�R�Z�W�K���L�Q���P�L�F�U�R�V�S�K�H�U�H�V in normoxia. Recombinant 773 

human G-CSF, GM-CSF, IL-4, IL-6, IL-10, IL-12, TNF-�.���� �,�/-1RA, MIP-���.���� �0�,�3-������ �R�U�� �5�$�1�7�(�6��774 

were added either individually (A and B) or in combination pools (C) to Mtb-infected microspheres at 775 

�³�O�R�Z�´�� �F�R�Q�F�H�Q�W�U�D�W�L�R�Q�V���� �G�H�I�L�Q�H�G�� �D�V�� �W�K�D�W�� �P�H�D�V�X�U�H�G�� �L�Q�� �P�H�G�L�D�� �D�U�R�X�Q�G�� �V�S�K�H�U�H�V�� �D�I�W�H�U�� �D�Q�W�L-PD-1 treatment. 776 

Recombinant human TNF-�.�� �L�Q�F�U�H�D�V�H�V�� �J�U�R�Z�W�K�� �R�I�� �0�W�E���� �Z�K�L�O�V�W�� �R�W�K�H�U�� �S�U�R-inflammatory cytokines did 777 

not (A).  GM-CSF has a lesser growth-promoting effect (B).   The only combination pool that 778 

increased Mtb growth was the pro-inflammatory cytokine pool, containing TNF-�.��(C). (D) TNF-�.��779 

results in a dose-dependent increase in the Mtb growth over time. (E) Anti-TNF-�.�� �Q�H�X�Wralising 780 

antibodies partially suppress the increased Mtb growth caused by TNF-�.���D�X�J�P�H�Q�W�D�W�L�R�Q�����$�Q�W�L-TNF-�.��781 

from Thermo Fisher Scientific. (F) Anti-PD1 antibody incorporation within microspheres increases of 782 

Mtb growth at day 7, and this effect is reversed by concurrent anti-TNF-�.�� �Q�H�X�W�U�D�O�L�V�L�Q�J�� �D�Q�W�L�E�R�G�L�H�V��783 

within microspheres. The constituent of the cytokine pools are: Growth factor pool (GF: GM-CSF and 784 

G-CSF), Anti-Inflammatory cytokine pool (Anti-Inf: IL -10 and IL-1RA), Pro-Inflammatory cytokine 785 

pool (Pro-Inf: TNF-�r, IL-6 and IL-12) and Chemokine pool (Chemo: RANTES, MIP-1�r, MIP-1�t).    786 

Figure 6: TNF-�.�� �L�V�� �H�[�S�U�H�V�V�H�G�� �L�Q�� �K�X�P�D�Q�� �7�%�� �J�U�D�Q�X�O�R�P�D�V�� �D�Q�G�� �V�S�X�W�X�P�� �7�1�)-�.�� �F�R�Q�F�H�Q�W�U�D�W�L�R�Q�V��787 

negatively correlate with circulating PD-1 expression. (A) TNF-�.���L�V���H�[�S�U�H�V�V�H�G���Z�L�W�K�L�Q���K�X�P�D�Q���O�Xng 788 

TB granulomas, with greater immunoreactivity than control lung tissue at the excision margin of lung 789 

cancer (i & ii). Quantification of TNF-�.���L�P�P�X�Q�R�V�W�D�L�Q�L�Q�J�����Q� �������L�Q���7�%���F�D�V�H�V���Z�D�V���V�L�J�Q�L�I�L�F�D�Q�W�O�\���K�L�J�K�H�U��790 

than controls (n=5) (iii).   (B) TNF-�.�� �L�P�P�X�Q�R�V�W�D�L�Q�L�Q�J was extensive in the lung granuloma of a 791 

patient that developed TB whilst treated with pembrolizumab, a humanized anti-PD-1 antibody (n=1). 792 

(C) CD4+ T cell PD-1 expression on circulating PBMC negatively correlates with sputum TNF-�.��793 

concentration in a separate cohort where paired sputum and PBMCs samples are available.  Green 794 
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dots, healthy controls; Black TB cases; Orange respiratory symptomatics.  �$�Q�D�O�\�V�L�V�� �E�\�� �6�S�H�D�U�P�D�Q�¶�V��795 

correlation analysis gave r-value of -0.341 with p=0.0484  796 

 797 

Figure supplement legends 798 

 799 

Figure 1�±figure supplement 1: PD-1 expression on peripheral CD4+ and CD8+ T-cells is 800 

predominantly on CD103- and CD69-negative cells. Significance was analyzed by one-tailed 801 

unpaired Mann-Whitney test. 802 

Figure 1�±figure supplement 2: PD-1 expressing cells are absent in the immediate region surrounding 803 

caseous necrosis in human TB granulomas.  Images from four different clinical samples are presented. 804 

�6�F�D�O�H���E�D�U�����������P�� 805 

Figure 2�±figure supplement 1: Hypoxia alone has no significant effect on expression of the PD-806 

1/PDL-1/2 axis. Gene expression PD-1 and its ligands in uninfected cells was compared between 807 

normoxic and hypoxic conditions in the microsphere model. RNA was extracted from uninfected 808 

PBMCs and relative expression investigated by qRT-PCR at day 4. Open bars PD-1, filled bars PD-809 

L1 and black bars PD-L2 respectively.  Results were normalised against the housekeeping genes 810 

�*�$�3�'�+���� ��-Microbulin and FANTA and showed similar results.  No significant changes in gene 811 

expression were noted in uninfected microspher�H�V��������-microglobulin used for the analysis presented. 812 

Figure 2�±figure supplement 2:  (A) Mtb H37Rv ffluc+ growth in 1% hypoxia. Microspheres were 813 

decapsulated in a media containing 5mM EDTA and 0.1% saponin at day 14.  The lysate was 814 

centrifuged, re-suspended in 1ml PBS, serially diluted and grown in Middlebrook 7H11 media for 3 815 

weeks before colony counting.  (B)  Host cell viability using 3D CytoxGlo viability assay (Promega) 816 

shows no significant difference between normoxia (open bars) and hypoxia (filled bars) at day 4 and 817 

day 7.   818 
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Figure 3�±figure supplement 1: Small chemical inhibition of PD-1/PD-L1 interaction in 1% hypoxia 819 

measured at day 14 shows a dose-dependent increase in Mtb growth with PD-1 inhibition. *** 820 

p<0.0001 with one-way ANOVA with �'�X�Q�Q�H�W�W�¶�V���P�X�O�W�L�S�O�H���F�R�P�S�D�U�L�V�R�Q���W�H�V�W�� 821 

Figure 4�±figure supplement 1: Cytokine accumulation around microspheres after inhibition of PD-822 

1/PD-L1 signalling with Spartalizumab, a humanized IgG4 anti-PD1 monoclonal antibody at 20 and 823 

200µg/ml in normoxia (N) and 1% hypoxia (H). Supernatants were collected at day 14 and a Luminex 824 

35-multiplex assay was performed. The experiment was performed twice with three replicates.  825 

Concentrations are in pg/ml. Labels in red correspond to significantly raised cytokine values. Red 826 

font:  Significance **p<0.001.  827 

Figure 4�±figure supplement 2:  PD-1 inhibition increases secretion of multiple cytokines and growth 828 

factors in 1% hypoxia.   Supernatants were collected at day 14 and accumulation of cytokines and 829 

growth factors was analysed by Luminex 35-multiplex assay. Concentrations were normalized to 830 

secretion by Mtb infected microspheres to demonstrate relative fold change, and individual 831 

concentrations are shown in Supplementary figure 5. The experiment was performed twice with three 832 

replicates.   Red font:  ** p<0.001 for Spartalizumab versus Isotype control. 833 

Figure 4�±figure supplement 3: Spartalizumab induces TNF-�.�� �V�H�F�U�H�W�L�R�Q�� �L�Q�� �X�Q�L�Q�I�H�F�W�H�G�� �D�Q�G�� �L�Q�I�H�F�W�H�G��834 

microspheres, which is neutralised by anti-TNF-�.���������3�%�0�&�V���Z�K�L�F�K���Z�H�U�H���X�Q�L�Q�I�H�F�W�H�G���Rr infected with 835 

Mtb were encapsulated in alginate-collagen matrix after pre- incubation in Spartalizumab at 836 

���������J���Pl.  The supernatant was collected to measure TNF-�.�� �V�H�F�U�H�W�L�R�Q�� �D�W���G�D�\�� ������ �� ���$���� �6�S�D�U�W�D�O�L�]�X�P�D�E��837 

induces TNF-�.�� �V�H�F�U�H�W�L�R�Q�� �L�Q�� �X�Q�L�Q�I�H�F�W�H�G�� �F�H�O�O�V�� �D�E�R�Y�H�� �Eackground, which is accentuated with Mtb 838 

infection. (B)  Anti-PD-1 antibody increases TNF-�.���V�H�F�U�H�W�L�R�Q���I�U�R�P���0�W�E���L�Q�I�H�F�W�H�G���F�H�O�O�V���D�E�R�Y�H���L�V�R�W�\�S�H����839 

and the detectable levels are suppressed by anti-�7�1�)���D�Q�W�L�E�R�G�\�����������J���P�O�������� 840 

Figure 5�±figure supplement 1: Individual Mtb growth curves at �³high�  ́cytokine concentration, five 841 

times the concentration measured in media after anti-PD-1 treatment.  Human recombinant G-CSF, 842 

GM-CSF, IL-4, IL-6, IL-10, IL-12, TNF-�.���� �,�/-1RA, MIP-���.���� �0�,�3-������ �D�Q�G�� �5�$�1�7�(�6�� �Z�H�U�H�� �D�G�G�H�G�� �W�R��843 

microspheres either individually or in combination pools to microspheres at 5 times the concentrations 844 
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in Figure 5, determined by the concentration measured in the media around the microspheres. TNF-�.��845 

increases Mtb growth in microspheres alone and in the pro-inflammatory pool. 846 

Figure 5�±figure supplement 2: Anti-TNF-�.�� �Q�H�X�W�U�D�O�L�]�L�Q�J�� �D�Q�W�L�E�R�G�L�H�V�� �V�X�S�U�H�V�V�� �W�K�H�� �0�W�E�� �J�U�R�Z�W�K��847 

following TNF-�.���I�U�R�P���D���G�L�I�I�H�U�H�Q�W���V�R�X�U�F�H�����$�Q�W�L-TNF-�.���I�U�R�P���6�L�J�P�D-Aldrich, UK). 848 

Figure 5�±figure supplement 3: TNF-�.��skews polarization of monocytes to macrophages with lower 849 

CD80 expression. PBMCs were infected with Mtb H37Rv at MOI of 0.1 and encapsulated in alginate-850 

collagen microspheres after overnight incubation. Microspheres were then incubated in complete 851 

RPMI (with L-Glutamine and 10% human serum) with TNF-�.�� �������Q�J���P�O���� �8�Q�L�Q�I�H�F�W�H�G�� �3�%�0�&�V�� �Z�H�U�H��852 

encapsulated and treated similarly as a comparator for TNF-�.���V�W�L�P�X�O�D�W�L�R�Q�����$�W���G�D�\���������W�K�H���P�L�F�U�R�V�S�K�H�U�H�V��853 

were decapsulated in 0.5mM EDTA solution at pH of 7.2. Double staining with CD14 and CD11b 854 

defined macrophages, which were classified by CD80 and CD163 expression. (A) Histogram showing 855 

expression of CD163 and CD80 where there was significant decrease in CD80 expression as shown if 856 

Figure (B). TNF suppressed the relative geometric mean of CD80, but did not affect CD163 857 

expression. This experiment was performed in 4 separate donors. 858 

Figure 5�±figure supplement 4: Hierarchical gating strategy used to identify lymphocyte and 859 

monocytic populations from decapsulated microspheres containing human peripheral blood 860 

monocular cells. Single cells were decapsulated from microspheres in 5mM EDTA, washed and 861 

processed for flow cytometry.  First doublets were excluded from live cells, then cells were gated as 862 

CD3+ and CD3- . Subsequently, lymphocytes were further classified into CD4+ and CD8+, which are 863 

sub-categorized based on PD-1 staining. Double staining with both CD14 and CD11b defined 864 

macrophages, which were further analysed for PD-L1, CD80 and CD163 surface expression. All the 865 

antibodies and clone number are listed in the text and the key resources table.     866 

 867 

Supplementary file 1:  PD-1 expressing cells for each subset expressed as percentage of live CD45+ 868 

cells, with range in parentheses.   869 

 870 
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Video 1: Cell migration over 48 hours around a central cluster of  871 

macrophages infected with UV-killed Mtb within a 3D alginate-collagen matrix.  Migration is seen in 872 

the first 24 hours, without aggregation, and then progressive granuloma formation occurs. 873 

 874 

 875 
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Figure 1–figure supplement 1: PD-1 expression on peripheral CD4+ and CD8+ T-cells is 1 
predominantly on CD103- and CD69-negative cells. Significance was analyzed by one-tailed unpaired 2 
Mann-Whitney test. 3 
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Figure 1–figure supplement 2: PD-1 expressing cells are absent in the immediate region surrounding 1 
caseous necrosis in human TB granulomas.  Images from four different clinical samples are presented. 2 
Scale bar 100��m. 3 
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Figure 2–figure supplement 1: Hypoxia alone has no significant effect on expression of the PD-
1/PDL-1/2 axis. Gene expression PD-1 and its ligands in uninfected cells was compared between 
normoxic and hypoxic conditions in the microsphere model. RNA was extracted from uninfected 
PBMCs and relative expression investigated by qRT-PCR at day 4. Open bars PD-1, filled bars PD-L1 
and black bars PD-L2 respectively.  Results were normalised against the housekeeping genes GAPDH, 
��-Microbulin and FANTA and showed similar results.  No significant changes in gene expression were 
noted in uninfected microspheres.  ��-microglobulin used for the analysis presented. 
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Figure 2–figure supplement 2A:  (A) Mtb H37Rv ffluc+ growth in 1% hypoxia. Microspheres were 1 
decapsulated in a media containing 5mM EDTA and 0.1% saponin at day 14.  The lysate was 2 
centrifuged, re-suspended in 1ml PBS, serially diluted and grown in Middlebrook 7H11 media for 3 3 
weeks before colony counting.  (B)  Host cell viability using 3D CytoxGlo viability assay (Promega) 4 
shows no significant difference between normoxia (open bars) and hypoxia (filled bars) at day 4 and 5 
day 7.   6 
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Figure 4-figure supplement 1 (legend overleaf)



Figure 4–figure supplement 1: Cytokine accumulation around microspheres after inhibition of PD-
1/PD-L1 signalling with Spartalizumab, a humanized IgG4 anti-PD1 monoclonal antibody at 20 and 
200µg/ml in normoxia (N) and 1% hypoxia (H). Supernatants were collected at day 14 and a Luminex 
35-multiplex assay was performed. The experiment was performed twice with three replicates.  
Concentrations are in pg/ml. Labels in red correspond to significantly raised cytokine values. Red 
font:  Significance **p<0.001.  
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Figure 4–figure supplement 2:  PD-1 inhibition increases secretion of multiple cytokines and growth 
factors in 1% hypoxia.   Supernatants were collected at day 14 and accumulation of cytokines and 
growth factors was analysed by Luminex 35-multiplex assay. Concentrations were normalized to 
secretion by Mtb infected microspheres to demonstrate relative fold change, and individual 
concentrations are shown in Supplementary figure 5. The experiment was performed twice with three 
replicates.   Red font:  ** p<0.001 for Spartalizumab versus Isotype control. 
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Figure 4–figure supplement 3: Spartalizumab induces TNF-�. secretion in uninfected and infected 1 
microspheres, which is neutralised by anti-TNF-�..   PBMCs which were uninfected or infected with 2 
Mtb were encapsulated in alginate-collagen matrix after pre- incubation in Spartalizumab at 200��g/ml.  3 
The supernatant was collected to measure TNF-�. secretion at day 7.  (A) Spartalizumab induces TNF-4 
�. secretion in uninfected cells above background, which is accentuated with Mtb infection. (B)  Anti-5 
PD-1 antibody increases TNF-�. secretion from Mtb infected cells above isotype, and the detectable 6 
levels are suppressed by anti-TNF antibody (50��g/ml).   7 
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Figure 5–figure supplement 1: Individual  
Mtb growth curves at “high” cytokine  
concentration, five times the concentration 
measured in media after anti-PD-1 treatment.  
Human recombinant G-CSF, GM-CSF, IL-4,  
IL-6, IL-10, IL-12, TNF-�., IL-1RA, MIP-1�.,  
MIP-1�� and RANTES were added to 
microspheres either individually or in  
combination pools to microspheres at 5 times  
the concentrations in Figure 5, determined by  
the concentration measured in the media 
around the microspheres. TNF-�. increases 
Mtb growth in microspheres alone and in the  
pro-inflammatory pool.  
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Figure 5–figure supplement 2: Anti-TNF-�. neutralizing antibodies supress the Mtb growth following 
TNF-�. from a different source (Anti-TNF-�. from Sigma-Aldrich, UK). 
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Figure 5–figure supplement 3: TNF-�. skews polarization of monocytes to macrophages with lower 
CD80 expression. PBMCs were infected with Mtb H37Rv at MOI of 0.1 and encapsulated in alginate-
collagen microspheres after overnight incubation. Microspheres were then incubated in complete RPMI 
(with L-Glutamine and 10% human serum) with TNF-�. 7.5ng/ml. Uninfected PBMCs were 
encapsulated and treated similarly as a comparator for TNF-�. stimulation. At day 7, the microspheres 
were decapsulated in 0.5mM EDTA solution at pH of 7.2. Double staining with CD14 and CD11b 
defined macrophages, which were classified by CD80 and CD163 expression. (A) Histogram showing 
expression of CD163 and CD80 where there was significant decrease in CD80 expression as shown if 
Figure (B). TNF suppressed the relative geometric mean of CD80, but did not affect CD163 expression. 
This experiment was performed in 4 separate donors. 
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Figure 5–figure supplement 4: Hierarchical gating strategy used to identify lymphocyte and 1 
monocytic populations from decapsulated microspheres containing human peripheral blood monocular 2 
cells. Single cells were decapsulated from microspheres in 5mM EDTA, washed and processed for flow 3 
cytometry.  First doublets were excluded from live cells, then cells were gated as CD3+ and CD3- . 4 
Subsequently, lymphocytes were further classified into CD4+ and CD8+, which are sub-categorized 5 
based on PD-1 staining. Double staining with both CD14 and CD11b defined macrophages, which were 6 
further analysed for PD-L1, CD80 and CD163 surface expression. All the antibodies and clone number 7 
are listed in the text and the key resources table.     8 
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