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Abstract

When considering instances of distributed systems where visual sensors communi-

cate with remote predictive models, data traffic is limited to the capacity of com-

munication channels, and hardware limits the processing of collected data prior to

transmission. We study novel methods of adapting visual inference to limitations on

complexity and data availability at test time, wherever the aforementioned limita-

tions exist. Our contributions detailed in this thesis consider both task-specific and

task-generic approaches to reducing the data requirement for inference, and evaluate

our proposed methods on a wide range of computer vision tasks, namely: (i) video

action classification, (ii) single shot detection, and (iii) image super-resolution. Our

approach studies data utility optimization techniques that omit input redundancies,

and allows for the realization of data-efficient models which consider only the

amount of data necessary for inference. This thesis makes four distinct contribu-

tions: (i) We investigate multi-class action classification via two-stream convolu-

tional neural networks that directly ingest information extracted from compressed

video bitstreams. We show that selective access to macroblock motion vector infor-

mation provides a good low-dimensional approximation of the underlying optical

flow in visual sequences. (ii) We devise a bitstream cropping method by which

AVC/H.264 and H.265 bitstreams are reduced to the minimum amount of neces-

sary elements for optical flow extraction, while maintaining compliance with codec

standards. We additionally study the effect of codec rate-quality control on the spar-

sity and noise incurred on optical flow derived from resulting bitstreams, and do so

for multiple coding standards. (iii) We demonstrate that there is a high degree of

variability in the amount of data required for action classification, and leverage this
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to reduce the dimensionality of input volumes by inferring the required temporal

extent for accurate classification prior to processing via learnable machines. (iv)

We extend the paradigm of Mixtures-of-Experts (MoE) to include a new class that

optimizes the data cost of inference for any computer vision task. We postulate

that the minimum acceptable data cost of inference varies for different input space

partitions, and consider mixtures where each expert is designed to meet a differ-

ent set of constraints on input dimensionality. To take advantage of the flexibility

of such mixtures in processing different input representations and modalities, we

train biased gating functions such that experts requiring less information to make

their inferences are favoured to others. We finally note that, our proposed data util-

ity optimization solutions include a learnable component which considers specified

priorities on the amount of information to be used prior to inference, and can be

realized for any combination of tasks, modalities, and constraints on available data.
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Mathematical Notation

Care was taken to ensure the notation used in this thesis is consistent, and

listed below are the most frequently used symbols and shorthand. For simplicity of

presentation, some liberties were taken in notating particular parts of the thesis, and

details of this are stated wherever relevant.
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formations
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f (xxx;θ) A function ofxxx parameterized byθ , mostly used to indicate

learnable functions

M number of input examples in a batchX
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log(x) the logarithm function ofx

N (μ ,∑) multivariate drawn from a normal distribution with mean

vectorμ and covariance matrix∑

P(x) probability density function ofx
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∫

xP(x)dx
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Chapter 1

Introduction

The fields of computer vision and learnable inference are increasingly affected by

recent advances pertaining to artificial neural models, and relevant solutions are

permeating the front and back ends of commercial services. This has led to the

emergence of systems that facilitate the communication of whole neural architec-

tures and their parameters [1, 2, 3], and the development of network acceleration

circuits [4, 5, 6, 7, 8, 9] in recent iterations of mobile hardware [10]. In the foresee-

able future, similar means of acceleration will be extended to other types of sensory

hardware such as surveillance drones [11, 12, 13], and even to next generations of

inter-planetary communicators [14, 15, 16].

To close the rift between the complexity requirements of deep inference models

and the computational limitations of mobile devices and sensors, modern computer

vision solutions are required to use modest amounts of data in producing their pre-

dictions. This is because, greedy data utility inevitably leads to more complexity

and further exhaustion of communication resources (e.g., bandwidth), where both

of which are scarce and typically require careful management in practical contexts.

Difficulty in managing media stems primarily from two aspects: (i) all state-of-

the-art methods for high-level semantic description of visual data require compute-

intensive decoding, followed by complex pixel-domain processing [17, 18], and

(ii) the high resolution and high frame-rate nature of decoded media and its format

inflation (e.g. from standard to super-high definition, 3D, panoramic, etc) require

highly-complex robust feature extraction, which imposes massive computation and



19

storage requirements [17, 19]. The momentum of recent research in the field of

computer vision is directed mainly towards achieving the maximum performance

possible for a given task, and has produced a lot of promising results for many

tasks such as: single shot detection [20, 21, 22], visual tracking [23, 24, 25], fa-

cial recognition [26, 27], motion prediction [28, 29], and learnable compression

[30, 31]. However, recently proposed vision models ignore restrictions on com-

plexity, and process redundantly large volumes of data. Such unnecessary burdens

can be alleviated by optimizing the nature and amount of data processed by vision

models without compromising performance, and this potential is backed by evi-

dence from biological neural processes from recent studies [32, 33, 34]. Metabolic

energy reserves available to the mammalian brain, for example, had important im-

plications on its evolution and function. That is, energy consumption determines

neural circuitry and activity patterns by favoring metabolically efficient wiring pat-

terns [35, 36] and neural codes [37, 38], and to conserve energy, the human brain

tends to use the minimum amount of information necessary for building higher ab-

stractions [35, 36, 37, 38]. This observation is a strong indication that information

is processed in specific ways conditional on the nature of sensed signals, and it goes

inline with the energy conservation principle prevalent in most biological processes.

Like the human brain, visual inference systems are evolving to shift from pre-

vious visual analysis paradigms and standards that treat every pixel equally, to sys-

tems where information is conditionally processed subject to the context and tar-

get of inference [39, 40]. Research in this vein is mainly motivated by the chasm

between the computational capabilities of mobile devices and complex vision solu-

tions, which can be bridged in two salient directions: (i) by creating less complex

solutions, and (ii) creating efficient communication infrastructures by which exem-

plar data can be transmitted from visual sensors to remote vision models for analy-

sis. The aforementioned directions also motivate the thrust of our contribution, and

inline with both directions, recent breakthroughs in artificial neural network design

have spiked interest in developing systems that understand video content to provide

content-aware compression [41, 42, 43, 44]. The latter can be helpfully instantiated
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in different ways for different problems, for example: media delivery systems pri-

oritise overall picture quality, but for face detection systems [26, 27] where facial

features are the prime information resource to conserve, more bitrate and transmis-

sion resources can be allocated to coding faces rather than backgrounds.

Beyond the complexity challenges mentioned above, and in visual analysis

systems where visual sensors and data processing models are not co-located, lim-

itations also exist on data transmission links (e.g., on the bandwidth of communi-

cation networks). Consequentially, this imposes constraints on the amount of data

available to visual inference systemsat test time, and in our work we denote the

latter as a problem ofdata utility optimization. Examples of such systems include

video streaming services which use vision models [45, 46, 47], Internet of Things

(IoT) systems [48], and systems that collect data from remote sensors in general

(e.g., sensors on remote drones and satellites [11, 12, 13], or inter-planetary com-

municators where bandwidth conservation is of utmost importance [14, 15, 16]).

The need to optimize transmission links in distributed systems that include com-

puter vision models, motivates several areas of research, namely: (i) the design of

content-aware compression models that produce semantically-rich codes to incur

the minimum amount of strain on transmission links, (ii) developing transmission

protocols and decision mechanisms that take into account the particularities of dif-

ferent computer vision models, and (iii) studying heuristic and theoretical methods

for approximating the required nature and amount of data for inference via com-

puter vision models prior to transmission.

In this thesis, we start by considering video action classification to study task-

specific solutions that reduce the complexity and bandwidth requirements of recent

proposals to levels achievable by current mobile compute and communication sys-

tems. We then generalise our findings on video classification to extend our work

to arbitrary computer vision tasks, and propose a task-agnostic solution for deter-

mining the minimum amount of data required for accurate inference. Crucially, the

latter part of our work has substantial value in reducing both: the complexity of

inference (because less data is processed), and required bandwidth for the acquisi-
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tion of necessary data from visual sensors (because less data is sent). We begin our

study on video analysis because it holds significant value as a business asset and as

a tool for extracting and disseminating information. For instance, compressed video

content is the prime asset of online media services such as Netflix, Amazon Prime

Video, YouTube and Vimeo. The 2015-2020 Cisco Visual Networking Index Re-

port estimates that, by 2020, more than 82 million minutes of video will be crossing

the internet every second [49]. Video action classification (where human activity

in video is classified, e.g. walking, swimming, etc) is a vision problem prevalent

in many commercial applications such as video indexing [50, 51] and surveillance

of human activity for security [52, 53]. Video requires high amounts of resources

in terms of storage capacity, transmission, and computation, which motivates the

need for video analysis solutions that are content-based and of manageable com-

plexity. In many such problems, frame sequences have to be processed on visual

sensors with embedded computation architectures (e.g., surveillance cameras and

mobile devices [11, 12, 13]) which cannot accommodate the complexities required

by such models. Our contribution on action classification considers codec motion

vectors as priors of knowledge, which when properly interpreted, yield a sparse

and noisy representation of the underlying motion flow in video. Motion vectors

are an essential component in all current video coding standards, and are used to

compress reoccurring textures across or within frames [54, 55, 56]. We show in-

terpolated representations of motion vectors to be highly correlated with pixel-wise

groundtruths of motion, with resolutions that are typically an order of magnitude

lower than those of dense optical flow approximations. By training classifiers on

sparse approximations of optical flow, we reduce the complexity of video classifi-

cation, and show how codec motion vectors can provide a good prior for reducing

the amount of texture to be processed, by including textures only when they exhibit

magnitudes of motion that surpass prespecified thresholds.

In our second contribution, we consider the bitrate optimization aspect of vi-

sion models and their limits in that regard. Specifically, our contribution in this di-

rection is motivated by contexts where the visual sensing and data processing parts
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of the system are distributed, where it is important to optimize the communication

links between sensors and remote data processing models. To that end, and building

on our first contribution, we investigate the trade-offs between video classification

accuracy and compression bitrates under different quality control settings of cur-

rent standard video codecs. Additionally, and to reduce bandwidth requirements

between sensors and models without significantly affecting classification accuracy,

we propose a learnable decision process by which frame redundancy can be inferred

by inspecting low-level features of underlying motion. This can be expressed as a

problem where input dimensionality must be decided before visual inference, such

that redundancies can be omitted prior to transmission. Importantly, we show our

decision processes to predict frame redundancy with very low complexity, such that

they can be run on computation units embedded in visual sensors.

In the last part of our contribution, we consider the data utility optimization

problem from a task-agnostic perspective. Specifically, we consider the extent to

which input space partitions vary in the amount of information required per input

in order to ensure good performance, and leverage this variance to train more data

efficient mixtures of experts. To do so, we take inspiration from recent work [40, 39,

57] to propose a mixture of experts where expert utility is biased towards specific

experts. While meeting predefined constraints on expert utility bias, we train a

sparse gating function to select the most adequate expert to use from a set of experts

of varied input requirements. Importantly, our method does not modify any pre-

existing methods for complexity optimization or task specific data cost reduction.

As such, our proposal can be applied in conjunction with input embedding methods

[58, 59, 60, 61], or recent proposals [39, 57] that reduce the input requirements of

individual experts. Crucially, when adopted for vision tasks wherein sensors and

predictors are distributed, our work in this direction incurs two important benefits:

(i) less complexity, because less data is used for inference, and (ii) less burden on

communication resources, because less data is required to be sent between sensors

and remote prediction models.
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Summarised, our contribution starts by studying complexity and data utility

optimization for specific classification tasks, and we ultimately generalize our find-

ings to study both optimization problems task-agnostically. In essence, the main

thrust of our thesis studies the question: "What is the minimum acceptable amount

of data to use for accurate inference ?". The last contribution presented in this the-

sis realizes an answer to that question, and we show how useful inferences can be

made about data redundancy to avert unnecessary burdens on hardware. In doing

so, our contribution builds on recent breakthroughs in visual analysis to facilitate

the design of data-efficient systems of computer vision and learnable inference.



Chapter 2

Literature Review

In this chapter, we review recent work published in the field of content based image

and video analysis, and discuss literature that motivates and informs the details of

our contributions in Chapters3, 4, and5. Throughout this section, we also dis-

cuss previous works which later serve as benchmarks to our proposed solutions.

In the field of content based visual analysis, deep learning constitutes the de facto

method upon which the current state-of-the-art is based, and we start by describing

elementary design principles of artificial neural networks. Finally, we discuss spe-

cific classes of deep learning models from which our solutions to bandwidth and

complexity constricted visual analysis are derived (e.g., mixtures of experts, and

layer-wise conditional computing models).

2.1 Neural Networks

Neural Networks (NN) are function approximators made up of collections of acycli-

cally connected neurons, and the simplest neural network can be modeled as a single

artificial neuron. Akin to logistic regressors [62, 63, 64], artificial neurons map in-

puts to their output through differentiable linear transformations with learnable pa-

rameters [65]. Neural networks model complex functions as interconnected layers

of artificial neurons, where outputs of lower layers are forwarded to higher layers

as inputs. To approximate more complex functions, large neural networks aggre-

gate small decisions of many neurons to model abstract notions on data, which can

then facilitate high-level decisions (e.g., about whether an image belongs to a cer-
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tain visual class or another). For instance, fully-connected networks - which are

typically used as learnable linear transformations - define cases where all neuron

pairs between adjacent layers are connected, but neurons within a layer share no

connections amongst themselves [66, 67, 68]. In this way, fully-connected layers

are fully visible to all subsequent layers, in the sense that: the output of any neuron

in an l th layer is a function of all neurons included in fully-connected layers below

the l th layer. Neural networks consisting only of fully-connected layers are referred

to as Multi-Layer Perceptrons (MLP), especially when used as intermediate layers

in more complex structures [69, 68].

2.1.1 Mathematical Representation

To formulate the function of neural networks, standard naming conventions use the

term "N-layer neural network" to refer to networks withN layersexcludingthe input

layer. In this way, a single-layer neural network is an architecture with no hidden

layers, where the input is directly mapped to the output. A single neuron can be

described as a single-layer neural network, and other learned transformations such

as logistic regressors [62] and support vector machines [70] can also be expressed

as a special case of single-layer neural networks (as long as an appropriate number

of hidden states is allowed). The output of a single neuron can be expressed as

a linear mapping which is then optionally passed to a non-linear transformation.

Specifically, given an input vectorx ∈ RN, a weight vectorwww∈ RN, and a learned

biasb, the output of an artificial neurona(xxx|www,b) is:

a(xxx|www,b) = σ(wwwxxx+b) (2.1)

whereσ is some non-linear mapping (e.g., a hard threshold, or a sigmoid func-

tion). Activation functions take on a single number and perform a specified fixed

mathematical operation, and define the non-linear aspect of artificial neurons. For

instance, the sigmoid function is commonly used as a non-linearity with the mathe-

matical formσ(x) = 1/(1+e−x). A sigmoid takes a real-valued number and limits

it to be in[0,1]. Importantly, sigmoid functions are differentiable which makes them

suitable for training neural networks.
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An undesirable property of the sigmoid non-linearity is that, when activations

saturate at either tail (0 or 1), the gradient at these regions is almost zero. This makes

learning weights harder once the sigmoid output saturates. Salient among common

non-linearities are Rectified Linear Units (ReLU) which rectify some given neu-

ron activityx as f (x) = max(0,x) (i.e., activations are thresholded at zero).ReLU

activations were found to greatly accelerate the convergence of stochastic gradient

descent compared to the continuous sigmoid functions [71]. It is argued that this

is due to their linear, non-saturating output. Compared to sigmoid neurons that

involve expensive operations (e.g exponentials), theReLU activation has a linear

response and can be implemented by simply thresholding the output of a neuron at

zero. Leaky rectified linear units [63] were subsequently introduced as an attempt

to evade theReLUzero convergence problem. Instead of the function returning zero

whenx < 0, leakyReLUs instead have a small negative slope. That is, whenx < 0

the activation is returned asf (x) = α x whereα is a small constant, and returns

f (x) = x otherwise.

2.1.2 Fully-Connected Network Architectures

To express neural networks as functions, we define a set of notations that precisely

refer to different components of network architectures. Using the fully-connected

topology as an example, three sets are needed to fully express its function: the

weights connecting each pair of neurons, the biases of each neuron, and the ac-

tivations of each neuron. We formalize the notation of all constituent sets in the

following, and define:

1. wl
jk as the weight from thekth neuron in the(l −1)th layer to thejth neuron

in the l th layer.

2. bl
j as the bias of thejth neuron in thel th layer.

3. al
j as the activation produced by thejth neuron in thel th layer.

Following this notation, we can express the output of each neuron as:

al
j = σ(∑

k

wl
jka(l−1)

j +bl
j) (2.2)
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wherek∈ {1,2, ..K}, andK is the number of visible neurons in the last layer. Note

that the output of the network is a special case ofal
j , whenl = N.

2.1.3 Fitting Functions With Neural Networks

The process of fitting functions to neural network models is commonly referred to

as "training" ; this describes the process of determining good approximations of all

learnable parameters in a network (e.g., to findal
j andwl

jk of (2.2)). In the common

example of classification tasks, the last output layer is usually taken to represent

classification probabilities, as arbitrary real-valued positive numbers which are nec-

essarily summable to 1. To define a normalized probability distribution over all

classes, neural network classifiers typically use the Softmax function [72, 73, 73].

Specifically, for theith class and for an examplexxx corresponding to a ground-truth

one-hot vectory, the Softmax function is expressed as:

P(yi |xxx) =
eaN

i

∑m6=i eaN
m

(2.3)

whereaN
i andaN

i describe theith andmth activations of the last layer of the net-

work. Using the above, many of recently proposed classification networks use what

is known as a cross-entropy loss for training. Loss terms are used to estimate the

accuracy of predictions made by models with respect to their learned weights, and

do so by calculating the cross entropyH(y, ỹ) = E[− logỹ] as a measure of dis-

tance between density functions. From (5.1), the cross-entropy loss termL is then

expressed as:

L=− log(
eaN

i

∑m6=i eaN
m
) (2.4)

To find the set of weight parametersW = [wl
jk] that best approximates a clas-

sification function, weights are gradually updated such thatL is minimized for all

training examples. This is done by back-propagation, wherein the partial derivative
∂L

∂wl
jk

is considered for all weightswl
jk in the network, and weights are updated ac-

cordingly [65, 66, 68], and loss is typically used in conjunction with regularization

terms to impose constraints on updates made to the weight matrixW.



2.1. Neural Networks 28

Neural networks with at least one hidden layer are universal approximators,

and can approximate any continuous function [74]. This is to say, it can be shown

that for any continuous functionf (xxx), and some acceptable error thresholdε > 0,

there exists a neural networkg(xxx) with at least one hidden layer - and a reasonable

choice of non-linearity - that achieves∀xxx : | f (xxx)−g(xxx)| < ε. Neural networks fit

well the statistical properties of datasets when enough data is used for training, are

adequate to use in practice whenever functions to be expressed are smooth, and can

be trained with different optimization algorithms that include variants of stochastic

gradient descent [65, 66, 68][75]. Deeper networks that use more layers include

more non-linearities, and are more capable of capturing higher level abstractions

and correlations in data. We discuss limitations of the latter aspect in the following.

2.1.4 Fitting Capacities And Regularization

Allowing a network to to train with data that is too specific for certain instantiations

of measurements or functions is referred to as "over-fitting", and can easily lead

to a network being able to function well only under very specific conditions. The

main factor that determines how much a network can learn (i.e., the capacity) is the

number of layers and learnable parameters a network comprises [76, 77, 78]. That

is to say, while increasing the capacity of a neural network helps the network learn

more features from training data, that is not necessarily helpful, especially if there

is a large discrepancy between the distributions of the training and testing data. As

the features a network learns become more specific, it is less likely to generalize

what it learned, and more likely to perform worse when trying to solve the problem

for an input that is not very close to the examples it processed during training.

Over-fitting occurs when a model with high capacity learns many features be-

yond the assumed underlying structure, to the point where it starts fitting the noise

in the data [19, 79]. In practice, regularization methods are used in conjunction with

controlling the number of hidden layers and parameters of the network, which can

be seen as a simplistic regularization method in itself. For example, by using the

square magnitude of the parametersW as a penalty when calculating loss, this dis-

courages a network from emphasizing very specific features during training. This
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penalty is weighted by a hyper-parameterα which specifies the amount of applied

regularization. Specifically, networks with high numbers of parameters are known

to have a high learning capacity, making them prone to over-fitting [19, 80, 81].

There are several techniques of imposing constraints on the weight updating pro-

cess in order to prevent over–fitting and improve the generalization of functions

learned by deep neural networks..L2 andL1 regularization [81, 79, 19, 82, 83, 84]

are common forms of regularization for learnable models in general (i.e., they are

applicable to simple regressors and deep models alike). By penalizing the squared

magnitude of all parameters directly in the weight update,L2 regularization pre-

vents weights from exploding in favor of specific features. That is, for every weight

w in the network, we subtract the termαw2 from the objective, whereα is the reg-

ularization strength. TheL2 regularization has the intuitive interpretation of heavily

penalizing peaky weight vectors and preferring spread-out weight vectors [79, 19].

This has the property of encouraging the network to use all of its inputs a little rather

that some of its inputs a lot. Similarly inL1 regularization, for each weightw the

term α|w| is subtracted from the weight update. It is also possible to combineL1

regularization with theL2 regularization:α1|w|+ α2w2 , and this form of regular-

ization is called elastic net regularization [85]. L1 regularization has the intriguing

property that it leads the weight vectors to become sparse during optimization (i.e.

very close to exactly zero). In other words, neurons withL1 regularization end up

using only a sparse subset of their most important inputs and become nearly invari-

ant to noisy inputs. Generally,L2 regularization can be expected to give superior

performance overL1 [86, 87, 88, 84]. Another form of regularization is constraining

the max-norm [89, 79], to enforce an absolute upper boundC > 0 on the magnitude

of weight vectors for each neuron. In practice, this entails performing the parameter

update normally and then enforcing the constraint by clamping the weight vectorwww

of every neuron to satisfy||www||2 < C.

With regards to regularization techniques proposed specifically for neural net-

work architectures, dropout [90, 91, 92, 93, 94] is a recent effective regularization

technique that complements earlier methods [89, 81, 95]. While training, dropout
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is implemented by only keeping a neuron active with some probability 0< p < 1 ,

or setting it to zero otherwise [89]. Dropout can be interpreted as sparsely sampling

a neural network within the full network, and only updating parameters sampled

networks after observing data. During testing there is no dropout applied (to re-

lieve outputs from neuron sampling noise), and can be interpreted as evaluating an

averaged prediction across the exponentially-sized ensemble of all sub-networks.

Another recently developed technique by Szegedy et. al is Batch Normalization

[96, 97, 98, 99, 80, 19, 100] alleviates a lot of problems that are caused by sam-

pled batch biases by explicitly forcing the activations throughout a network to be

normalized during training. The core observation is that this is possible because

normalization is a simple differentiable operation. It has become common practice

to use batch normalization in neural networks. Networks that use batch normaliza-

tion are significantly more robust to bad initialization, since it eliminates batch bias

[80]. Batch normalization can be interpreted as doing pre-processing at every layer

of the network in a differentiable manner.

2.2 Convolving Hidden States Of Neural Networks

Convolutional Neural Networks (CNN) are a class of neural architectures wherein

neurons form filters which convolve across input feature maps to produce their out-

puts [79, 71]. CNNs make an explicit assumption that spatial coherence is important

in determining the desired output . CNNs can be expressed as fully-connected net-

works where weights are shared across many neuron patches that process different

local regions of inputs. By sharing or tying weights across local regions of inputs,

this reduces the amount of learnable parameters and correspondingly the solution

space. Convolutional Layers are sets of spatial filters with learnable parameters

or weights. Spatially, these filters are small and extend through the full depth of

an input volume [79, 71]. During inference, the convolutional layer operates by

convolvingeach filter across the width and height of the input to compute inner

products between the weights of the filter and the input vector at all positions. This

yields a 2-dimensional activation map that gives the response of that filter at every
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spatial position. Convolutional layers learn filters which activate upon detection

a visual feature such as an edge or a blob that is statistically significant to solve

the task assigned to the network. Eventually after passing through a sequence of

stacked convolutional layers, a network would be able to recognize higher levels of

abstraction (e.g. people, buildings). These activations are stacked along the depth

dimension to produce the output volume, as illustrated in [75].

Unlike fully-connected networks, convolutional layers have neurons arranged

in three dimensions: width, height, and depth (note that the word depth here refers to

the third dimension of an activation volume, not to the depth of the network, which

describes the total number of layers in a network). Neurons in convolutional layers

are connected repeatedly across overlapping local regions of their inputs, which can

be represented as tensors of any rank. CNNs gradually decrease the input volume

for each layer until reaching a low-dimensional feature space that can be mapped

to the final output. Within the context of multi-layered networks, convolutional

layers typically defineK kernels where each kernel learns a separate set features to

produce thekth activation mapak
m,n, and from a feature mapfff . Where we denote

thekth kernel byhhhk, and the indices of rows and columns of the resulting activation

map are respectively marked withm andn, the convolved output is expressed as:

ak
m,n = ∑

i
∑

j
hk

i, j f(m−i),(n− j) (2.5)

Note that the above can be expressed as a special case of fully-connected net-

works where weights are shared across local regions of input feature maps, thereby

reducing the amount of operations to be performed [67, 101, 102]. In practice, mod-

els that employ convolutional layers in their function include variants of (2.5) that

use "strides" to skip connections betweenhhhk and fff , and use pooling layers to fur-

ther reduce the dimensionality of subsequent feature maps [103]. As of yet, there is

no deterministic solution to devising optimal sequences of layers of convolutional

networks, although automated architecture search and design methods have been

proposed [104, 105]. For instance, Zophet. al [104] proposed using a dual-CNN

architecture to optimize the architecture of one CNN by using the empirical differ-
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ential of its loss function to update its architecture. This process is done iteratively

until an optimum set of hyper-parameters is reached. This type of approach requires

a large amount of computational power however, and is not commonly used. To fur-

ther reduce the spatial resolution as the input propagates through the network, it is

common to insert pooling layers subsequent to convolutional layers. The main mo-

tivation behind doing this is to reduce the amount of parameters and computation

in the network. Adding pooling layers also helps with reducing the possibility of

over-fitting, since having fewer parameters means the network has a lesser capacity

to learn. Pooling layers operate independently on every depth level of the input and

resize it spatially, using a nonlinear operations that selectively retain maximum val-

ues in local regions of activation maps for example. Pooling layers do not have any

learnable parameters, and are entirely defined by hyper-parameters that specify the

extent and means of pooling.

When considering the definitions of fully-connected layers and convolutional

layers, the only difference between the two is that each neuron in a convolutional

layer is connected only to a local region in the input, and that many of the neu-

rons have the same learnable parameters (corresponding to each filter). Since the

neurons in both layers simply compute products between weights and inputs, their

functionality is identical, and it can be said that convolutional layers are a special-

case of fully-connected layers [79]. That is to say, any convolutional layer can be

expressed as a fully-connected layer, and this is actually the way by which some

CNN training platforms express their architectures.

To summarize, CNN architectures [67, 19] gradually transform high dimen-

sional inputs to lower spatial dimensions until a set of features is reached that is

capable of inferring higher-level features. Notably, the nowclassicparadigm of a

linear progression of cascaded layers has recently been challanged [106, 107, 108],

and recent proposals feature more complicated connectivity structures. CNNs de-

rive their value from the weight sharing aspect of their connectivity, which signif-

icantly reduces the number of learnable parameters. This, coupled with the avail-

ability of large volumes of data, eventually culminated in the realization of vision
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models that can accurately learn to recognize complex visual structures and seman-

tics [67, 19, 79, 71].

2.3 State-Conditional Computing

While learnable vision models have reached a threshold of performance that allows

for their adoption in commercial systems, this has spun off a new field to study

methods of reducing the requirements of such models to manageable and commer-

cially feasible levels [109, 110, 111, 112, 113, 113, 114, 115]. Some recent literature

studies input compression and dimensionality optimization [61, 116], which ulti-

mately translates to less complexity if compressed codes are used during inference,

and lower bandwidth requirements for transmitting such codes. With respect to di-

mensionality reduction, recent proposals [117, 60, 60, 118, 119, 120] have studied

specific vision tasks in order to reduce the data requirement of deep neural network

models at test time. Such efforts have mainly focused on task-specific embeddings

of inputs onto lower-dimensional spaces before training with more data-efficient

models. This can be seen in the work of Zhanget. al [58] on video action clas-

sification, where the number frames used for inference is minimized by distilling

temporal sequences to the most useful frames before transmitting them to remote

servers for semantic analysis. Similarly, by using transfer learning, the authors

in [59] show that actions can be classified accurately without the need for high-

resolution optical flow, but instead by using a low-resolution optical flow approx-

imation inferred from codec motion vectors. Similarly, recent work [121] derives

a codec-specific approach for compact texture extraction from the compressed bit-

stream in order to reduce the data cost for action classification. Also focusing on

dimensionality reduction, embedding methods such as those of [122, 20, 123, 124]

can be used to produce codes that can stand in for sensed signals. This is to say,

the same embeddings can be repurposed for other vision tasks as long as they retain

or encode necessary information (e.g., image features for classification, or spatial

coherence for localisations tasks). While mainly devised to improve the perfor-

mance of image and video captioning, attention maps produced in the proposals of
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[125, 108, 126, 127, 128] can also be used to reduce the data cost of inference. By

highlighting important regions of inputs, attention maps also reveal redundancies

which can be omitted to transfer only useful data to remote models for inference.

Importantly, all the methods proposals in [59, 58] for dimensionality reduction and

in [125, 108, 126] for attention pooling can only be applied for their respective

tasks, and cannot be generalized to others.

Other proposals study complexity optimization directly, and propose modifi-

cations that are applicable to a wide range of models. Proposals such as static

model pruning [129, 130] and MobileNets [57] reduce complexity by modifying

models in a persistent manner for all inputs at test time. Other proposals use con-

ditional computation as a way to increase model capacity while maintaining low

computational costs [103, 131, 39]. Such works consider reinforcement learning

and back-propagation [132, 133, 134] for training external agents to enable or dis-

able different parts of the model by considering the unique properties of each input.

For example, recent work [103, 39] proposed pruning unnecessary connections at

runtime conditional on the acquired feature maps at each layer, and use reinforce-

ment learning to determine which filters to keep in order to maintain the best perfor-

mance possible. Specifically, they devise learnable agents that select kernels to use

at each layer, and learn useful features from feature maps preceding each layer to

optimize an objective function that balances performance with complexity. To for-

mulate this, letC be the backbone of a CNN with convolutional layers asC ={c l}L0,

with cl denoting the convolutional layers whose kernels areK1,K2, ...,KM, where

convolutional layers produce feature mapsfff 1, fff 2, ..., fff M. Methods that drop layer

kernels at runtime [103, 39] do so by introducing the learnable agenth( fff i) that

prunes redundant convolutional kernels inKi+1, with prior knowledge of a feature

mapFi in order to reduce the number of operations made at any forward-pass. To do

so, afterC is amply trained for some inference task, and with a withc( fff ,K) denot-

ing a convolutional operation for input feature mapfff and kernelK, the parameters

θh of h( fff i) are learned as:
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θ ∗h = argminKi+1,hE fff i
[Lcls(c( fff i ,K[h( fff i ;θh)]))+Lpnt(h( fff i ;θh))] (2.6)

whereLcls is the loss of the classification task,Lpnt is the penalty term represent-

ing the tradeoff between the speed and the accuracy,h( fff i ;θh) is the conditional

pruning unit that produces a list of indices of selected kernels according to input

feature map, andK[h( fff i ;θh)] is the indexing operation that prunes kernels not se-

lected byh( fff i;θh). In optimizing (2.6), h( fff i), pruning agents such as those of

[129, 130, 103, 39] are learned to account for both performance and complexity,

while allowing fine-tuning of the priority of reducing complexity by including a

weighing parameterwpnt in Lpnt. Finally and most recently, a proposal by Shazeer

et. al [40] showed that the test-time complexity of very large networks can be sig-

nificantly reduced by using sparse gating functions in mixtures of experts, where

experts hold a much smaller number of weights. They take into account the fact

that modern GPUs are much faster at arithmetic than at conditional branching, and

show that sparse gating at the expert level can provide gains in complexity during

test time. It is also important to note that, all the aforementioned works optimize

solely for complexity, and always consider that the maximum amount of input to be

available at test time (which will be of relevance in discussing our contributions in

Chapters3, 4, and5).

2.4 Mixture Models And Expert Mixtures

In this section we shed light on a well studied class of probabilistic models known

as Mixtures of Experts [135, 136, 137, 138, 139, 140]. Mixtures of experts are

motivated by the same presuppositions that motivate other mixture models such

as Gaussian Mixture Models [141] and Full Bayesian Models [142]. Specifically,

expert mixtures agree with other mixture models in the way by which data instances

of source distributions are viewed, namely: as the outcomes of the superposition

of many simpler distributions. Mixtures of experts extend this view to mapping

functions, and model desired outcomes as mixtures of different mapping functions

with varying parameters.
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When considering computer vision and pattern recognition applications,

source distributions of inputs typically constitute a number of combined source

distributions with variable properties which are well represented by mixture models

[135, 136]. Expert mixtures are motivated by the fact that, when some inputs are

coherent within the subspace from which they are sampled, they can be analysed

using expert models designated for their specific properties. By doing so, mixtures

of experts leverage the existence of properties local to different input subspaces to

train corresponding experts that perform better than "know-it-all" models which

view and process all inputs in the same way. By mentioning performance in the

above, we refer to all different aspects of model performance, this includes: ac-

curacy of inference, latency, and even the amount of data required by models to

provide accurate results (which is ideally low, to conserve on communication net-

work resources), and in Section2.4.2we discuss different ways of training mixtures

to realize different types of constituent experts (e.g., specialised experts, or experts

conditioned for good consensus).

To formulate the mode of operation of expert mixtures, we consider mixtures of

N experts drawn from a predetermined setE = {E1,E2, ...,EN}, where each expert

En is a pretrained model that attempts to determine the outputy(xxx). As long as

experts map inputs to the domain ofy(xxx), they can take any predictor form (e.g.,

they can be simple regressors, deterministic functions, or deep neural architectures).

Per inputxxx, a gating function determines the contribution of eachnth expert:

G(xxx|Wg)i =
ef (xxx;Wg)n

∑m6=i e
f (xxx;Wg)m

(2.7)

whereWg is a set of trainable parameters of a linear transformation that defines the

importance of each expert in determiningy(xxx), and f (xxx;Wg) ∈ RN is the output of

a specified gating model. Note that because the outermost function ofG(xxx;Wg) is a

softmax transform, this necessitates that∑N
i Gi(xxx;Wg) = 1. The outputy(xxx) of the

mixture of experts is:

y(xxx) =
N

∑
i=1

G(xxx;Wg)iEi(xxx) (2.8)
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By determining a good solution forG(xxx;Wg)i , mixtures of mapping functions

can be discovered to model probabilistic processes. In this way, expert mixtures are

modeled after other mixtures [141, 142] to consider conditional processes which

can be expressed as super-positions of learnable functions, where gating functions

determine the importance each mapping function.

In optimizing expert mixtures, experts are commonly pre-trained prior to be-

ing included in mixtures, this is to ensure all experts are initialized reasonably and

to avoid bad local minima. That is, in pretraining experts, the space of possible

solutions is narrowed down to neighborhoods known to work for each expert indi-

vidually (to some imminent margin of error). Subsequently, loss back-propagated

through mixtures is specified as a function of the mixture output ˆy(xxx) as expressed

by (2.8) and some groundtruthy. We also note that, while different experts are re-

quired to process the same input, inputs can be preprocessed to accommodate any

particularities that an expert may require. Additionally, a natural arbitration of mix-

tures of experts are hierarchical mixtures of experts, where mixtures are cascaded to

provide multiple layers of conditionality that can model more complex conditional

processes [143, 144, 145]. Hierarchical architectures recursively combine the out-

puts of cascaded mixtures to explore more complex relationships between input

subspaces [144]. In Section2.4.2we discuss optimization methods of mixtures of

experts, and in Sections2.4.3and2.4.4we discuss two subclasses of mixtures of ex-

perts to show how they are used to model and solve practical problems in computer

vision.

2.4.1 Inception And Variants Of Mixtures Of Experts

The mixtures-of-experts model was first presented by Jacobset. al [135] using sets

of one-layer networks as experts, and was trained by using a squared error criteria to

perform classification. Subsequent work on a small vowel classification problem in-

dicated comparable performance with multi-layer perceptrons but with significantly

faster training ; thereby indicating an interesting underlying property of mixtures of

experts. More extensive studies on mixture of experts models were performed by

Nowlan et. al [135], where one layer experts were substituted with multi-layer
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perceptrons. The work of Nowlanet. al [146] demonstrated that mixtures of multi-

layer perceptrons were significantly more capable at generalising what is learned to

unseen data. This then motivated Jacobset. al [147] to show the extent of benefit

provided by mixtures in two applications: combined classification, and spatial local-

isation of objects. In all mentioned works, mixtures were trained by non-stochastic

gradient descent, and this provided a starting point for newer research to find better

methods for training mixtures of experts.

2.4.2 Fitting Mixture Parameters On Data

Mixture models may be trained using a number of different techniques, and indi-

vidual experts can be trained using any training method fine tuned to the source

distribution from which their inputs are derived. Among others, some examples of

different supervised training methods are Bayesian methods and stochastic gradi-

ent descent [147, 148, 149, 150, 151], which can also be used to train gating and

experts jointly provided any ground truth to maximize the log likelihood of the

mixture. Similarly, when considering unsupervised learning problems, expectation

maximization [152] and adversarial learning techniques [153, 31, 154] can be used

to emulate source distributions. One important aspect of training mixtures using

any of the above methods is loss factorisation, which defines the way by which to

quantify the contribution of each expert to the overall loss. That is to say, individ-

ual experts can be trained as: (i) specialised experts which overfit to their assigned

sub-domains of data, or (ii) as parts of a larger team of experts wherein the per-

formance of the consensus of experts is prioritised. The way in which the roles of

experts is viewed is important in determining how they are trained. Depending on

how mixtures are ultimately used in any application, it can be more beneficial to

have "team" experts rather than "specialised" experts. Jacobset. al [135, 147] give

an indepth study on this specific aspect of mixtures of expert, and we summarise

how each interpretation of experts reflects on the training process:

Training For Expert ConsensusWhere the signal used to train experts inE is de-

fined such that the consensus loss is propagated back to all weights in the mixture.

In effect this forces expert features to be "specialized" such that the experts compli-
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ment each other in producing the best target value possibley(xxx).

Training For Expert Specialization Where loss is calculated not by considering

the final combined output of all experts, but rather by considering the accuracy of

prediction of each individual expert. Effectively this forces all experts to produce

predictions closer to the ground truth, regardless of what other experts predict.

Mixtures of experts can be further classified into two sub-categories: mixtures

which operate with continuous gating functions, and mixtures which selectively

activate experts by using gating functions that yield sparse outputs; as a shorthand

we term these two sub-categories as "soft" and "hard" gating mixtures.

2.4.3 Expert Ensembles And Boosting Methods

When considering complex domains, some problems can be better solved by con-

sidering the predictions of many pretrained models. In such instances, a straightfor-

ward solution would be to consider all possible predictions to make a final decision

on some desired output, which motivated the proposition of boosting methods [155],

and later on ensemble methods [155, 156]. Ensemble methods require that a set of

experts are optimised before being included in a bigger mixture of experts as in-

dividual experts. Pretrained models then form an ensembles ofN experts, and the

final output is determined by weighted pooling of all outputs of all experts via a soft

gating function. By doing so, and subject to the complexity of the gating function,

more informed decisions about the output are achieved by considering each input

individually to rely more on the outputs of select experts.

Ensemble mixtures typically use softmax gating to predict the final weights as-

signed to experts, and use loss functions that optimise the mixture gating coefficient

to a least-square error. Importantly, experts are optimised individually before the

gating function is trained, this is to give a distinct and valuable function for each

expert. Gating functions in ensemble methods are trained for accurate consensus,

since experts are optimised beforehand. Numerous studies [156, 147] have shown

that ensemble methods invariably provide for better overall performance when more

complex relationships exist between input sub-domains and expert suitability.
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2.4.4 Selecting Experts With Sparsely Gated Mixtures

When exposed to different input samples, hard gated mixtures of experts necessarily

activate only a subset of experts for inference. Eigenet. al [157] were the first

to allude to the potential for this class of models, which would effectively turning

mixtures of experts into a potential medium for conditional computing. Taking their

queue from [157, 158, 103], Shazeer et al [40] are the the first work to fully explore

the potential hard gated mixtures as conditional computing units. Their work does

so to realize the holy grail of deep learning models that hold very large capacities

while managing to conduct forward passes with feasible latency.

Similar to soft gated mixture, hard gated mixtures consist ofN experts with

and additional trable gating function. Importantly, the outputs of the gating func-

tion are sparsified after inference, and the authors in [40] do so for each input ex-

ample by keeping the top-k gating values and setting all other gating logits to zero.

Specifically, for an inputxxx sampled from a batch of inputsX , the gating values are

calculated as the super position of a linear transformation with a weighted normal

multivariate:

H(xxx)i = xxx ∙Wg +N (0,1) ∙ψ( f (xxx ∙Wn)i) (2.9)

whereWg andWn are learned gating parameters,N (0,1) is a normal multivariate

with zero mean and unit variance, andψ(vvv) is a multivariate piecewise linear op-

erator that returns values invi whenevervi > 0, and returns zero otherwise. The

final sparse values of the gating function by setting allH(xxx)i values to zero with the

exception of the top-k values ofH(xxx), wherek is set to be the number of retained

experts for inference. Effectively, this subsequently turns off large parts of the mix-

ture with respect to each observed input. The second term which samples weighted

samples from the standard normal distribution is included to prevent load balancing

issues, which we will discuss in the following section.

Sparse mixtures in the work of Shazeeret. al. [40] showed that with appro-

priate regularization and using 16 GPUs, it is possible to train hierarchical mixtures

for natural language processing tasks that can hold up 68×109 learnable weights
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and process inputs with a modest 0.72 TFLOPS/GPU (and they appropriately title

their work to be on "outrageously large neural networks"). To achieve this, they

build on the work of [103, 157] by allowing for multiple gating decisions at many

text positions, thereby compounding the number of skipped experts at each itera-

tion. While other works modify pruning techniques for conditional computing by

applying pruning at runtime, Shazeeret. al. [40] show that sparse gated mixtures

are superior because they are trained from scratch for conditional computing. Be-

cause measuring conditionals is done exclusively by gating functions in their work,

conditions are measured more sparsely than [39] where runtime pruning models

measure input feature maps for every layer to determine subsequent filter activa-

tions. For these reasons, hard gated mixtures are practical templates for conditional

computing in deep neural models.

2.4.5 Balancing Loads Of Sparse Mixtures

When trained only with respect to some task loss, gating functions of sparsely gated

mixtures tend to converge to a state where large weight updates are always produced

for the same few experts. This imbalance is self-reinforcing, and subsequently leads

to some experts being favored and trained more than others (causing a lot of wasted

capacity in the mixture). In other words, not constraining the training process of

sparse gating functions leads to undesired local minimums that correspond to low

exploitation of expert capacity, and full utilization of whatever capacity exists in

a select few experts. Eigenet. al in [157] describe this phenomenon, and use a

hard constraint to avoid local minimums, while Bengio et al. [103] include a soft

constraint in the total task loss that encourages mixtures to divide batches equally

between experts. To resolve this tendency, Shazeeret. al [40] elect to propose the

best known solution to this problem by first defining the importance of an expert

relative to a batch of training examples. They do so to predict the probability of se-

lection for each expert overall for all batches, unlike [39] and [103] which consider

each batch individually. Their work defines an additional losslload that estimates

the batchwise sum of importance of each expert. This notion of importance takes

into account how confidently experts are selected relative to other experts, and does
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so in a probabilistic manner such that individual batches are exemplary of other

batches.

Specifically, and to balance the loads to each expert, the authors in [40] define

an additional loss function to encourage experts to receive roughly equal numbers of

training examples. Since the number of examples received by an expert is a discrete

scalar, it cannot be used in back-propagation. To deal with this, a smooth estimator

Load(X) is defined as the predicted number of number of examples assigned to

experts. Probability density functions are smooth and allow for back-propagating

gradients back through the gating function. DenotingH(xxx)e as thekst top value in

H(xxx) excluding theith value (whereestands in for "edge top value" ), the projected

future load of theith expert as predicted from an inputxxx is denoted withl(xxx)i , and

is defined as:

l(xxx)i = P(H(xxx)i > H(xxx)e) (2.10)

and unrolling the expression yields:

l(xxx)i = P((xxx ∙Wg)i +N (0,1)ψ(xxxWn)i > (xxx ∙Wg)e+N (0,1)ψ(xxx ∙Wn)e) (2.11)

By estimating2.11Shazeeret. al [40] and others [157, 103] estimate the prob-

ability of an inputxxx being assigned to theith expert when (2.9) is used to determine

the gating outputH(xxx). The predicted load to each expert is then estimated as:

L(X )i= ∑
xxx∈X

l(xxx)i (2.12)

and the final load loss is:

Lload(X )=wload∙c(L(X ))2 (2.13)

wherec(vvv) is the coefficient of variation of a vectorvvv, which is defined as the mean

of vvv divided by its standard deviation. By defining load loss in this way, sparse

gating in the mixtures of [40] are trained to divide loads equally as much as possible

among constituent sets of experts, and in doing so all experts are more likely to be

selected at test time to make full use of their capacity.
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In summary, mixtures of experts are well studied vehicles for mixture modeling

and conditional computing, and have been shown to be of great utility in many

applications. Among these are boosting performance via pooling decisions made by

different models [155, 156], and reducing the complexity of large capacity models

by turning off large parts of the mixture subject to each observed input at test time

[157, 158, 103]. Load balancing is also particularly relevant to our work in Chapter

5, where we consider the problem of deliberately maintaining imbalances of expert

loads in a controlled manner (i.e., to control and bias expert utility).

2.5 Contextual Coding And Visual Compression

Within the context of engineered image compression methods, deterministic and

handcrafted methods were extensively studied to fully exploit properties specific

to image signals, and recently learnable image compression has attracted atten-

tion with the demonstrable success of neural architectures for image analysis

[159, 42, 160]. Most salient of the recent advances in learnable image compres-

sion are auto-encoders and recurrent neural networks [161, 162, 163, 159, 42, 160].

Such networks are trained to produce latent representations to be used for image

reconstruction, with the aim to minimize the mean-squared error between original

and decompressed image, or to minimize a perceptual metric such as MS-SSIM

[161, 162, 163, 159]. In distributed systems of visual analysis, and for the purpose

of reducing demands on complexity and bandwidth, intermediary latent states of

learnable machines such as autoencoders [42, 160] can be used in stead as inputs to

remote inference models.

Learnable image compression [164, 165, 166] has attracted attention as the

next step towards more compact image representation, and more salient among

recent advances in learnable image compression are variational auto-encoders

[159, 42, 160] and adversarial models[167, 31, 168]. In order to adapt learned

codes to arithmetic coders, state-o-f-the-art proposals on learnable compression

[165, 44, 169, 170] additionally learn context models to predict posteriors of la-

tent code components conditional on all preceding components. Specifically, and to
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move learnable compression closer to replacing established coders[171, 172], con-

text models of [170, 169] use tractable masked convolutions to regulate entropies

of obtained image representations such that they can be coded more effectively by

subsequent entropy coders. In distributed systems of visual analysis, and in order

to reduce throughput requirements on input, intermediary latent states of learnable

image reconstruction machines [159, 42, 167, 31] and entropy regulated compres-

sors [170, 169, 164, 165] can be used instead of full-length inputs as representative

signals to remote inference models.

Recent proposals also studied specific vision tasks in order to reduce the data

requirement of deep neural network models at test time. For example, this can

be seen in previous work [58, 59, 121] where input volumes are reduced by dis-

tilling input sequences to their most useful elements before relaying to remote

servers for semantic analysis. Other work [123, 122] mainly focused on task-

specific mappings of inputs onto lower-dimensional space before training with more

data-efficient models, and recent advances in domain adaptation and transfer learn-

ing [173, 174, 175] can also be used to learn compressed codes tuned to partic-

ular models. However, for any specified source distribution, domain adaptation

[173, 174, 175] and other proposals mentioned above [58, 59, 121] equally com-

pact all sampled inputs to fixed length codes, and varying degrees of entropy among

input examples are ignored. In this sense, while the aforementioned advances are

important in determining useful transformations to enforce specific code lengths,

complementary techniques are necessary to determine required code lengths prior

to transformation.

The heuristic models of [165, 44, 169, 170] learn useful structures for image

reconstruction directly from visual source distributions and commonly use differ-

ent instances of generative models [168, 167]. Within different classes of gen-

erative models, Generative Adversarial Networks (GANs) [167, 31] have shown

the greatest success in image reconstruction. Adversarial models learn a mapping

from an observed imagexxx and a random noise vectorzzz to G(xxx,zzz;θG) adversari-

ally, where discriminators distinguish generated images from images sampled di-
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rectly from the source distribution that the generators try to replicate. That is, for

some generative modelG(xxx,zzz;θG) a discriminator is optimized jointly to recog-

nise G(xxx,zzz;θG) among sampled examples ofxxx. This in effect trains generators

towards producing images that cannot be caught out by a discriminatorD(iii,θD),

such thatP(G(xxx,zzz;θG)) eventually converges to the source distributionP(xxx). To

jointly optimizeG(xxx,yyy;θG) andD(iii;θD). Specifically, and for some discriminator

lossL(xxx,yyy;θG,θD), the generator parametersθG are updated to maximizeL, while

the discriminator parametersθD are updated to minimize it. In other words, adver-

sarial loss [167, 31] quantifies how well a discriminatorD(iii;θD) is at distinguishing

generated imagesG(xxx,yyy;θG) which are not from the sourceP(xxx), and is expressed

as:

L(xxx,yyy;θG,θD) = Exxx,yyy(logD(yyy;θD))+Exxx,zzz[log1−D(G(xxx,zzz;θG))] (2.14)

In training generators to match a sourceP(xxx), the work of [31, 60, 120] showed

that it is also beneficial to jointly optimize other losses that consider properties ofxxx

other than its saliency toD(xxx;θD), and suggest using an auxiliary lossL1, where:

Ll1(xxx,yyy;θG) = Exxx,yyy,zzz[||yyy−G(xxx,zzz;θG)||l1] (2.15)

and the learned parametersθ ∗G andθ ∗D are:

θ ∗G,θ ∗D = argmin
G

max
D

L(xxx,yyy;θG,θD)+λLl1(xxx,yyy;θG) (2.16)

Such optimization methods have been extensively studied in recent work [167,

31] to measure the limits of structures that can be captured by such adversarially

trained generators. Intermediary code mappings ofzzz can be further finetuned to

conform to prespecified properties. For example, Variational Auto Encoders (VAE)

add a regularizing term such thatzzz converges to the form of a standard normal

distributionN (0,1). This is done to ensure that generated codeszzzare close in their

Rn space, to ensure that the generators encoder does not exaggerate in expressing

distances between codes z generated from closely related inputsxxx. This is to say,
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whenever two inputsxxx1 and xxx2 are semantically close to each other, variational

autoencoders implicity encodezzz1andzzz2 such that they are equally close while also

ensuring that they are drawn from some prespecified distributionPV(zzz) by adding a

regularization termDKL to 2.16, such that it becomes:

θ ∗G,θ ∗D = argmin
G

max
D

L(xxx,yyy;θG,θD)+λL1(xxx,yyy;θG)−DKL(P(zzz|xxx),PV(zzz)) (2.17)

wherePV(zzz) is specified as the target distribution ofz whenz∼N (0,1). Note that

the condition thatzzzhas to be drawn fromN (0,1) is enforced by a single addendum

that expresses the Kullbach-Leibner distance betweenzzzandN (0,1).The Kullbach-

Leibner distance measures the divergence between two probability distributions,

and when unrolled in (2.17) the variational coding loss is:

θ ∗G,θ ∗D = argmin
G

max
D

L(xxx,yyy;θG,θD)+λL1(xxx,yyy;θG)− ∑
z∈Rn

P(zzz|xxx)
PV(zzz)
P(zzz|xxx) (2.18)

Latent representations of variational autoencoders are more semantically rich

in that, for the same code length and when compared to their counterparts that do not

conformzzz to take the shape to any particular distribution, codes generated by VAEs

are subsequently more useful when used in image reconstruction [42, 160, 176].

Extended work on learnable image coding takes into account the entropy of latent

representations in autoencoders, and to do so, the works of [161, 163] use learned

context models for improved coding performance on their trained models when

using adaptive arithmetic coding. To achieve the latter, for some learned codezzz to

reconstruct the imagẽxxx from xxx, entropy-aware learnable coding in [161, 163] and

derived works thereof, formulate loss in the form:

L= d(xxx, x̃xx)+βH(zzz) (2.19)

whered(xxx, x̃xx) is some distance measure betweenx̃xx andxxx, andH(zzz) measures the

entropy of the codezzz, andβ weighs the importance of generating codes with low

entropy. In [43, 177, 44], the entropyH(zzz) is estimated by measuring the condi-
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tional probability of theith component ofzzz conditional on all preceding compo-

nents, where the probability of a codezzz to be sampled is:

p(zzz) =
m

∏
i=1

P(zzzi |zzzi−1, ...zzz1) (2.20)

and its entropy is measured with the context modelH(zzz) as:

H(zzz) = Ezzz∼p(zzz)

m

∑
i=1
−log(P(zzzi |zzzi−1, ...zzz1)) (2.21)

Note thatH(zzz) can interpreted as the sum of the predictability ofzzzi with prior

knowledge of all preceding components inzzz. Minimizing (2.19) when training au-

toencoders and generative models draws the system towards low or high average

entropiesH(zzz) subject to weights assigned toβ . In this way, recent advances in

learnable coding models [161, 162, 163, 159] use context models to produce latent

representations that make it easier for subsequent entropy compression to reduce

the size of representations further (by taking into account both the entropy ofzzz

in addition to its usefulness in estimatingxxx ). In the context of distributed visual

systems, and when generating codes to be transmitted through communication net-

works before inference, variational autoencoders trained adversarially can be useful

as learnable compressors to produce bandwidth-efficient compact codes for image

reconstruction in remote machines.
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2.6 Multi-Class Action Classification

Multi-class action classification is the visual task of distinguishing sequences with

respect to actions performed in human-comprising content. State of the art methods

in this field [178, 179, 180, 181, 182] all agree in one aspect, namely: taking full

advantage of a spatial mode that processes texture in video for inferring classes,

and a spatio-temporal mode to infer actions from underlying motion structures. To

do so, recent well-performing proposals [183, 184, 185, 17] use two-stream archi-

tectures and dedicate each stream to a spatial or spatio-temporal mode. The term

"two-stream" here is used in reference to separated branches in model architectures,

the inferences of which are ultimately merged (e.g., by averaging their predictions).

In earlier work, and to first show the importance of including a temporal modality

for video classification, Simonyanet. al in [17] argue that exclusively using vol-

umes of RGB frames does not effectively represent motion information to CNNs.

They propose using a 2D architecture with dense optical flow to represent the tem-

poral component of the video. Notably, this temporal CNN is shown to outperform

an equivalent 2D spatial stream ingesting RGB frames. They then show that per-

formance can be improved further by fusing the spatio-temporal and spatial streams

using a simple score averaging, and their two stream architecture achieved 88.0%

on UCF-101 (which is a current standard benchmark for video action classifica-

tion). Nevertheless, the computational cost remained high due to the requirement to

extract Brox optical flow [186] for the temporal stream.

Later efforts to improve classification resulted in the work of Karpathyet. al

[183], who proposed extending the CNN architecture from image to video by per-

forming spatio-temporal convolutions in the first convolutional layers over a 4D

video chunkV ∈RW×H×K×T , whereW,H are the spatial dimensions,K is the num-

ber of channels andT is the number of frames in the chunk. This is the premise

behind what is termed as a slow-fusion architecture, which uses 3D convolutions on

RGB frame chunks in the first 3 layers, thus encompassing the full spatio-temporal

extent of the input. Notably, experiments demonstrated that feeding a single RGB

frame versus multiple frames into this architecture did not have any significant effect
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on accuracy; in other words, the CNN was not effectively learning on the motion

information. Tranet. al [187] improve accuracy by using a deep 3D CNN VGGnet

architecture [188] together with spatio-temporal convolutions. They combine this

with a bagging approach over 3 networks to achieve a state-of-the-art accuracy of

90.4% on UCF-101 [184], albeit with heavy computational cost.

2.6.1 Action Classification In The Compressed Domain

To avert complexity overheads of calculating optical flow as a spatio-temporal

modality, the use of codec motion vectors as approximations of optical flow was

first proposed for action recognition by Kantorov and Laptev [189]. Their approach

preceded the surge in convolutional neural networks for image classification and

used Fisher vectors (which achieve lower accuracies in standard action recognition

datasets) in their stead. More recently, Zhanget. al [190] utilized codec motion

vectors as input to a 2D CNN for action recognition with a framework that re-

quires optical-flow based training and transfer learning [191]. Their requirement of

highly-upsampled frames during inference increases the implementation complex-

ity, as large activation maps need to be calculated at the first layers of their CNN.

Recent work [121, 192], among which is some of our contributions, showed that

compressed-domain action recognition can achieve accuracy that competes with

optical-flow based methods, while offering higher ingestion and CNN processing

speed than all previous alternatives. Given that the spatial stream learns on scene

information that tends to be persistent across frames, compressed-domain methods

gain by sparse frame decoding combined with motion-adaptive super-positioning

of decoded macroblock information to generate intermediate frames at a finer tem-

poral scale. Recent work [121, 192] showed that compressed-domain action recog-

nition can achieve accuracy that competes with optical-flow based methods, while

offering higher ingestion and CNN processing speed than all previous alternatives.

Given that the spatial stream learns on scene information that tends to be persistent

across frames, compressed-domain methods gain by sparse frame decoding com-

bined with motion-adaptive super-positioning of decoded macroblock information

to generate intermediate frames at a finer temporal scale.
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One of the issues with most of the work described above is the short temporal

extent of inputs [121, 193, 194]; each input video segment comprises a small group

of frames that only represent (approximately) one second of the recorded action or

event to be classified. Hence, this cannot account for cases where temporal depen-

dencies extend over longer durations [121]. Feichtenhoferet al. [185] attempted

to resolve this issue by using multiple copies of their two stream network where

the copies are spread over a coarse temporal scale, thus encompassing both coarse

and fine motion information with an optical flow input. Despite achieving state-of-

the-art results on UCF-101 and HMDB-51 datasets, their approach requires heavy

processing for both training and testing. Other work [195, 18] argues that increas-

ing the temporal extent is simply a case of taking the optical flow component over

a larger temporal extent. In order to minimize the complexity of the network, most

such approaches downsize frames in order to reduce spatial dimensions. This is now

increasingly important due to the advent of visual IoT and cloud-based platforms,

where the visual sensing and processing are not co-located [196, 197, 198]. Alas,

such tradeoffs are non trivial, because they depend on the spatio-temporal informa-

tion needed by the CNN performing the recognition task [195, 199]. On the other

hand, the work of Sevillaet al. [29] shows that high-resolution optical flow can be

beneficial since deep learning methods can learn features from small details. This

observation suggests that high-resolution optical flow can be leveraged to lower the

temporal extent of inputs. Following the latter in our recent work [200], and to omit

redundancies in video bitstreams, we studied the trade-offs in compressed-domain

spatio-temporal information and explored the rate-accuracy characteristics of CNN-

based video action classification.
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2.7 Contribution Outline and Research Outcomes

The remaining chapters of this thesis detail our contributions on three fronts: (i)

visual classification in the compressed domain, (ii) a study of the relationship be-

tween technical aspects of video coding and their effects on subsequent classifica-

tion accuracy, and (iii) a task-agnostic study on the relationship between data utility

and inference accuracy, in which we realize a novel class of mixtures of experts to

optimize the performance of any computer vision model under any constraint on

allowed limits of data use. In this way, our work follows a neat trajectory, where we

begin by considering the trade-offs between accuracy, complexity, and bitrate for

video classification specifically, and we finally generalize our findings to allow for

the exploitation of computer vision models under different constraints on commu-

nication bandwidth and complexity commonly found in practice.

In Chapter3, and inspired by recent breakthroughs made in video classifica-

tion, we consider the problem of ultra-fast classification that would allow for the

classification of videos in realtime. While the best preforming video classifica-

tion models infer classes from the pixel-domain, and typically augment their input

sources with optical flow, we adopt a minimalist approach to data acquisition and

utility to train computer vision models on the compressed domain directly. In our

work we consider the video encoder as an imperfect-yet-highly-efficient sensor that

derives spatio-temporal activity representations with minimal processing. This is to

say, in our contribution the data is acquired without decompression, and is simply

read from the bitstream and processed to infer a sparse approximation of optical

flow. Our work focuses on complexity reduction and we show that video classi-

fiers based on deep learning methods can indeed capture useful features from such

approximations to produce classes with an accuracy comparable to that of models

that use fully decompressed pixel frames for inference. We also extend our method

to preform selective processing of textures in frames, and show that this can also

provide a modest increase in classification accuracy. Our results show that direct

inference from the compressed domain comes at a marginal loss in accuracy, and

provides high gains in speed when compared to conventional deep neural networks
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trained on RGB frames and dense optical flow estimations.

In Chapter4, we direct our attention to minimizing the required bitrate for ac-

curate action classification, and we do this to explore the potential for removing

more redundancies in compressed video data. By inspecting simple statistics of

motion vectors extracted from bitstreams, we train simple regressors to determine

the required temporal depth for accurate video classification. In doing so we show

that significant redundancies in utilized data can be omitted without affecting clas-

sification accuracy. Specifically, we propose a method for cropping AVC/H.264

bitstreams to the minimum elements required to allow for the extraction of data

required for video classification in compliance with the codec standard. This is to

say, instead of retaining entire compressed video bitstreams and applying complex

optical flow calculations prior to CNN processing, we only retain motion vector and

select texture information at significantly-reduced bitrates and apply no additional

processing prior to CNN ingestion. Based on three CNN architectures and two ac-

tion recognition datasets, we achieve significant savings in bitrate with marginal

effect on classification accuracy. Our contribution proposes a model-based selec-

tion method between multiple CNNs which increases bitrate savings further, to the

point where, if up to 7% loss of accuracy can be tolerated, video classification can

take place with as little as 3 kbps for the transport of the required compressed video

information to the system implementing the CNN models.

In Chapter5, we consider systems where sensors and computer vision models

are distributed across communication networks to propose a method of optimizing

the data utility of such system for any computer vision task. To do so, we pro-

pose a new class of mixtures of experts, where expert utility is biased by design.

Our approach postulates that the minimum acceptable amount of data allowing for

highly-accurate results can vary for different input space partitions. Therefore, we

consider mixtures where experts require different amounts of data, and train a sparse

gating function to divide the input space for each expert. By appropriate hyperpa-

rameter selection, our approach is able to bias mixtures of experts towards selecting

specific experts over others. By doing so, pre-specified constraints on data transfer
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between the visual sensing and neural network processing parts of the system can

be met while maintaining the best performance possible. To show the relation be-

tween data availability and performance, we evaluate biased mixtures on a range of

well-investigated applications, namely: (i) single shot detection, (ii) realtime video

action classification, and (iii) image super resolution. Our validation detailed in this

chapter shows that, for all tested applications, biased mixtures significantly outper-

form individual experts optimized to meet the same constraints on available data.

We finally note that, implementations of our work can be adopted in commer-

cial systems to reduce the cost of running computer vision models, and make them

more prevalent in applications where processing is done remotely and computation

and communication resources are scarce.

2.8 Research Outcomes

The work completed during this PhD has resulted in seven conference publications

and two journal publications. There is also a conference paper to be submitted to

CVPR, and another journal paper submitted to TCSVT which is under review. We

also note that we only present a part of our PhD work in this thesis, and more is

included in our papers. The following are our publication inIEEE Conferences:

1. Alhabib Abbas and Yiannis Andreopoulos, "Biased Mixtures Of Experts: En-

abling Computer Vision Inference Under Data Transfer Limitations", submit-

ted to CVPR 2020.

2. Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtslatze, "Graph-based

Spatial-temporal Feature Learning for Neuromorphic Vision Sensing", in

IEEE International Conference on Computer Vision (ICCV), 2019.

3. Abbas, Alhabib, Aaron Chadha, Yiannis Andreopoulos, and Mohammad

Jubrani. Rate-Accuracy Trade-Off In Video Classification With Deep Convo-

lutional Neural Networks. in IEEE International Conference on Image Pro-

cessing (ICIP), 2018.

4. Aaron Chadha, Alhabib Abbas, and Yiannis Andreopoulos. Compressed do-
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main video classification with deep neural networks: "There’s way too much

information to decode the matrix", in IEEE International Conference on Im-

age Processing (ICIP), 2017.

5. Alhabib Abbas, Nikos Deligiannis, Yiannis Andreopoulos, and Mohammad

Jubran. Vectors of Locally Aggregated Centers for Compact Video Represen-

tation in IEEE International Conference on Multimedia and Expo (ICME),

2015.

6. Aaron Chadha, Yin Bi, Alhabib Abbas, Yiannis Andreopoulos. Neuromor-

phic Vision Sensing For CNN-based Action Recognition, International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), 2019.

7. Aaron Chadha, Yin Bi, Alhabib Abbas, Yiannis Andreopoulos. Neuromor-

phic Vision Sensing for CNN-based Action Recognition submitted to IEEE

International Conference on Acoustics and Signals Processing (ICASSP),

2019.

And the following were published inIEEE journals :

1. Mohammad Jubran, Alhabib Abbas, Aaron Chadha, Yiannis Andreopoulos.

Extension of: Rate-Accuracy Trade-Off In Video Classification With Deep

Convolutional Neural Networks in IEEE Transactions on Circuits and Sys-

tems for Video Technology (TCSVT), 2018.

2. Aaron Chadha, Alhabib Abbas, Yiannis Andreopoulos. Video Classification

With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor in

IEEE Transactions on Circuits and Systems for Video Technology (TCSVT),

2017.

3. Mohammad Jubran, Alhabib Abbas, and Yiannis Andreopoulos. "Sequence-

Level Reference Frames In Inter-Frame Video Coding" in IEEE Transactions

on Circuits and Systems for Video Technology (TCSVT), 2019, Submitted

and is under revision.



Chapter 3

Compressed Bitstream Action

Classification With CNNs

This chapter details our work on compressed video classification, and describes our

solution to compressed domain action classification, where action are predicted di-

rectly from codec motion compensation parameters. Sections are organized as fol-

lows: Section3.1 summarizes relevant aspects of video coding in the AVC/H.264

compression standard. Section3.2 presents the proposed optical flow approxima-

tion method, which estimates optical flow directly from codec motion compensation

parameters. Sections3.3 and3.4 details our classification model and presents our

experimental results on video classification via sparse optical representations. Fi-

nally, Section3.5 concludes this chapter. We also note that some of the details

presented in this chapter are also relevant to Chapter4, specifically with regards to

the qualifying background in Sections3.1and3.2.

3.1 Video Coding And Motion Compensation

Video compression standards like AVC/H.264, HEVC, as well as open-source video

codecs like Theora and Google VP8/VP9, define video bitstream formats where

frames are divided into pixel blocks to be separately decoded in some specified or-

der [54, 55, 69] . Said blocks constitute the building blocks for frame reconstruction,

and form the basis for two frame prediction paradigms: inter-frame and intra-frame

prediction. In general, inter-predicted blocks are reconstructed with prior knowl-
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edge of similar blocks that exist in neighboring frames, and as such, motion com-

pensation parameters that point to the location of predictor blocks correlate with the

underlying motion flow of video sequences. All current standards also define multi-

ple options for blocks to allow for coarser or finer representations of frames, where

finer representations allow for more precise block localisation and prediction. Mo-

tion compensation parameters constitute the basis on which we design our optical

flow estimator.

3.1.1 Motion Estimation And Intra-Frame Prediction

Under the AVC/H.264 and HEVC standards, macroblocks are inter-predicted

whenever it is possible to infer textures of a frame from previously decoded

frames[54, 55]. That is, for every inter-predicted macroblock,motion vectorsare

encoded by searching local patches of previously decoded frames for macroblocks

that similar textures to the macroblock being encoded. In instances where motion

estimation cannot be exploited (i.e., when neighboring frames do not share any

semantic features), intra-prediction is used to eliminate spatial redundancies wher-

ever possible. Intra-prediction attempts to estimate local textures by extrapolating

the textures of adjacent macroblocks. The inclusion of intra-predicted macroblocks

is particularly useful in flat backgrounds where spatial redundancies often exist.

Once the motion compensation parameters are decided, the difference between the

macroblock predictions and the actual values that the block should assume is then

calculated as additive error, and is separately encoded via entropy coding. The ex-

tent to which macroblocks are distorted is conditioned on the bitrate allowed to

encode the bitstream, or on a quality parameter specified prior to encoding.

Motion compensation is preformed by partitioning frames into blocks of pix-

els which are subsequently used in cross-prediction (i.e., predicting on block from

another). To preform texture search at a finer scale, macroblocks are searched for

up to a half-pixel accuracy (i.e., frames were upscaled via interpolation to twice

their size before the search was performed, which in effect produces "intermediate"

pixels that allow for referencing up to a half pixel accuracy in with respect to the

original frame). In many video coding scenarios, it is common that: (a) there are
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apparent correlations between the directions of motion vectors and the direction of

movement that can be inferred from frames. For example, for the subjects appearing

to be sitting at a table stationarily, motion vectors are not used, while for subjects

who appear to be walking, motion vectors are likely to point to the opposite direc-

tion of their movement. This correlation is important, and will be of relevance to

later parts of this work.

It is also common and natural that some motion vectors do not appear to corre-

spond to movement. For example, vectors on the surface of an object may indicate

intra-predicted matches to those specific macroblocks, and seem to be pointing to-

wards neighboring surface textures (while the surface of the object is static). These

types of motion vectors can be construed as noisy vectors, and they often occur in

local regions of frames where there are repeating patterns or where there are no dis-

tinct object features in the frame (in which case such macroblocks would be more

easily inferred from neighboring textures). We will also see how noise in motion

vectors is correlated with coding bitrates in Chapter4.

Frame reconstruction commonly suffers least for static areas of frames, and

clear artifacts appear especially around moving regions of frames. In AVC/H.264

and HEVC, the degree of acceptable distortion is quantified and controlled via the

quality parameter, or via a bitrate control parameter termed the Constant Rate Factor

(CRF). Specifically, higher CRF settings and lower QP settings enforce better qual-

ity, which in turn allows for more information to be captured in motion vectors and

error residuals. The principles we note above in (a) and (b) apply to older codecs

(e.g., MPEG) and newer codecs alike (e.g., AVC/H.264, VP8, VP9). As such, any

proposition that leverages typical outcomes of motion compensation is likely to be

portable across all current standards.

3.2 Inferring Optical Flow From Macroblocks

We draw from thede factoapproach outlined by Coimbra and Davies [201] and

Kantorovet. al [189] for the estimation of a coarse optical flow to describe motion

fields in video. Specifically, we calculate inherently sparse optical flow representa-
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tions from AVC/H.264 bitstreams as the coordinate differences between source and

target macroblocks, and do so while maintaining the following precepts:

1. Optical flow is estimated from bitstreams encoded using a specified quality

parameter setting (i.e., no rate control is used).

2. Whenever possible, macroblocks are encoded as 8×8 pixel blocks to estimate

finer motion compensation parameters.

3. Frames with no inter-predicted motion vectors (i.e., I-type macroblocks) are

omitted, and replaced with frames interpolated from their immediate temporal

neighbors.

4. To reduce approximation noise of inter-prediction, bi-directional mac-

roblocks are omitted (i.e., B-frames).

5. Wherever there are "gaps" in the motion vector maps, vectors are interpolated

spatially to fill a grid that supposes that all macroblocks are encoded to be 8×

8 in pixels. This is performed to remove discontinuities in the motion vector

map, and to generate smoother representations of motion closer to those of

dense optical flow estimators.

Notable from the above, there is no point in which frames are reconstructed,

and the computational advantages of our method emanate from discarding the re-

quirement to decode video data. Moreover, we perform almost no pre-processing to

estimate our optical flow relative to dense optical flow estimators such as the ones

described in [202][203]. As we demonstrate experimentally in Section3.3.5these

modifications procure significant improvements to processing speed, making our

method more suitable to real-time applications.

In order to extract macroblock motion information from a compressed video

bitstream, we useavlib , which supports most MPEG/ITU-T standards used in

practice [204]. Specifically, we make use of theAVMotion Vector structure.

Whenavlib attempts to read the compressed bit-stream of a video frame, our op-

tical flow estimator extracts the motion compensation parameters and places them



3.3. Proposed CNN For Action Classification 59

Figure 3.1: Macro-block motion vectors are derived by temporal block matching

and can be interpreted as approximations of the underlying optical flow. From top-

left to bottom-right: (1) RGB: frame as seen by the viewer (2) Brox: A computation-

heavy optical flow approximation (3) H.264/AVC: Macro-block motion vector in-

formation rendered on a frame (4) Ground Truth: Real optical flow as generated .

in the AVMotionVector structure. The horizontal and vertical coordinates of

the macroblocks of each frame within this structure are written in a 16-bit integer

binary format to disk in order to be used by the proposed 3D deep CNN. By limit-

ing our method to solely using the motion compensation parameters to estimate the

optical flow, we achieve the speed gains reported in Section3.3.5.

As shown in Figure-3.1, such motion vectors can be interpreted as noisy ap-

proximations of the underlying motion. The quality of macroblock based motion

estimation is thus correlated with the size of macroblocks, the video resolution, and

the utilized motion source search parameters.

3.3 Proposed CNN For Action Classification

In this section we describe the proposed framework for training a 3-Dimensional

CNN using macroblock motion vectors. It is important to note that, forboth train-

ing and testing with the proposed approach,no decodingof any video to its pixel-
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domain representation is performed.

3.3.1 Network Input

Using the optical flow estimation paradigm described above, we extract and retain

only motion vectors extracted from uni-directional inter-predicted macroblocks,

(i.e. P-type macroblocks). Empirically, we found that training on both uni-

directional and bi-directional motion vectors incurs substantial increase in com-

plexity with marginal improvements in classification accuracy. Uni-directional

macroblocks are processed exclusively to reduce the complexity of the network’s

forward-pass during inference. To test the performance of our architecture, we

use the standard action classification datasets UCF-101 [184] and HMDB-51[205].

Both are datasets composed of annotated videos with a spatial of 320×240 pixels.

For a frame comprising of P-type macroblocks, a block size of 8×8 pixels results in

a motion vector field of dimensions 40×30×2, whereW×H is the motion vector

spatial resolution and the number of channelsK = 2 is representative of theδx and

δy motion vector components.

In order to compensate for the low spatial resolutionW×H, we take a long

temporal extent of motion vectors overT > 100 consecutive P frames. This is con-

trary to recent work using high-resolution optical flow [17, 183], which typically

ingest only a few frames per input (typically around 10). This is because, even with

the latest GPU hardware, a long temporal extent cannot be processed without sacri-

ficing the spatial resolution of the optical flow [17, 183]. On the other hand, given

that our MB motion vector input is inherently low-resolution, it is amenable to a

longer temporal extent, which is more likely to include the entirety of relevant ac-

tion that is essential for the correct classification of the video. For example, we have

found that the accuracy increases greatly for UCF-101 evaluated on our 3D CNN

when moving from 10 to 100 frames, but eventually plateaus whenT becomes suf-

ficiently large such that the input extends to almost all P-type frames of the majority

of video files of the dataset. Therefore, we fix the temporal extentT to 160, which

is roughly the average number of P-frames per video in UCF-101.
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3.3.2 Network Architecture

Our CNN architecture is illustrated in Figure-3.2All convolutions and pooling are

spatiotemporal in their extent. 3D pooling is performed over a 2×2×2 window

with spatiotemporal stride of 2. The first two convolutional layers use 3D filters of

size 3× 3× 3 to learn spatiotemporal features. With a 24× 24× 2× 160 motion

vector input, the third convolutional layer receives input of size 6× 6× 2× 10.

Therefore, we set the filter size of the third, fourth and fifth convolutional layers to

2×2×2, as this is sufficiently large to encompass the spatial extent of the input over

the three layers whilst minimizing the number of parameters. In order to maintain

efficiency when training/evaluating, we also use a temporal stride of 2 in the first

and second convolutional layers to quickly downsize the motion vector input; in all

other cases we set the stride to 1 for convolutional layers. All convolutional layers

and the FC6 and FC7 layers use the parametric RELU activation function [206].

It is important to note that our network has substantially less parameters and

activations compared to other architectures using optical flow. In particular, our 3D

CNN stores 29.4 million weights. For comparison, ClarifaiNet [207] and similar

configurations that are commonly used for optical-flow based classification [17,

190] require roughly 100 million parameters.

Figure 3.2: Our proposed CNN architecture: the red, blue and purple blocks rep-

resent convolutional, pooling and fully-connected layers, where:F is the filter size

for the convolutional layers,Sis the filter/window stride, andD is the depth of filters

for the convolutional and fully-connected layers.

3.3.3 Training

We train the network using stochastic gradient descent with momentum set to 0.9.

The initialization of Heet al. [206] is extended to 3D and the network weights

are initialized from a normal distribution with variance inversely proportional to the
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fan-in of the filter inputs. Mini-batches of size 64 are generated by randomly se-

lecting 64 training videos. From each of these training videos, we choose a random

index from which to start extracting the P-frame MB motion vectors. From this

position, we simply loop over the P-type MBs in temporal order until we extract

motion vectors overT consecutive P frames. This addresses the issue of videos

having less thanT total P frames, e.g., cases where the video is only a few seconds

long. For UCF-101, we train from scratch; the learning rate is initially set to 10−2

and is decreased by a factor of 0.1 every 30k iterations. The training is completed

after 70k iterations. Conversely, for HMDB-51, we compensate for the small train-

ing split by initializing the network with pre-trained weights from UCF-101 (split

1). The learning rate is initialized at 10−3 and decayed by a factor of 0.1 every 15k

iterations, for 30k iterations.

To minimize chances of overfitting due to the low spatial resolution of these

motion vector frames and the small size of the training split for both UCF-101

and HMDB-51, we supplement the training with heavy data augmentation. To

this end, we concatenate the motion vectors into a singleW×H×2T volume and

apply the following steps (whereT is doubled to account for two horizontal and

vertical displacement channels);(i) a multi-scale random cropping to fixed size

Nc×Nc×2T from this volume, by randomly selecting a value forNc from N× c

with c∈ {0.5,0.667,0.833,1.0}; as such, the cropped volume is randomly flipped

and spatially resized toN×N×2T; (ii) zero-centering the volume by subtracting

the mean motion vector value from each motion vector fieldΦΦΦ, in order to remove

possible bias; theδx andδy motion vector components can now be split into sep-

arate channels, thus generating our 4D network inputΦ̂ΦΦ. During training, we addi-

tionally regularize the network by using dropout ratio of 0.8 on the FC6 and FC7

layers together with weight decay of 0.005.

3.3.4 Testing

During testing, per video, we generate 10 random volumes of temporal sizeT from

which to test on. Per volume, we use the standard 10-crop testing [71], cropping

the four corners and the center of the image to sizeN×N×2×T and considering
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both horizontally flipped and unflipped versions. As such, we average the scores

over the 10 crops and 10 volumes to produce a single score for the video.

3.3.5 Experimental Results

In order to examine the accuracy and extraction time of our approach versus de-

coding and optical flow estimation, we perform a comparison to the Brox [208] and

FlowNet2 [209] optical flow estimations that were respectively used by Simonyanet

al. [17] and Broxet al. [209]. Since the CNN architectures downsample and quan-

tize the optical flow before ingestion [17], we measure the end-point error (EPE) of

the optical flow estimations at the resolution and quantization settings used by the

CNN. All runtime results were measured using an Amazon EC2 instance running

on a quadcore Intel’s Xeon E2686 V4 (2.3 GHz, single-thread execution). Table3.1

presents the results using a synthetic sequence for which the ground truth motion

flow is also available. At the same time, the proposed approach is more than 600

times faster than FlowNet2, as it does not decode the video to the pixel domain and

does not carry out any optical flow calculations. In this regard, at current AWS spot

pricing1, GPU instances require more than 9 times the cost of CPU instances, which

leads to more than 5400 times lower cost under a cloud-based deployment. million

minutes of video with the state-of-the-art, our approach can process more than 8.6

billion minutes of video.

3.4 Using Codecs As Spatio-Temporal Sensors

We further extend our method by employing selectively-decoded MB texture in-

formation using the extracted MVs as activity indicators. We do this by decoding

one frame everyX frames, withX set to inf, indicating that only the first frame of

the video is decoded. In between fully-decoded frames, “rendered” frames can be

produced at frame intervalR, with 1≤ R≤ X. Each rendered frame is initialized

as a copy of the immediately preceding fully-decoded frame. Texture information

at active macroblock positions is decoded and replaces the initialized values in the

corresponding locations in the rendered frame. Two examples of this process are

1AWS EC2 spot pricing, (m3.large vs. p2.xlarge N. Virginia, Feb. 2016)
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shown in Figure3.4. We consider the area within a macroblock to be active when

the corresponding MV information exceeds a specified thresholdA, where 0≤ A.

Figure3.3shows a grayscale activity map derived from the MVs of Figure3.4(b).

Figure 3.3: Activity regions inferred from calculated motion vectors.

Figure 3.4: Sample from a selectively decoded sequence, with: (a) initial RGB

frames, (b) selectively decoded active regions, (c) decoded regions superimposed

on inital frames, and (d) ground-truth frames with full motion compensation.

To achieve said block-wise selective MB texture decoding, we inspect the mo-

tion vectors and write decoded data wherever the conditions specified by{X,R,A}

are met. Evidently, by increasing the values for{X,R,A} we can decrease the fre-

quency of full decoding and selective macroblock texture decoding to achieve any

extraction speed desired within a practical application context.

3.4.1 Testing

During testing, per video, we generate 5 random volumes of temporal sizeT from

which to evaluate on the temporal stream. Per volume, we crop the four corners
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and the center of the image to sizeNT×NT×2×T and consider both horizontally

flipped and unflipped versions. Due to the low resolution and short duration of the

HMDB-51 and UCF-101 videos, we note that taking extra crops and volumes is

often redundant, as the spatial resolution of the P-frames is low and the temporal

extentT of the input is large enough that it encompasses the entire video duration.

However, our approach is better suited to videos “in the wild" and we can afford

the extra redundancy due to the low complexity of our 3D CNN. As a result, rather

than computing an average score over all extracted volumes, we simply take the

maximum score, in order to generate our prediction for the video.

As the VGG-16 architecture has roughly 6 times the number of weights and

activations of our proposed 3D CNN in the temporal stream, we evaluate on the

spatial stream by extracting 5 frames from the set per video albeit with a single

center crop (and its horizontal flip) of sizeNS×NS×3. To generate our prediction,

we again compute the maximum score over all extracted frames.

3.4.2 Structural Similarity

For the experiments with the proposed approach, we chose values for the decoding

interval X that correspond to the settings used in our video classification tests. In

addition, for both cases, we set the rendering frame interval toR= 10 and threshold

A= 0. Under these settings, the EPE of the proposed approach remains low-enough

to indicate high correlation with the ground-truth and optical-flow based methods.

In terms of visual quality of the selective decoding and rendering approach

of Section3.2, we measure the average structural similarity index metric (SSIM)

[25] using the fully-decoded video sequences as reference. By using 100 video se-

quences from UCF-101, and for a range of values of the decoding intervalX (all

other settings remain the same as for Table3.1), the measured drop in visual qual-

ity is reported in Figure3.5. Evidently, the quality of rendered frames remains

high enough to allow for all SSIM values to remain above 0.85. This agrees with

the visual similarity we observed in typical examples such as the ones of Figure

3.4(c)+(d). We can fuse the two streams together by simply averaging their max-

imum scores. Finally, in order for our spatial stream to have temporal correspon-
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Figure 3.5: Structural similarity index of decoding with varying intervalsX.

dence with our temporal stream, we pass the starting index of each P-frame volume.

3.4.3 Experimental Results

Table 3.1 presents results from our MB motion vector extraction against ground

truths, Brox [208], and FlowNet2 [209] optical flow estimations that were respec-

tively used by [17] and [209]. All runtime results were measured using an Amazon

EC2 instance running on a quadcore Intel’s Xeon E2686 V4 (2.3 GHz). Since the

CNN architecture downsamples and quantizes the optical flow before using it [17],

we measure the end-point error (EPE) of the optical flow estimations at the reso-

lution and quantization settings used by the CNN. Under these settings, the EPE

of the proposed approach remains low-enough to indicate high correlation with the

ground-truth and optical-flow based methods.

3.4.4 Datasets

Evaluation is performed on two standard action recognition datasets, UCF-101

[184] and HMDB-51 [205]. UCF-101 is a popular action recognition dataset, com-

prising 13K videos from 101 action categories. Each video is: approximately 10

seconds in duration, 320× 240 pixels per frame, at 25 frames per second (fps).

HMDB-51 is a considerably smaller dataset, comprising only 7K videos from 51

action categories, with the same spatial resolution as UCF-101, and at 30 fps.
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Input
Decoding Flow Estimation

Runtime Runtime EPE

Proposed,X = 50 384.6 (CPU) 18602 (CPU) 15.26

Brox 120.0 (CPU) 0.16 (GPU) 6.32

FlowNet2 120.0 (CPU) 8.13 (GPU) 3.14

Table 3.1: Decoding and motion field estimation accuracy and runtime (fps) results

for the proposed approach, Brox [208] and FlowNet2 [209]. EPE: end-point error;

SSIM: structural similarity index metric.

Framework Input Complexity Accuracy (%)

Size #A, #W (×106) UCF HMDB

Proposed 3D CNN 242×2× 160 4.0, 29.4 77.5 49.5

TSCNN-Brox 2242×20 2.0, 90.6 83.7 54.6

LTC-Brox 582×2×100 42.1, 12.2 82.6 56.7

LTC-Mpegflow 582×2×60 25.3, 10.6 63.8 –

Table 3.2: Comparison with state-of-the-art flow based networks. “Proposed 3D

CNN” refers to our temporal stream that ingests MB motion vectors. Complexity

is reported with respect to millions of activations and weights (#A, #W), summed

over conv, pool and FC layers in the utilized deep CNN of each approach.

3.4.5 Evaluation Protocol and Results

For each dataset we follow the testing protocol of Section3.4.1and compute the av-

erage accuracy over the three training/test splits provided. Each UCF-101 training

split consists of approximately 9.5K videos, whereas each HMDB training split has

3.7K videos. It is evident from Table3.2 that our proposal outperforms the RGB-

based SSCNN [17], LTC-Mpegflow [18] and SFCNN [183]. At the same time,

our proposal is outperformed by SSCNN-Brox and LTC-Brox (both using highly-

complex optical flow), as well as the RGB-based C3D [187], by up to 10 percentile

points. Importantly, our approach allows for more than two-fold reduction in the
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number of activations and weights against competing methods, and we mainly at-

tribute the gap in performance to the short duration of the videos in the datasets, and

the low-resolution nature of used content.

3.5 Concluding Remarks

In this chapter we showed how codec motion vectors can stand in as cost-effective

representations of motion flow. We also proposed a new compressed-domain model

for video classification based on deep learning methods, and discussed its mode of

operation and performance. We showed that our method achieves accuracy com-

parative to the state-of-the-art, with speed three orders of magnitude higher than

that of models which require the estimation of dense optical flow prior to infer-

ence. Our proposal in this chapter can be interpreted as an input dimensionality

reduction method that leverages the correlation between block-based texture search

methods and motion flow that underlies video sequences. In the next chapter, we

use our findings on compressed domain video classification to extend our study to

data utility optimization, and do so for the express purpose of video classification.



Chapter 4

Rate-Accuracy Tradeoff For

Compressed Action Classification

This chapter details our study on the trade offs between rate control in video coding

and video classification accuracy, and describes our proposed bitrate optimization

model for video classification. Specifically, we demonstrate how classification of

video data can be reliably achieved by models that exists on remote machines with-

out relaying redundant information from sensors. To achieve the latter, we start by

exploring rate-accuracy trade-offs in CNN-based classification, and we summarize

the contributions detailed in this chapter in the following:

1. We study the effect of varying encoding parameters on state-of-the-art CNN-

based video classifiers. Unlike conventional rate-distortion curves, we show

that, without any optimization, rate-accuracy is not monotonic for CNN-

based classification.

2. In order to optimize the trade off between bitrate and classification accuracy,

we propose a mechanism to select amongst 2D/3D temporal CNN and spatial

CNN classifiers that have varied input volume requirements, and we achieve

this with bitstreams that comply with standardized video codec formats.

3. We study and compare the efficacy of our method on action recognition based

on AVC/H.264 and HEVC compressed video, which represent two of the

most commonly-used video coding standards.
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Sections are organized as follows: Section5.1.1 describes how video bit-

streams are reduced through selective cropping. In Section4.2, we describe and

formulate the optimized classifier selection process. Section4.4 evaluates the per-

formance of the proposed classifiers using different coding settings and illustrates

the rate gains made possible through our classifier selection method. Finally, Sec-

tion 4.5concludes the chapter.

4.1 Cropped Video Bitstreams

We base our reduced-bitstream encoder on the JM reference software of AVC/H.264

[69] and the HM reference software of HEVC [54]. Our modifications to the ref-

erence encoders are designed such that the bitrate of the compressed bitstream is

kept at a minimum while preserving the information needed to classify videos.

Namely, the compressed bitstream should exclusively hold:(i) key texture com-

ponents corresponding to rapidly-changing input content;(ii) inter-frame predicted

macroblocks and their motion compensation parameters;(iii) control signals and

headers needed to comply with its corresponding standard.

4.1.1 Inferring Optical Flow From Cropped Bitstreams

Before applying inter-frame prediction, AVC/H.264 pictures are split into 16×16

pixel macroblocks (MB) to represent luminance and chrominance samples, with

the chrominance samples further split into 8×8 chroma blocks for the widely used

4:2:0 chroma sampling. Macroblocks are the core of the coding layer and form

the basis for adaptive inter and intra predictions. Each of the inter-predicted mac-

roblocks is then encoded using blocks from the set{16×16,16×8,8×16,8×8}

[54, 210]. The HEVC standard takes on a more adaptive approach and introduces

a Coding Tree Unit (CTU) which consists of luma and chroma Coding Tree Blocks

(CTB). The size of each luma CTB is drawn from the set{16×16,32×32,64×64}

where larger size blocks result in better compression efficiency. Iterative partition-

ing is then applied to divide CTBs into smaller Coding Blocks (CB) resulting in

a tree-like structure [211]. The minimum allowed CB size is also specified, this

serves as a parameter to control the granularity of the tree structure produced [56].
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In both standards, blocks are predicted via translational motion vectors (MVs)

that represent the displacement from matching blocks in previous or subsequent ref-

erence frames. Increasing the number of small-size blocks increases the granularity

of the MV grid at the expense of lower coding efficiency. These MVs represent

the temporal activity and have been shown to be highly correlated with optical flow

estimates [121]. If the area covered by the MB is static, the MB is “skipped” and

is not encoded. The resulting prediction residual from temporal prediction of non-

skipped MBs is encoded using transform coding. The transform coefficients are

then quantized based on the quantization parameter (QP). The value of the QP per

frame can be chosen from 52 values in[0,51], with lower values indicating high-

fidelity encoding.

4.1.2 Selective Retention of Motion and Texture Information

Figure 4.1: The proposed Multi-CNN classifier selection: (a) 3D temporal CNN

architecture; (b) 2D temporal CNN architecture. The bottom part represents the

spatial CNN (VGG-16). Parameters: N is the spatial dimensions of the input vol-

ume; T is the temporal extent expressed as the number of frames used; F is the filter

size, formatted as width× height× time; S is the convolutional window stride; D

is the number of filters (or number of hidden units) for the convolutional and fully-

connected layers;RL andRH are controlling the multi-CNN selection based on the

motion vector rateRmotion.

In our work, only select subsets of the quantized transform coefficients will be

entropy encoded and then included in the cropped bitstream. This set of coefficients,
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along with spatial texture, is transmitted to the classifier (described in Section4.2)

to infer semantic features and classify the content of the bitstream. By doing so, the

bitrate of these “cropped” subsets of coefficients,Rcropped, is significantly reduced

in comparison to the original bitrate,Rorig, needed to encode the full video. In

the remainder, we present our modifications, assuming that the first frame of every

video sequence is encoded as an Instantaneous Decoding Refresh (IDR) and all

subsequent frames in the video are encoded as P-frames.

In order to reduce the bitrate of the compressed bitstream, we employ selec-

tive retention of texture information by retaining the texture information of active

regions. To implement selective writing in the AVC/H.264 JM reference soft-

ware [69], we modified functionswriteCoeff4x4_CAVLC_normal() and

write_chroma_intra_pred_mode() . In addition, to allow for a skip sym-

bol for all non-active areas, we modified the functionsread_coeff_4x4_CAVLC()

and read_coeff_4x4_CAVLC_444(). Similarly, to implement selective

writing in the HEVC HM reference software [56], we modified the functions

TEncSbac::codeCoeffNxN() andTDecSbac::parseCoeffNxN(). To

simplify our tests, we retain the texture of IDR frames and skip all texture of P-

frames with a single skip symbol. The introduction of these skip symbols is the

only non-normative part of our entire process. All other syntax elements (including

modes and motion information) are left as specified in their respective standard.

With these minimal changes, standard decoders can decode our reduced bitstreams

to pass to compressed video classifiers.

Finally, in order to derive a temporal activity map from P-frame MVs, we

apply the following steps:(i) MVs are extracted from the compressed bitstream

using theread_motion_info_from_NAL_p_slice() function for JM and

TDecEntropy::decodePUWise() for HM; (ii) the extracted MVs are then

mapped to a grid of 8× 8 non-overlapping blocks within each frame;(iii) MVs

are interpolated from neighboring macroblocks wherever a macroblock does not

provide motion compensation parameters but two or more of its neighbors do.
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4.2 Proposed Framework For Compressed-domain

Classification

4.2.1 CNN Architectures

In Fig. 4.1 we illustrate the two CNNs used for the temporal MV stream,

which represent the state-of-the-art in compressed-domain deep learning for action

classification[121][190]. We use two architectures to study how different models

behave to cropped bitstream volumes, and to demonstrate that our rate optimized

CNN-based classification method is applicable with different network architectures

that have been shown to preform well with codec motion vector data. The first

CNN architecture we consider is the 3D CNN proposed by Chadhaet al. [121].

As illustrated in Fig.4.1(a), all convolutional and pooling layers are spatiotemporal

in extent; this captures the motion information between consecutive motion vector

frames. Crucially, the spatiotemporal features are expected to improve classifica-

tion performance between similar actions. We generate a 4D motion vector input by

splitting thedxanddyvector components into separate channels, thus resulting in a

W×H×2×T volume. We compensate for the low resolution of the extracted mo-

tion vector frames by setting a long temporal extentT asT3D = 160, which typically

comprises the entire video duration.

The second architecture we consider is a 2D CNN, as illustrated in Fig.4.1(b).

The model design is based on ClarifaiNet [212] and only comprises 2D spatial fil-

ters; we notably reduce the size of the first filter from 7×7 to 3×3 and decrease

the stride of the first two convolutional layers to 1×1. A similar architecture was

also employed in recent work on fast video classification [190]. The input is gener-

ated by stacking the motion vectordxanddycomponents into a singleW×H×2T

volume, where the temporal depthT is set asT2D = 60. In general, 2D CNNs are

less complex to train and test with than 3D CNNs, whilst forgoing modelling any

temporal dependencies. Nonetheless, their lower complexity means we can afford

to use a higher input spatial resolution, which enables the 2D filters to learn more

distinguishing spatial features of the MV data.
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Finally, concerning spatial processing of RGB texture, we use the well-

established VGG-16 [188] CNN architecture to classify RGB frames and capture

motion-invariant spatial features of video content. Our spatial CNN is pre-trained

on ImageNet [213] and fine-tuned on the training split of UCF-101. The spatial

stream ingests the decoded frames per video and the predictions made by the spatial

CNN are ultimately fused with the predictions from the temporal stream to produce

the final two-stream classifier decisions.

4.2.2 Training and Testing

We train both temporal stream architectures using stochastic gradient descent with

momentum set to 0.9. The initialization of Heet al. [206] is used and weights

are initialized from a normal distribution. Mini-batches of size 64 are generated by

randomly selecting 64 training videos per batch. The training is completed after

90k iterations. We follow the data augmentation practices utilized in recent work

[121] in order to minimize overfitting for both the 2D and 3D CNN. These include

a multi-scale random cropping of the input and spatial resizing to a fixed sizeN,

followed by zero centering the motion vector field by subtracting the mean motion

vector from the volume. For the 3D CNN, the fixed crop size is set to 24, whereas

for the 2D CNN this is doubled to 48. In addition, we use a dropout ratio to 0.5

for the first two fully connected layers in both models. During testing, for the

temporal stream we generate 10 random volumes of temporal sizeF from which to

test on. Per volume, we use the standard 10-crop testing, cropping the four corners

and the center of the image to spatial sizeN×N and considering both horizontally

flipped and unflipped versions. As such, we average the scores over 10 crops and

10 volumes to produce a single score for the video. For the spatial stream, we use

one IDR frame for each video and oversample inputs to VGG-16 by flipping and

extracting crops.

4.2.3 Multi-CNN Classifier

In order to optimize the tradeoff between bitrate and classification accuracy, we

leverage the differences in input requirements of the two temporal classifiers of
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Fig. 4.1 and devise a Multi-CNN (MCNN) selection process. Since the number

of MV frames per crop is larger for our 3D CNN versus its 2D CNN counterpart

(i.e., T3D > T2D), the former requires higher bitrate per crop than the latter. On the

other hand, as shown in previous studies [29], denser MV frames will benefit from

the spatially-larger input of the proposed 2D CNN architecture. Since the density of

inputs to the temporal stream is directly proportional to the average bitrate allocated

to MVs by the codecRmotion, we expect the accuracy of both the 2D CNN and 3D

CNN classifiers to be directly related toRmotion, albeit up to a limit (since noise is

introduced at high rates due to the limitations of the MV block model). Moreover,

the two classifiers are expected to be comparable in accuracy over a range ofRmotion

values. These hypotheses have been tested and we present the related experimen-

tally derived results in Section4.3.1. In summary, our investigation showed that:(i)

the long temporal extent 3D CNN classifier is superior for lower values ofRmotion;

(ii) the short temporal extent 2D CNN classifier performs as well as the long tem-

poral extent 3D CNN classifier for mid-range values ofRmotion ; (iii) both temporal

CNNs offer diminishing performance for high values ofRmotion. Therefore, we in-

troduce the pair of rate-accuracy optimization parameters {RL, RH}, with RH > RL,

such that:

1. the 3D CNN is used for videos withRmotion < RL

2. the 2D CNN is used for videos withRL ≤ Rmotion < RH

3. no temporal CNN is used whenRmotion≥ RH and only the output of the

spatial CNN is considered (see Fig.4.1).

The remainder of this section is to establish a model-based approach for the optimal

selection of {RL, RH}. While the value ofRmotion is derived experimentally during

the encoding of each video, for offline rate-accuracy optimization studies it can also

be derived via rate-distortion models [214].

4.2.4 Problem Formulation and Optimization of MCNN

To make full use of the overlap of performance between classifiers, a video is passed

to a lower-rate classifier only when it is likely to be classified correctly. We consider
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Figure 4.2: RGB frames and corresponding AVC/H.264 MV activity maps for two

scenes from UCF-101; (a) RGB frames; (b) Brox optical flow; (c) Approximated

flow at QP= 0; (d) Approximated flow at QP= 30; (e) Approximated flow at

QP= 40; (f) Approximated flow at QP= 51. Note that sparsity increases and noise

decreases with increased QP.

the problem of finding the optimum set{R∗L,R∗H} that maximizes the classification

accuracy,Amcnn, of our proposed MCNN under a constraint on the available bitrate,

Ravailable:

{R∗L ,R∗H}= argmax
RL ,RH

Amcnn(RL,RH) subject toRsent≤ Ravailable (4.1)

whereRsentis the average bitrate of all transmitted bitstreams under a selection algo-

rithm for {RL, RH}. We first consider the video source probability density function

fs(Rmotion), which characterizes the probability of occurrence of video examples

with bitrate Rmotion. We have foundfs(Rmotion) to be well approximated by the

Gamma distribution,fs(Rmotion;α ,β ), whereα andβ are the shape and rate param-

eters (see Section4.3.1and Fig.4.3). We can then expressAmcnn as:

Amcnn= A3D

∫ RL

0
fs(Rmotion)dRmotion

+A2D

∫ RH

RL

fs(Rmotion)dRmotion

+ASP

∫ ∞

RH

fs(Rmotion)dRmotion

(4.2)

whereA3D, A2D andASP are the classification accuracies of the 3D, 2D and spatial

stream classifiers respectively. In (4.2), the accuracy of each of the classifiers is
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assumed to be constant for the range of rates it corresponds to, and its estimate is

experimentally derived fromV . This assumption holds as long asV is large enough

and the accuracy of each classifier remains relatively flat for different values of

Rmotion within the respective integration interval of each classifier, which is found

to be the case in our experiments of Section4.4.

Since the number of bits needed to classify each video depends on which clas-

sifier is used for prediction, we first find the average bitrate required by each classi-

fier. We defineR3D, R2D, andRSPas the average bitrate of inputs to the 3D, 2D, and

spatial classifiers, respectively, and estimate each as:

R =






R3D = a3DRmotion+b3D 0 < Rmotion < RL

R2D = a2DRmotion+b2D RL 6 Rmotion < RH

RSP= ISP RH 6 Rmotion < ∞

(4.3)

wherea3D, b3D, a2D, andb2D are coefficients to be estimated by applying regression

on the bitrate featureRmotion obtained on the training setV . Since the inputs passed

to the 3D and 2D classifiers consist only of the motion vectors and some added

headers to comply with the used standard, we expect the linear relations shown in

(4.3) and confirm this in Section4.3.2. For the spatial classifier, we useISP, i.e., the

bitrate of the first IDR frame, to estimateRSP. Note thatRmotion is not used forRSP,

since the spatial classifier only uses texture information. We can now expressRsent

as:

Rsent=
∫ RL

0
R3D fs(Rmotion)dRmotion

+
∫ RH

RL

R2D fs(Rmotion)dRmotion

+
∫ ∞

RH

RSPfs(Rmotion)dRmotion

(4.4)

Based on the expectation value property of the Gamma density functionf (X;α,β )

[215]:

X f(X;α ,β ) =
α
β

f (X;α +1,β ) (4.5)
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from (4.2) and (4.4) we can rewriteAmcnn andRsentas:

Amcnn= (A3D−A2D)Fs(RL;α ,β )

+ (A2D−ASP)Fs(RH;α ,β )+ASP

(4.6)

Rsent= (b3D−b2D)Fs(RL;α,β )

+(b2D− ISP)Fs(RH;α ,β )

+(α/β )(a3D−a2D)Fs(RL;α +1,β )

+(α/β )(a2D)Fs(RH;α +1,β )+ ISP

(4.7)

whereFs is the cumulative distribution function offs and we have explicitly indi-

cated the dependence on the parametersα andβ since they affect the bitrate and ac-

curacy contributions of the 2D and 3D CNN models. The constrained optimization

problem of (4.1) can now be solved for{R∗L ,R∗H} via (4.6) and (4.7). We first note

that (4.6) is monotonically increasing in function ofRL andRH, sinceA3D > A2D

andA2D > ASP. This allows for the use numerical methods that gradually explore

the parameter space of{RL ,RH} by settingRsent in (4.7) as close as possible to

Ravailableand then finding the maximum values for{RL ,RH} that satisfy (4.7), since

such values will automatically maximize (4.6).

In our experiments, amongst several alternatives, we opted for the method of

Toint et al. [216], which finds the solution{R∗L,R∗H} that maximizes (4.6) under the

constraintRsent≤ Ravailablewith the provision of sufficient exploration time. Given

that this optimization process is done offline based on training dataV , this does

not impose any overhead at runtime. Finally, we remark that, in caseRmotion is not

measurable at training or test time, the optimization method proposed in this section

can be generalized to other features that correlate withRmotion (e.g. number of MVs

per frame).

4.3 Validation Of Rate-Accuracy Assumptions

We validate our modelling choices described in Section4.2.4. For brevity of expo-

sition, all figures and results here are reported for the indicative case of AVC/H.264

with QP= 40.
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Figure 4.3: Empirically measured distribution ofRmotion and fitted Gamma distri-

bution with shape and scale parameters:α = 2.43,β = 0.13.

4.3.1 Distribution of Rmotion and Performance Overlap

In this section we compare the distribution ofRmotion against the fitted model and

verify the overlap of performance between the proposed architectures in Section4.2.

All of the UCF-101 dataset is used to produce the results shown in Fig.4.3and Fig.

4.4. For Fig.4.3, the Kullback-Leibler divergence (describing the distance between

the empirical and fitted Gamma distribution) was found to be 0.034. This proximity

justifies our use of this distribution for characterizing the probability of occurrence

of different values ofRmotion. Concerning Fig.4.4, the experiments show that the

3D and 2D CNN architectures perform similarly for middle-range values ofRmotion,

with the 3D-CNN outperforming the 2D-CNN for most of the lower MV bitrates.

The performance of both CNNs decays for high values ofRmotion. Hence, for the

high-end range ofRmotion, only the spatial CNN should be used (VGG-16 of Fig.

4.1).

4.3.2 Linear Model Verification for (4.3)

We selected 5% of the UCF-101 videos randomly and present the plots ofRmotion

vs. R3D andR2D in Fig 4.5 and Fig. 4.6 . Using the same set, we calculated the

coefficient of determinationR2 to relate the experimental variance to the residual
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Figure 4.4: Number of videos classified correctly by each temporal CNN classifier

for different values ofRmotion.

variance of the linear model and found it to be 93% forR3D and 88% forR2D.

Similar results have been obtained for the HMDB dataset. These results validate

that the linear assumption of (4.3) is a good approximation.

Figure 4.5: Bitrate of inputs sent to 3D architectureR3D plotted againstRmotion and

fitted model ofR3D with linear coefficientsa3D = 2.21 andb3D = 9.04.
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Figure 4.6: Bitrate of inputs sent to 2D architectureR2D plotted againstRmotion and

fitted model ofR2D with linear coefficientsa2D = 0.83 andb2D = 4.27.

4.4 Experimental Results

4.4.1 Used Datasets And Rate Saving from Cropped Bitstreams

We train and test our 2D and 3D CNN architectures on eight distinct motion vector

datasets generated by varying the QP setting of AVC/H.264 and HEVC to encode

UCF-101[184], while skipping texture information as described in Section5.1.1.

For all videos: the first frame is encoded as an IDR (with remaining frames inter-

predicted as P-frames), the frame rate is set to 25, and we set the motion vector

search range to 16 pixels. Since specifying a particular quantization parameter has

a direct effect on the MVs produced by AVC/H.264 and HEVC, this gives several

distinct source distributions for the classifier to be trained and tested on.

For each dataset we follow the protocol of Section3.4.1and compute the av-

erage accuracy over the three training/test splits provided. Each UCF-101 training

split consists of approximately 9.5K videos of sequences representing 101 differ-

ent subsets of apparent actions. Importantly, the classifiers we study allow for a

two-fold decrease in the number of required activations and weights (which directly

correlate with complexity) when compared against full-density optical flow meth-
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Table 4.1: Average AVC/H.264 bitrate (kbps) of UCF-101;Rorig is the bitrate of

the original bitstream,Rcroppedis the bitrate after cropping and retaining texture and

motion information, andRmotion is the MV bitrate.

% of Rmotion to

QP Rorig Rcropped Rmotion Rorig Rcropped

0 4273.0 321.3 155.4 3.6 48.3

30 274.9 112.3 46.9 17.0 41.7

40 80.0 49.9 18.5 23.2 37.1

51 27.7 20.0 4.6 16.7 23.1

Table 4.2: Average HEVC bitrate (kbps) of UCF-101;Rorig is the bitrate of the

original bitstream,Rcropped is the bitrate after cropping and retaining texture and

motion information, andRmotion is the MV bitrate.

% of Rmotion to

QP Rorig Rcropped Rmotion Rorig Rcropped

0 3065.2 204.9 39.9 1.3 19.1

30 157.7 58.8 12.0 7.6 20.6

40 40.2 26.7 4.9 2.5 12.25

51 10.9 9.8 0.8 7.3 8.1

ods, and we attribute the gap in performance between the two mainly to the low

temporal and spatial depths of content comprising used UCF-101[184].

4.4.2 Rate-Accuracy Results

As the quality of predictions made by CNN models is strongly tied to the properties

of source distributions (e.g. cross-class variance, noise), we expect that varying the

rate should affect the accuracy of our classifier accordingly. Since the QP values

control the video rate, we first show visual examples of the effect of QP on the

quality of approximated sparse optical flow in Fig.4.2. The best approximations
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Figure 4.7: Rate-accuracy after cropped AVC/H.264 bitstreams are passed to the

2D and 3D classifiers. Each point for every curve corresponds to a different QP

setting during encoding, with “16×16” indicating restriction to 16×16 blocks (no

MB subblocks) and “All” indicating the use of all MB partitions.

appear to be for QP values in the region of 30 to 40. To assess the rate savings

and classification accuracy of our proposal when varying QP values, in Table4.1

and Table4.2we compare the original bitrate,Rorig, with the bitrate of the cropped

bitstreams,Rcropped, and the rate of retained motion vectors,Rmotion. The results

show that streaming cropped bitstreams allows for 28% to 92% reduction in bitrate

for AVC/H.264, and 11% to 94% for HEVC. The related classification accuracy

results are presented in Fig.4.7and Fig.4.8. As indicated by the visual examples

of Fig. 4.2, the utilized CNNs indeed achieve their best accuracies at QP values of

30 to 40.

Importantly, we observe that rate-accuracy curves are not monotonic (i.e., ac-

curacy decreases for very low or very high QP values). We expect sparser motion

vectors (e.g., MVs produced by setting QP= 51 where the rate allocated to motion

vectors is the lowest) to make certain classes with high motion similarity particu-

lary harder to classify and easier to confuse with each other. On the other hand, as
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Figure 4.8: Rate-accuracy after cropped HEVC bitstreams are passed to the 2D

and 3D temporal CNNs. Each point for every curve corresponds to a different QP

setting during encoding, with encoder parameter CBT Depth= 2.

shown by Fig.4.2, setting QP< 30 also has a detrimental effect on accuracy, since

the derived MVs become significantly more noisy due to the inadequacy of the sim-

ple translational block model of AVC/H.264 and HEVC to smoothly approximate

the optical flow field since such block models are optimized for rate control and not

optical flow estimation [121, 208].

To cross validate with an external benchmark, Fig.4.9shows the average End

Point Error (aEPE) between MV frames and a dense optical flow ground truth ap-

proximated using the method proposed by Broxet al. [186]. The resulting curves

show that, for both video coders, the minimum aEPE value against dense optical

flow is in the QP range of 30 to 40. We also note that the best performance occurs

at a lower rate for HEVC compared to AVC/H.264, which is due to the enhanced

coding efficiency and improved inter-frame macroblock search of the HEVC stan-

dard. This is also reflected in Fig.4.9, where the aEPE of HEVC is lower than that

of AVC/H.264 over all QP settings.
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Figure 4.9: Average EPE between our approximated optical flow with different QP

settings and an estimated dense optical flow ground truth using the method of Brox

et al. [208].

4.4.3 Comparison Against External Benchmarks

In Table4.3, we report the accuracy of our fused spatio-temporal classifier of Fig.

4.1, wherein the predictions of the spatial and temporal classifiers are averaged,

and compare against state-of-the-art methods from the literature. Our results show

that our approach remains competitive to the state-of-the-art on UCF-101, while

retaining the significant bitrate gains reported in Table4.1 and Table4.2. In addi-

tion, while our approach is outperformed by methods like ST-ResNet and TSN, it is

important to emphasize that these methods are orders-of-magnitude more complex

than operating with sparse compressed-domain information [195, 121, 190], since

they require the use of dense optical flow and need to receive and decode entire

video bitstreams. Moreover, ST-ResNet and TSN use significantly deeper neural

network architectures in comparison to our approach, which makes their inference

significantly more compute intensive than the CNN architectures of Fig.4.1. Fi-

nally, in order to improve our results for the HMDB dataset, our rate-optimization
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method can be applied in conjunction with the recent motion vector accumulation

method proposed in CoViAR [192], which uses compressed-domain information to

infer a sparse optical flow representation. While their optical flow approximation

method is more complex in comparison to ours, by applying our classifier selection

framework to such representations it is possible to gain even more savings in bitrate.

Framework Rcropped Accuracy (%)

(kbps) UCF HMDB

3D-CNN-F (H.264, QP= 30) 112.3 88.1 53.0

3D-CNN-F (H.264, QP= 40) 49.9 88.1 52.9

3D-CNN-F (H.264, QP= 51) 20.0 84.0 47.7

3D-CNN-F (H.265, QP= 30) 58.8 86.7 50.9

3D-CNN-F (H.265, QP= 40) 26.7 86.6 50.7

3D-CNN-F (H.265, QP= 51) 9.8 81.4 47.1

EMV + RGB-CNN [190] — 86.4 —

MVCNN [121] — 89.8 56.0

CoViAR [192] — 90.4 59.1

ST-ResNet + iDT [185] — 94.6 70.3

ActionVLAD + iDT [ 185] — 93.6 69.8

TSN (3 modalities)[217] — 94.2 69.4

I3D[218] — 93.4 66.4

TSCNN (SVM fusion) [17] — 88.0 59.4

LTC[18] — 91.7 64.8

C3D (3 nets)+IDT[187] — 90.4 —

Table 4.3: Comparison of our 3D-CNN-F classifier (fusion of VGG-16 spatial

CNN and 3D-CNN as shown in Fig.4.1) against state-of-the-art CNNs.Rcroppedis

estimated from UCF-101 and is not relevant for other methods as they require full

decompression of whole bitstreams.



4.4. Experimental Results 87

Figure 4.10: Rate-accuracy results on the UCF-101 dataset. For the 3D-CNN-F and

2D-CNN-F classifiers (fusion of spatial CNN with 3D/2D motion CNNs as shown

in Fig. 4.1), different rates are obtained by using different QP settings. When using

Multi-CNN, rate is controlled by setting QP= 40 and varyingRavailableto solve for

R∗L andR∗H. Note that the leftmost point shows the performance when the temporal

stream is not used and the MCNN selector only considers the outputs of the spatial

stream model.

4.4.4 MCNN Performance

To study the performance of our proposed MCNN under varying rate constraints,

we solve (4.1) for multiple values ofRavailable within the interval[0,50] kbps as

described in Section4.2.4. We then assess the MCNN accuracy on the UCF-101

test set for each set of parameters{R∗L ,R∗H} and show the results in Fig.4.10. When

using the optimization framework of Section4.2.4, approximately 25 kbps (50%)

reduction in bitrate can be obtained against the 3D-CNN-F classifier (25 kbps vs.

50 kbps) at less than 2% reduction in classification accuracy. Importantly, further

bitrate reductions are made possible with graceful (and monotonic) degradation in

classification accuracy, to the point of making it viable to get an accuracy within
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7% from the top performance at an average bitrate as low asRsent= 3 kbps. This

shows the potential for further exploration of rate-accuracy optimization in CNN-

based video classification and the utility of features such asRmotion in inferring the

temporal information needed for classification.

4.5 Concluding Remarks

In this chapter we presented the first exploration of rate-accuracy trade-offs within

the context of action classification via deep neural architectures. Given that our pro-

posed method can be applied based on standardized codecs with minimal bitstream

modifications, it is well suited for remote inference (e.g., for distributed internet-

of-things systems), or low-complexity implementations (e.g., to run data-efficient

models on mobile devices). We have observed that non-monotonic rate-accuracy

curves are obtained by state-of-the-art CNNs classifying approximated flow from

compressed bitstreams (following the AVC/H.264 and HEVC standards). On the

other hand, a rate-based selection method between multiple CNN classifiers with

varied input requirements is shown to achieve monotonic rate-accuracy character-

istics. Our results show that, when reducing bitstreams to the necessary elements

for 2D or 3D CNN classification, 28%-92% and 11%-94% reduction in bitrate can

be achieved for AVC/H.264 and HEVC respectively. The latter observations on

data redundancy detection for video classification motivated us to investigate task-

agnostic data utility optimization, and in the next chapter we detail our work to that

effect.



Chapter 5

Biased Mixtures Of Experts For

Visual Inference Under Data

Transfer Limitations

To bridge the gap between the input requirements of inference models and the prac-

tical constraints on available data per input, it is important to design models that

can perform well when available communication resources are limited between the

visual sensing and neural network processing parts of the system. For instance,

cloud-based video analytics, remote medical imaging and robotic, drone or Internet-

of-Things oriented computer vision [58, 219, 220] have stringent constraints on

the amount of data that can be provided between data-producing clients and data-

consuming models on cloud servers. For typical deep learning models where a fixed

amount of data is required per inference task, this leads to unnecessary and often

unachievable demands in the amount of required data traffic.

This chapter details our study on task-agnostic data utility optimization, in

which we propose a novel class of mixtures of experts to adapt computer vision

models to data transfer limitations at test time. Although some work has been de-

voted to input dimensionality reduction [221, 222, 166] and rate-constrained model

optimization for specific tasks [58, 223], to the best of our knowledge, no task-

agnostic method has been proposed that explicitly addresses data scarcity at test

time by considering the variance between different domains in input space. The ex-
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Figure 5.1: Sample space of a classification task using two features, where colours

indicate different actions. All samples were drawn from a mixture model compris-

ing gaussians with distinct coefficients of variance. The blue line of (a) shows an

appropriate instance of input segregation, such that some samples can be directly

classified via the use of one dimension (along the x-axis). The red line of (b) shows

a randomly set partition, which does not provide any useful priors for data-economic

inference.

ample of Figure5.1illustrates a classification task where the acceptable data cost of

inference can vary for different input space partitions. That is, two features (speed

and repetition of motion) can be used to classify the bottom-left examples in Figure

5.1, while one feature suffices for distinguishing "Jog" examples from "Run" exam-

ples on the top-right. Reducing the retained dimensions directly correlates with the

data costof inference. To leverage inherent variances across different input space

partitions, and by selecting among two expertsE1 andE2 which respectively require

d1 andd2 bytes per input whered1 > d2, decision boundaries can be determined to

appropriately pass more data for more difficult inputs. Learning decision bound-

aries similar to those of Figure5.1can allow sensors to remotely communicate data

as necessary, subject to the general position of an input within its respective space.

This reduces the overall data cost for inference that is accurate enough for the task

at hand. Consequentially, this can relieve unnecessary load on communication re-

sources that exist between sensors and remote machines used for visual inference.

Our work proposes a solution to learning such decision boundaries directly from

data for any model wherein inputs can be sub-sampled or reduced, and for any

specified limit on data cost. We summarize our contributions to the following:
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1. We introduce a novel class of mixtures-of-experts, wherein some experts are

favored to others by design. When experts of different data requirements are

included, this allows mixtures to meet different constraints on allowed data

utility.

2. We propose two methods to train biased mixtures such that input space is

effectively partitioned for each expert to realize data-efficient mixtures.

3. We show that data transfer optimization between visual sensing and process-

ing can be formulated as a convex optimization problem, and present an abla-

tion study of the benefit of biased mixtures under different contexts of allowed

limits on data utility.

In using different of instances of proposed biased mixtures we task-

agnostically consider thedata costoptimization problem, and do so in order to

determine required input volumes and code lengths prior to visual inference. We

consider how input space partitions vary in the amount of data required per in-

put in order to ensure good performance, and leverage this variance to train more

data efficient mixtures of experts. To do so, we take inspiration from recent work

[40, 39, 57] to propose a sparse mixture of experts where expert utility is biased to-

wards specific experts. While meeting predefined constraints on expert utility bias,

we train sparse gating functions to select the most adequate expert to use from a set

of experts of varied input requirements. Importantly, our method does not modify

any pre-existing methods for complexity optimization or task specific data cost re-

duction. As such, our proposal can be applied in conjunction with recent proposals

on learnable compression [44, 169, 170] and domain adaptation [173, 174, 175] to

reduce the data cost of visual inference.

The expert utility biasing method proposed in this chapter can be applied to

reduce the data cost of any model wherein the size of inputs can be sub-sampled or

reduced. To show this, we train and validate on a variety of tasks spanning multiple

domains. Specifically, we validate on the tasks of: single shot object detection from

the work of Weiet. al [22], realtime video action classification from the work of
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Zhanget. al in [59] and Chadhaet. al [121], and image super resolution from the

work of Shiet. al [46] and Donget. al [224]. Sections are organized as follows:

Section5.1 details the proposed biased expert selection and describes its general

architecture and how it is trained. In Section5.2we evaluate the performance of the

proposed method on all tasks, and illustrate the benefits that biased mixtures of ex-

perts can provide on multiple models for each task. Finally, Section5.4summarises

our findings and concludes this chapter.

5.1 Biased Expert Selection
5.1.1 General Architecture Formulation

Let E denote a mixture ofN experts whereE = {E1,E2, ...,EN}, and each expert

En is a modified variant of a task-performing baseline model. Per inputxxx, a gating

function determines the contribution of thenth expert as:

G(xxx;Wg)n =
ef (xxx;Wg)n

∑m6=nef (xxx;Wg)m
(5.1)

whereWg is a set of trainable weight parameters,mdenotes remaining gate indices,

and f (III ;Wg) ∈ RN is the output of a specified gating model (e.g, a multi-layer

perceptron). The outputyyy of the mixture of experts is:

yyy =
N

∑
n=1

G(xxx;Wg)nEn(Pn(xxx)) (5.2)

wherePn is a preprocessing function to accommodatexxx for thenth expert (e.g.,Pn

performs subsampling ifEn ingests subsampled inputs). Mixtures of experts are

typically trained using a task loss that calculates the error between a provisioned

ground-truth andyyy. In our proposedbiasedmixtures of experts, experts are acti-

vated only when needed, and activating some experts is more favorable to activat-

ing others. In addition, all experts are optimized before training the mixture, and

the training loss is back-propagated through the gating function exclusively during

training. In Figure5.2we illustrate some examples of how biased mixtures can be

applied for different tasks. To adjust mixtures for biased expert selection, we denote
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the desired amount of bias in expert selection bybbb∈ RN, where||bbb||1 = 1 and each

of its componentsbn specifies per batch the ratio of input examples to pass to each

nth expert. We then consider two methods of training for biased expert selection,

and detail their function in the following.

5.1.2 Soft Bias Regularization
Here we consider a soft regularization approach, where the most suitable expert

to use is selectedper inputvia a sparse gating function, and all other experts are

omitted. To do so, similar to Shazeeret. al [40], for each inputxxx only experts

associated with the highest gate value are retained for inference, and we modify the

gating function to:

G(xxx;Wg)n = ψ( f (xxx;Wg))n ∙
ef (xxx;Wg)n

∑m6=nef (xxx;Wg)m
(5.3)

whereψ( fff (III ;Wg)) is a non-linear operator which returns a one-hot vector indi-

cating the top value inf (III ;Wg). From (5.3) we also define the utility of eachnth

expertuuun as its total contribution per batchX comprisingM examples:

uuun =
1
M ∑

xxx∈X
G(xxx;Wg)n (5.4)

and we calculate the bias regularization losslbias as a function ofuuu ∈ RN and the

specified bias vectorbbb:

lbias=−wbias log(1−
1
√

2
||uuu−bbb||2 ) (5.5)

wherewbias is a hyperparameter to control the amount of bias to impose on the

mixture. The distance is normalized by
√

2 to ensure the expression within the log

function is always positive (
√

2 is the maximum possible distance between vectors

with an L1 norm of one, which is the case foruuu andbbb). By applying the modifi-

cations to the gating function in (5.3), and including the bias regularization loss in

(5.5) to the total loss, the mixture of experts is simultaneously trained to maximize

task performance and meet the specified bias.

5.1.3 Batchwise Bias Enforcement

In our second proposal, rather than encourage mixtures to align the utility of their

experts with the specified bias, we enforce biasper batchin accordance withbbb, and



5.1. Biased Expert Selection 95

train the mixture only with respect to its task loss. This in effect trains mixtures

to make better expert selections for each input, while meeting the bias constraint

for every batch. Specifically, with a batch size ofM, batches are segmented such

thatMbn examples are passed to eachnth expert. To do so, starting from (5.1), we

considerG∈ RM×N as anM sized batch of gate vectorsG(xxx;Wg), and perform the

procedure described in Algorithm1. For eachnth expert, we denote gate values

assigned to columns of input asG:,n and illustrate this in Figure5.3.

Algorithm 1 Batchwise Bias Enforcement

Input: Soft gates batchG∈ RM×N

1: for n = 1 ton = N do

2: k←Mbbbn

Calculate number of inputs to pass tonth expert

3: t← TopK(G:,n,k)

Find topk values corresponding tonth expert

4: for i = 1 to i = M do

5: if ti 6= 0 then

6: Gi, j ← 0 ∀ j 6= n

For ith input, set all gates not ofnth expert to 0

7: else

8: Gi,n← 0

Set gate ofith input andnth expert to 0

9: end if

10: end for

11: end for

5.1.4 Selecting Bias For Data Cost Optimization

Here we detail our method for selecting useful biases that can optimize performance

under different constraints on data utility. We consider the inference data cost vector

ddd ∈ RN, where each of its componentsdn is the size of input volumes per example

as seen by each expert (i.e., the data cost associated withPn(xxx)). When mixtures are

biased and an ample number of samples is considered, the average data cost is then
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Figure 5.3: Batchwise bias enforcement example whenN = 3, M = 4 andbbb =

[0.50,0.25,0.25]. Inputs are selected per batch by iteratively sorting and selecting

the topMbn highest gate values. Gates subsequently set to zero are highlighted in

red, and top(Mbn) values are highlighted in blue.

expressed as̄d = bbbdddT = ∑N
n=1bndn. In this way, the biasing vectorbbb can be tuned to

allow for different average data costs of inference in the interval[dmin,dmax], where

dmin anddmaxare the minimum and maximum amounts of data that can be ingested

by experts in the mixture.

Importantly, it can be seen that whenN > 2 there can be multiple instantiations

of bbb that produce the same average data costd̄. Thus, when an average data cost

targetdt ∈ [dmin,dmax] is specified, it is necessary to define a method by which to

determine an appropriate bias vectorbbb that is subsequently used in training biased

mixtures. To address this, we considerppp∈ RN, which quantifies the performance

of each optimized expert prior to inclusion in the mixture, and selectbbb such that:(i)

bbb satisfiesd̄ = dt , and(ii) bbb maximises the expected test performance as measured

by bbbpppT. That is, when each componentpn denotes an appropriate performance

measure for thenth expert on a designated set of inputs isolated from testing exam-

ples (e.g.,pn can be accuracy for classification tasks, or mean average precision for

objection detection tasks),bbbpppT is a probabilistic measure of performance when ex-

amples are randomly assigned to experts with respect tobbb. In doing so, we reduce

the problem of determiningbbb for a specified data costdt to a linear optimization

problem that achievesbbbdddT = dt , while maximisingbbbpppT. Since||bbb||1 = 1 andbN

can be expressed asbN = 1−∑N−1
n=1 bn, by expanding and substitutingbN, we get:



5.1. Biased Expert Selection 97

b1d1 +b2d2 + ...+(1−
N−1

∑
n=1

bn)dN = dt (5.6)

and following that components ofbbb must be summable to unity, we also get the

additional(N−1) constraints:

b1≤ 1; b2≤ 1;... ; bN−1≤ 1 (5.7)

with maximization objective:

max{b1p1 +b2p2 + ...+bNpN} (5.8)

Note that (5.6) and (5.7) defineN linear constraints to maximize the objective

(5.8) with N basic values{b1,b2, ...,bN}, and determiningbbb is a convex problem

which can be readily solved by optimization methods such as the simplex method

[225]. Thus, an appropriate biasing valuebbb to use for training can be found for any

specified target data costdt . Following the duality property of such convex prob-

lems, we can also formulate the equivalent problem that findsbbb for any specified

performance targetpt .

5.1.5 Additional Observations On Biased Mixtures

Note that while (5.5) and Algorithm1 do not directly consider data cost, by using

a set of experts that require different amounts of data, the bias vectorbbb controls the

average data cost per batch. For example, the mixture of experts can be encouraged

to pass data more economically by settingbbb to favor the utility of some data efficient

experts over others. Importantly, the quality of expert selections is related to the

complexity of the gating functionG(xxx;Wg); increasing the complexity ofG(xxx;Wg)

can improve selections, albeit with dimnishing returns. In addition, because bias

enforcement is done per batch, we intuitively expect the quality of selection to be

directly correlated to the batch size: setting a small batch size may not expose the

gating function to a sufficient amount of variance in inputs to make selections of

benefit, while increasing the batch size at test time is favorable.
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The same expert selection methods described here can be applied with mix-

ture architectures that include experts which are optimized for low data cost via

dimensionality reduction methods (e.g., the proposals of [58, 59]) and experts that

use different modalities to make their inferences (as illustrated in (c) of Figure5.2).

Moreover, while our work studies the problem of reducing data cost,bbb can also be

specified to prioritize any other expert property to meet any constraint (e.g., to meet

constraints on power consumption or latency).

5.2 Evaluation

5.2.1 Benchmarks And Evaluation Method

To show how biased mixtures can optimize data costs of inference for different

problems, we evaluate on three computer vision tasks:(i) object detection,(ii) im-

age super resolution, and(iii) realtime action classification. In reporting results for

all tasks, we compare our method against two alternatives:

1. Previously Proposed Models: To benchmark our results against relevant task-

specific solutions, we consider the performance of constituent experts when

optimized for different data cost constraints. In biased mixtures, this corre-

sponds to specifyingbbb as a one hot vector, and measures performance when

the same amount of data is used for all inputs during inference (e.g., when

bbb = [0,1,0] only E2 is used for inference). We report this to benchmark

against previous work and to highlight the benefit of uniquely dividing the

input space for each expert.

2. Random Selection: Here, experts are randomly selected for inference at test

time in order to satisfy the model biasing requirementbbb. This is to serve as the

lower bound of performance when biased mixtures are used and the specified

expert utility bias is met.

Importantly, when considering the problem of task-agnostic model optimiza-

tion under data cost constraints, there is no previous work similar to ours. That is

why, we benchmark against the maximum performance achievable by recently pro-
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posedtask-specificsolutions when their input volumes are adjusted to meet different

constraints on data cost. That is,biased mixtures consist of experts that also stand

in as external benchmarks. To highlight the latter, benchmark results of constituent

experts are indicated in comparative plots by markers on dotted lines.

For clarity, and to ensure consistency of representation across all tasks, we re-

port the per input data cost of inferencēd as the average amount of data seen by

the mixture after inputs are fully decompressed.For each evaluated task we spec-

ify how the data cost for each expertdn is measured (i.e., the data cost associated

with Pn(xxx)). For a concise measure of how well models preform across different

specified data cost constraints ofdt ∈ [dmin,dmax], and with ptest(dt) denoting test

performance when the target data cost isdt , we report the area under curve when

data cost is normalized as:

ρ =
∫ 1

0
ptest(dmin+ t(dmax−dmin)) dt (5.9)

For all mixtures, we specify the gating model (i.e.,f (xxx;Wg)) as a single conv-

pool layer followed by a fully connected network. To ensure that the model se-

lection process is of low complexity for all tasks, we use ReLU activated depth-

wise separable convolutions [226], and report the per input number of multiply-

accumulate gating operationsCg. We use cross-validation to optimize the biasing

weightwbiasand report the best performance when soft regularization is used. After

all experts included in the mixture are individually optimized, biased mixtures are

trained by updating the weights of the gating function exclusively, and the weights

of experts are not fine-tuned further. We have found that using higher batch sizes

is helpful when training biased mixtures, because it exposes the mixture to a more

varied set of input examples to partition to each expert meaningfully. Therefore,

to ensure gating functions learn meaningful features for batch partitioning, for all

tasks we set the batch size to 128 and the learning rate to 10−4.

5.2.2 Single Shot Object Detection

We test our method on single-shot detection (SSD) to reduce the data require-

ment for object detection while maintaining high accuracy. Recent work [227, 57]
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showed that SSD models [228, 229, 230, 231, 232] vary widely in performance and

complexity when input sizes are adjusted. When considering the varying degrees of

complexity of natural images, we expect that the minimum required subsampling

rate of inputs for accurate object detection should vary accordingly. To demonstrate

this, we train a biased mixture of experts where each expert is optimized for a differ-

ent image subsampling rate, and use the recent work of Liuet. al [22] as a baseline

for all experts (for an illustration, see (a) of Figure5.2). When the resolution of

inputs to each expert isRn×Rn pixels, we measure the data cost associated with

Pn(III) as 3×Rn×Rn×K, where 3 is the number of color channels in RGB inputs,

andK is the number of bytes needed to store floating point decimals.

We use VGG16 [185] and ResNet50 [233] for feature extraction and evaluate

all models using 300 regional proposal boxes per image. Following recent work

[227, 22], we train on COCO training data while excluding the 8k mini-eval images

used in the 2012 challenge [234], and report performance as the mean Average

Precision (mAP) on COCO (07+12). We train mixtures for 20k steps to show our

results when using soft regularization and bias enforcement, and ensure that the

gating complexity of all mixtures remains atCG < 108 Mult-Add operations.

Figure5.4 shows the relationship between imposed bias, data cost, and mAP

when three VGG16 experts are used for single shot detection, where the resolution

of inputs to each expert is{Rn} = {100,150,300}. Notably, biased mixtures opti-

mized with bias enforcement provide the slowest degradation in mAP for lower data

costs, with diminishing gains when more data is available at test time. Specifically,

biasing via enforcement outperforms individual experts by 7.5% when an average

of 220 kilobytes per image is allowed, which is equal to the performance of individ-

ual experts at 490 kilobytes. That is, when the minimum acceptable mAP is 70%,

a reduction of 270 kilobytes in required data is achieved by our proposal (which is

equivalent to a saving of 55%).

In Table5.1we show the performance of biased mixtures when applied to mul-

tiple models, and reportρ as a comprehensive measure of model performance across

data costs. When compared to random selection, we note that for both ResNet50
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Figure 5.4: Single shot detection performance comparison of biased mixtures of

VGG16 [188] experts against other benchmarks when{Rn}= {100,150,300}. The

performance of individual experts is shown on the dotted line.

[233] and VGG16 [188], imposing bias on mixtures provides the highest gain when

lower values of data cost are considered (e.g., whend̄ < dmax
4 ).

Compared to soft regularization, and for all mixture configurations, we found

that bias enforcement is a much more effective method for training biased mixtures

(this is also true for all other tasks evaluated). We hypothesise this is because,

when bias enforcement is used only the task loss is back-propagated during training,

which causes less competition between losses and therefore less local minima to

exist in solution space.
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Table 5.1: Single shot detection comparison on COCO [234] of biased mixtures of

SSD [22] experts against other benchmarks. Resolutions {Rn} and data costs {Dn}

are reported for all experts.

{ Rn}= {100,150,300}(Pixels); {dn}= {120,270,1080}(kB)

Feature
BiasingMethod

mAP(d) (%) whend =
ρ

Extractor dmax
dmax

2
dmax

3

VGG16 [188]

OptimizedExperts

80.0

70.0 66.7 70.9

BiasEnforcement 72.5 70.9 73.1

Soft Regularization 67.1 65.0 68.9

RandomSelection 66.3 63.4 68.2

ResNet50 [233]

OptimizedExperts

75.7

65.1 61.3 66.1

BiasEnforcement 67.8 65.9 68.3

Soft Regularization 62.2 59.9 64.2

RandomSelection 61.9 57.4 63.3

——– ———-

In Table5.2 we study the effect of adjusting the gating complexityCG, batch

sizeM, and number of expertsN on the performance of biased mixtures when bias

enforcement is used. When we consider all mixtures, we find that batch size is

critical to performance. This is because bias is enforced on a per batch basis, and

to make meaningful decisions the gating function needs to be exposed to an am-

ple amount of variance variance between examples. We also see that increasing

the complexity of gating does increase performance by helping partition the input

space more effectively. However, this effect saturates atCG ≈ 3.8×107 Mult-Add

operations, which demonstrates that the optimal hyperplane to partition input space

for N≤ 3 experts can be learned with low complexity.
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Table 5.2: Relation between gating complexity, batch size, and performance when

bias enforcement is used.

ρ when{Rn}=

CG
M

{100,300}(Pixels) {100,150,300}(Pixels)

(Mult-Adds) VGG16[188] ResNet[233] VGG16 [188] ResNet50[233]

23,048,576 16 68.40 64.11 69.27 64.46

32 70.35 65.89 70.25 65.57

64 70.93 66.24 71.16 65.72

26,194,304 16 70.85 66.92 71.82 67.04

32 71.49 67.25 72.50 67.41

64 71.84 67.59 72.97 68.04

38,700,216 16 70.93 67.01 72.10 67.33

32 71.58 67.25 73.07 68.26

64 71.86 67.62 73.13 68.30

— —- ——- ———- ——By comparing the left and right part of Table5.2, we see that adding more

experts to the mixture provides a modest increase to performance. This is because

having more experts allows the mixture to further exploit the variance in different

input sub-spaces (if any such variance exists). To see the extent to which this is

true, in Figure5.5 we adjust the limits of allowed input resolutions to the mixture

Rmin andRmax, and reportρ when considering different values ofN. Importantly,

we see that when the difference betweenRmin andRmax is lower, using more experts

yields less gain in performance, to the point where using more than three experts

for (Rmin,Rmax) = (100,300) does not provide any benefit. This is because, while

setting high values ofN increases the number of intermediate resolutions between

Rmin andRmax, if Rmax−Rmin is low the amount of discernable adequacy between

experts is also low, which in turn diminishes the benefit of including more experts.

5.2.3 Image Super-Resolution

We test the applicability of biased mixtures on Single Image Super resolution

(SISR) [30, 236, 237, 238], an image reconstruction tasks where spatial features

of high-resolution images are inferred from low-resolution input images. Several

recent proposals have shown good performance in terms of image reconstruction

accuracy and computational efficiency [46, 224, 239].
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Table 5.3: Image super resolution comparison on DIV2K [235] of biased mixtures

and other benchmarks. Upscale factors {Sn} and data costs {Dn} are reported for

all experts.

{ Sn}= {×2,×3,×4}; {dn}= {13.9,21.8,49.2}(kB)

Model BiasingMethod
PSNR(d) (dB) whend =

ρ
dmax

dmax
2

dmax
3

ESPCN[46]

OptimizedExperts

33.3

30.4 28.4 30.7

BiasEnforcement 30.7 28.8 31.0

Soft Regularization 30.0 28.1 30.6

RandomSelection 29.8 28.0 30.5

F-SRCNN [224]

OptimizedExperts

32.8

29.8 28.0 30.3

BiasEnforcement 30.1 28.3 30.5

Soft Regularization 29.3 27.6 30.1

RandomSelection 29.2 27.5 30.0

——– ———-

However, current super resolution models do not take into account the variable

amount of high-frequency edge content between images. That is, when reconstruct-

ing images which contain many high frequency elements, SISR models are likely

to benefit from higher resolution input images, while images comprising predom-

inately low-frequency content can be inferred just as well from lower resolution

inputs. This is true also when considering different parts of an image, which usu-

ally vary in the breadth of their frequency elements.

To demonstrate this, we evaluate on the NTIRE17 challenge dataset DIV2K

[235], and train biased mixtures to determine the needed input resolution for good

image reconstruction. To expose biased mixtures to the intra-image variance of

frequency elements, images are divided using a fixed grid into parts of size 64×64

pixels, and super-resolution is performed on each part separately (for an illustration,

see (b) of Figure5.2). By inspecting the low-level semantics of each image part,

the mixture selects the most data efficient expert for reconstruction to preform an

upscaling from the set{Sn} = {×2,×3,×4}. For each expert that upscales inputs

with a factor ofSn to match the target resolution of 64×64 pixels, we measure the
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Figure 5.5:ρ when bias enforcement is used and the number of expertsN is con-

figured. VGG16 [188] is used for feature extraction, and different colors indicate

the resolution limits(Rmin,Rmax) allowed to the mixture (whereN determines the

number of intermediate input resolutions included).

associated data cost asdn = (64/Sn)2×K, whereK is the number of bytes needed

to store floating point decimals. For all biased mixture results, mixtures are trained

for 20 epochs and we ensure the complexity of the gating function is set toCG < 107

Mult-Add operations.

In Table5.3we compare biased mixtures against other benchmarks when using

ESPCN [46] and FRSCNN [224] as expert baselines, and in Figure5.6we show the

relationship between average data cost and PSNR when considering ESPCN [46].

Notably from Figure5.6, when bias enforcement is used andd̄ is within the range

of 18-22 kilobytes, biased mixtures outperform single experts with an average dif-

ference of 0.4 dB. Over the same range of values ofd̄, and when compared to

random selection, bias enforcement provides an average improvement of 0.7 dB.

This highlights the magnitude of intra-image high variance in required input resolu-

tion for image reconstruction, which is not considered by neither random selection

nor optimized experts. Overall, Figure5.6and Table5.3show that biased mixtures

outperform single experts most when̄d < 20 kilobytes, with diminishing gains in

performance for higher values of̄d.
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Figure 5.6: Super resolution performance comparison of biased mixture of ESPCN

[46] experts and other benchmarks when {Sn}= {×2,×3,×4}.

In Figure5.7we show examples of expert selections made by the biased mix-

ture to resolve different 64×64 inputs when bias enforcement is used. The mixture

learns to pass image parts with high frequency components to the×2 SISR model,

and passes other less demanding parts to the×4 model (which are blurrier, due to

the lower frequency of their components).

Figure 5.7: Examples of expert assignments to different image parts. Selected and

non-selected experts are respectively highlighted by blue and red borders.
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Table 5.4: Realtime action classification on UCF-101[184] of biased mixtures of

experts and other benchmarks. Modalities {Mn} and data costs {Dn} are reported

for all experts.

{ Mn}= {Temporal,Spatial,Fusion}; {dn}= {737.3,1843.0,2580.5}(kB)

Model BiasingMethod
Accuracy(d) (%) whend =

ρ
dmax

dmax
2

dmax
3

MV-3DCNN[121]

OptimizedExperts

88.0

79.0 77.9 80.9

BiasEnforcement 82.0 80.4 83.5

Soft Regularization 80.3 78.0 81.9

RandomSelection 78.8 77.3 81.3

EMV-CNN [59]

OptimizedExperts

85.6

76.6 75.5 78.7

BiasEnforcement 80.2 79.2 81.3

Soft Regularization 77.2 75.6 79.7

RandomSelection 75.7 74.9 79.0

——– ———-

5.2.4 Realtime Action Classification

We test our method on realtime video action classification in the compressed do-

main. While the best performing action classification models operate on uncom-

pressed video data, to reduce latency, the models proposed in recent work [121, 59]

infer a low-resolution optical flow from codec motion vectors at high speeds for ac-

tion classification. The classifiers of [121, 59] use two-stream architectures to infer

actions, where spatial and temporal classifiers complement each other by learning

different sets of features from their respective domains [29]. As such, for some

action subsets, the use of only the temporal or spatial classifier can suffice in draw-

ing accurate distinctions between actions, but combining the predictions of both

provides the highest accuracy.

To show that biased mixtures can select among different modalities to reduce

the data cost of action classification, we train a multi-modal biased mixture of ex-

perts using the models proposed in [121] and [59] as baselines (and we illustrate this

in (c) of Figure5.2). We evaluate on UCF-101 [184], and measure the cost associ-

ated with the spatial mode asFs×Ws×K×3, whereFs = 2 is the number of RGB
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Figure 5.8: Realtime action classification performance comparison of

biased mixtures of MV-3DCNN [121] experts, with expert modalities

{Moden}={Temporal,Spatial, Fusion}.

frames used,Hs = 360 andWs = 240 are the height and width of inputs, andK = 32

is the number of bytes to store floating point decimals. For the temporal model,

we measure the data cost asFt ×Ht ×Wt ×K×2, whereHt = 24 andWt = 24 are

the height and width of approximated optical flow, andFt = 150 is the number of

frames used (two channels are used in optical flow to represent vertical and horizon-

tal motion). The fusion classifier uses both modalities to predict actions and is the

most accurate, but requires a data cost equal the sum of both modalities. We include

all modalities to train a mixture of experts{Mn}= {Temporal,Spatial,Fusion}, and

train a gating function to select the most suitable modality to use for each input. For

all biased mixtures, we train for 80k steps and restrict the complexity of the gating

function toCG < 108.

In Table 5.4 we compare the performance of biased mixtures against other

benchmarks when using the spatial and temporal classifiers of [121] and [59] as

baselines for experts. We first note that, both biasing methods outperform random
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Figure 5.9: t-SNE [240] projections of 1024 UCF101 videos, where in (a) colours

indicate different classes, and (b) mode assignments are shown as 0 or 1 for the

temporal and fusion classifiers respectively. (zoom in to view in high-resolution)

selection, by up to 1% for soft regularization and up to 3.8% for bias enforcement.

This indicates that the biased mixture learns to discern confusing classes for par-

ticular modalities to pass them to others. Notably, whend̄ = dmax
3 = 860 kilobytes,

bias enforcement gives an accuracy 1.4% higher than that of the optimized experts

at dmax
2 = 1290 kilobytes, which requires 430 kilobytes more in data cost.

In Figure 5.8 we show the relationship between̄d and action classification

accuracy when a biased mixture of MV-3DCNN [121] experts is used and the mode

of each expert is{Moden}= {Temporal,Spatial,Fusion}. We first note that, due to

the low resolution of its inputs, the temporal classifier requires the least amount of

data and can predict actions with an accuracy of 77.8%. By selecting among the

three modes both biasing methods outperform random selection, by up to 3.4% for

bias enforcement when̄d = 1032 kilobytes, and up to 1.1% for soft regularization

whend̄ = 1438 kilobytes. Notably, when using the temporal classifier for 80% of

videos atd̄ = 1032 kilobytes (i.e., whenbbb = [0.8,0.1,0.1]), bias enforcement is

1.6% more accurate than the spatial classifier (which requires 811 kilobytes more

in data, equivalent to an increase of 78%).
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To visualize how different modalities are assigned to videos, in Figure5.9

we show two-dimensional t-SNE [240] projections of 1024 UCF101 examples as

embedded by the last layer of the temporal classifier. For clarity of presentation,

we use a biased mixture of two modalities{Mn} = {Temporal,Fusion} and set

bbb= [0.75,0.25]. In this way, we show the relation between different class labels and

assigned modalities. Notably, the biased mixture learns to favor using the temporal

classifier for video clusters that are comparatively isolated, and are easier to discern

from other clusters. For videos that are not clearly clustered or isolated (which are

mostly located in the middle), the biased mixture selects the fusion model.

5.3 Details Of Used Gating Models

For all mixtures in the evaluation section, we mention that the gating model

f (III ;Wg) is specified as a conv-pool layer followed by a fully connected network.

Here in Table5.5, 5.6, and5.7we detail the parameters of all gating layers for our

biased mixture results on all evaluated tasks. We also note that:

1. We use ReLU activated depthwise separable convolutions [226] to reduce the

complexity of gating.

2. In Table5.5 on single shot detection, input to the gating model is center

cropped to be a 224×224 RGB image.

3. In Table5.6on image super resolution, input to the gating model is not sub-

sampled (i.e., it is the 64×64 image part before downsampling via bicubic

interpolation). This is to expose gating to the high frequency components of

input images.

4. In Table5.7on action classification, input to the gating model is the temporal

mode of the video (i.e., the approximated optical flow from codec motion

vectors).
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Table 5.5: Layer complexityC of gating modelf (xxx;Wg) for biased mixtures eval-

uated on single shot detection. Expert input resolutions are specified as{Rn} =

{100,150,300} andN = 3.

Layer Type FilterShape Stride InputShape
C

(Mult-Adds)

Convolutional 3×3×3×64 2 224×224×3 2,747,136

Avg. Pooling 7×7 5 111×111×64 —-

FlattenOp. − − 21×21×64 —-

Fully Connected 28224×1024 − 1×28224 28,901,376

Fully Connected 1024×3 − 1×1024 3072

Table 5.6: Layer complexityC of gating modelf (xxx;Wg) for biased mixtures eval-

uated on single image super-resolution. Expert upscaling factors are specified as

{Sn}= {×4,×3,×2} andN = 3.

Layer Type FilterShape Stride InputShape
C

(Mult-Adds)

Convolutional 3×3×3×64 2 64×64×3 224,256

Avg. Pooling 3×3 2 21×21×64 —-

FlattenOp. − − 10×10×64 —-

Fully Connected 6400×512 − 1×6400 3,276,800

Fully Connected 512×3 − 1×512 1536

Table 5.7: Layer complexityC of gating model f (xxx;Wg) for biased mixtures

evaluated on realtime action classification. Expert modalities are specified as

{Moden}= {Temporal,Spatial,Fusion} andN = 3.

Layer Type FilterShape Stride InputShape
C

(Mult-Adds)

Convolutional 3×3×320×64 2 24×24×320 3,363,840

FlattenOp. − − 11×11×64 —-

Fully Connected 7744×1024 − 1×7744 7,929,856

Fully Connected 1024×3 − 1×1024 3072
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5.4 Concluding Remarks

In this chapter we extended the mixtures of experts paradigm to effectively parti-

tion input domains such that constraints on data availability at test time can be met.

We proposed two methods for training biased mixtures of experts and evaluated

their performance on multiple models for all investigated tasks. We demonstrated

how biased mixture are applicable whenever constituent experts vary in their input

dimensionality, and showed this on a wide range of computer vision tasks. Specifi-

cally: (i) on single shot detection, biased mixtures of SSD experts [22] outperform

their constituent experts by 6% in mAP when 250< d < 300 kilobytes on COCO

[234] , (ii) on image super resolution, biased mixtures of ESPCN experts [46] out-

perform their constituent experts by 0.5 in PSNR when 17< d < 23 kilobytes on

DIV2K [ 235] , and (iii) on multi-class action classification, and when selecting be-

tween different modalities of texture and optical flow, biased mixtures provide at

least 3% more in accuracy when 1000< d < 1500 kilobytes on UCF101 [184]. Our

validation showed that, especially for lower ranges of allowed data cost, biased mix-

tures significantly outperform single experts optimized to meet the same constraints,

and can be used to adapt computer vision models to data transfer limitations. We

additionally showed how useful gating inferences that prioritise data economy can

be realized with complexities that do not exceed 108 Mult-Add operations for all

evaluation tasks, which are feasible to run even on embedded computation units

mountable on lightweight sensors. Finally, we note that an important advantage of

biased mixtures is the flexibility at which they can be applied, in that, biased mix-

tures do not modify their constituent experts, but rather augment their function with

an input preprocessing stage that allows for data economy in inference.



Chapter 6

Conclusion And Future Work

6.1 Conclusion

This thesis detailed our study on rate-complexity constrained learnable inference

machines, and our contributions thereto. In our first task-specific study in Chapter

3, we showed how data utility correlates with complexity of inference in video

action classification, and proposed a model that facilitates low-complexity inference

in the compressed domain. To do so, we demonstrated how optical flow can be

sparsely approximated directly from codec motion vector data, and produced such

approximations with the exclusive use of linear operations (i.e., restricted mainly to

spatial and temporal bilinear interpolation). Our results in Section3.4.3show that

neural networks can accurately classify videos while using inputs volumes that are

directly extracted from compressed bitstreams and significantly smaller than those

of previously proposed methods, which used larger volumes of texture information

and optical flow approximations that are denser to ours. Finally, we presented a

complexity study to show that our method achieves accuracies comparable to those

of previous methods, with runtimes three orders of magnitude lower.

Our second contribution in Chapter4 builds on the same vision task of video

classification to study rate optimization. We considered visual analysis systems

where the visual sensing and the CNN-based semantic analysis parts are not co-

located on the same machine, and showed how bitrate, input noise, and performance

are correlated in such systems subject to the quality and quantity of information used
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for inference. We focused our study on the AVC/H.264 standard to quantify the

correlation between optical flow as approximated from motion vectors and state-

of-the-art dense approximations derived from the pixel domain. We importantly

noted the non-monotonous nature of this correlation, and produced a corresponding

rate-accuracy profile on standard action classification datasets to inform the design

of compressed-domain classifiers. In addition, and to understand the lower limits

on volumes of required data for compressed video classification, we implemented

a bitstream cropping method that only retains the necessary elements for optical

flow approximation while maintaining full compliance with the AVC/H.264 cod-

ing standard. To further reduce required bitrates for video classification, in Section

4.2.4we proposed a data redundancy inference method to selectively omit larger

temporal extents when they are less likely to be necessary for accurate classifica-

tion. In addition, and to quantify the benefit of inferring data redundancy prior to

classification, we measured the bandwidth requirements of classifiers when fixed

length temporal extents are used, and compared it against contexts where data re-

dundancy predictions are performed prior to classification. Our validation in Sec-

tion 4.4.4demonstrated how inspecting input sparsity is sufficient to make informed

decisions about required temporal extents for accurate video classification, thereby

allowing for the savings in bandwidth we report. In observing the latter, we also

showed how classifiers can meet constraints on input throughput, specifically in in-

stances where sensors and inference models must communicate with each other by

means that require communication bandwidth.

Our reported findings in Chapter3 and Chapter4 then motivated us to extend

our work such that it is applicable to other tasks of vision, and in Chapter5 we

studied a task-agnostic solution for data utility optimization. Specifically, we pro-

posed a novel class of mixtures of experts to adapt computer vision models to data

transfer limitations at test time. We considered how input space partitions vary in

the amount of data required per input in order to ensure good performance, and

leveraged this variance to train more data efficient mixtures of experts. To discover
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and exploit such partitions in input space while meeting predefined constraints on

expert utility bias, in Section5.1 we detailed how biased mixtures are trained to

select the most adequate expert to use from a set of experts of varied input require-

ments, subject to the inferred quantity of data required for inference. Importantly,

our contribution Chapter5 details how biased mixtures do not modify the definition

or design of their constituent experts, but rather augments their architecture in such

a way that they can be applied in conjunction with other propositions that modify

models to reduce complexity and input dimensionality. In Section5.2we validated

on multiple computer vision tasks to demonstrate how biased mixtures are applica-

ble to to any set of pre-trained experts to optimize data utility, namely: single shot

detection, image super resolution, and real time action recognition. For all tested

applications, we showed how biased mixtures trained to meet different constraints

on data utility outperform their constituent experts when they are optimized to meet

the same constraints.

When considered in its whole, our work investigated the redundancies of re-

cent proposals on computer vision to find more data-efficient models that reduce the

throughput of ingested inputs. We finally note that, in the context of applied dis-

tributed visual systems, and to meet different constraints on complexity and band-

width at test time, all of our observations and tests detailed in Chapters 2, 3, and

4 show the importance of conditioning data utility for visual inference to the local

proximities and properties of inputs within their space. In other words, the impor-

tance of doing so is applicable to all presented vision tasks, and is likely to extend

to other visual inference tasks in order to mitigate unnecessary burdens on commu-

nication resources and sensor hardware.

6.2 Future Work

The work presented in this thesis aimed to regulate the requirements of computer

vision models for higher input dimensionality to meet rate and complexity con-

straints that exist in practical contexts of distributed systems for visual inference.

This motivated us to study solutions that allow for the design of vision models that

are capable of adapting to data transmission at runtime subject to: allowable quality
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of performance, complexity of inference, available communication channel states,

and the content from which inferences are drawn. To realize solutions that come

closer to that end, we see the following as pursuable future extensions of our work:

1. Our work in Chapter5 can be extended to study hierarchical mixtures [144,

143] of experts for data utility optimization. This would be an investigation

to find the extent to which good inferences can be made about the required

amount of data for achieving different tasks

2. To further optimize the performance of compressed domain classifiers, recent

proposals on adversarial discriminative domain adaptation [173] can be ex-

ploited to refine motion flow approximated from motion vectors and align it

with dense approximations of optical flow.

3. Mixtures that comprise experts fine tuned on learned representations that re-

duce dimensionality such as those of [221, 43] can be learned jointly with

gating functions. This in effect would fit sparse gating functions and learned

representations to compliment each other.

4. Our study in Chapter5 studies the question "What is the minimum amount of

data to use for good inference ?", and proposes a heuristic answer; a question

complementary to the latter is "Which are the most useful parts of data to

use for inference ?". Studying models that answer both questions jointly is a

natural trajectory of our research, and constitutes the basis of our next study.
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