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Abstract

When considering instances of distributed systems where visual sensors communi-
cate with remote predictive models, data traffic is limited to the capacity of com-
munication channels, and hardware limits the processing of collected data prior to
transmission. We study novel methods of adapting visual inference to limitations on
complexity and data availability at test time, wherever the aforementioned limita-
tions exist. Our contributions detailed in this thesis consider both task-specific and
task-generic approaches to reducing the data requirement for inference, and evaluate
our proposed methods on a wide range of computer vision tasks, namely: (i) video
action classification, (ii) single shot detection, and (iii) image super-resolution. Our
approach studies data utility optimization techniques that omit input redundancies,
and allows for the realization of data-efficient models which consider only the
amount of data necessary for inference. This thesis makes four distinct contribu-
tions: (i) We investigate multi-class action classification via two-stream convolu-
tional neural networks that directly ingest information extracted from compressed
video bitstreams. We show that selective access to macroblock motion vector infor-
mation provides a good low-dimensional approximation of the underlying optical
flow in visual sequences. (ii) We devise a bitstream cropping method by which
AVC/H.264 and H.265 bitstreams are reduced to the minimum amount of neces-
sary elements for optical flow extraction, while maintaining compliance with codec
standards. We additionally study the effect of codec rate-quality control on the spar-
sity and noise incurred on optical flow derived from resulting bitstreams, and do so
for multiple coding standards. (iii) We demonstrate that there is a high degree of

variability in the amount of data required for action classification, and leverage this
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to reduce the dimensionality of input volumes by inferring the required temporal
extent for accurate classification prior to processing via learnable machines. (iv)
We extend the paradigm of Mixtures-of-Experts (MoE) to include a new class that
optimizes the data cost of inference for any computer vision task. We postulate
that the minimum acceptable data cost of inference varies for different input space
partitions, and consider mixtures where each expert is designed to meet a differ-
ent set of constraints on input dimensionality. To take advantage of the flexibility
of such mixtures in processing different input representations and modalities, we
train biased gating functions such that experts requiring less information to make
their inferences are favoured to others. We finally note that, our proposed data util-
ity optimization solutions include a learnable component which considers specified
priorities on the amount of information to be used prior to inference, and can be

realized for any combination of tasks, modalities, and constraints on available data.
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Mathematical Notation

Care was taken to ensure the notation used in this thesis is consistent, and
listed below are the most frequently used symbols and shorthand. For simplicity of
presentation, some liberties were taken in notating particular parts of the thesis, and

details of this are stated wherever relevant.

v a vector
Vi ith element of vectov
WK expresse&!" iteration of vectowv (e.g., if ¥ is thek!" in-

stantiation from a batch)

X an input vector
y a target vector, used to indicate outputs of predictors
X a set of row vectors, mostly used to represent batches of

input examples

W a matrix of weights, used to represent learnable linear trans-
formations
w a set of weights, used to represent learnable weights of non-

linear functions

f(x;0) A function of x parameterized bg, mostly used to indicate
learnable functions

M number of input examples in a batgh

{xX1,..xn} asetoflengtiN that includes variables or statesxy, ..Xy

log(x) the logarithm function ok

N(p,S)  multivariate drawn from a normal distribution with mean
vectorp and covariance matrix

P(x) probability density function ok

E[X] expectation value of, calculated ag xP(x)dx
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Chapter 1

Introduction

The fields of computer vision and learnable inference are increasingly affected by
recent advances pertaining to artificial neural models, and relevant solutions are
permeating the front and back ends of commercial services. This has led to the
emergence of systems that facilitate the communication of whole neural architec-
tures and their parameter®, [Z, 3], and the development of network acceleration
circuits [4, 5, B, 7, 8, 9] in recent iterations of mobile hardwar®&]. In the foresee-

able future, similar means of acceleration will be extended to other types of sensory
hardware such as surveillance dron&$ [I2, 3], and even to next generations of

inter-planetary communicator$4, 15, 16).

To close the rift between the complexity requirements of deep inference models
and the computational limitations of mobile devices and sensors, modern computer
vision solutions are required to use modest amounts of data in producing their pre-
dictions. This is because, greedy data utility inevitably leads to more complexity
and further exhaustion of communication resources (e.g., bandwidth), where both
of which are scarce and typically require careful management in practical contexts.
Difficulty in managing media stems primarily from two aspects: (i) all state-of-
the-art methods for high-level semantic description of visual data require compute-
intensive decoding, followed by complex pixel-domain processiing 18], and
(if) the high resolution and high frame-rate nature of decoded media and its format
inflation (e.g. from standard to super-high definition, 3D, panoramic, etc) require

highly-complex robust feature extraction, which imposes massive computation and
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storage requirement&, T9. The momentum of recent research in the field of
computer vision is directed mainly towards achieving the maximum performance
possible for a given task, and has produced a lot of promising results for many
tasks such as: single shot detecti@,[21, 7], visual tracking P3, 24, 75|, fa-

cial recognition P6, 7], motion prediction 8, 29|, and learnable compression

[30, 31]. However, recently proposed vision models ignore restrictions on com-
plexity, and process redundantly large volumes of data. Such unnecessary burdens
can be alleviated by optimizing the nature and amount of data processed by vision
models without compromising performance, and this potential is backed by evi-
dence from biological neural processes from recent stuBe$3B, 34]. Metabolic
energy reserves available to the mammalian brain, for example, had important im-
plications on its evolution and function. That is, energy consumption determines
neural circuitry and activity patterns by favoring metabolically efficient wiring pat-
terns 35, 36] and neural code<3[/, 38], and to conserve energy, the human brain
tends to use the minimum amount of information necessary for building higher ab-
stractions B5, 36, 37, 38]. This observation is a strong indication that information

is processed in specific ways conditional on the nature of sensed signals, and it goes

inline with the energy conservation principle prevalent in most biological processes.

Like the human brain, visual inference systems are evolving to shift from pre-
vious visual analysis paradigms and standards that treat every pixel equally, to sys-
tems where information is conditionally processed subject to the context and tar-
get of inference(}9, 40]. Research in this vein is mainly motivated by the chasm
between the computational capabilities of mobile devices and complex vision solu-
tions, which can be bridged in two salient directions: (i) by creating less complex
solutions, and (i) creating efficient communication infrastructures by which exem-
plar data can be transmitted from visual sensors to remote vision models for analy-
sis. The aforementioned directions also motivate the thrust of our contribution, and
inline with both directions, recent breakthroughs in artificial neural network design
have spiked interest in developing systems that understand video content to provide

content-aware compressicfil] 42, 43, 44]. The latter can be helpfully instantiated
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in different ways for different problems, for example: media delivery systems pri-
oritise overall picture quality, but for face detection syste@ts P7] where facial
features are the prime information resource to conserve, more bitrate and transmis-

sion resources can be allocated to coding faces rather than backgrounds.

Beyond the complexity challenges mentioned above, and in visual analysis
systems where visual sensors and data processing models are not co-located, lim-
itations also exist on data transmission links (e.g., on the bandwidth of communi-
cation networks). Consequentially, this imposes constraints on the amount of data
available to visual inference systerastest time and in our work we denote the
latter as a problem adata utility optimization. Examples of such systems include
video streaming services which use vision modak; B6, 47], Internet of Things
(IoT) systems 48], and systems that collect data from remote sensors in general
(e.g., sensors on remote drones and satellif@&s1[2, T3], or inter-planetary com-
municators where bandwidth conservation is of utmost importab&€eTh, 16]).

The need to optimize transmission links in distributed systems that include com-
puter vision models, motivates several areas of research, namely: (i) the design of
content-aware compression models that produce semantically-rich codes to incur
the minimum amount of strain on transmission links, (ii) developing transmission
protocols and decision mechanisms that take into account the particularities of dif-
ferent computer vision models, and (iii) studying heuristic and theoretical methods
for approximating the required nature and amount of data for inference via com-

puter vision models prior to transmission.

In this thesis, we start by considering video action classification to study task-
specific solutions that reduce the complexity and bandwidth requirements of recent
proposals to levels achievable by current mobile compute and communication sys-
tems. We then generalise our findings on video classification to extend our work
to arbitrary computer vision tasks, and propose a task-agnostic solution for deter-
mining the minimum amount of data required for accurate inference. Crucially, the
latter part of our work has substantial value in reducing both: the complexity of

inference (because less data is processed), and required bandwidth for the acquisi-
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tion of necessary data from visual sensors (because less data is sent). We begin our
study on video analysis because it holds significant value as a business asset and as
a tool for extracting and disseminating information. For instance, compressed video
content is the prime asset of online media services such as Netflix, Amazon Prime
Video, YouTube and Vimeo. The 2015-2020 Cisco Visual Networking Index Re-
port estimates that, by 2020, more than 82 million minutes of video will be crossing
the internet every secondy)]. Video action classification (where human activity

in video is classified, e.g. walking, swimming, etc) is a vision problem prevalent

in many commercial applications such as video indexkiy) 1] and surveillance

of human activity for securityd2, 53]. Video requires high amounts of resources

in terms of storage capacity, transmission, and computation, which motivates the
need for video analysis solutions that are content-based and of manageable com-
plexity. In many such problems, frame sequences have to be processed on visual
sensors with embedded computation architectures (e.g., surveillance cameras and
mobile devicesT1, 12, 13]) which cannot accommodate the complexities required

by such models. Our contribution on action classification considers codec motion
vectors as priors of knowledge, which when properly interpreted, yield a sparse
and noisy representation of the underlying motion flow in video. Motion vectors
are an essential component in all current video coding standards, and are used to
compress reoccurring textures across or within frarbdsd5, 56]. We show in-
terpolated representations of motion vectors to be highly correlated with pixel-wise
groundtruths of motion, with resolutions that are typically an order of magnitude
lower than those of dense optical flow approximations. By training classifiers on
sparse approximations of optical flow, we reduce the complexity of video classifi-
cation, and show how codec motion vectors can provide a good prior for reducing
the amount of texture to be processed, by including textures only when they exhibit

magnitudes of motion that surpass prespecified thresholds.

In our second contribution, we consider the bitrate optimization aspect of vi-
sion models and their limits in that regard. Specifically, our contribution in this di-

rection is motivated by contexts where the visual sensing and data processing parts
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of the system are distributed, where it is important to optimize the communication
links between sensors and remote data processing models. To that end, and building
on our first contribution, we investigate the trade-offs between video classification
accuracy and compression bitrates under different quality control settings of cur-
rent standard video codecs. Additionally, and to reduce bandwidth requirements
between sensors and models without significantly affecting classification accuracy,
we propose a learnable decision process by which frame redundancy can be inferred
by inspecting low-level features of underlying motion. This can be expressed as a
problem where input dimensionality must be decided before visual inference, such
that redundancies can be omitted prior to transmission. Importantly, we show our
decision processes to predict frame redundancy with very low complexity, such that
they can be run on computation units embedded in visual sensors.

In the last part of our contribution, we consider the data utility optimization
problem from a task-agnostic perspective. Specifically, we consider the extent to
which input space partitions vary in the amount of information required per input
in order to ensure good performance, and leverage this variance to train more data
efficient mixtures of experts. To do so, we take inspiration from recent vk 3P,

57] to propose a mixture of experts where expert utility is biased towards specific
experts. While meeting predefined constraints on expert utility bias, we train a
sparse gating function to select the most adequate expert to use from a set of experts
of varied input requirements. Importantly, our method does not modify any pre-
existing methods for complexity optimization or task specific data cost reduction.
As such, our proposal can be applied in conjunction with input embedding methods
[58, B9, BD, B1], or recent proposals3p, 57] that reduce the input requirements of
individual experts. Crucially, when adopted for vision tasks wherein sensors and
predictors are distributed, our work in this direction incurs two important benefits:

(i) less complexity, because less data is used for inference, and (ii) less burden on
communication resources, because less data is required to be sent between sensors

and remote prediction models.
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Summarised, our contribution starts by studying complexity and data utility
optimization for specific classification tasks, and we ultimately generalize our find-
ings to study both optimization problems task-agnostically. In essence, the main
thrust of our thesis studies the question: "What is the minimum acceptable amount
of data to use for accurate inference ?". The last contribution presented in this the-
sis realizes an answer to that question, and we show how useful inferences can be
made about data redundancy to avert unnecessary burdens on hardware. In doing
so, our contribution builds on recent breakthroughs in visual analysis to facilitate

the design of data-efficient systems of computer vision and learnable inference.



Chapter 2

Literature Review

In this chapter, we review recent work published in the field of content based image
and video analysis, and discuss literature that motivates and informs the details of
our contributions in Chapteid, @, andB. Throughout this section, we also dis-
cuss previous works which later serve as benchmarks to our proposed solutions.
In the field of content based visual analysis, deep learning constitutes the de facto
method upon which the current state-of-the-art is based, and we start by describing
elementary design principles of artificial neural networks. Finally, we discuss spe-
cific classes of deep learning models from which our solutions to bandwidth and
complexity constricted visual analysis are derived (e.g., mixtures of experts, and

layer-wise conditional computing models).

2.1 Neural Networks

Neural Networks (NN) are function approximators made up of collections of acycli-
cally connected neurons, and the simplest neural network can be modeled as a single
artificial neuron. Akin to logistic regressor&?, 63, 64], artificial neurons map in-

puts to their output through differentiable linear transformations with learnable pa-
rametersB5]. Neural networks model complex functions as interconnected layers
of artificial neurons, where outputs of lower layers are forwarded to higher layers
as inputs. To approximate more complex functions, large neural networks aggre-
gate small decisions of many neurons to model abstract notions on data, which can

then facilitate high-level decisions (e.g., about whether an image belongs to a cer-
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tain visual class or another). For instance, fully-connected networks - which are
typically used as learnable linear transformations - define cases where all neuron
pairs between adjacent layers are connected, but neurons within a layer share no
connections amongst themselves,[64, 68]. In this way, fully-connected layers

are fully visible to all subsequent layers, in the sense that: the output of any neuron
in anIt layer is a function of all neurons included in fully-connected layers below
thel™ layer. Neural networks consisting only of fully-connected layers are referred
to as Multi-Layer Perceptrons (MLP), especially when used as intermediate layers

in more complex structure&9, 65).

2.1.1 Mathematical Representation

To formulate the function of neural networks, standard naming conventions use the
term "N-layer neural network" to refer to networks withlayersexcludingthe input

layer. In this way, a single-layer neural network is an architecture with no hidden
layers, where the input is directly mapped to the output. A single neuron can be
described as a single-layer neural network, and other learned transformations such
as logistic regressor&¥ and support vector machines(]] can also be expressed

as a special case of single-layer neural networks (as long as an appropriate number
of hidden states is allowed). The output of a single neuron can be expressed as
a linear mapping which is then optionally passed to a non-linear transformation.
Specifically, given an input vectore RY, a weight vectow € RY, and a learned

biasb, the output of an artificial neurca(x|w, b) is:

a(xjw,b) = o(wx+b) (2.1)

where o is some non-linear mapping (e.g., a hard threshold, or a sigmoid func-
tion). Activation functions take on a single number and perform a specified fixed
mathematical operation, and define the non-linear aspect of artificial neurons. For
instance, the sigmoid function is commonly used as a non-linearity with the mathe-
matical formo(x) = 1/(1+e ). A sigmoid takes a real-valued number and limits
itto be in[0,1]. Importantly, sigmoid functions are differentiable which makes them

suitable for training neural networks.
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An undesirable property of the sigmoid non-linearity is that, when activations
saturate at either tail (0 on lthe gradient at these regions is almost zero. This makes
learning weights harder once the sigmoid output saturates. Salient among common
non-linearities are Rectified Linear UnitR€LU) which rectify some given neu-
ron activityx as f (x) = max0,x) (i.e., activations are thresholded at zerBeLU
activations were found to greatly accelerate the convergence of stochastic gradient
descent compared to the continuous sigmoid functi@ig [It is argued that this
is due to their linear, non-saturating output. Compared to sigmoid neurons that
involve expensive operations (e.g exponentials),RleeU activation has a linear
response and can be implemented by simply thresholding the output of a neuron at
zero. Leaky rectified linear unit&}] were subsequently introduced as an attempt
to evade th&®elLUzero convergence problem. Instead of the function returning zero
whenx < 0, leakyReLUs instead have a small negative slope. That is, wherD
the activation is returned a(x) = a x wherea is a small constant, and returns

f(x) = x otherwise.

2.1.2 Fully-Connected Network Architectures

To express neural networks as functions, we define a set of notations that precisely
refer to different components of network architectures. Using the fully-connected
topology as an example, three sets are needed to fully express its function: the
weights connecting each pair of neurons, the biases of each neuron, and the ac-
tivations of each neuron. We formalize the notation of all constituent sets in the

following, and define:

1. w), as the weight from th&'" neuron in the(l — 1)™" layer to thej™" neuron

in thel™ layer.
2. bl as the bias of th¢"" neuron in the'" layer.

3. & as the activation produced by t{ié neuron in the'" layer.

Following this notation, we can express the output of each neuron as:

a — G(Zw’jkag'_l) +bh) (2.2)
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wherek € {1,2,..K}, andK is the number of visible neurons in the last layer. Note

that the output of the network is a special casa'joi/vhenl =N.

2.1.3 Fitting Functions With Neural Networks

The process of fitting functions to neural network models is commonly referred to
as "training" ; this describes the process of determining good approximations of all
learnable parameters in a network (e.g., to ﬁbandw‘jk of (Z2)). In the common
example of classification tasks, the last output layer is usually taken to represent
classification probabilities, as arbitrary real-valued positive numbers which are nec-
essarily summable to 1. To define a normalized probability distribution over all
classes, neural network classifiers typically use the Softmax fundii@yig, [73].
Specifically, for theé'" class and for an examplecorresponding to a ground-truth

one-hot vectoy, the Softmax function is expressed as:

N

P(Yi|X) = — 2.3
(Yilx) S = (2.3)

whereal andal describe thé'" andm" activations of the last layer of the net-
work. Using the above, many of recently proposed classification networks use what
is known as a cross-entropy loss for training. Loss terms are used to estimate the
accuracy of predictions made by models with respect to their learned weights, and
do so by calculating the cross entropl(y,§) = E[—logy| as a measure of dis-
tance between density functions. Froinljj, the cross-entropy loss terthis then
expressed as:

N

£ =—log( ) (2.4)

Zm;éi ea‘N"
To find the set of weight parametais = [vv'jk] that best approximates a clas-
sification function, weights are gradually updated such tthigt minimized for all
training examples. This is done by back-propagation, wherein the partial derivative
#ij is considered for all weighlw'jk in the network, and weights are updated ac-
cordingly [65, 66, 68], and loss is typically used in conjunction with regularization

terms to impose constraints on updates made to the weight rid@trix
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Neural networks with at least one hidden layer are universal approximators,
and can approximate any continuous functi@4][ This is to say, it can be shown
that for any continuous functioh(x), and some acceptable error thresheld O,
there exists a neural netwogkx) with at least one hidden layer - and a reasonable
choice of non-linearity - that achievex : | f(x) — g(X)| < €. Neural networks fit
well the statistical properties of datasets when enough data is used for training, are
adequate to use in practice whenever functions to be expressed are smooth, and can
be trained with different optimization algorithms that include variants of stochastic
gradient descenfb, 66, 68][[75]. Deeper networks that use more layers include
more non-linearities, and are more capable of capturing higher level abstractions

and correlations in data. We discuss limitations of the latter aspect in the following.

2.1.4 Fitting Capacities And Regularization

Allowing a network to to train with data that is too specific for certain instantiations
of measurements or functions is referred to as "over-fitting", and can easily lead
to a network being able to function well only under very specific conditions. The
main factor that determines how much a network can learn (i.e., the capacity) is the
number of layers and learnable parameters a network compri&esd] [78]. That
is to say, while increasing the capacity of a neural network helps the network learn
more features from training data, that is not necessarily helpful, especially if there
is a large discrepancy between the distributions of the training and testing data. As
the features a network learns become more specific, it is less likely to generalize
what it learned, and more likely to perform worse when trying to solve the problem
for an input that is not very close to the examples it processed during training.
Over-fitting occurs when a model with high capacity learns many features be-
yond the assumed underlying structure, to the point where it starts fitting the noise
in the data®9, [7Y]. In practice, regularization methods are used in conjunction with
controlling the number of hidden layers and parameters of the network, which can
be seen as a simplistic regularization method in itself. For example, by using the
square magnitude of the parametéfss a penalty when calculating loss, this dis-

courages a network from emphasizing very specific features during training. This
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penalty is weighted by a hyper-parametewhich specifies the amount of applied
regularization. Specifically, networks with high numbers of parameters are known
to have a high learning capacity, making them prone to over-fitfirty 0, 81].

There are several techniques of imposing constraints on the weight updating pro-
cess in order to prevent over—fitting and improve the generalization of functions
learned by deep neural networkkp andL 4 regularization 1, 79, 19, 82, 83, 84]

are common forms of regularization for learnable models in general (i.e., they are
applicable to simple regressors and deep models alike). By penalizing the squared
magnitude of all parameters directly in the weight updateregularization pre-
vents weights from exploding in favor of specific features. That is, for every weight
w in the network, we subtract the teraw? from the objective, where is the reg-
ularization strength. Thie, regularization has the intuitive interpretation of heavily
penalizing peaky weight vectors and preferring spread-out weight veZi@rg9).

This has the property of encouraging the network to use all of its inputs a little rather
that some of its inputs a lot. Similarly ib; regularization, for each weight the

term a|w| is subtracted from the weight update. It is also possible to comlbine
regularization with the., regularization:a1|w| 4+ asw, , and this form of regular-
ization is called elastic net regularizatid®t]. L, regularization has the intriguing
property that it leads the weight vectors to become sparse during optimization (i.e.
very close to exactly zero). In other words, neurons Withregularization end up
using only a sparse subset of their most important inputs and become nearly invari-
ant to noisy inputs. Generalll, regularization can be expected to give superior
performance ovdr [86, 87, 88, 84]. Another form of regularization is constraining

the max-norm#9, [79], to enforce an absolute upper boudd- 0 on the magnitude

of weight vectors for each neuron. In practice, this entails performing the parameter
update normally and then enforcing the constraint by clamping the weight wector

of every neuron to satisfiyw||> < C.

With regards to regularization techniques proposed specifically for neural net-
work architectures, dropou®l), 91, 92, 93, 94] is a recent effective regularization

technique that complements earlier methdgi B, 95]. While training, dropout
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is implemented by only keeping a neuron active with some probability0< 1 ,

or setting it to zero otherwis&$]. Dropout can be interpreted as sparsely sampling

a neural network within the full network, and only updating parameters sampled
networks after observing data. During testing there is no dropout applied (to re-
lieve outputs from neuron sampling noise), and can be interpreted as evaluating an
averaged prediction across the exponentially-sized ensemble of all sub-networks.
Another recently developed technique by Szegedy et. al is Batch Normalization
[96, 97, 98, 99, B0, 19, 100 alleviates a lot of problems that are caused by sam-
pled batch biases by explicitly forcing the activations throughout a network to be
normalized during training. The core observation is that this is possible because
normalization is a simple differentiable operation. It has become common practice
to use batch normalization in neural networks. Networks that use batch normaliza-
tion are significantly more robust to bad initialization, since it eliminates batch bias
[80]. Batch normalization can be interpreted as doing pre-processing at every layer

of the network in a differentiable manner.

2.2 Convolving Hidden States Of Neural Networks

Convolutional Neural Networks (CNN) are a class of neural architectures wherein
neurons form filters which convolve across input feature maps to produce their out-
puts [79, 71]. CNNs make an explicit assumption that spatial coherence is important
in determining the desired output . CNNs can be expressed as fully-connected net-
works where weights are shared across many neuron patches that process different
local regions of inputs. By sharing or tying weights across local regions of inputs,
this reduces the amount of learnable parameters and correspondingly the solution
space. Convolutional Layers are sets of spatial filters with learnable parameters
or weights Spatially, these filters are small and extend through the full depth of
an input volume [f9, I71]. During inference, the convolutional layer operates by
convolvingeach filter across the width and height of the input to compute inner
products between the weights of the filter and the input vector at all positions. This

yields a 2-dimensional activation map that gives the response of that filter at every
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spatial position. Convolutional layers learn filters which activate upon detection
a visual feature such as an edge or a blob that is statistically significant to solve
the task assigned to the network. Eventually after passing through a sequence of
stacked convolutional layers, a network would be able to recognize higher levels of
abstraction (e.g. people, buildings). These activations are stacked along the depth
dimension to produce the output volume, as illustrate@$. [

Unlike fully-connected networks, convolutional layers have neurons arranged
in three dimensions: width, height, and depth (note that the word depth here refers to
the third dimension of an activation volume, not to the depth of the network, which
describes the total number of layers in a network). Neurons in convolutional layers
are connected repeatedly across overlapping local regions of their inputs, which can
be represented as tensors of any rank. CNNs gradually decrease the input volume
for each layer until reaching a low-dimensional feature space that can be mapped
to the final output. Within the context of multi-layered networks, convolutional
layers typically defin& kernels where each kernel learns a separate set features to
produce thek™ activation mam,ﬁvn, and from a feature map. Where we denote
thek" kernel byhk, and the indices of rows and columns of the resulting activation

map are respectively marked withhandn, the convolved output is expressed as:

8mn =Y > M fm-in-) (2.5)
J

|

Note that the above can be expressed as a special case of fully-connected net-
works where weights are shared across local regions of input feature maps, thereby
reducing the amount of operations to be perfornt&)107, T0Z. In practice, mod-
els that employ convolutional layers in their function include variant&dj) that
use "strides" to skip connections betwdenand f, and use pooling layers to fur-
ther reduce the dimensionality of subsequent feature nidl& [As of yet, there is
no deterministic solution to devising optimal sequences of layers of convolutional
networks, although automated architecture search and design methods have been
proposedT04, T05. For instance, Zoplet. al[104] proposed using a dual-CNN

architecture to optimize the architecture of one CNN by using the empirical differ-
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ential of its loss function to update its architecture. This process is done iteratively
until an optimum set of hyper-parameters is reached. This type of approach requires
a large amount of computational power however, and is not commonly used. To fur-
ther reduce the spatial resolution as the input propagates through the network, it is
common to insert pooling layers subsequent to convolutional layers. The main mo-
tivation behind doing this is to reduce the amount of parameters and computation
in the network. Adding pooling layers also helps with reducing the possibility of
over-fitting, since having fewer parameters means the network has a lesser capacity
to learn. Pooling layers operate independently on every depth level of the input and
resize it spatially, using a nonlinear operations that selectively retain maximum val-
ues in local regions of activation maps for example. Pooling layers do not have any
learnable parameters, and are entirely defined by hyper-parameters that specify the

extent and means of pooling.

When considering the definitions of fully-connected layers and convolutional
layers, the only difference between the two is that each neuron in a convolutional
layer is connected only to a local region in the input, and that many of the neu-
rons have the same learnable parameters (corresponding to each filter). Since the
neurons in both layers simply compute products between weights and inputs, their
functionality is identical, and it can be said that convolutional layers are a special-
case of fully-connected layerg9]. That is to say, any convolutional layer can be
expressed as a fully-connected layer, and this is actually the way by which some

CNN training platforms express their architectures.

To summarize, CNN architecture&d, 19| gradually transform high dimen-
sional inputs to lower spatial dimensions until a set of features is reached that is
capable of inferring higher-level features. Notably, the rad&ssicparadigm of a
linear progression of cascaded layers has recently been challdrife (7, TOF],
and recent proposals feature more complicated connectivity structures. CNNs de-
rive their value from the weight sharing aspect of their connectivity, which signif-
icantly reduces the number of learnable parameters. This, coupled with the avail-

ability of large volumes of data, eventually culminated in the realization of vision
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models that can accurately learn to recognize complex visual structures and seman-

tics [64, 19, [79, I71].

2.3 State-Conditional Computing

While learnable vision models have reached a threshold of performance that allows
for their adoption in commercial systems, this has spun off a new field to study
methods of reducing the requirements of such models to manageable and commer-
cially feasible levelsT09, 110, 1171, 112, 113, 113, 114, 115. Some recent literature
studies input compression and dimensionality optimizatti T16, which ulti-

mately translates to less complexity if compressed codes are used during inference,
and lower bandwidth requirements for transmitting such codes. With respect to di-
mensionality reduction, recent proposdldT, 60, 60, T18 119 T20] have studied
specific vision tasks in order to reduce the data requirement of deep neural network
models at test time. Such efforts have mainly focused on task-specific embeddings
of inputs onto lower-dimensional spaces before training with more data-efficient
models. This can be seen in the work of Zhaatg al [58] on video action clas-
sification, where the number frames used for inference is minimized by distilling
temporal sequences to the most useful frames before transmitting them to remote
servers for semantic analysis. Similarly, by using transfer learning, the authors
in [59] show that actions can be classified accurately without the need for high-
resolution optical flow, but instead by using a low-resolution optical flow approx-
imation inferred from codec motion vectors. Similarly, recent w@rk1] derives

a codec-specific approach for compact texture extraction from the compressed bit-
stream in order to reduce the data cost for action classification. Also focusing on
dimensionality reduction, embedding methods such as thoS&@f0, 123 174

can be used to produce codes that can stand in for sensed signals. This is to say,
the same embeddings can be repurposed for other vision tasks as long as they retain
or encode necessary information (e.g., image features for classification, or spatial
coherence for localisations tasks). While mainly devised to improve the perfor-

mance of image and video captioning, attention maps produced in the proposals of
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[125, 108 126, 127, 128 can also be used to reduce the data cost of inference. By

highlighting important regions of inputs, attention maps also reveal redundancies
which can be omitted to transfer only useful data to remote models for inference.
Importantly, all the methods proposals B9[] 58] for dimensionality reduction and

in [12% MO8 176 for attention pooling can only be applied for their respective

tasks, and cannot be generalized to others.

Other proposals study complexity optimization directly, and propose modifi-
cations that are applicable to a wide range of models. Proposals such as static
model pruning 129, 130] and MobileNets $7] reduce complexity by modifying
models in a persistent manner for all inputs at test time. Other proposals use con-
ditional computation as a way to increase model capacity while maintaining low

computational costs1D3 30] Such works consider reinforcement learning

-

and back-propagatiofiB2, 134 for training external agents to enable or dis-
able different parts of the model by considering the unique properties of each input.
For example, recent workiD3 39) proposed pruning unnecessary connections at
runtime conditional on the acquired feature maps at each layer, and use reinforce-
ment learning to determine which filters to keep in order to maintain the best perfor-
mance possible. Specifically, they devise learnable agents that select kernels to use
at each layer, and learn useful features from feature maps preceding each layer to
optimize an objective function that balances performance with complexity. To for-
mulate this, leC be the backbone of a CNN with convolutional layer€as{c, }('3,

with ¢ denoting the convolutional layers whose kernelskyeKo, ..., Ky, where
convolutional layers produce feature maipsf,, ..., fy,. Methods that drop layer
kernels at runtimef03 39] do so by introducing the learnable agéiitf;) that

prunes redundant convolutional kernelsin 1, with prior knowledge of a feature
mapF; in order to reduce the number of operations made at any forward-pass. To do
so, afterC is amply trained for some inference task, and with a with,K) denot-

ing a convolutional operation for input feature mhjand kerneK, the parameters

6, of h(f,) are learned as:
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6, = argmirg;_ , hE¢, [Las(c(fi,K[h(fi;6n)])) + Lont(h(fi; 6r))] (2.6)

whereLs is the loss of the classification tas&yn is the penalty term represent-

ing the tradeoff between the speed and the accutddy; 6,) is the conditional
pruning unit that produces a list of indices of selected kernels according to input
feature map, an&[h(f;; 6,)] is the indexing operation that prunes kernels not se-
lected byh(f;;6,). In optimizing £8), h(f;), pruning agents such as those of
[129, T30, T03 39] are learned to account for both performance and complexity,
while allowing fine-tuning of the priority of reducing complexity by including a
weighing parametewp in Lpnt. Finally and most recently, a proposal by Shazeer
et. al[40] showed that the test-time complexity of very large networks can be sig-
nificantly reduced by using sparse gating functions in mixtures of experts, where
experts hold a much smaller number of weights. They take into account the fact
that modern GPUs are much faster at arithmetic than at conditional branching, and
show that sparse gating at the expert level can provide gains in complexity during
test time. It is also important to note that, all the aforementioned works optimize
solely for complexity, and always consider that the maximum amount of input to be
available at test time (which will be of relevance in discussing our contributions in

Chapterd$3, @, andB).

2.4 Mixture Models And Expert Mixtures

In this section we shed light on a well studied class of probabilistic models known
as Mixtures of Expertsi[35, 136, 137, 138 139 140]. Mixtures of experts are
motivated by the same presuppositions that motivate other mixture models such
as Gaussian Mixture Model&471] and Full Bayesian ModelsTEZ]. Specifically,
expert mixtures agree with other mixture models in the way by which data instances
of source distributions are viewed, namely: as the outcomes of the superposition
of many simpler distributions. Mixtures of experts extend this view to mapping
functions, and model desired outcomes as mixtures of different mapping functions

with varying parameters.
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When considering computer vision and pattern recognition applications,
source distributions of inputs typically constitute a number of combined source
distributions with variable properties which are well represented by mixture models
[T35 MT36. Expert mixtures are motivated by the fact that, when some inputs are
coherent within the subspace from which they are sampled, they can be analysed
using expert models designated for their specific properties. By doing so, mixtures
of experts leverage the existence of properties local to different input subspaces to
train corresponding experts that perform better than "know-it-all" models which
view and process all inputs in the same way. By mentioning performance in the
above, we refer to all different aspects of model performance, this includes: ac-
curacy of inference, latency, and even the amount of data required by models to
provide accurate results (which is ideally low, to conserve on communication net-
work resources), and in Secti@d 2we discuss different ways of training mixtures
to realize different types of constituent experts (e.g., specialised experts, or experts
conditioned for good consensus).

To formulate the mode of operation of expert mixtures, we consider mixtures of
N experts drawn from a predetermined et {E1,Ey,...,En}, Where each expert
En is a pretrained model that attempts to determine the oyipot As long as
experts map inputs to the domain yii), they can take any predictor form (e.g.,
they can be simple regressors, deterministic functions, or deep neural architectures).
Per inputx, a gating function determines the contribution of earexpert:

of (XWo)n

G(xWy)i = (2.7)

3 i € WG

whereW is a set of trainable parameters of a linear transformation that defines the
importance of each expert in determinipg), and f (x;Wy) € RN is the output of
a specified gating model. Note that because the outermost funct®(xpi) is a
softmax transform, this necessitates tiighG;(x;Wy) = 1. The output(x) of the

mixture of experts is:
N

y(X) = ZG(X:Wg)iEi (X) (2.8)
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By determining a good solution fa@(x;Wg)i , mixtures of mapping functions
can be discovered to model probabilistic processes. In this way, expert mixtures are
modeled after other mixtured41, 147 to consider conditional processes which
can be expressed as super-positions of learnable functions, where gating functions
determine the importance each mapping function.

In optimizing expert mixtures, experts are commonly pre-trained prior to be-
ing included in mixtures, this is to ensure all experts are initialized reasonably and
to avoid bad local minima. That is, in pretraining experts, the space of possible
solutions is narrowed down to neighborhoods known to work for each expert indi-
vidually (to some imminent margin of error). Subsequently, loss back-propagated
through mixtures is specified as a function of the mixture ougxit &s expressed
by (Z8) and some groundtruth We also note that, while different experts are re-
quired to process the same input, inputs can be preprocessed to accommodate any
particularities that an expert may require. Additionally, a natural arbitration of mix-
tures of experts are hierarchical mixtures of experts, where mixtures are cascaded to
provide multiple layers of conditionality that can model more complex conditional
processeslid3 144, 145, Hierarchical architectures recursively combine the out-
puts of cascaded mixtures to explore more complex relationships between input
subspacesis. In SectionZZ2we discuss optimization methods of mixtures of
experts, and in Sectios4_3andZ-44we discuss two subclasses of mixtures of ex-
perts to show how they are used to model and solve practical problems in computer

vision.

2.4.1 Inception And Variants Of Mixtures Of Experts

The mixtures-of-experts model was first presented by Jaeblad[T35 using sets

of one-layer networks as experts, and was trained by using a squared error criteria to
perform classification. Subsequent work on a small vowel classification problem in-
dicated comparable performance with multi-layer perceptrons but with significantly
faster training ; thereby indicating an interesting underlying property of mixtures of
experts. More extensive studies on mixture of experts models were performed by

Nowlan et. al [T35, where one layer experts were substituted with multi-layer
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perceptrons. The work of Nowlaet. al[146 demonstrated that mixtures of multi-
layer perceptrons were significantly more capable at generalising what is learned to
unseen data. This then motivated Jacebsal [147] to show the extent of benefit
provided by mixtures in two applications: combined classification, and spatial local-
isation of objects. In all mentioned works, mixtures were trained by non-stochastic
gradient descent, and this provided a starting point for newer research to find better

methods for training mixtures of experts.

2.4.2 Fitting Mixture Parameters On Data

Mixture models may be trained using a number of different techniques, and indi-
vidual experts can be trained using any training method fine tuned to the source
distribution from which their inputs are derived. Among others, some examples of
different supervised training methods are Bayesian methods and stochastic gradi-
ent descentlld7, 148, 149, 150, 151], which can also be used to train gating and
experts jointly provided any ground truth to maximize the log likelihood of the
mixture. Similarly, when considering unsupervised learning problems, expectation
maximization ['57] and adversarial learning techniqués} 37, 154 can be used

to emulate source distributions. One important aspect of training mixtures using
any of the above methods is loss factorisation, which defines the way by which to
quantify the contribution of each expert to the overall loss. That is to say, individ-
ual experts can be trained as: (i) specialised experts which overfit to their assigned
sub-domains of data, or (ii) as parts of a larger team of experts wherein the per-
formance of the consensus of experts is prioritised. The way in which the roles of
experts is viewed is important in determining how they are trained. Depending on
how mixtures are ultimately used in any application, it can be more beneficial to
have "team" experts rather than "specialised” experts. Jatob§ T35 147] give

an indepth study on this specific aspect of mixtures of expert, and we summarise

how each interpretation of experts reflects on the training process:

Training For Expert ConsensusWhere the signal used to train expert<ims de-
fined such that the consensus loss is propagated back to all weights in the mixture.

In effect this forces expert features to be "specialized" such that the experts compli-
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ment each other in producing the best target value posgikje

Training For Expert Specialization Where loss is calculated not by considering
the final combined output of all experts, but rather by considering the accuracy of
prediction of each individual expert. Effectively this forces all experts to produce

predictions closer to the ground truth, regardless of what other experts predict.

Mixtures of experts can be further classified into two sub-categories: mixtures
which operate with continuous gating functions, and mixtures which selectively
activate experts by using gating functions that yield sparse outputs; as a shorthand

we term these two sub-categories as "soft" and "hard" gating mixtures.

2.4.3 Expert Ensembles And Boosting Methods

When considering complex domains, some problems can be better solved by con-
sidering the predictions of many pretrained models. In such instances, a straightfor-
ward solution would be to consider all possible predictions to make a final decision
on some desired output, which motivated the proposition of boosting methiofs [

and later on ensemble method%h, 156. Ensemble methods require that a set of
experts are optimised before being included in a bigger mixture of experts as in-
dividual experts. Pretrained models then form an ensemblBsexiperts, and the

final output is determined by weighted pooling of all outputs of all experts via a soft
gating function. By doing so, and subject to the complexity of the gating function,
more informed decisions about the output are achieved by considering each input

individually to rely more on the outputs of select experts.

Ensemble mixtures typically use softmax gating to predict the final weights as-
signed to experts, and use loss functions that optimise the mixture gating coefficient
to a least-square error. Importantly, experts are optimised individually before the
gating function is trained, this is to give a distinct and valuable function for each
expert. Gating functions in ensemble methods are trained for accurate consensus,
since experts are optimised beforehand. Numerous stuth&sT47] have shown
that ensemble methods invariably provide for better overall performance when more

complex relationships exist between input sub-domains and expert suitability.
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2.4.4 Selecting Experts With Sparsely Gated Mixtures

When exposed to different input samples, hard gated mixtures of experts necessarily
activate only a subset of experts for inference. Eigenal [157] were the first
to allude to the potential for this class of models, which would effectively turning
mixtures of experts into a potential medium for conditional computing. Taking their
queue fromA57, 158 103, Shazeer et ad0] are the the first work to fully explore
the potential hard gated mixtures as conditional computing units. Their work does
so to realize the holy grail of deep learning models that hold very large capacities
while managing to conduct forward passes with feasible latency.

Similar to soft gated mixture, hard gated mixtures consigi afxperts with
and additional trable gating function. Importantly, the outputs of the gating func-
tion are sparsified after inference, and the author&ilihdo so for each input ex-
ample by keeping the tok-gating values and setting all other gating logits to zero.
Specifically, for an inpuk sampled from a batch of inpuss, the gating values are
calculated as the super position of a linear transformation with a weighted normal

multivariate:

H(X)i = X-Wg+ N (0,1) - g(f (- Wh)i) (2.9)

whereWy andW, are learned gating parametefg(0,1) is a normal multivariate
with zero mean and unit variance, aggv) is a multivariate piecewise linear op-
erator that returns values i whenevery; > 0, and returns zero otherwise. The
final sparse values of the gating function by settindgHk); values to zero with the
exception of the topk values ofH (x), wherek is set to be the number of retained
experts for inference. Effectively, this subsequently turns off large parts of the mix-
ture with respect to each observed input. The second term which samples weighted
samples from the standard normal distribution is included to prevent load balancing
issues, which we will discuss in the following section.

Sparse mixtures in the work of Shazesr al. [40] showed that with appro-
priate regularization and using 16 GPUs, it is possible to train hierarchical mixtures

for natural language processing tasks that can hold up B® learnable weights
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and process inputs with a modest® TFLOPS/GPU (and they appropriately title
their work to be on "outrageously large neural networks™). To achieve this, they
build on the work of 103, 157] by allowing for multiple gating decisions at many
text positions, thereby compounding the number of skipped experts at each itera-
tion. While other works modify pruning techniques for conditional computing by
applying pruning at runtime, Shazeetr al. [40] show that sparse gated mixtures
are superior because they are trained from scratch for conditional computing. Be-
cause measuring conditionals is done exclusively by gating functions in their work,
conditions are measured more sparsely tH#H) yvhere runtime pruning models
measure input feature maps for every layer to determine subsequent filter activa-
tions. For these reasons, hard gated mixtures are practical templates for conditional

computing in deep neural models.

2.4.5 Balancing Loads Of Sparse Mixtures

When trained only with respect to some task loss, gating functions of sparsely gated
mixtures tend to converge to a state where large weight updates are always produced
for the same few experts. This imbalance is self-reinforcing, and subsequently leads
to some experts being favored and trained more than others (causing a lot of wasted
capacity in the mixture). In other words, not constraining the training process of
sparse gating functions leads to undesired local minimums that correspond to low
exploitation of expert capacity, and full utilization of whatever capacity exists in

a select few experts. Eigest. alin [157] describe this phenomenon, and use a
hard constraint to avoid local minimums, while Bengio et 8l03 include a soft
constraint in the total task loss that encourages mixtures to divide batches equally
between experts. To resolve this tendency, Shageal [40)] elect to propose the

best known solution to this problem by first defining the importance of an expert
relative to a batch of training examples. They do so to predict the probability of se-
lection for each expert overall for all batches, unlig&)[and [T03 which consider

each batch individually. Their work defines an additional lpgg that estimates

the batchwise sum of importance of each expert. This notion of importance takes

into account how confidently experts are selected relative to other experts, and does
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so in a probabilistic manner such that individual batches are exemplary of other
batches.

Specifically, and to balance the loads to each expert, the auth@]iddfine
an additional loss function to encourage experts to receive roughly equal numbers of
training examples. Since the number of examples received by an expert is a discrete
scalar, it cannot be used in back-propagation. To deal with this, a smooth estimator
Load(X) is defined as the predicted number of number of examples assigned to
experts. Probability density functions are smooth and allow for back-propagating
gradients back through the gating function. Denotii)e as thekS top value in
H(x) excluding the'" value (wheree stands in for "edge top value" ), the projected
future load of thé'" expert as predicted from an inpais denoted witH (x);, and

is defined as:

I(X)i = P(H(X)i > H(X)e) (2.10)
and unrolling the expression yields:
1(X)i = P((X-Wg)i + N (0, 1) (XWh)i > (X-Wg)e+ N (0, 1) P(x-Wh)e)  (2.11)

By estimatingZT1 Shazeeet. al[40] and others57, 103 estimate the prob-
ability of an inputx being assigned to th& expert when®9) is used to determine

the gating outpuH (x). The predicted load to each expert is then estimated as:

L(X)i= > 1(X); (2.12)
XEX
and the final load loss is:
Lioad(X')=Wioad- C(L(X))z (2.13)

wherec(V) is the coefficient of variation of a vecter which is defined as the mean

of v divided by its standard deviation. By defining load loss in this way, sparse
gating in the mixtures o#40] are trained to divide loads equally as much as possible
among constituent sets of experts, and in doing so all experts are more likely to be

selected at test time to make full use of their capacity.
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In summary, mixtures of experts are well studied vehicles for mixture modeling
and conditional computing, and have been shown to be of great utility in many
applications. Among these are boosting performance via pooling decisions made by
different modelsT55 156, and reducing the complexity of large capacity models
by turning off large parts of the mixture subject to each observed input at test time
[157, 158 103. Load balancing is also particularly relevant to our work in Chapter
B, where we consider the problem of deliberately maintaining imbalances of expert

loads in a controlled manner (i.e., to control and bias expert utility).

2.5 Contextual Coding And Visual Compression

Within the context of engineered image compression methods, deterministic and
handcrafted methods were extensively studied to fully exploit properties specific
to image signals, and recently learnable image compression has attracted atten-
tion with the demonstrable success of neural architectures for image analysis
[T59 42, 160]. Most salient of the recent advances in learnable image compres-
sion are auto-encoders and recurrent neural netwbks 162, 163 159, 42, 160).

Such networks are trained to produce latent representations to be used for image
reconstruction, with the aim to minimize the mean-squared error between original
and decompressed image, or to minimize a perceptual metric such as MS-SSIM
[161, 162 163 15Y. In distributed systems of visual analysis, and for the purpose

of reducing demands on complexity and bandwidth, intermediary latent states of
learnable machines such as autoencodg2<160] can be used in stead as inputs to

remote inference models.

Learnable image compressiohtyd, 165 166 has attracted attention as the
next step towards more compact image representation, and more salient among
recent advances in learnable image compression are variational auto-encoders
[159, 42, 160] and adversarial modeish7, 31, 168. In order to adapt learned
codes to arithmetic coders, state-o-f-the-art proposals on learnable compression
[165 44, 169, 170] additionally learn context models to predict posteriors of la-

tent code components conditional on all preceding components. Specifically, and to
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move learnable compression closer to replacing established cbdgisr?, con-

text models of T70, 169 use tractable masked convolutions to regulate entropies
of obtained image representations such that they can be coded more effectively by
subsequent entropy coders. In distributed systems of visual analysis, and in order
to reduce throughput requirements on input, intermediary latent states of learnable
image reconstruction machinég, 42, 167, 31] and entropy regulated compres-
sors [[70), 169, 164, 164 can be used instead of full-length inputs as representative

signals to remote inference models.

Recent proposals also studied specific vision tasks in order to reduce the data
requirement of deep neural network models at test time. For example, this can
be seen in previous worlsg, 59, T271] where input volumes are reduced by dis-
tilling input sequences to their most useful elements before relaying to remote
servers for semantic analysis. Other woflRB 127 mainly focused on task-
specific mappings of inputs onto lower-dimensional space before training with more
data-efficient models, and recent advances in domain adaptation and transfer learn-
ing [173 174, 174 can also be used to learn compressed codes tuned to partic-
ular models. However, for any specified source distribution, domain adaptation
[T73 174, 174 and other proposals mentioned abo&, [59, T271] equally com-
pact all sampled inputs to fixed length codes, and varying degrees of entropy among
input examples are ignored. In this sense, while the aforementioned advances are
important in determining useful transformations to enforce specific code lengths,

complementary techniques are necessary to determine required code lengths prior

to transformation.

The heuristic models ofib5, 44, 169, 171} learn useful structures for image
reconstruction directly from visual source distributions and commonly use differ-
ent instances of generative models®, 167]. Within different classes of gen-
erative models, Generative Adversarial Networks (GANIG/] 31] have shown
the greatest success in image reconstruction. Adversarial models learn a mapping
from an observed image and a random noise vectarto G(X,z, 6s) adversari-

ally, where discriminators distinguish generated images from images sampled di-
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rectly from the source distribution that the generators try to replicate. That is, for
some generative mod@&(x,z; 6g) a discriminator is optimized jointly to recog-
nise G(x,z 6z) among sampled examples ®f This in effect trains generators
towards producing images that cannot be caught out by a discrimibéiofp ),

such thatP(G(x, z, 6g)) eventually converges to the source distributi(x). To
jointly optimize G(x,Y; 8c) andD(i; 8p). Specifically, and for some discriminator
lossL(X,Y; 6, 6p ), the generator parameteig are updated to maximiz&, while

the discriminator parametef are updated to minimize it. In other words, adver-
sarial lossT67, 31] quantifies how well a discriminatd(i; 6p) is at distinguishing
generated imageS(X,Y; ) which are not from the sourd®x), and is expressed

as:

L(X,Y, 6c,6p) = Exy(logD(y; 6p)) + Exz[log1— D(G(X,Z 6g))] (2.14)

In training generators to match a souRi&), the work of 31, 60, 120} showed
that it is also beneficial to jointly optimize other losses that consider properties of

other than its saliency tB(x; 6p), and suggest using an auxiliary lo8g, where:

L1, (%,Y; 66) = Exy(|ly — G(x, 2, 66|}, (2.15)

and the learned parametél§ and6; are:

65, 6p = arg rgianaxL(x, Y;6c,6p) +A L1, (XY;66) (2.16)

Such optimization methods have been extensively studied in recent W7k [
31] to measure the limits of structures that can be captured by such adversarially
trained generators. Intermediary code mappingg oan be further finetuned to
conform to prespecified properties. For example, Variational Auto Encoders (VAE)
add a regularizing term such thatconverges to the form of a standard normal
distribution/\V(0,1). This is done to ensure that generated cata® close in their
R" space, to ensure that the generators encoder does not exaggerate in expressing

distances between codes z generated from closely related wptitss is to say,
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whenever two inputx; and X, are semantically close to each other, variational
autoencoders implicity encodgandz, such that they are equally close while also
ensuring that they are drawn from some prespecified distrib&iér) by adding a

regularization ternDy to T8 such that it becomes:

65, 65 = argminmaxL (x,; 6, 60) + AL1(X.¥: 66) — Dk (P(ZX). R/ (2) (2.17)

whereR;, (2) is specified as the target distributionodivhenz ~ A/ (0,1). Note that

the condition thag has to be drawn from/(0, 1) is enforced by a single addendum
that expresses the Kullbach-Leibner distance betveeem\/ (0, 1). The Kullbach-
Leibner distance measures the divergence between two probability distributions,

and when unrolled inAT7) the variational coding loss is:

. z
Gg,eszargrgmmDaxL(x,y; 6c,6p) + AL1(X,Y; 6c) — Z P(z|x) R/(2) (2.18)

24Fin P(zx)

Latent representations of variational autoencoders are more semantically rich
in that, for the same code length and when compared to their counterparts that do not
conformzto take the shape to any particular distribution, codes generated by VAEs
are subsequently more useful when used in image reconstrudtipigo, 176.
Extended work on learnable image coding takes into account the entropy of latent
representations in autoencoders, and to do so, the worksaf163 use learned
context models for improved coding performance on their trained models when
using adaptive arithmetic coding. To achieve the latter, for some learnedz¢ode
reconstruct the imagk from X, entropy-aware learnable coding 61, 163 and

derived works thereof, formulate loss in the form:

L=d(x,X)+BH(2) (2.19)

whered(x,X) is some distance measure betwé&esndX, andH(z) measures the
entropy of the code, and 3 weighs the importance of generating codes with low

entropy. In {3, 177, 44], the entropyH (2) is estimated by measuring the condi-
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tional probability of thei'" component ofz conditional on all preceding compo-

nents, where the probability of a codéo be sampled is:

m
p(z) = rlP(zi\zi_l,...zl) (2.20)
i=
and its entropy is measured with the context madie) as:

m

H(2) =E; _pz) zi—log(P(zi|zi_1,...zl)) (2.21)

Note thatH (2) can interpreted as the sum of the predictabilityofvith prior

knowledge of all preceding componentszinMinimizing (Z-T9 when training au-

toencoders and generative models draws the system towards low or high average

entropiesH (2) subject to weights assigned f In this way, recent advances in

learnable coding modeld®§1, 162, 163 159 use context models to produce latent

representations that make it easier for subsequent entropy compression to reduce

the size of representations further (by taking into account both the entropy of

in addition to its usefulness in estimatixg). In the context of distributed visual

systems, and when generating codes to be transmitted through communication net-

works before inference, variational autoencoders trained adversarially can be useful

as learnable compressors to produce bandwidth-efficient compact codes for image

reconstruction in remote machines.
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2.6 Multi-Class Action Classification

Multi-class action classification is the visual task of distinguishing sequences with
respect to actions performed in human-comprising content. State of the art methods
in this field [I78 179, 180, 1871, 187 all agree in one aspect, namely: taking full
advantage of a spatial mode that processes texture in video for inferring classes,
and a spatio-temporal mode to infer actions from underlying motion structures. To
do so, recent well-performing proposals8p, 184, 185 T/] use two-stream archi-
tectures and dedicate each stream to a spatial or spatio-temporal mode. The term
“two-stream" here is used in reference to separated branches in model architectures,
the inferences of which are ultimately merged (e.g., by averaging their predictions).
In earlier work, and to first show the importance of including a temporal modality
for video classification, Simonyaet. al in [17] argue that exclusively using vol-
umes of RGB frames does not effectively represent motion information to CNNs.
They propose using a 2D architecture with dense optical flow to represent the tem-
poral component of the video. Notably, this temporal CNN is shown to outperform
an equivalent 2D spatial stream ingesting RGB frames. They then show that per-
formance can be improved further by fusing the spatio-temporal and spatial streams
using a simple score averaging, and their two stream architecture achieved 88.0%
on UCF-101 (which is a current standard benchmark for video action classifica-
tion). Nevertheless, the computational cost remained high due to the requirement to

extract Brox optical flowT88| for the temporal stream.

Later efforts to improve classification resulted in the work of Karpathyal
[183, who proposed extending the CNN architecture from image to video by per-
forming spatio-temporal convolutions in the first convolutional layers over a 4D
video chunk/ € RW*HXKxT ‘whereW, H are the spatial dimensiori,is the num-
ber of channels andl is the number of frames in the chunk. This is the premise
behind what is termed as a slow-fusion architecture, which uses 3D convolutions on
RGB frame chunks in the first 3 layers, thus encompassing the full spatio-temporal
extent of the input. Notably, experiments demonstrated that feeding a single RGB

frame versus multiple frames into this architecture did not have any significant effect
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on accuracy; in other words, the CNN was not effectively learning on the motion
information. Traret. al[187] improve accuracy by using a deep 3D CNN VGGnet
architecture 189 together with spatio-temporal convolutions. They combine this
with a bagging approach over 3 networks to achieve a state-of-the-art accuracy of

90.4% on UCF-101184], albeit with heavy computational cost.

2.6.1 Action Classification In The Compressed Domain

To avert complexity overheads of calculating optical flow as a spatio-temporal
modality, the use of codec motion vectors as approximations of optical flow was
first proposed for action recognition by Kantorov and Lapfeg4]. Their approach
preceded the surge in convolutional neural networks for image classification and
used Fisher vectors (which achieve lower accuracies in standard action recognition
datasets) in their stead. More recently, Zhatg al [T9(] utilized codec motion
vectors as input to a 2D CNN for action recognition with a framework that re-
quires optical-flow based training and transfer learnii®fl]. Their requirement of
highly-upsampled frames during inference increases the implementation complex-
ity, as large activation maps need to be calculated at the first layers of their CNN.
Recent work 1271, T97], among which is some of our contributions, showed that
compressed-domain action recognition can achieve accuracy that competes with
optical-flow based methods, while offering higher ingestion and CNN processing
speed than all previous alternatives. Given that the spatial stream learns on scene
information that tends to be persistent across frames, compressed-domain methods
gain by sparse frame decoding combined with motion-adaptive super-positioning
of decoded macroblock information to generate intermediate frames at a finer tem-
poral scale. Recent worli?71, T97 showed that compressed-domain action recog-
nition can achieve accuracy that competes with optical-flow based methods, while
offering higher ingestion and CNN processing speed than all previous alternatives.
Given that the spatial stream learns on scene information that tends to be persistent
across frames, compressed-domain methods gain by sparse frame decoding com-
bined with motion-adaptive super-positioning of decoded macroblock information

to generate intermediate frames at a finer temporal scale.
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One of the issues with most of the work described above is the short temporal
extent of inputsT 21, 193 194]; each input video segment comprises a small group
of frames that only represent (approximately) one second of the recorded action or
event to be classified. Hence, this cannot account for cases where temporal depen-
dencies extend over longer duratiod®1]. Feichtenhofeeet al. [T84 attempted
to resolve this issue by using multiple copies of their two stream network where
the copies are spread over a coarse temporal scale, thus encompassing both coarse
and fine motion information with an optical flow input. Despite achieving state-of-
the-art results on UCF-101 and HMDB-51 datasets, their approach requires heavy
processing for both training and testing. Other wdRY, 18] argues that increas-
ing the temporal extent is simply a case of taking the optical flow component over
a larger temporal extent. In order to minimize the complexity of the network, most
such approaches downsize frames in order to reduce spatial dimensions. This is now
increasingly important due to the advent of visual 10T and cloud-based platforms,
where the visual sensing and processing are not co-locatsl197, 198. Alas,
such tradeoffs are non trivial, because they depend on the spatio-temporal informa-
tion needed by the CNN performing the recognition tas# 199. On the other
hand, the work of Sevillet al. [?9] shows that high-resolution optical flow can be
beneficial since deep learning methods can learn features from small details. This
observation suggests that high-resolution optical flow can be leveraged to lower the
temporal extent of inputs. Following the latter in our recent w@xik(], and to omit
redundancies in video bitstreams, we studied the trade-offs in compressed-domain
spatio-temporal information and explored the rate-accuracy characteristics of CNN-

based video action classification.
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2.7 Contribution Outline and Research Outcomes

The remaining chapters of this thesis detail our contributions on three fronts: (i)
visual classification in the compressed domain, (ii) a study of the relationship be-
tween technical aspects of video coding and their effects on subsequent classifica-
tion accuracy, and (iii) a task-agnostic study on the relationship between data utility
and inference accuracy, in which we realize a novel class of mixtures of experts to
optimize the performance of any computer vision model under any constraint on
allowed limits of data use. In this way, our work follows a neat trajectory, where we
begin by considering the trade-offs between accuracy, complexity, and bitrate for
video classification specifically, and we finally generalize our findings to allow for
the exploitation of computer vision models under different constraints on commu-

nication bandwidth and complexity commonly found in practice.

In Chapter3, and inspired by recent breakthroughs made in video classifica-
tion, we consider the problem of ultra-fast classification that would allow for the
classification of videos in realtime. While the best preforming video classifica-
tion models infer classes from the pixel-domain, and typically augment their input
sources with optical flow, we adopt a minimalist approach to data acquisition and
utility to train computer vision models on the compressed domain directly. In our
work we consider the video encoder as an imperfect-yet-highly-efficient sensor that
derives spatio-temporal activity representations with minimal processing. This is to
say, in our contribution the data is acquired without decompression, and is simply
read from the bitstream and processed to infer a sparse approximation of optical
flow. Our work focuses on complexity reduction and we show that video classi-
fiers based on deep learning methods can indeed capture useful features from such
approximations to produce classes with an accuracy comparable to that of models
that use fully decompressed pixel frames for inference. We also extend our method
to preform selective processing of textures in frames, and show that this can also
provide a modest increase in classification accuracy. Our results show that direct
inference from the compressed domain comes at a marginal loss in accuracy, and

provides high gains in speed when compared to conventional deep neural networks
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trained on RGB frames and dense optical flow estimations.

In Chapteid, we direct our attention to minimizing the required bitrate for ac-
curate action classification, and we do this to explore the potential for removing
more redundancies in compressed video data. By inspecting simple statistics of
motion vectors extracted from bitstreams, we train simple regressors to determine
the required temporal depth for accurate video classification. In doing so we show
that significant redundancies in utilized data can be omitted without affecting clas-
sification accuracy. Specifically, we propose a method for cropping AVC/H.264
bitstreams to the minimum elements required to allow for the extraction of data
required for video classification in compliance with the codec standard. This is to
say, instead of retaining entire compressed video bitstreams and applying complex
optical flow calculations prior to CNN processing, we only retain motion vector and
select texture information at significantly-reduced bitrates and apply no additional
processing prior to CNN ingestion. Based on three CNN architectures and two ac-
tion recognition datasets, we achieve significant savings in bitrate with marginal
effect on classification accuracy. Our contribution proposes a model-based selec-
tion method between multiple CNNs which increases bitrate savings further, to the
point where, if up to 7% loss of accuracy can be tolerated, video classification can
take place with as little as 3 kbps for the transport of the required compressed video

information to the system implementing the CNN models.

In Chaptei5, we consider systems where sensors and computer vision models
are distributed across communication networks to propose a method of optimizing
the data utility of such system for any computer vision task. To do so, we pro-
pose a new class of mixtures of experts, where expert utility is biased by design.
Our approach postulates that the minimum acceptable amount of data allowing for
highly-accurate results can vary for different input space partitions. Therefore, we
consider mixtures where experts require different amounts of data, and train a sparse
gating function to divide the input space for each expert. By appropriate hyperpa-
rameter selection, our approach is able to bias mixtures of experts towards selecting

specific experts over others. By doing so, pre-specified constraints on data transfer
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between the visual sensing and neural network processing parts of the system can
be met while maintaining the best performance possible. To show the relation be-
tween data availability and performance, we evaluate biased mixtures on a range of
well-investigated applications, namely: (i) single shot detection, (ii) realtime video
action classification, and (iii) image super resolution. Our validation detailed in this
chapter shows that, for all tested applications, biased mixtures significantly outper-
form individual experts optimized to meet the same constraints on available data.
We finally note that, implementations of our work can be adopted in commer-
cial systems to reduce the cost of running computer vision models, and make them
more prevalent in applications where processing is done remotely and computation

and communication resources are scarce.

2.8 Research Outcomes

The work completed during this PhD has resulted in seven conference publications
and two journal publications. There is also a conference paper to be submitted to
CVPR, and another journal paper submitted to TCSVT which is under review. We

also note that we only present a part of our PhD work in this thesis, and more is

included in our papers. The following are our publication&iE Conferences

1. Alhabib Abbas and Yiannis Andreopoulos, "Biased Mixtures Of Experts: En-
abling Computer Vision Inference Under Data Transfer Limitations", submit-
ted to CVPR 2020.

2. Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtslatze, "Graph-based
Spatial-temporal Feature Learning for Neuromorphic Vision Sensing”, in

IEEE International Conference on Computer Vision (ICCV), 2019.

3. Abbas, Alhabib, Aaron Chadha, Yiannis Andreopoulos, and Mohammad
Jubrani. Rate-Accuracy Trade-Off In Video Classification With Deep Convo-
lutional Neural Networks. in IEEE International Conference on Image Pro-

cessing (ICIP), 2018.

4. Aaron Chadha, Alhabib Abbas, and Yiannis Andreopoulos. Compressed do-
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main video classification with deep neural networks: "There’s way too much
information to decode the matrix", in IEEE International Conference on Im-

age Processing (ICIP), 2017.

. Alhabib Abbas, Nikos Deligiannis, Yiannis Andreopoulos, and Mohammad
Jubran. Vectors of Locally Aggregated Centers for Compact Video Represen-
tation in IEEE International Conference on Multimedia and Expo (ICME),
2015.

. Aaron Chadha, Yin Bi, Alhabib Abbas, Yiannis Andreopoulos. Neuromor-
phic Vision Sensing For CNN-based Action Recognition, International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), 2019.

. Aaron Chadha, Yin Bi, Alhabib Abbas, Yiannis Andreopoulos. Neuromor-
phic Vision Sensing for CNN-based Action Recognition submitted to IEEE
International Conference on Acoustics and Signals Processing (ICASSP),
2019.

And the following were published ilEEE journals:

1. Mohammad Jubran, Alhabib Abbas, Aaron Chadha, Yiannis Andreopoulos.
Extension of: Rate-Accuracy Trade-Off In Video Classification With Deep
Convolutional Neural Networks in IEEE Transactions on Circuits and Sys-

tems for Video Technology (TCSVT), 2018.

. Aaron Chadha, Alhabib Abbas, Yiannis Andreopoulos. Video Classification
With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor in
IEEE Transactions on Circuits and Systems for Video Technology (TCSVT),
2017.

. Mohammad Jubran, Alhabib Abbas, and Yiannis Andreopoulos. "Sequence-
Level Reference Frames In Inter-Frame Video Coding" in IEEE Transactions
on Circuits and Systems for Video Technology (TCSVT), 2019, Submitted

and is under revision.



Chapter 3

Compressed Bitstream Action
Classification With CNNs

This chapter details our work on compressed video classification, and describes our
solution to compressed domain action classification, where action are predicted di-
rectly from codec motion compensation parameters. Sections are organized as fol-
lows: Sectior3”1 summarizes relevant aspects of video coding in the AVC/H.264
compression standard. SectiBr2 presents the proposed optical flow approxima-
tion method, which estimates optical flow directly from codec motion compensation
parameters. Sectiofis3 andB-2 details our classification model and presents our
experimental results on video classification via sparse optical representations. Fi-
nally, SectionZ35 concludes this chapter. We also note that some of the details
presented in this chapter are also relevant to Ché@ptgpecifically with regards to

the qualifying background in SectioBsl and32.

3.1 Video Coding And Motion Compensation

Video compression standards like AVC/H.264, HEVC, as well as open-source video
codecs like Theora and Google VP8/VP9, define video bitstream formats where
frames are divided into pixel blocks to be separately decoded in some specified or-
der b4, 55,6Y] . Said blocks constitute the building blocks for frame reconstruction,
and form the basis for two frame prediction paradigms: inter-frame and intra-frame

prediction. In general, inter-predicted blocks are reconstructed with prior knowl-



3.1. Video Coding And Motion Compensation 56

edge of similar blocks that exist in neighboring frames, and as such, motion com-
pensation parameters that point to the location of predictor blocks correlate with the
underlying motion flow of video sequences. All current standards also define multi-
ple options for blocks to allow for coarser or finer representations of frames, where
finer representations allow for more precise block localisation and prediction. Mo-
tion compensation parameters constitute the basis on which we design our optical

flow estimator.

3.1.1 Motion Estimation And Intra-Frame Prediction

Under the AVC/H.264 and HEVC standards, macroblocks are inter-predicted
whenever it is possible to infer textures of a frame from previously decoded
framesbZ, b5]. That is, for every inter-predicted macrobloakpotion vectorsare
encoded by searching local patches of previously decoded frames for macroblocks
that similar textures to the macroblock being encoded. In instances where motion
estimation cannot be exploited (i.e., when neighboring frames do not share any
semantic features), intra-prediction is used to eliminate spatial redundancies wher-
ever possible. Intra-prediction attempts to estimate local textures by extrapolating
the textures of adjacent macroblocks. The inclusion of intra-predicted macroblocks
is particularly useful in flat backgrounds where spatial redundancies often exist.
Once the motion compensation parameters are decided, the difference between the
macroblock predictions and the actual values that the block should assume is then
calculated as additive error, and is separately encoded via entropy coding. The ex-
tent to which macroblocks are distorted is conditioned on the bitrate allowed to
encode the bitstream, or on a quality parameter specified prior to encoding.

Motion compensation is preformed by partitioning frames into blocks of pix-
els which are subsequently used in cross-prediction (i.e., predicting on block from
another). To preform texture search at a finer scale, macroblocks are searched for
up to a half-pixel accuracy (i.e., frames were upscaled via interpolation to twice
their size before the search was performed, which in effect produces "intermediate”
pixels that allow for referencing up to a half pixel accuracy in with respect to the

original frame). In many video coding scenarios, it is common that: (a) there are
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apparent correlations between the directions of motion vectors and the direction of
movement that can be inferred from frames. For example, for the subjects appearing
to be sitting at a table stationarily, motion vectors are not used, while for subjects
who appear to be walking, motion vectors are likely to point to the opposite direc-
tion of their movement. This correlation is important, and will be of relevance to

later parts of this work.

It is also common and natural that some motion vectors do not appear to corre-
spond to movement. For example, vectors on the surface of an object may indicate
intra-predicted matches to those specific macroblocks, and seem to be pointing to-
wards neighboring surface textures (while the surface of the object is static). These
types of motion vectors can be construed as noisy vectors, and they often occur in
local regions of frames where there are repeating patterns or where there are no dis-
tinct object features in the frame (in which case such macroblocks would be more
easily inferred from neighboring textures). We will also see how noise in motion

vectors is correlated with coding bitrates in Chaggter

Frame reconstruction commonly suffers least for static areas of frames, and
clear artifacts appear especially around moving regions of frames. In AVC/H.264
and HEVC, the degree of acceptable distortion is quantified and controlled via the
quality parameter, or via a bitrate control parameter termed the Constant Rate Factor
(CRF). Specifically, higher CRF settings and lower QP settings enforce better qual-
ity, which in turn allows for more information to be captured in motion vectors and
error residuals. The principles we note above in (a) and (b) apply to older codecs
(e.g., MPEG) and newer codecs alike (e.g., AVC/H.264, VP8, VP9). As such, any
proposition that leverages typical outcomes of motion compensation is likely to be

portable across all current standards.

3.2 Inferring Optical Flow From Macroblocks

We draw from thede factoapproach outlined by Coimbra and Daviés$lf] and
Kantorovet. al [18Y for the estimation of a coarse optical flow to describe motion

fields in video. Specifically, we calculate inherently sparse optical flow representa-
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tions from AVC/H.264 bitstreams as the coordinate differences between source and

target macroblocks, and do so while maintaining the following precepts:

1. Optical flow is estimated from bitstreams encoded using a specified quality

parameter setting (i.e., no rate control is used).

2. Whenever possible, macroblocks are encodedas@ixel blocks to estimate

finer motion compensation parameters.

3. Frames with no inter-predicted motion vectors (i.e., I-type macroblocks) are
omitted, and replaced with frames interpolated from their immediate temporal

neighbors.

4. To reduce approximation noise of inter-prediction, bi-directional mac-

roblocks are omitted (i.e., B-frames).

5. Wherever there are "gaps" in the motion vector maps, vectors are interpolated
spatially to fill a grid that supposes that all macroblocks are encoded te be 8
8 in pixels. This is performed to remove discontinuities in the motion vector
map, and to generate smoother representations of motion closer to those of

dense optical flow estimators.

Notable from the above, there is no point in which frames are reconstructed,
and the computational advantages of our method emanate from discarding the re-
guirement to decode video data. Moreover, we perform almost no pre-processing to
estimate our optical flow relative to dense optical flow estimators such as the ones
described inP07[203. As we demonstrate experimentally in Sect®B5these
modifications procure significant improvements to processing speed, making our
method more suitable to real-time applications.

In order to extract macroblock motion information from a compressed video
bitstream, we usavlib , which supports most MPEG/ITU-T standards used in
practice P04]. Specifically, we make use of th&/Motion Vector  structure.
Whenavlib  attempts to read the compressed bit-stream of a video frame, our op-

tical flow estimator extracts the motion compensation parameters and places them
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Brox Ground Truth

Figure 3.1: Macro-block motion vectors are derived by temporal block matching
and can be interpreted as approximations of the underlying optical flow. From top-
left to bottom-right: (1) RGB: frame as seen by the viewer (2) Brox: A computation-

heavy optical flow approximation (3) H.264/AVC: Macro-block motion vector in-

formation rendered on a frame (4) Ground Truth: Real optical flow as generated .

in the AVMotionVector  structure. The horizontal and vertical coordinates of
the macroblocks of each frame within this structure are written in a 16-bit integer
binary format to disk in order to be used by the proposed 3D deep CNN. By limit-
ing our method to solely using the motion compensation parameters to estimate the

optical flow, we achieve the speed gains reported in SeBii&

As shown in FiguréZ, such motion vectors can be interpreted as noisy ap-
proximations of the underlying motion. The quality of macroblock based motion
estimation is thus correlated with the size of macroblocks, the video resolution, and

the utilized motion source search parameters.

3.3 Proposed CNN For Action Classification

In this section we describe the proposed framework for training a 3-Dimensional
CNN using macroblock motion vectors. It is important to note thatpfuth train-

ing and testing with the proposed approach,decodingf any video to its pixel-
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domain representation is performed.

3.3.1 Network Input

Using the optical flow estimation paradigm described above, we extract and retain
only motion vectors extracted from uni-directional inter-predicted macroblocks,
(i.,e. P-type macroblocks). Empirically, we found that training on both uni-
directional and bi-directional motion vectors incurs substantial increase in com-
plexity with marginal improvements in classification accuracy. Uni-directional
macroblocks are processed exclusively to reduce the complexity of the network’s
forward-pass during inference. To test the performance of our architecture, we
use the standard action classification datasets UCF#&¥ 4nd HMDB-51205.

Both are datasets composed of annotated videos with a spatial of 380 pixels.

For a frame comprising of P-type macroblocks, a block sizexo8®ixels results in

a motion vector field of dimensions 4030 x 2, wheréW x H is the motion vector
spatial resolution and the number of chann€ls 2 is representative of thé&x and

dy motion vector components.

In order to compensate for the low spatial resolut@nx H, we take a long
temporal extent of motion vectors over> 100 consecutive P frames. This is con-
trary to recent work using high-resolution optical flov/[ 183, which typically
ingest only a few frames per input (typically around 10). This is because, even with
the latest GPU hardware, a long temporal extent cannot be processed without sacri-
ficing the spatial resolution of the optical floviz{, T83. On the other hand, given
that our MB motion vector input is inherently low-resolution, it is amenable to a
longer temporal extent, which is more likely to include the entirety of relevant ac-
tion that is essential for the correct classification of the video. For example, we have
found that the accuracy increases greatly for UCF-101 evaluated on our 3D CNN
when moving from 10 to 100 frames, but eventually plateaus \ihbacomes suf-
ficiently large such that the input extends to almost all P-type frames of the majority
of video files of the dataset. Therefore, we fix the temporal exeiot 160, which

is roughly the average number of P-frames per video in UCF-101.
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3.3.2 Network Architecture

Our CNN architecture is illustrated in FiguBs2 All convolutions and pooling are
spatiotemporal in their extent. 3D pooling is performed over-a2< 2 window

with spatiotemporal stride of 2. The first two convolutional layers use 3D filters of
size 3x 3 x 3 to learn spatiotemporal features. With ax224 x 2 x 160 motion
vector input, the third convolutional layer receives input of size ®@x 2 x 10.
Therefore, we set the filter size of the third, fourth and fifth convolutional layers to
2x 2x 2, as this is sufficiently large to encompass the spatial extent of the input over
the three layers whilst minimizing the number of parameters. In order to maintain
efficiency when training/evaluating, we also use a temporal stride of 2 in the first
and second convolutional layers to quickly downsize the motion vector input; in all
other cases we set the stride to 1 for convolutional layers. All convolutional layers
and the FC6 and FC7 layers use the parametric RELU activation fun2figh [

It is important to note that our network has substantially less parameters and
activations compared to other architectures using optical flow. In particular, our 3D
CNN stores 29.4 million weights. For comparison, ClarifaiN&®]] and similar
configurations that are commonly used for optical-flow based classificdfign [

T90)] require roughly 100 million parameters.

x3 x2

INPUT CONV POOL CONV POOL CONV POOL FC

N:
T

24 F: 3x3x3 F: 2x2x2 F: 3x3x3 F: 2x2x2 F: 2x2x2 F: 2x2x2 D: 2048
160 LJ‘> S: 1x1x2 E> S: 2x2x2 E> S: 1x1x2 E> S: 2x2x2 E> S: Ix1x1 LJ‘> S: 2x2x2 E> E'>
D:64 D:128 D: 256

SoftMax

Figure 3.2: Our proposed CNN architecture: the red, blue and purple blocks rep-
resent convolutional, pooling and fully-connected layers, whiers: the filter size
for the convolutional layersis the filter/window stride, anD is the depth of filters

for the convolutional and fully-connected layers.

3.3.3 Training
We train the network using stochastic gradient descent with momentum set to 0.9.
The initialization of Heet al. [20€] is extended to 3D and the network weights

are initialized from a normal distribution with variance inversely proportional to the
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fan-in of the filter inputs. Mini-batches of size 64 are generated by randomly se-
lecting 64 training videos. From each of these training videos, we choose a random
index from which to start extracting the P-frame MB motion vectors. From this
position, we simply loop over the P-type MBs in temporal order until we extract
motion vectors ovefl consecutive P frames. This addresses the issue of videos
having less thait total P frames, e.g., cases where the video is only a few seconds
long. For UCF-101, we train from scratch; the learning rate is initially set t& 10
and is decreased by a factor ofLl@very 30k iterations. The training is completed
after 70k iterations. Conversely, for HMDB-51, we compensate for the small train-
ing split by initializing the network with pre-trained weights from UCF-101 (split
1). The learning rate is initialized at 1®and decayed by a factor of Devery 15k
iterations, for 30k iterations.

To minimize chances of overfitting due to the low spatial resolution of these
motion vector frames and the small size of the training split for both UCF-101
and HMDB-51, we supplement the training with heavy data augmentation. To
this end, we concatenate the motion vectors into a sMgleH x 2T volume and
apply the following steps (wher€ is doubled to account for two horizontal and
vertical displacement channeld)) a multi-scale random cropping to fixed size
Nc X Ng x 2T from this volume, by randomly selecting a value fy from N x ¢
with ¢ € {0.5,0.667,0.833 1.0}; as such, the cropped volume is randomly flipped
and spatially resized thl x N x 2T; (ii) zero-centering the volume by subtracting
the mean motion vector value from each motion vector f®Jdn order to remove
possible bias; théx and dy motion vector components can now be split into sep-
arate channels, thus generating our 4D network iﬁpulDuring training, we addi-
tionally regularize the network by using dropout ratio of 0.8 on the FC6 and FC7
layers together with weight decay of 0.005.

3.3.4 Testing

During testing, per video, we generate 10 random volumes of temporal $ipen
which to test on. Per volume, we use the standard 10-crop te&fifigcropping

the four corners and the center of the image to BlzeN x 2 x T and considering
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both horizontally flipped and unflipped versions. As such, we average the scores

over the 10 crops and 10 volumes to produce a single score for the video.

3.3.5 Experimental Results

In order to examine the accuracy and extraction time of our approach versus de-
coding and optical flow estimation, we perform a comparison to the Bf6& pnd
FlowNet2 209 optical flow estimations that were respectively used by Simoryan

al. [17] and Broxet al. [209). Since the CNN architectures downsample and quan-
tize the optical flow before ingestiofAf], we measure the end-point error (EPE) of
the optical flow estimations at the resolution and quantization settings used by the
CNN. All runtime results were measured using an Amazon EC2 instance running
on a quadcore Intel's Xeon E2686 V4 (2.3 GHz, single-thread execution). Zdble
presents the results using a synthetic sequence for which the ground truth motion
flow is also available. At the same time, the proposed approach is more than 600
times faster than FlowNet2, as it does not decode the video to the pixel domain and
does not carry out any optical flow calculations. In this regard, at current AWS spot
pricind®, GPU instances require more than 9 times the cost of CPU instances, which
leads to more than 5400 times lower cost under a cloud-based deployment. million
minutes of video with the state-of-the-art, our approach can process more than 8.6

billion minutes of video.

3.4 Using Codecs As Spatio-Temporal Sensors

We further extend our method by employing selectively-decoded MB texture in-
formation using the extracted MVs as activity indicators. We do this by decoding
one frame everx frames, withX set to inf indicating that only the first frame of

the video is decoded. In between fully-decoded frames, “rendered” frames can be
produced at frame intervd®, with 1 < R < X. Each rendered frame is initialized

as a copy of the immediately preceding fully-decoded frame. Texture information
at active macroblock positions is decoded and replaces the initialized values in the

corresponding locations in the rendered frame. Two examples of this process are

laws EC2 snof pricing(m3.large vs. p2.xlarge N. Virginia, Feb. 2016)
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shown in FiguréZd. We consider the area within a macroblock to be active when

the corresponding MV information exceeds a specified thresholdhere 0< A.

FigureB-3 shows a grayscale activity map derived from the MVs of Fidgiizdb).

Figure 3.4: Sample from a selectively decoded sequence, with: (a) initial RGB
frames, (b) selectively decoded active regions, (c) decoded regions superimposed

on inital frames, and (d) ground-truth frames with full motion compensation.

To achieve said block-wise selective MB texture decoding, we inspect the mo-
tion vectors and write decoded data wherever the conditions specifigd,i®/A}
are met. Evidently, by increasing the values o, R, A} we can decrease the fre-
guency of full decoding and selective macroblock texture decoding to achieve any

extraction speed desired within a practical application context.

3.4.1 Testing

During testing, per video, we generate 5 random volumes of temporal dizen

which to evaluate on the temporal stream. Per volume, we crop the four corners
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and the center of the image to sil¥e x Nt x 2 x T and consider both horizontally
flipped and unflipped versions. Due to the low resolution and short duration of the
HMDB-51 and UCF-101 videos, we note that taking extra crops and volumes is
often redundant, as the spatial resolution of the P-frames is low and the temporal
extentT of the input is large enough that it encompasses the entire video duration.
However, our approach is better suited to videos “in the wild" and we can afford
the extra redundancy due to the low complexity of our 3D CNN. As a result, rather
than computing an average score over all extracted volumes, we simply take the
maximum score, in order to generate our prediction for the video.

As the VGG-16 architecture has roughly 6 times the number of weights and
activations of our proposed 3D CNN in the temporal stream, we evaluate on the
spatial stream by extracting 5 frames from the set per video albeit with a single
center crop (and its horizontal flip) of sitg x Ng x 3. To generate our prediction,

we again compute the maximum score over all extracted frames.

3.4.2 Structural Similarity

For the experiments with the proposed approach, we chose values for the decoding
interval X that correspond to the settings used in our video classification tests. In
addition, for both cases, we set the rendering frame intenfRHd.0 and threshold

A= 0. Under these settings, the EPE of the proposed approach remains low-enough
to indicate high correlation with the ground-truth and optical-flow based methods.

In terms of visual quality of the selective decoding and rendering approach
of Section32, we measure the average structural similarity index metric (SSIM)
[25] using the fully-decoded video sequences as reference. By using 100 video se-
guences from UCF-101, and for a range of values of the decoding intérgll
other settings remain the same as for T&hB, the measured drop in visual qual-
ity is reported in Figuré33. Evidently, the quality of rendered frames remains
high enough to allow for all SSIM values to remain above 0.85. This agrees with
the visual similarity we observed in typical examples such as the ones of Figure
BZ(c)+(d). We can fuse the two streams together by simply averaging their max-

imum scores. Finally, in order for our spatial stream to have temporal correspon-
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SSIM

Figure 3.5: Structural similarity index of decoding with varying intervéls

dence with our temporal stream, we pass the starting index of each P-frame volume.

3.4.3 Experimental Results

Table3™ presents results from our MB motion vector extraction against ground
truths, Brox P08, and FlowNet2 P0Y optical flow estimations that were respec-
tively used by 7] and [209. All runtime results were measured using an Amazon
EC2 instance running on a quadcore Intel's Xeon E2686 V4 (2.3 GHz). Since the
CNN architecture downsamples and quantizes the optical flow before usiing, it |

we measure the end-point error (EPE) of the optical flow estimations at the reso-
lution and quantization settings used by the CNN. Under these settings, the EPE
of the proposed approach remains low-enough to indicate high correlation with the

ground-truth and optical-flow based methods.

3.4.4 Datasets

Evaluation is performed on two standard action recognition datasets, UCF-101
[184) and HMDB-51 P05. UCF-101 is a popular action recognition dataset, com-
prising 13K videos from 101 action categories. Each video is: approximately 10
seconds in duration, 320240 pixels per frame, at 25 frames per second (fps).
HMDB-51 is a considerably smaller dataset, comprising only 7K videos from 51

action categories, with the same spatial resolution as UCF-101, and at 30 fps.
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Decoding Flow Estimation
Input
Runtime Runtime EPE

ProposedX =50 384.6 (CPU) 18602 (CPU) 15.26
Brox 120.0 (CPU)  0.16 (GPU)  6.32
FlowNet2 120.0 (CPU)  8.13 (GPU) 3.14

Table 3.1: Decoding and motion field estimation accuracy and runtime (fps) results
for the proposed approach, Brax(ld and FlowNet2 P0Y. EPE: end-point error;

SSIM: structural similarity index metric.

Framework Input Complexity Accuracy (%)

Size #A #W (x1F)  UCF  HMDB

Proposed 3D CNN  Z42x 160 4.0,29.4 775 495

TSCNN-Brox 224%20 2.0,90.6 83.7 54.6

LTC-Brox 58x2x100 42.1,12.2 826 56.7
LTC-Mpegflow  5&x2x60 25.3,10.6 63.8 -

Table 3.2: Comparison with state-of-the-art flow based networks. “Proposed 3D
CNN” refers to our temporal stream that ingests MB motion vectors. Complexity
is reported with respect to millions of activations and weights (#A, #W), summed

over conv, pool and FC layers in the utilized deep CNN of each approach.

3.4.5 Evaluation Protocol and Results

For each dataset we follow the testing protocol of Sedidaland compute the av-
erage accuracy over the three training/test splits provided. Each UCF-101 training
split consists of approximately 9.5K videos, whereas each HMDB training split has
3.7K videos. It is evident from Tabl&2 that our proposal outperforms the RGB-
based SSCNNIIZ], LTC-Mpegflow [18] and SFCNN [83. At the same time,

our proposal is outperformed by SSCNN-Brox and LTC-Brox (both using highly-
complex optical flow), as well as the RGB-based C881], by up to 10 percentile

points. Importantly, our approach allows for more than two-fold reduction in the
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number of activations and weights against competing methods, and we mainly at-
tribute the gap in performance to the short duration of the videos in the datasets, and

the low-resolution nature of used content.

3.5 Concluding Remarks

In this chapter we showed how codec motion vectors can stand in as cost-effective
representations of motion flow. We also proposed a new compressed-domain model
for video classification based on deep learning methods, and discussed its mode of
operation and performance. We showed that our method achieves accuracy com-
parative to the state-of-the-art, with speed three orders of magnitude higher than
that of models which require the estimation of dense optical flow prior to infer-
ence. Our proposal in this chapter can be interpreted as an input dimensionality
reduction method that leverages the correlation between block-based texture search
methods and motion flow that underlies video sequences. In the next chapter, we
use our findings on compressed domain video classification to extend our study to

data utility optimization, and do so for the express purpose of video classification.



Chapter 4

Rate-Accuracy Tradeoff For

Compressed Action Classification

This chapter details our study on the trade offs between rate control in video coding
and video classification accuracy, and describes our proposed bitrate optimization
model for video classification. Specifically, we demonstrate how classification of

video data can be reliably achieved by models that exists on remote machines with-
out relaying redundant information from sensors. To achieve the latter, we start by
exploring rate-accuracy trade-offs in CNN-based classification, and we summarize

the contributions detailed in this chapter in the following:

1. We study the effect of varying encoding parameters on state-of-the-art CNN-
based video classifiers. Unlike conventional rate-distortion curves, we show
that, without any optimization, rate-accuracy is not monotonic for CNN-

based classification.

2. In order to optimize the trade off between bitrate and classification accuracy,
we propose a mechanism to select amongst 2D/3D temporal CNN and spatial
CNN classifiers that have varied input volume requirements, and we achieve

this with bitstreams that comply with standardized video codec formats.

3. We study and compare the efficacy of our method on action recognition based
on AVC/H.264 and HEVC compressed video, which represent two of the

most commonly-used video coding standards.
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Sections are organized as follows: SectA~l describes how video bit-
streams are reduced through selective cropping. In Se@iyrwe describe and
formulate the optimized classifier selection process. Se@idervaluates the per-
formance of the proposed classifiers using different coding settings and illustrates
the rate gains made possible through our classifier selection method. Finally, Sec-

tion @5 concludes the chapter.

4.1 Cropped Video Bitstreams

We base our reduced-bitstream encoder on the JM reference software of AVC/H.264
[69] and the HM reference software of HEVG4]. Our modifications to the ref-
erence encoders are designed such that the bitrate of the compressed bitstream is
kept at a minimum while preserving the information needed to classify videos.
Namely, the compressed bitstream should exclusively h@)dkey texture com-
ponents corresponding to rapidly-changing input cont@htinter-frame predicted
macroblocks and their motion compensation parameténs;control signals and

headers needed to comply with its corresponding standard.

4.1.1 Inferring Optical Flow From Cropped Bitstreams

Before applying inter-frame prediction, AVC/H.264 pictures are split into 1%

pixel macroblocks (MB) to represent luminance and chrominance samples, with
the chrominance samples further split inte 8 chroma blocks for the widely used
4:2:0 chroma sampling. Macroblocks are the core of the coding layer and form
the basis for adaptive inter and intra predictions. Each of the inter-predicted mac-
roblocks is then encoded using blocks from the{d#x 16,16 x 8,8 x 16,8 x 8}

[54, 710]. The HEVC standard takes on a more adaptive approach and introduces
a Coding Tree Unit (CTU) which consists of luma and chroma Coding Tree Blocks
(CTB). The size of each luma CTB is drawn from the & x 16,32x 32 64 x 64}

where larger size blocks result in better compression efficiency. Iterative partition-
ing is then applied to divide CTBs into smaller Coding Blocks (CB) resulting in

a tree-like structureq11]. The minimum allowed CB size is also specified, this

serves as a parameter to control the granularity of the tree structure pro8éfed [
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In both standards, blocks are predicted via translational motion vectors (MVs)
that represent the displacement from matching blocks in previous or subsequent ref-
erence frames. Increasing the number of small-size blocks increases the granularity
of the MV grid at the expense of lower coding efficiency. These MVs represent
the temporal activity and have been shown to be highly correlated with optical flow
estimates?21]. If the area covered by the MB is static, the MB is “skipped” and
is not encoded. The resulting prediction residual from temporal prediction of non-
skipped MBs is encoded using transform coding. The transform coefficients are
then quantized based on the quantization parameter (QP). The value of the QP per
frame can be chosen from 52 valueg@51], with lower values indicating high-

fidelity encoding.

4.1.2 Selective Retention of Motion and Texture Information
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Figure 4.1: The proposed Multi-CNN classifier selection: (a) 3D temporal CNN
architecture; (b) 2D temporal CNN architecture. The bottom part represents the
spatial CNN (VGG-16). Parameters: N is the spatial dimensions of the input vol-
ume; T is the temporal extent expressed as the number of frames used; F is the filter
size, formatted as widtl heightx time; S is the convolutional window stride; D

is the number of filters (or number of hidden units) for the convolutional and fully-
connected layerdl andRy are controlling the multi-CNN selection based on the

motion vector rat&Rmotion-

In our work, only select subsets of the quantized transform coefficients will be

entropy encoded and then included in the cropped bitstream. This set of coefficients,
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along with spatial texture, is transmitted to the classifier (described in SEERpn

to infer semantic features and classify the content of the bitstream. By doing so, the
bitrate of these “cropped” subsets of coefficiefgopped is significantly reduced

in comparison to the original bitratdrig, needed to encode the full video. In

the remainder, we present our modifications, assuming that the first frame of every
video sequence is encoded as an Instantaneous Decoding Refresh (IDR) and all

subsequent frames in the video are encoded as P-frames.

In order to reduce the bitrate of the compressed bitstream, we employ selec-
tive retention of texture information by retaining the texture information of active
regions. To implement selective writing in the AVC/H.264 JM reference soft-
ware Y], we modified functionswriteCoeff4x4_CAVLC_normal() and
write_chroma_intra_pred_mode() . In addition, to allow for a skip sym-
bol for all non-active areas, we modified the functiomad _coeff_4x4 CAVLC()
and read_coeff_4x4 CAVLC_444(). Similarly, to implement selective
writing in the HEVC HM reference softwareb#], we modified the functions
TEncSbac::codeCoeffNxN() andTDecSbac::parseCoeffNxN(). To
simplify our tests, we retain the texture of IDR frames and skip all texture of P-
frames with a single skip symbol. The introduction of these skip symbols is the
only non-normative part of our entire process. All other syntax elements (including
modes and motion information) are left as specified in their respective standard.
With these minimal changes, standard decoders can decode our reduced bitstreams

to pass to compressed video classifiers.

Finally, in order to derive a temporal activity map from P-frame MVs, we
apply the following steps{i) MVs are extracted from the compressed bitstream
using theread_motion_info_from_NAL_p_slice() function for JM and
TDecEntropy::decodePUWise() for HM; (ii) the extracted MVs are then
mapped to a grid of & 8 non-overlapping blocks within each fram@j) MVs
are interpolated from neighboring macroblocks wherever a macroblock does not

provide motion compensation parameters but two or more of its neighbors do.
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4.2 Proposed Framework For Compressed-domain

Classification

4.2.1 CNN Architectures

In Fig. 27 we illustrate the two CNNs used for the temporal MV stream,
which represent the state-of-the-art in compressed-domain deep learning for action
classificationT21][T90]. We use two architectures to study how different models
behave to cropped bitstream volumes, and to demonstrate that our rate optimized
CNN-based classification method is applicable with different network architectures
that have been shown to preform well with codec motion vector data. The first
CNN architecture we consider is the 3D CNN proposed by Chadlz. [127].

As illustrated in Fig4-l(a), all convolutional and pooling layers are spatiotemporal

in extent; this captures the motion information between consecutive motion vector
frames. Crucially, the spatiotemporal features are expected to improve classifica-
tion performance between similar actions. We generate a 4D motion vector input by
splitting thedx anddy vector components into separate channels, thus resulting in a
W x H x 2x T volume. We compensate for the low resolution of the extracted mo-
tion vector frames by setting a long temporal exterisTsp = 160, which typically

comprises the entire video duration.

The second architecture we consider is a 2D CNN, as illustrated irfHigdp).
The model design is based on ClarifaiNgi¥ and only comprises 2D spatial fil-
ters; we notably reduce the size of the first filter from 7 to 3x 3 and decrease
the stride of the first two convolutional layers to<Il. A similar architecture was
also employed in recent work on fast video classificatit®#{). The input is gener-
ated by stacking the motion vectdx anddy components into a sing&y x H x 2T
volume, where the temporal depthis set aslo,p = 60. In general, 2D CNNs are
less complex to train and test with than 3D CNNs, whilst forgoing modelling any
temporal dependencies. Nonetheless, their lower complexity means we can afford
to use a higher input spatial resolution, which enables the 2D filters to learn more

distinguishing spatial features of the MV data.
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Finally, concerning spatial processing of RGB texture, we use the well-
established VGG-161B8 CNN architecture to classify RGB frames and capture
motion-invariant spatial features of video content. Our spatial CNN is pre-trained
on ImageNet?T3 and fine-tuned on the training split of UCF-101. The spatial
stream ingests the decoded frames per video and the predictions made by the spatial
CNN are ultimately fused with the predictions from the temporal stream to produce

the final two-stream classifier decisions.

4.2.2 Training and Testing

We train both temporal stream architectures using stochastic gradient descent with
momentum set to 0.9. The initialization of K¢ al. [2?06 is used and weights

are initialized from a normal distribution. Mini-batches of size 64 are generated by
randomly selecting 64 training videos per batch. The training is completed after
90k iterations. We follow the data augmentation practices utilized in recent work
[T27] in order to minimize overfitting for both the 2D and 3D CNN. These include

a multi-scale random cropping of the input and spatial resizing to a fixed\size
followed by zero centering the motion vector field by subtracting the mean motion
vector from the volume. For the 3D CNN, the fixed crop size is set to 24, whereas
for the 2D CNN this is doubled to 48. In addition, we use a dropout ratio to 0.5
for the first two fully connected layers in both models. During testing, for the
temporal stream we generate 10 random volumes of temporédt gimen which to

test on. Per volume, we use the standard 10-crop testing, cropping the four corners
and the center of the image to spatial dkte& N and considering both horizontally
flipped and unflipped versions. As such, we average the scores over 10 crops and
10 volumes to produce a single score for the video. For the spatial stream, we use
one IDR frame for each video and oversample inputs to VGG-16 by flipping and

extracting crops.

4.2.3 Multi-CNN Classifier

In order to optimize the tradeoff between bitrate and classification accuracy, we

leverage the differences in input requirements of the two temporal classifiers of
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Fig. B and devise a Multi-CNN (MCNN) selection process. Since the number
of MV frames per crop is larger for our 3D CNN versus its 2D CNN counterpart
(i.e., Tsp > Top), the former requires higher bitrate per crop than the latter. On the
other hand, as shown in previous studi#€][denser MV frames will benefit from

the spatially-larger input of the proposed 2D CNN architecture. Since the density of
inputs to the temporal stream is directly proportional to the average bitrate allocated
to MVs by the codedmqiion, We expect the accuracy of both the 2D CNN and 3D
CNN classifiers to be directly related Rnotion, albeit up to a limit (since noise is
introduced at high rates due to the limitations of the MV block model). Moreover,
the two classifiers are expected to be comparable in accuracy over a raRige&f
values. These hypotheses have been tested and we present the related experimen-
tally derived results in Sectidh3"L In summary, our investigation showed th@y:

the long temporal extent 3D CNN classifier is superior for lower valud&@fion;

(ii) the short temporal extent 2D CNN classifier performs as well as the long tem-
poral extent 3D CNN classifier for mid-range valueSakion ; (iil) both temporal
CNNs offer diminishing performance for high valuesR¥{qtion. Therefore, we in-
troduce the pair of rate-accuracy optimization parameters Ry}, with Ry > R,

such that:

1. the 3D CNN is used for videos WitRnotion < RL
2. the 2D CNN is used for videos Wi < Rmotion < RH

3. no temporal CNN is used whéRnoiion > Ry and only the output of the
spatial CNN is considered (see Fél).

The remainder of this section is to establish a model-based approach for the optimal
selection of R, Ry}. While the value ofRnotion IS derived experimentally during
the encoding of each video, for offline rate-accuracy optimization studies it can also

be derived via rate-distortion model&lH)].

4.2.4 Problem Formulation and Optimization of MCNN

To make full use of the overlap of performance between classifiers, a video is passed

to a lower-rate classifier only when it is likely to be classified correctly. We consider
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Figure 4.2: RGB frames and corresponding AVC/H.264 MV activity maps for two
scenes from UCF-101; (a) RGB frames; (b) Brox optical flow; (c) Approximated
flow at QP= 0; (d) Approximated flow at QP= 30; (e) Approximated flow at

QP=40; (f) Approximated flow at QP- 51. Note that sparsity increases and noise

decreases with increased QP.

the problem of finding the optimum séR/, R, } that maximizes the classification

accuracyAmcnn, Of our proposed MCNN under a constraint on the available bitrate,

Ravailable

{RLRG} = a;ng?aAﬂcnn(RbRH) subject toRsent< Ravailable ~ (4.1)
L,M~H

whereRsentiS the average bitrate of all transmitted bitstreams under a selection algo-
rithm for {R_, R4}. We first consider the video source probability density function
fs(Rmotion), Which characterizes the probability of occurrence of video examples
with bitrate Ryotion.  We have foundfs(Rmotion) t0 be well approximated by the
Gamma distributionfs(Rmotion; o, B), Wherea andf3 are the shape and rate param-

eters (see Sectich3land Fig.43). We can then expre#$$ncnnas:

R
Amcnn: ASD/O fs(Rmotion)d |%notion
Ry
+A2D /RL fs(Rmotion)d I:?motion (4-2)
+ASP/RH fs(Rmotion)d Rmotion

whereAgp, A>p andAgp are the classification accuracies of the 3D, 2D and spatial

stream classifiers respectively. 7)), the accuracy of each of the classifiers is
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assumed to be constant for the range of rates it corresponds to, and its estimate is
experimentally derived frory. This assumption holds as long¥ss large enough

and the accuracy of each classifier remains relatively flat for different values of
Rmotion Within the respective integration interval of each classifier, which is found

to be the case in our experiments of Secdoh

Since the number of bits needed to classify each video depends on which clas-
sifier is used for prediction, we first find the average bitrate required by each classi-
fier. We defineR3p, Rop, andRgp as the average bitrate of inputs to the 3D, 2D, and

spatial classifiers, respectively, and estimate each as:

Rap = a3pRytion 030 O < Rmotion < RL
R=4{Rp= DR otion T P2 RL < Rmotion < RH (4.3)

\RSP: Isp Ru < Rmotion < ©

whereasp, bsp, azxp, andbyp are coefficients to be estimated by applying regression
on the bitrate featurBnqiion Obtained on the training s&t Since the inputs passed

to the 3D and 2D classifiers consist only of the motion vectors and some added
headers to comply with the used standard, we expect the linear relations shown in
(2=3) and confirm this in Sectiodi-3"2 For the spatial classifier, we ukg, i.e., the
bitrate of the first IDR frame, to estimai®p. Note thatRyqtion IS NOt used foRgsp,

since the spatial classifier only uses texture information. We can now eXRyess

as.
R
Rsent: /O R3D fS(Rmotion)d I:\>motion
RH
+~/RL RZD fS(Rmotion>d F"motion (4-4)

+ /RH Rspfs(Rmotion)d Rmotion

Based on the expectation value property of the Gamma density funiqtiarr, 3)

[21H:
a

Xf(X;a,B) = B

f(X;a +1,B) (4.5)
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from (@=22) and @-2) we can rewritéAmcnn andRsentas:

Amenn= (Asp —Aop)Fs(RL; a, B)

(4.6)
+ (Aop — Asp)Fs(Ru; o, B) + Asp
Rsent= (b3D — bZD)Fs(RL; a, B)
bop — S a,
+(b2p — Isp)Fs(Ru; 0, B) 47

+(a/B)(agp — azp)Fs(Re;a + 1, B)
+(a/B)(a2D)FS<RH; a+ 1,[3) +lIgp

whereFs is the cumulative distribution function df and we have explicitly indi-
cated the dependence on the parameteasdf since they affect the bitrate and ac-
curacy contributions of the 2D and 3D CNN models. The constrained optimization
problem of B1) can now be solved fofR', R} via (&-8) and &-1). We first note

that @6) is monotonically increasing in function & andRy, sinceAsp > Axp
andAyp > Asp. This allows for the use numerical methods that gradually explore
the parameter space ¢R_,Ry} by settingRsentin (2-1) as close as possible to
Ravailable@nd then finding the maximum values fdR_, Ry} that satisfy @7), since
such values will automatically maximizg=).

In our experiments, amongst several alternatives, we opted for the method of
Toint et al. [2T6], which finds the solutiof R, R, } that maximizes48) under the
constraintRsent < Ravailable With the provision of sufficient exploration time. Given
that this optimization process is done offline based on training Yathis does
not impose any overhead at runtime. Finally, we remark that, in Ras@n is not
measurable at training or test time, the optimization method proposed in this section
can be generalized to other features that correlateRtion (€.9. number of MVs

per frame).

4.3 Validation Of Rate-Accuracy Assumptions

We validate our modelling choices described in Sedicgh4 For brevity of expo-
sition, all figures and results here are reported for the indicative case of AVC/H.264
with QP = 40.
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Figure 4.3: Empirically measured distribution Bf,qiion and fitted Gamma distri-

bution with shape and scale parameters: 2.43,3 = 0.13.

4.3.1 Distribution of Ry tion and Performance Overlap

In this section we compare the distributionRf,qtion against the fitted model and
verify the overlap of performance between the proposed architectures in S&&tion
All of the UCF-101 dataset is used to produce the results shown irfBgnd Fig.

4-4. For Fig.4d3, the Kullback-Leibler divergence (describing the distance between
the empirical and fitted Gamma distribution) was found to 1080. This proximity
justifies our use of this distribution for characterizing the probability of occurrence
of different values oRnoiion. COncerning Fig4-4, the experiments show that the
3D and 2D CNN architectures perform similarly for middle-range valué&gfion,

with the 3D-CNN outperforming the 2D-CNN for most of the lower MV bitrates.
The performance of both CNNs decays for high valueRgfion. Hence, for the
high-end range oRnotion, ONly the spatial CNN should be used (VGG-16 of Fig.
4.

4.3.2 Linear Model Verification for (4-3)

We selected 5% of the UCF-101 videos randomly and present the plBtsogdn
vS. Rgp andRyp in Fig &35 and Fig. 6. Using the same set, we calculated the

coefficient of determinatiofR? to relate the experimental variance to the residual
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Figure 4.4: Number of videos classified correctly by each temporal CNN classifier

for different values oRmnotion.

variance of the linear model and found it to be 93% Rap and 88% forRyp.

Similar results have been obtained for the HMDB dataset. These results validate

that the linear assumption a(3) is a good approximation.
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Figure 4.5: Bitrate of inputs sent to 3D architect&g plotted againsRmnotion and

fitted model ofR3p with linear coefficientsgp = 2.21 andbzp = 9.04.
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Figure 4.6: Bitrate of inputs sent to 2D architectig plotted againsRmotion and

fitted model ofRyp with linear coefficientayp = 0.83 andbyp = 4.27.

4.4 Experimental Results

4.4.1 Used Datasets And Rate Saving from Cropped Bitstreams

We train and test our 2D and 3D CNN architectures on eight distinct motion vector
datasets generated by varying the QP setting of AVC/H.264 and HEVC to encode
UCF-101[84)], while skipping texture information as described in Sectoh’l

For all videos: the first frame is encoded as an IDR (with remaining frames inter-
predicted as P-frames), the frame rate is set to 25, and we set the motion vector
search range to 16 pixels. Since specifying a particular quantization parameter has
a direct effect on the MVs produced by AVC/H.264 and HEVC, this gives several

distinct source distributions for the classifier to be trained and tested on.

For each dataset we follow the protocol of Sect®éland compute the av-
erage accuracy over the three training/test splits provided. Each UCF-101 training
split consists of approximately 9.5K videos of sequences representing 101 differ-
ent subsets of apparent actions. Importantly, the classifiers we study allow for a
two-fold decrease in the number of required activations and weights (which directly

correlate with complexity) when compared against full-density optical flow meth-
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Table 4.1: Average AVC/H.264 bitrate (kbps) of UCF-1(Ry;g is the bitrate of
the original bitstreamR.roppediS the bitrate after cropping and retaining texture and

motion information, andRyotion iS the MV bitrate.

% of Rmotion tO
QP Rorig F\’cropped Rmotion F\)orig Rcropped

0 4273.0 3213 1554 3.6 48.3
30 2749 1123 469 17.0 417
40 80.0 49.9 185 232 371
51 27.7 20.0 4.6 16.7 23.1

Table 4.2: Average HEVC bitrate (kbps) of UCF-1@yig is the bitrate of the
original bitstream R.roppedis the bitrate after cropping and retaining texture and

motion information, andRnotion IS the MV bitrate.

% of Rmotion tO
QP Rorig F\)cropped Rmotion F\’orig R(:ropped

0 3065.2 204.9 39.9 13 19.1
30 157.7 58.8 12.0 7.6 20.6
40 40.2 26.7 4.9 25 12.25
51 109 9.8 0.8 73 8.1

ods, and we attribute the gap in performance between the two mainly to the low

temporal and spatial depths of content comprising used UCFER@L [

4.4.2 Rate-Accuracy Results

As the quality of predictions made by CNN models is strongly tied to the properties
of source distributions (e.g. cross-class variance, noise), we expect that varying the
rate should affect the accuracy of our classifier accordingly. Since the QP values
control the video rate, we first show visual examples of the effect of QP on the

guality of approximated sparse optical flow in Fig2. The best approximations
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Figure 4.7: Rate-accuracy after cropped AVC/H.264 bitstreams are passed to the
2D and 3D classifiers. Each point for every curve corresponds to a different QP
setting during encoding, with “16 16” indicating restriction to 1& 16 blocks (no

MB subblocks) and “All” indicating the use of all MB partitions.

appear to be for QP values in the region of 30 to 40. To assess the rate savings
and classification accuracy of our proposal when varying QP values, in @dble

and TabléZ2we compare the original bitratRqyig, with the bitrate of the cropped
bitstreams Reropped @nd the rate of retained motion vectoRyotion. The results

show that streaming cropped bitstreams allows for 28% to 92% reduction in bitrate
for AVC/H.264, and 11% to 94% for HEVC. The related classification accuracy
results are presented in Fid7Z and Fig.Z28. As indicated by the visual examples

of Fig. €2, the utilized CNNs indeed achieve their best accuracies at QP values of
30 to 40.

Importantly, we observe that rate-accuracy curves are not monotonic (i.e., ac-
curacy decreases for very low or very high QP values). We expect sparser motion
vectors (e.g., MVs produced by setting @51 where the rate allocated to motion
vectors is the lowest) to make certain classes with high motion similarity particu-

lary harder to classify and easier to confuse with each other. On the other hand, as
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Figure 4.8: Rate-accuracy after cropped HEVC bitstreams are passed to the 2D
and 3D temporal CNNs. Each point for every curve corresponds to a different QP

setting during encoding, with encoder parameter CBT Depih

shown by FigZ42, setting QP< 30 also has a detrimental effect on accuracy, since
the derived MVs become significantly more noisy due to the inadequacy of the sim-
ple translational block model of AVC/H.264 and HEVC to smoothly approximate
the optical flow field since such block models are optimized for rate control and not

optical flow estimation®21, 208].

To cross validate with an external benchmark, Ei@ shows the average End
Point Error (aEPE) between MV frames and a dense optical flow ground truth ap-
proximated using the method proposed by Bebal. [186. The resulting curves
show that, for both video coders, the minimum aEPE value against dense optical
flow is in the QP range of 30 to 40. We also note that the best performance occurs
at a lower rate for HEVC compared to AVC/H.264, which is due to the enhanced
coding efficiency and improved inter-frame macroblock search of the HEVC stan-
dard. This is also reflected in Fig9, where the aEPE of HEVC is lower than that
of AVC/H.264 over all QP settings.
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Figure 4.9: Average EPE between our approximated optical flow with different QP
settings and an estimated dense optical flow ground truth using the method of Brox

et al. [208].

4.4.3 Comparison Against External Benchmarks

In TableZ=3, we report the accuracy of our fused spatio-temporal classifier of Fig.
a1, wherein the predictions of the spatial and temporal classifiers are averaged,
and compare against state-of-the-art methods from the literature. Our results show
that our approach remains competitive to the state-of-the-art on UCF-101, while
retaining the significant bitrate gains reported in Tahlkand TableéZ2. In addi-

tion, while our approach is outperformed by methods like ST-ResNet and TSN, itis
important to emphasize that these methods are orders-of-magnitude more complex
than operating with sparse compressed-domain informaligf 27, 190}, since

they require the use of dense optical flow and need to receive and decode entire
video bitstreams. Moreover, ST-ResNet and TSN use significantly deeper neural
network architectures in comparison to our approach, which makes their inference
significantly more compute intensive than the CNN architectures of EEf. Fi-

nally, in order to improve our results for the HMDB dataset, our rate-optimization
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method can be applied in conjunction with the recent motion vector accumulation
method proposed in CoVIARIBEZ], which uses compressed-domain information to
infer a sparse optical flow representation. While their optical flow approximation
method is more complex in comparison to ours, by applying our classifier selection

framework to such representations it is possible to gain even more savings in bitrate.

Framework Reropped  Accuracy (%)

(kbps) ucr  HmDB

3D-CNN-F (H.264, QR=30) 112.3 88.1 53.0
3D-CNN-F (H.264, QR=40) 49.9 88.1 529
3D-CNN-F (H.264, QP=51) 20.0 84.0 47.7

3D-CNN-F (H.265, QR=30) 58.8 86.7 50.9
3D-CNN-F (H.265, QP=40) 26.7 86.6 50.7
3D-CNN-F (H.265, QP=51) 9.8 814 47.1

EMV + RGB-CNN [190] — 864 —
MVCNN [1271] — 898 56.0
COVIAR [19]] — 904 59.1

ST-ResNet + iDT8H — 946 70.3
ActionVLAD + iDT [T8H] — 936 698
TSN (3 modalities#17] — 942 69.4
13D[2 14 — 934 66.4
TSCNN (SVM fusion) 7] — 880 594
LTC[1H] — 917 6438

C3D (3 nets)+IDTI8Y] — 904 —

Table 4.3: Comparison of our 3D-CNN-F classifier (fusion of VGG-16 spatial
CNN and 3D-CNN as shown in Fi¢t1) against state-of-the-art CNNBgoppediS
estimated from UCF-101 and is not relevant for other methods as they require full

decompression of whole bitstreams.
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Figure 4.10: Rate-accuracy results on the UCF-101 dataset. For the 3D-CNN-F and
2D-CNN-F classifiers (fusion of spatial CNN with 3D/2D motion CNNs as shown

in Fig. @70), different rates are obtained by using different QP settings. When using
Multi-CNN, rate is controlled by setting QR 40 and varyinQRayailablet0 Solve for

R andR{;. Note that the leftmost point shows the performance when the temporal
stream is not used and the MCNN selector only considers the outputs of the spatial

stream model.

4.4.4 MCNN Performance

To study the performance of our proposed MCNN under varying rate constraints,
we solve ET) for multiple values ofRyyajlanie Within the interval[0,50] kbps as
described in SectioBZ24 We then assess the MCNN accuracy on the UCF-101
test set for each set of parametéR; , R} and show the results in Fig—Th When

using the optimization framework of SectidiZz-4 approximately 25 kbps (50%)
reduction in bitrate can be obtained against the 3D-CNN-F classifier (25 kbps vs.
50 kbps) at less than 2% reduction in classification accuracy. Importantly, further
bitrate reductions are made possible with graceful (and monotonic) degradation in

classification accuracy, to the point of making it viable to get an accuracy within
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7% from the top performance at an average bitrate as loRsggs= 3 kbps. This
shows the potential for further exploration of rate-accuracy optimization in CNN-
based video classification and the utility of features sudR.@gon in inferring the

temporal information needed for classification.

4.5 Concluding Remarks

In this chapter we presented the first exploration of rate-accuracy trade-offs within
the context of action classification via deep neural architectures. Given that our pro-
posed method can be applied based on standardized codecs with minimal bitstream
modifications, it is well suited for remote inference (e.qg., for distributed internet-
of-things systems), or low-complexity implementations (e.g., to run data-efficient
models on mobile devices). We have observed that non-monotonic rate-accuracy
curves are obtained by state-of-the-art CNNs classifying approximated flow from
compressed bitstreams (following the AVC/H.264 and HEVC standards). On the
other hand, a rate-based selection method between multiple CNN classifiers with
varied input requirements is shown to achieve monotonic rate-accuracy character-
istics. Our results show that, when reducing bitstreams to the necessary elements
for 2D or 3D CNN classification, 28%-92% and 11%-94% reduction in bitrate can
be achieved for AVC/H.264 and HEVC respectively. The latter observations on
data redundancy detection for video classification motivated us to investigate task-
agnostic data utility optimization, and in the next chapter we detail our work to that

effect.



Chapter 5

Biased Mixtures Of Experts For
Visual Inference Under Data

Transfer Limitations

To bridge the gap between the input requirements of inference models and the prac-
tical constraints on available data per input, it is important to design models that
can perform well when available communication resources are limited between the
visual sensing and neural network processing parts of the system. For instance,
cloud-based video analytics, remote medical imaging and robotic, drone or Internet-
of-Things oriented computer visioh#, 219 220} have stringent constraints on

the amount of data that can be provided between data-producing clients and data-
consuming models on cloud servers. For typical deep learning models where a fixed
amount of data is required per inference task, this leads to unnecessary and often

unachievable demands in the amount of required data traffic.

This chapter details our study on task-agnostic data utility optimization, in
which we propose a novel class of mixtures of experts to adapt computer vision
models to data transfer limitations at test time. Although some work has been de-
voted to input dimensionality reductioB?1, 2?22, 166 and rate-constrained model
optimization for specific task$B, 2273, to the best of our knowledge, no task-
agnostic method has been proposed that explicitly addresses data scarcity at test

time by considering the variance between different domains in input space. The ex-
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Figure 5.1: Sample space of a classification task using two features, where colours
indicate different actions. All samples were drawn from a mixture model compris-
ing gaussians with distinct coefficients of variance. The blue line of (a) shows an
appropriate instance of input segregation, such that some samples can be directly
classified via the use of one dimension (along the x-axis). The red line of (b) shows
arandomly set partition, which does not provide any useful priors for data-economic

inference.

ample of Figurélillustrates a classification task where the acceptable data cost of
inference can vary for different input space partitions. That is, two features (speed
and repetition of motion) can be used to classify the bottom-left examples in Figure
571, while one feature suffices for distinguishing "Jog" examples from "Run” exam-
ples on the top-right. Reducing the retained dimensions directly correlates with the
data costof inference. To leverage inherent variances across different input space
partitions, and by selecting among two exp&tsandE, which respectively require

d, andd, bytes per input wherd; > dy, decision boundaries can be determined to
appropriately pass more data for more difficult inputs. Learning decision bound-
aries similar to those of Figue can allow sensors to remotely communicate data

as necessary, subject to the general position of an input within its respective space.
This reduces the overall data cost for inference that is accurate enough for the task
at hand. Consequentially, this can relieve unnecessary load on communication re-
sources that exist between sensors and remote machines used for visual inference.
Our work proposes a solution to learning such decision boundaries directly from
data for any model wherein inputs can be sub-sampled or reduced, and for any

specified limit on data cost. We summarize our contributions to the following:
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1. We introduce a novel class of mixtures-of-experts, wherein some experts are
favored to others by design. When experts of different data requirements are
included, this allows mixtures to meet different constraints on allowed data

utility.

2. We propose two methods to train biased mixtures such that input space is

effectively partitioned for each expert to realize data-efficient mixtures.

3. We show that data transfer optimization between visual sensing and process-
ing can be formulated as a convex optimization problem, and present an abla-
tion study of the benefit of biased mixtures under different contexts of allowed

limits on data utility.

In using different of instances of proposed biased mixtures we task-
agnostically consider thdata costoptimization problem, and do so in order to
determine required input volumes and code lengths prior to visual inference. We
consider how input space partitions vary in the amount of data required per in-
put in order to ensure good performance, and leverage this variance to train more
data efficient mixtures of experts. To do so, we take inspiration from recent work
[40, 39, 57] to propose a sparse mixture of experts where expert utility is biased to-
wards specific experts. While meeting predefined constraints on expert utility bias,
we train sparse gating functions to select the most adequate expert to use from a set
of experts of varied input requirements. Importantly, our method does not modify
any pre-existing methods for complexity optimization or task specific data cost re-
duction. As such, our proposal can be applied in conjunction with recent proposals
on learnable compressioaZ, 169, 170] and domain adaptatiofi¥V:3 174, 175 to
reduce the data cost of visual inference.

The expert utility biasing method proposed in this chapter can be applied to
reduce the data cost of any model wherein the size of inputs can be sub-sampled or
reduced. To show this, we train and validate on a variety of tasks spanning multiple
domains. Specifically, we validate on the tasks of: single shot object detection from

the work of Weiet. al[27], realtime video action classification from the work of
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Zhanget. alin [59] and Chadhat. al[T271], and image super resolution from the
work of Shiet. al[46] and Donget. al[?24]. Sections are organized as follows:
Sectionb1 details the proposed biased expert selection and describes its general
architecture and how it is trained. In SectleR we evaluate the performance of the
proposed method on all tasks, and illustrate the benefits that biased mixtures of ex-
perts can provide on multiple models for each task. Finally, SeBibsummarises

our findings and concludes this chapter.

5.1 Biased Expert Selection
5.1.1 General Architecture Formulation

Let £ denote a mixture oN experts where&€ = {Ej,Ep,...,En}, and each expert
E, is a modified variant of a task-performing baseline model. Per irpatgating
function determines the contribution of th® expert as:

ef XWg)n
G(X; Wg)n =

5 e Vo &4

whereWg is a set of trainable weight parametarsjenotes remaining gate indices,
and f(I;,Wg) € RN is the output of a specified gating model (e.g, a multi-layer

perceptron). The outpytof the mixture of experts is:
N
Z (X; Wa)nEn(Pn(X)) (5.2)

whereP, is a preprocessing function to accommodefer the nt" expert (e.g.Ps
performs subsampling i, ingests subsampled inputs). Mixtures of experts are
typically trained using a task loss that calculates the error between a provisioned
ground-truth andy. In our proposediasedmixtures of experts, experts are acti-
vated only when needed, and activating some experts is more favorable to activat-
ing others. In addition, all experts are optimized before training the mixture, and
the training loss is back-propagated through the gating function exclusively during
training. In Figureb2 we illustrate some examples of how biased mixtures can be

applied for different tasks. To adjust mixtures for biased expert selection, we denote
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the desired amount of bias in expert selectiorbeyRN, where||b||, = 1 and each
of its component®y, specifies per batch the ratio of input examples to pass to each
nth expert. We then consider two methods of training for biased expert selection,

and detail their function in the following.

5.1.2 Soft Bias Regularization _
Here we consider a soft regularization approach, where the most suitable expert

to use is selecteder inputvia a sparse gating function, and all other experts are
omitted. To do so, similar to Shazeet. al [40], for each inputx only experts
associated with the highest gate value are retained for inference, and we modify the
gating function to:

ef XWg)n
G(X% Wg)n = P(f(X; Wg))n-

5 e BTl &3

where (f(1,Vy)) is a non-linear operator which returns a one-hot vector indi-

cating the top value irf (I;Wg). From &3) we also define the utility of eadatt”

expertu,, as its total contribution per batcti comprisingM examples:

1
U = sz G(X; Wy)n (5.4)
ex
and we calculate the bias regularization lags; as a function oh € RN and the

specified bias vectds:

1
lpias = —Whias!0g(1— ﬁ [lu—Dbll,) (5.5)

wherewyigs IS @ hyperparameter to control the amount of bias to impose on the
mixture. The distance is normalized k{2 to ensure the expression within the log
function is always positive\(2 is the maximum possible distance between vectors
with an L1 norm of one, which is the case farandb). By applying the modifi-
cations to the gating function if{3), and including the bias regularization loss in
(B3) to the total loss, the mixture of experts is simultaneously trained to maximize

task performance and meet the specified bias.

5.1.3 Batchwise Bias Enforcement

In our second proposal, rather than encourage mixtures to align the utility of their

experts with the specified bias, we enforce Imasbatchin accordance witlh, and
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train the mixture only with respect to its task loss. This in effect trains mixtures
to make better expert selections for each input, while meeting the bias constraint
for every batch. Specifically, with a batch sizeMf batches are segmented such
thatMb;,, examples are passed to eathexpert. To do so, starting fror&{l), we
considerG € RM*N as anM sized batch of gate vecto®(x; W), and perform the
procedure described in Algorithfih For eachnt" expert, we denote gate values

assigned to columns of input &, and illustrate this in Figurg3.

Algorithm 1 Batchwise Bias Enforcement
Input: Soft gates batcts € RM*N

1: forn=1ton=Ndo
2: k< Mby,

Calculate number of inputs to passii8 expert
3t TopK(G:n,Kk)

Find topk values corresponding " expert

4: fori=1ltoi=Mdo

5: if ti #0 then
6: Gij—O0Vj#n
Forit" input, set all gates not af expert to 0
7. else
8: Gin+0
Set gate oft" input andn" expert to 0
9 end if
10:  end for
11: end for

5.1.4 Selecting Bias For Data Cost Optimization

Here we detail our method for selecting useful biases that can optimize performance
under different constraints on data utility. We consider the inference data cost vector
d € RN, where each of its componerds is the size of input volumes per example

as seen by each expert (i.e., the data cost associate@)ath). When mixtures are

biased and an ample number of samples is considered, the average data cost is then
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Figure 5.3: Batchwise bias enforcement example wikea 3, M = 4 andb =
[0.50,0.25,0.25. Inputs are selected per batch by iteratively sorting and selecting
the topMby, highest gate values. Gates subsequently set to zero are highlighted in

red, and togMb,,) values are highlighted in blue.

expressed as=bd" = SN _, bydy. In this way, the biasing vectdrcan be tuned to
allow for different average data costs of inference in the intgdh, dmay, Wwhere
dmin anddmax are the minimum and maximum amounts of data that can be ingested

by experts in the mixture.

Importantly, it can be seen that whiin> 2 there can be multiple instantiations
of b that produce the same average data dosthus, when an average data cost
targetd: € [dmin,dmax iS specified, it is necessary to define a method by which to
determine an appropriate bias vedhothat is subsequently used in training biased
mixtures. To address this, we consigee RN, which quantifies the performance
of each optimized expert prior to inclusion in the mixture, and sddescich that(i)
b satisfiesd = d, and(ii) b maximises the expected test performance as measured
by bp". That is, when each componepy denotes an appropriate performance
measure for the'" expert on a designated set of inputs isolated from testing exam-
ples (e.g.pn can be accuracy for classification tasks, or mean average precision for
objection detection taskDp' is a probabilistic measure of performance when ex-
amples are randomly assigned to experts with respeat bo doing so, we reduce
the problem of determinind for a specified data cosk to a linear optimization
problem that achieved™ = d;, while maximisingbp'. Since||b||, = 1 andby

can be expressed bg = 1— 22‘;11 b,, by expanding and substitutiry,, we get:
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N—1
bldl—i-bzdz—l—...—l—(l— Z bn)dN = (5.6)
n=1
and following that components d&f must be summable to unity, we also get the

additional(N — 1) constraints:

by <1k <15 by-1 <1 (5.7)

with maximization objective:

max{b1p1+b2p2+...+prN} (5-8)

Note that B6) and &) defineN linear constraints to maximize the objective
(B38) with N basic valuegbs, by, ...,by}, and determinind is a convex problem
which can be readily solved by optimization methods such as the simplex method
[229]. Thus, an appropriate biasing valbeo use for training can be found for any
specified target data codt. Following the duality property of such convex prob-
lems, we can also formulate the equivalent problem that fimfts any specified

performance targqs.

5.1.5 Additional Observations On Biased Mixtures

Note that while §35) and Algorithmi do not directly consider data cost, by using

a set of experts that require different amounts of data, the bias \ectotrols the
average data cost per batch. For example, the mixture of experts can be encouraged
to pass data more economically by settrtg favor the utility of some data efficient
experts over others. Importantly, the quality of expert selections is related to the
complexity of the gating functio®(x; Wg); increasing the complexity @(x; Vg)

can improve selections, albeit with dimnishing returns. In addition, because bias
enforcement is done per batch, we intuitively expect the quality of selection to be
directly correlated to the batch size: setting a small batch size may not expose the
gating function to a sufficient amount of variance in inputs to make selections of

benefit, while increasing the batch size at test time is favorable.
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The same expert selection methods described here can be applied with mix-
ture architectures that include experts which are optimized for low data cost via
dimensionality reduction methods (e.g., the proposal&8&f49]) and experts that
use different modalities to make their inferences (as illustrated in (c) of FigHye
Moreover, while our work studies the problem of reducing data dosén also be
specified to prioritize any other expert property to meet any constraint (e.g., to meet

constraints on power consumption or latency).

5.2 Evaluation

5.2.1 Benchmarks And Evaluation Method

To show how biased mixtures can optimize data costs of inference for different
problems, we evaluate on three computer vision ta@ksibject detection(ii) im-
age super resolution, ariii) realtime action classification. In reporting results for

all tasks, we compare our method against two alternatives:

1. Previously Proposed Model3o benchmark our results against relevant task-
specific solutions, we consider the performance of constituent experts when
optimized for different data cost constraints. In biased mixtures, this corre-
sponds to specifyin® as a one hot vector, and measures performance when
the same amount of data is used for all inputs during inference (e.g., when
b =[0,1,0] only E is used for inference). We report this to benchmark
against previous work and to highlight the benefit of uniquely dividing the

input space for each expert.

2. Random SelectiorHere, experts are randomly selected for inference at test
time in order to satisfy the model biasing requirengnthis is to serve as the
lower bound of performance when biased mixtures are used and the specified

expert utility bias is met.

Importantly, when considering the problem of task-agnostic model optimiza-
tion under data cost constraints, there is no previous work similar to ours. That is

why, we benchmark against the maximum performance achievable by recently pro-
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posedask-specifisolutions when their input volumes are adjusted to meet different
constraints on data cost. That Based mixtures consist of experts that also stand

in as external benchmark3o highlight the latter, benchmark results of constituent

experts are indicated in comparative plots by markers on dotted lines.

For clarity, and to ensure consistency of representation across all tasks, we re-
port the per input data cost of inferendeas the average amount of data seen by
the mixture after inputs are fully decompressed.For each evaluated task we spec-
ify how the data cost for each expekf is measured (i.e., the data cost associated
with P,(x)). For a concise measure of how well models preform across different
specified data cost constraintsdfe [dmin, dmay, and with presi(di) denoting test
performance when the target data costkiswe report the area under curve when

data cost is normalized as:

1
p= /O Ptest(dmin + t (dmax— dmin)) dt (5.9)

For all mixtures, we specify the gating model (i.&(x; Wy)) as a single conv-
pool layer followed by a fully connected network. To ensure that the model se-
lection process is of low complexity for all tasks, we use ReLU activated depth-
wise separable convolution®46, and report the per input number of multiply-
accumulate gating operatiog. We use cross-validation to optimize the biasing
weightwpizsand report the best performance when soft regularization is used. After
all experts included in the mixture are individually optimized, biased mixtures are
trained by updating the weights of the gating function exclusively, and the weights
of experts are not fine-tuned further. We have found that using higher batch sizes
is helpful when training biased mixtures, because it exposes the mixture to a more
varied set of input examples to partition to each expert meaningfully. Therefore,
to ensure gating functions learn meaningful features for batch partitioning, for all

tasks we set the batch size to 128 and the learning rateta 10

5.2.2 Single Shot Object Detection

We test our method on single-shot detection (SSD) to reduce the data require-

ment for object detection while maintaining high accuracy. Recent vidstk 7]



5.2. Evaluation 100

showed that SSD modelg%8 229, P30, 231, 237 vary widely in performance and
complexity when input sizes are adjusted. When considering the varying degrees of
complexity of natural images, we expect that the minimum required subsampling
rate of inputs for accurate object detection should vary accordingly. To demonstrate
this, we train a biased mixture of experts where each expert is optimized for a differ-
ent image subsampling rate, and use the recent work oét.ial[27] as a baseline

for all experts (for an illustration, see (a) of Figus&?). When the resolution of
inputs to each expert B, x R, pixels, we measure the data cost associated with
P(l) as 3x R, x Ry x K, where 3 is the number of color channels in RGB inputs,

andK is the number of bytes needed to store floating point decimals.

We use VGG16184 and ResNet50733 for feature extraction and evaluate
all models using 300 regional proposal boxes per image. Following recent work
[227,27], we train on COCO training data while excluding the 8k mini-eval images
used in the 2012 challeng@34], and report performance as the mean Average
Precision (mAP) on COCO (07+12). We train mixtures for 20k steps to show our
results when using soft regularization and bias enforcement, and ensure that the

gating complexity of all mixtures remains@g < 10® Mult-Add operations.

Figureb2 shows the relationship between imposed bias, data cost, and mAP
when three VGG16 experts are used for single shot detection, where the resolution
of inputs to each expert i§R,} = {100 150,300}. Notably, biased mixtures opti-
mized with bias enforcement provide the slowest degradation in mAP for lower data
costs, with diminishing gains when more data is available at test time. Specifically,
biasing via enforcement outperforms individual experts B when an average
of 220 kilobytes per image is allowed, which is equal to the performance of individ-
ual experts at 490 kilobytes. That is, when the minimum acceptable mAP is 70%,
a reduction of 270 kilobytes in required data is achieved by our proposal (which is

equivalent to a saving of 55%).

In TableB~1we show the performance of biased mixtures when applied to mul-
tiple models, and repopt as a comprehensive measure of model performance across

data costs. When compared to random selection, we note that for both ResNet50
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Figure 5.4: Single shot detection performance comparison of biased mixtures of
VGG16 [188 experts against other benchmarks wk&q3} = {100,150, 300}. The

performance of individual experts is shown on the dotted line.

[233 and VGG16 188, imposing bias on mixtures provides the highest gain when
lower values of data cost are considered (e.g., Wﬁe:nd%X).

Compared to soft regularization, and for all mixture configurations, we found
that bias enforcement is a much more effective method for training biased mixtures
(this is also true for all other tasks evaluated). We hypothesise this is because,
when bias enforcement is used only the task loss is back-propagated during training,
which causes less competition between losses and therefore less local minima to

exist in solution space.
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Table 5.1: Single shot detection comparison on COZ8¥[of biased mixtures of
SSD [27] experts against other benchmarks. Resolutid®g énd data costs®,}

are reported for all experts.

{Rn}= {100 150,300} (Pixels); {d} = {120,270,1080} (kB)

Feature o mAP(d) (%) whend =
BiasingMethod d d p
Extractor Omax = g
OptimizedExperts 70.0 66.7 | 70.9
BiasEnforcement 72.5 70.9| 73.1
VGG16 [189 o 80.0
Soft Regularization 67.1 65.0 | 68.9
RandomSelection 66.3 63.4| 68.2
OptimizedExperts 65.1 61.3| 66.1
. BiasEnforcement 67.8 | 65.9| 68.3
ResNet50%33 o 75.7
Soft Regyularization 62.2 59.9| 64.2
RandomSelection 619 | 57.4]| 63.3

In TablebE2 we study the effect of adjusting the gating compleXity, batch
sizeM, and number of experts on the performance of biased mixtures when bias
enforcement is used. When we consider all mixtures, we find that batch size is
critical to performance. This is because bias is enforced on a per batch basis, and
to make meaningful decisions the gating function needs to be exposed to an am-
ple amount of variance variance between examples. We also see that increasing
the complexity of gating does increase performance by helping partition the input
space more effectively. However, this effect saturatezat 3.8 x 10’ Mult-Add
operations, which demonstrates that the optimal hyperplane to partition input space

for N < 3 experts can be learned with low complexity.
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Table 5.2: Relation between gating complexity, batch size, and performance when

bias enforcement is used.

p when{Ry} =

Ceo " {100, 300} (Pixels) {100, 150,300} (Pixels)
(Mult-Adds) VGG1le[rsg ResNetP33d VGG16][isg ResNet5(33

23,048,576| 16 68.40 64.11 69.27 64.46

32 70.35 65.89 70.25 65.57

64 70.93 66.24 71.16 65.72

26,194,304 | 16 70.85 66.92 71.82 67.04

32 71.49 67.25 72.50 67.41

64 71.84 67.59 72.97 68.04

38,700,216 | 16 70.93 67.01 72.10 67.33

32 71.58 67.25 73.07 68.26

64 71.86 67.62 73.13 68.30

By comparing the left and right part of Talfe2, we see that adding more
experts to the mixture provides a modest increase to performance. This is because
having more experts allows the mixture to further exploit the variance in different
input sub-spaces (if any such variance exists). To see the extent to which this is
true, in Figureb3 we adjust the limits of allowed input resolutions to the mixture
Rmin andRmax and reporio when considering different values Nt Importantly,
we see that when the difference betw@&gn, andRmaxis lower, using more experts
yields less gain in performance, to the point where using more than three experts
for (Rmin, Rmax) = (100,300) does not provide any benefit. This is because, while
setting high values dN increases the number of intermediate resolutions between
Rmin and Rmax If Rmax— Rmin iS low the amount of discernable adequacy between

experts is also low, which in turn diminishes the benefit of including more experts.

5.2.3 Image Super-Resolution

We test the applicability of biased mixtures on Single Image Super resolution
(SISR) B0, 236, 237, 238, an image reconstruction tasks where spatial features
of high-resolution images are inferred from low-resolution input images. Several
recent proposals have shown good performance in terms of image reconstruction

accuracy and computational efficien@g| 224, 239.
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Table 5.3: Image super resolution comparison on DIVZRH of biased mixtures

and other benchmarks. Upscale factoB}{and data costsB,} are reported for

all experts.
{Si}={x2,x3,x4}; {dn} ={13.9,21.8,49.2}(kB)
o PSNR(d) (dB) whend =
Model BiasingMethod d q P
d Omax Umax
max 2 3
OptimizedExperts 304 28.4 | 30.7
i Bias Enforcement 30.7 28.8 | 31.0
ESPCNHE] o 33.3
Soft Regyularization 30.0 28.1 | 30.6
RandomSelection 29.8 28.0 | 30.5
OptimizedExperts 29.8 28.0 | 30.3
i Bias Enforcement 30.1 28.3 | 30.5
F-SRCNN 224 o 32.8
Soft Reyularization 29.3 27.6 | 30.1
RandomSelection 29.2 27.5] 30.0

However, current super resolution models do not take into account the variable
amount of high-frequency edge content between images. That is, when reconstruct-
ing images which contain many high frequency elements, SISR models are likely
to benefit from higher resolution input images, while images comprising predom-
inately low-frequency content can be inferred just as well from lower resolution
inputs. This is true also when considering different parts of an image, which usu-

ally vary in the breadth of their frequency elements.

To demonstrate this, we evaluate on the NTIRE17 challenge dataset DIV2K
[234], and train biased mixtures to determine the needed input resolution for good
image reconstruction. To expose biased mixtures to the intra-image variance of
frequency elements, images are divided using a fixed grid into parts of sizé464
pixels, and super-resolution is performed on each part separately (for an illustration,
see (b) of Figurd2). By inspecting the low-level semantics of each image part,
the mixture selects the most data efficient expert for reconstruction to preform an
upscaling from the sefS,} = {x2,x3,x4}. For each expert that upscales inputs

with a factor ofS, to match the target resolution of 6464 pixels, we measure the
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Figure 5.5:p when bias enforcement is used and the number of expeidscon-
figured. VGG16 189 is used for feature extraction, and different colors indicate
the resolution limitg Rmin, Rmax) allowed to the mixture (wherll determines the

number of intermediate input resolutions included).

associated data cost ds= (64/Sn)2 x K, whereK is the number of bytes needed
to store floating point decimals. For all biased mixture results, mixtures are trained
for 20 epochs and we ensure the complexity of the gating function is €at4010’

Mult-Add operations.

In TablebE-3we compare biased mixtures against other benchmarks when using
ESPCN 6] and FRSCNN P24 as expert baselines, and in Figli® we show the
relationship between average data cost and PSNR when considering EBECN [
Notably from Figurec®, when bias enforcement is used ahis within the range
of 18-22 kilobytes, biased mixtures outperform single experts with an average dif-
ference of M dB. Over the same range of valueschfand when compared to
random selection, bias enforcement provides an average improvement @B 0
This highlights the magnitude of intra-image high variance in required input resolu-
tion for image reconstruction, which is not considered by neither random selection
nor optimized experts. Overall, Figuset and Tabléb=3 show that biased mixtures
outperform single experts most whdn< 20 kilobytes, with diminishing gains in

performance for higher values of
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Figure 5.6: Super resolution performance comparison of biased mixture of ESPCN
[46] experts and other benchmarks wheh}= { x2, x3, x4}.

In Figureb7 we show examples of expert selections made by the biased mix-
ture to resolve different 64 64 inputs when bias enforcement is used. The mixture
learns to pass image parts with high frequency components to2tf&ISR model,
and passes other less demanding parts tocghenodel (which are blurrier, due to

the lower frequency of their components).

Figure 5.7: Examples of expert assignments to different image parts. Selected and

non-selected experts are respectively highlighted by blue and red borders.
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Table 5.4: Realtime action classification on UCF-T(&8¥] of biased mixtures of
experts and other benchmarks. Modalitid4,} and data costs,} are reported

for all experts.

{Mn}= {TemporalSpatial Fusior}; {d,} = {737.3,18430,25805} (kB)

o Accuracy(d) (%) whend =
Model BiasingMethod q q p
drax % O

OptimizedExperts 79.0 779 | 80.9
BiasEnforcement 82.0 80.4 | 835

MV-3DCNNJ[T21] o 88.0
Soft Regularization 80.3 78.0 | 81.9
RandomSelection 78.8 77.3 | 81.3
OptimizedExperts 76.6 755 | 78.7
, BiasEnforcement 80.2 79.2 | 81.3

EMV-CNN [5Y] o 85.6
Soft Reyularization 77.2 75.6 | 79.7
RandomSelection 75.7 749 | 79.0

5.2.4 Realtime Action Classification

We test our method on realtime video action classification in the compressed do-
main. While the best performing action classification models operate on uncom-
pressed video data, to reduce latency, the models proposed in recenfi@irk9]

infer a low-resolution optical flow from codec motion vectors at high speeds for ac-
tion classification. The classifiers df41, 59] use two-stream architectures to infer
actions, where spatial and temporal classifiers complement each other by learning
different sets of features from their respective domaif§. [ As such, for some
action subsets, the use of only the temporal or spatial classifier can suffice in draw-
ing accurate distinctions between actions, but combining the predictions of both

provides the highest accuracy.

To show that biased mixtures can select among different modalities to reduce
the data cost of action classification, we train a multi-modal biased mixture of ex-
perts using the models proposedi?{] and [59] as baselines (and we illustrate this
in (c) of Figureb2). We evaluate on UCF-101184], and measure the cost associ-

ated with the spatial mode &g x Ws x K x 3, whereFs = 2 is the number of RGB
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Figure 5.8: Realtime action classification performance comparison of

biased mixtures of MV-3DCNN [27] experts, with expert modalities

{Modep}={Temporal,Spatial, Fusign

frames used;ls = 360 and\; = 240 are the height and width of inputs, aRd= 32

is the number of bytes to store floating point decimals. For the temporal model,
we measure the data costlas< Hi x W x K x 2, whereH; = 24 andW = 24 are

the height and width of approximated optical flow, @drd= 150 is the number of
frames used (two channels are used in optical flow to represent vertical and horizon-
tal motion). The fusion classifier uses both modalities to predict actions and is the
most accurate, but requires a data cost equal the sum of both modalities. We include
all modalities to train a mixture of experf#,} = {Temporal Spatial Fusior}, and

train a gating function to select the most suitable modality to use for each input. For
all biased mixtures, we train for 80k steps and restrict the complexity of the gating

function toCg < 1C8.

In Table52 we compare the performance of biased mixtures against other
benchmarks when using the spatial and temporal classifier§2df gnd B9 as

baselines for experts. We first note that, both biasing methods outperform random
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Figure 5.9: t-SNEZ4()] projections of 1024 UCF101 videos, where in (a) colours
indicate different classes, and (b) mode assignments are shown as 0 or 1 for the

temporal and fusion classifiers respectively. (zoom in to view in high-resolution)

selection, by up to 1% for soft regularization and up 1893 for bias enforcement.

This indicates that the biased mixture learns to discern confusing classes for par-
ticular modalities to pass them to others. Notably, when meaX = 860 kilobytes,

bias enforcement gives an accurac4% higher than that of the optimized experts

atmeaX = 1290 kilobytes, which requires 430 kilobytes more in data cost.

In Figure 58 we show the relationship betweehand action classification
accuracy when a biased mixture of MV-3DCNN1] experts is used and the mode
of each expert i§Mode,} = { TemporalSpatial Fusior}. We first note that, due to
the low resolution of its inputs, the temporal classifier requires the least amount of
data and can predict actions with an accuracy 08% By selecting among the
three modes both biasing methods outperform random selection, by wPtof@r
bias enforcement wheth= 1032 kilobytes, and up t0.1% for soft regularization
whend = 1438 kilobytes. Notably, when using the temporal classifier for 80% of
videos atd = 1032 kilobytes (i.e., wheib = [0.8,0.1,0.1]), bias enforcement is
1.6% more accurate than the spatial classifier (which requires 811 kilobytes more

in data, equivalent to an increase of 78%).
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To visualize how different modalities are assigned to videos, in Fi§Be
we show two-dimensional t-SNE24(] projections of 1024 UCF101 examples as
embedded by the last layer of the temporal classifier. For clarity of presentation,
we use a biased mixture of two modaliti¢sl,} = {TemporalFusiorn} and set
b =[0.75,0.25. In this way, we show the relation between different class labels and
assigned modalities. Notably, the biased mixture learns to favor using the temporal
classifier for video clusters that are comparatively isolated, and are easier to discern
from other clusters. For videos that are not clearly clustered or isolated (which are

mostly located in the middle), the biased mixture selects the fusion model.

5.3 Details Of Used Gating Models

For all mixtures in the evaluation section, we mention that the gating model
f(1;Wy) is specified as a conv-pool layer followed by a fully connected network.
Here in TableeB, 56, andb7 we detail the parameters of all gating layers for our

biased mixture results on all evaluated tasks. We also note that:

1. We use RelU activated depthwise separable convolutis#t$ {o reduce the

complexity of gating.

2. In TablebE3 on single shot detection, input to the gating model is center
cropped to be a 224 224 RGB image.

3. In Tableb® on image super resolution, input to the gating model is not sub-
sampled (i.e., it is the 64 64 image part before downsampling via bicubic
interpolation). This is to expose gating to the high frequency components of

input images.

4. In Tableb—7 on action classification, input to the gating model is the temporal
mode of the video (i.e., the approximated optical flow from codec motion

vectors).
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Table 5.5: Layer complexit€ of gating modelf (x; W) for biased mixtures eval-
uated on single shot detection. Expert input resolutions are specifi€B,as=

{100,150,300} andN = 3.

C
Layer Type FilterShape | Stride InputShape (Mult-Adds)
Conwlutional | 3x3x3x 64 2 224x 224 3 2,747,136
Avg. Pooling <7 5 111x111x 64 —
FlattenOp. — - 21x21x64 —
Fully Connected] 282241024 | - 1x 28224 28901, 376
Fully Connected 1024 3 — 1x 1024 3072

Table 5.6: Layer complexit¢ of gating modelf (x;)V;) for biased mixtures eval-
uated on single image super-resolution. Expert upscaling factors are specified as
{Sh} = {x4,x3,x2} andN = 3.

C
Layer Type FilterShape | Stride | InputShape (Mult-Adds)
Conwlutional | 3x3x3x 64 2 64x 64x 3 224256
Avg. Pooling 3x 3 2 21x21x 64 —
FlattenOp. — — 10x 10x 64 —
Fully Connected 640Q 512 — 1x 6400 3276,800
Fully Connected 512 3 — 1x512 1536

Table 5.7: Layer complexitfC of gating modelf(x;)Vg) for biased mixtures
evaluated on realtime action classification. Expert modalities are specified as

{Mode,} = {Temporal Spatial Fusior} andN = 3.

Layer Type FilterShape | Stride| InputShape ¢
(Mult-Adds)
Conwlutional | 3x 3x 320x 64 2 24x24x 320 | 3363840
FlattenOp. — — 11x11x 64 —
Fully Connected 7744 1024 — 1x 7744 7929 856
Fully Connected 1024 3 — 1x1024 3072
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5.4 Concluding Remarks

In this chapter we extended the mixtures of experts paradigm to effectively parti-
tion input domains such that constraints on data availability at test time can be met.
We proposed two methods for training biased mixtures of experts and evaluated
their performance on multiple models for all investigated tasks. We demonstrated
how biased mixture are applicable whenever constituent experts vary in their input
dimensionality, and showed this on a wide range of computer vision tasks. Specifi-
cally: (i) on single shot detection, biased mixtures of SSD expBHisqutperform

their constituent experts by 6% in mAP when 25@ < 300 kilobytes on COCO

[234) , (ii) on image super resolution, biased mixtures of ESPCN expé&isout-
perform their constituent experts by50n PSNR when 1% d < 23 kilobytes on
DIV2K [234 , and (iii)) on multi-class action classification, and when selecting be-
tween different modalities of texture and optical flow, biased mixtures provide at
least 3% more in accuracy when 100@ < 1500 kilobytes on UCF1011B4]. Our
validation showed that, especially for lower ranges of allowed data cost, biased mix-
tures significantly outperform single experts optimized to meet the same constraints,
and can be used to adapt computer vision models to data transfer limitations. We
additionally showed how useful gating inferences that prioritise data economy can
be realized with complexities that do not exceed Mult-Add operations for all
evaluation tasks, which are feasible to run even on embedded computation units
mountable on lightweight sensors. Finally, we note that an important advantage of
biased mixtures is the flexibility at which they can be applied, in that, biased mix-
tures do not modify their constituent experts, but rather augment their function with

an input preprocessing stage that allows for data economy in inference.



Chapter 6

Conclusion And Future Work

6.1 Conclusion

This thesis detailed our study on rate-complexity constrained learnable inference
machines, and our contributions thereto. In our first task-specific study in Chapter
B3, we showed how data utility correlates with complexity of inference in video
action classification, and proposed a model that facilitates low-complexity inference
in the compressed domain. To do so, we demonstrated how optical flow can be
sparsely approximated directly from codec motion vector data, and produced such
approximations with the exclusive use of linear operations (i.e., restricted mainly to
spatial and temporal bilinear interpolation). Our results in Se@idmshow that
neural networks can accurately classify videos while using inputs volumes that are
directly extracted from compressed bitstreams and significantly smaller than those
of previously proposed methods, which used larger volumes of texture information
and optical flow approximations that are denser to ours. Finally, we presented a
complexity study to show that our method achieves accuracies comparable to those

of previous methods, with runtimes three orders of magnitude lower.

Our second contribution in Chapt@rbuilds on the same vision task of video
classification to study rate optimization. We considered visual analysis systems
where the visual sensing and the CNN-based semantic analysis parts are not co-
located on the same machine, and showed how bitrate, input noise, and performance

are correlated in such systems subject to the quality and quantity of information used
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for inference. We focused our study on the AVC/H.264 standard to quantify the
correlation between optical flow as approximated from motion vectors and state-
of-the-art dense approximations derived from the pixel domain. We importantly
noted the non-monotonous nature of this correlation, and produced a corresponding
rate-accuracy profile on standard action classification datasets to inform the design
of compressed-domain classifiers. In addition, and to understand the lower limits
on volumes of required data for compressed video classification, we implemented
a bitstream cropping method that only retains the necessary elements for optical
flow approximation while maintaining full compliance with the AVC/H.264 cod-

ing standard. To further reduce required bitrates for video classification, in Section
a2 4 we proposed a data redundancy inference method to selectively omit larger
temporal extents when they are less likely to be necessary for accurate classifica-
tion. In addition, and to quantify the benefit of inferring data redundancy prior to
classification, we measured the bandwidth requirements of classifiers when fixed
length temporal extents are used, and compared it against contexts where data re-
dundancy predictions are performed prior to classification. Our validation in Sec-
tionEZ-4ddemonstrated how inspecting input sparsity is sufficient to make informed
decisions about required temporal extents for accurate video classification, thereby
allowing for the savings in bandwidth we report. In observing the latter, we also
showed how classifiers can meet constraints on input throughput, specifically in in-
stances where sensors and inference models must communicate with each other by

means that require communication bandwidth.

Our reported findings in ChaptBrand Chapte#@ then motivated us to extend
our work such that it is applicable to other tasks of vision, and in Chd&ptee
studied a task-agnostic solution for data utility optimization. Specifically, we pro-
posed a novel class of mixtures of experts to adapt computer vision models to data
transfer limitations at test time. We considered how input space partitions vary in
the amount of data required per input in order to ensure good performance, and

leveraged this variance to train more data efficient mixtures of experts. To discover
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and exploit such partitions in input space while meeting predefined constraints on
expert utility bias, in Sectiok’1 we detailed how biased mixtures are trained to
select the most adequate expert to use from a set of experts of varied input require-
ments, subject to the inferred quantity of data required for inference. Importantly,
our contribution Chaptes details how biased mixtures do not modify the definition

or design of their constituent experts, but rather augments their architecture in such
a way that they can be applied in conjunction with other propositions that modify
models to reduce complexity and input dimensionality. In Sedi@mwe validated

on multiple computer vision tasks to demonstrate how biased mixtures are applica-
ble to to any set of pre-trained experts to optimize data utility, namely: single shot
detection, image super resolution, and real time action recognition. For all tested
applications, we showed how biased mixtures trained to meet different constraints
on data utility outperform their constituent experts when they are optimized to meet
the same constraints.

When considered in its whole, our work investigated the redundancies of re-
cent proposals on computer vision to find more data-efficient models that reduce the
throughput of ingested inputs. We finally note that, in the context of applied dis-
tributed visual systems, and to meet different constraints on complexity and band-
width at test time, all of our observations and tests detailed in Chapters 2, 3, and
4 show the importance of conditioning data utility for visual inference to the local
proximities and properties of inputs within their space. In other words, the impor-
tance of doing so is applicable to all presented vision tasks, and is likely to extend
to other visual inference tasks in order to mitigate unnecessary burdens on commu-

nication resources and sensor hardware.

6.2 Future Work

The work presented in this thesis aimed to regulate the requirements of computer
vision models for higher input dimensionality to meet rate and complexity con-
straints that exist in practical contexts of distributed systems for visual inference.
This motivated us to study solutions that allow for the design of vision models that

are capable of adapting to data transmission at runtime subject to: allowable quality
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of performance, complexity of inference, available communication channel states,
and the content from which inferences are drawn. To realize solutions that come

closer to that end, we see the following as pursuable future extensions of our work:

1. Our work in ChapteB can be extended to study hierarchical mixture&4[
143 of experts for data utility optimization. This would be an investigation
to find the extent to which good inferences can be made about the required

amount of data for achieving different tasks

2. To further optimize the performance of compressed domain classifiers, recent
proposals on adversarial discriminative domain adaptafi@dd] [can be ex-
ploited to refine motion flow approximated from motion vectors and align it

with dense approximations of optical flow.

3. Mixtures that comprise experts fine tuned on learned representations that re-
duce dimensionality such as those 8?1, 43] can be learned jointly with

gating functions. This in effect would fit sparse gating functions and learned

representations to compliment each other.

4. Our study in Chaptds studies the question "What is the minimum amount of
data to use for good inference ?", and proposes a heuristic answer; a question
complementary to the latter is "Which are the most useful parts of data to
use for inference ?". Studying models that answer both questions jointly is a

natural trajectory of our research, and constitutes the basis of our next study.
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