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New tricks for an old dog: Brf2-dependent RNA Polymerase III transcription
in oxidative stress and cancer
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ABSTRACT
Here, we discuss the role of Brf2, an RNA Polymerase III core transcription factor, as a master switch
of the oxidative stress response. We highlight the interplay of Brf2 with the Nrf2/Keap1 pathway, as
well as the role of Brf2 in cancer and other possible regulations.
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Introduction

Reactive oxygen species (ROS) are defined as chem-
ical compounds containing highly reactive oxygen.
They include hydrogen peroxide (H2O2) as well as
radicals such as ¢O2

¡ (superoxide) or HO¢.1 They
can be produced by external factors (xenobiotics or
ionising radiation) or by the cells themselves (by
the respiratory chain for example). Despite being
implicated in many fundamental cellular processes
(i.e. proliferation, differentiation, signal transduc-
tion, defense against pathogens), excessive amounts
of ROS can be deleterious for the cells. They can
induce DNA damage, thereby providing favorable
settings for carcinogenesis and tumor progression.
Oxidation of proteins may lead to ageing and neu-
rodegenerative diseases,2 whereas lipid peroxidation
damages cell membranes.

Since it is not possible to avoid ROS formation in aero-
bic conditions, their accumulation must be minimized in
order to maintain a redox equilibrium and any damage
needs to be repaired to preserve cellular integrity. Com-
plex pathways have evolved to copewith oxidative stress.3

Among them, the Nrf2/Keap1 axis is considered to be the
principal regulator, being responsible for sensing the
redox levels and organizing the cellular defense.4 How-
ever, upon prolonged ROS exposure, damage accumu-
lates despite the antioxidant response and sustaining cell
viability can become hazardous.

We recently identified an unanticipated layer of
regulation in the oxidative stress response. Brf2, an
RNA Polymerase (Pol) III core transcription factor
found exclusively in vertebrates, encompasses a
redox-sensing module and controls the expression of
a very small subset of genes in a redox-dependent
manner.5 At least one of them, the selenocysteine
(Secys) tRNA is paramount for cell survival under oxi-
dative stress conditions. In this respect, the Brf2
redox-sensing capability acts as a safety mechanism,
by setting the limit of stress that can be tolerated by
the cells before triggering apoptosis. Cancer cells
experiencing high levels of ROS as by-product of their
higher metabolic rate can hijack this mechanism to
thrive in conditions that would normally be lethal.5

In this short point of view, we wish to address the
crosstalk between Nrf2, the detoxification system, and
Brf2. An emphasis will be put on the possible regula-
tions of Brf2 and their implications, especially in
cancer.

Nrf2/Keap1 pathway, the detoxification process
and selenoproteins

The Nrf2/Keap1 pathway is arguably the main regulator
of redox homeostasis.6 Keap1 acts as a substrate adaptor
between an E3 ubiquitin ligase (Cul3) and the transcrip-
tion factor Nrf2. Under basal conditions, the latter is
constitutively targeted for proteosomal degradation
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following a hinge and latch model.7 However, under
oxidative stress conditions, the structure of Keap1 is
altered and the binding of Nrf2 is modified in a way
that impairs the ubiquitination and poisons the ligase
complex.8 Newly synthesized Nrf2 is then stabilized
and translocated into the nucleus. Once imported, Nrf2

associates with the obligate partner sMAF to form an
active transcription factor. The heterodimer can then
bind the Antioxidant/Electrophile Response Elements
(ARE/EpRE) in the promoter regions of the target genes
(Fig. 1). ChIP-seq experiments have shown that more
than 500 genes are under the control of Nrf2.9,10

Figure 1. Interplay between Nrf2 and Brf2 pathways. The Nrf2 pathway is activated through the redox stress: under basal conditions,
Nrf2 is ubiquitinylated by Keap1 and Cul3 and targeted for proteosomal degradation. Under stress, the structure of Keap1 is altered and
the newly synthesized Nrf2 molecules can translocate into the nucleus to form a complex with its binding partner sMAF and transcribe
target genes. TFIIIB, composed of TBP, Bdp1 and Brf2, recruits the RNA polymerase III machinery to transcribe a small set of genes,
including the SeCys tRNA. Brf2 is redox sensitive and, as a consequence, controls the transcriptional output in function of the redox state
of the cell. Efficient translation of the phase II detoxification enzymes containing selenocysteine requires both high levels of their mRNA
and high levels of SeCys tRNA. At low levels of stress, the proteins can be synthesized due to availability of both components, ensuring
cell survival. At high levels of redox stress, however, the lack of SeCys tRNA results in impaired detoxification enzymes and redox
homeostasis regulators, triggering apoptosis to protect the cells from further accumulation of damage.
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Furthermore, this pathway controls the expression of
proteins involved in many cellular processes including
phase II detoxification enzymes.9

As a result of Keap1/Nrf2 activation, the redox stress
is addressed by the detoxification system. This relies on
the fact that glutathione (GSH) and thioredoxin 1
(Trx1), molecules whose synthesis and/or recycling is
under Nrf2 transcriptional control,11 can cycle between
a reduced and an oxidized form. Reduced GSH scav-
enges the hydrogen peroxide in a reaction catalyzed by
the glutathione peroxidase family of proteins (GPx) and
protects cysteines of cellular proteins by S-glutathiony-
lation.12 Trx1 possesses a different spectrum of action:
it can scavenge ROS in cooperation with Peroxire-
doxin,13 reduce oxidized proteins,13 modulate redox
stress response pathways (i.e. Nrf214 or NF-kB13) or
even trigger apoptosis.15 Once GSH and Trx1 are oxi-
dized, they become inactive and need to be recycled for
another round of detoxification; a role ensured by the
Glutathione Reductases and the Thioredoxin Reductase
family (TrxR).

As a consequence, TrxR and GPx, both under the con-
trol of Nrf2, play a pivotal role in the protection mecha-
nism as they are in charge of quenching ROS.
Interestingly, they both contain a SeCys in their active
site. SeCys, often called the 21st amino acid, is encoded
by the opal stop codon (UGA) and thereby requires a
specific machinery to recode it into SeCys (see Ref. [16]
for a review). Any impairment of the recoding system
leads to either a loss of the protein (if the STOP codon is
at the N-terminal as in GPx), a truncated form (if the
STOP codon is at the C-terminal as in TrxR) or eventu-
ally a functionally compromised isoform.17 Rats fed with
diets deficient in Selenium show decreased levels of GPx
and TrxR, leading to the activation of the Nrf2-ARE
pathway due to higher oxidant levels.17,18More strikingly,
it was shown that TrxR1 acquires an oxidant function
when the Selenium is compromised by electrophiles or
simply absent due to a truncation. Instead of contributing
to the redox stress response, the enzyme becomes a pow-
erful oxidative agent that is able to induce cell death.19

These studies highlight the importance of SeCys
incorporation for redox homeostasis. The loss of sele-
noproteins results in a higher oxidative state, and
eventually cellular death in a feed forward mechanism.
As described below, the observation that SeCys tRNA
levels are downregulated under prolonged oxidative
stress conditions sheds new light on the role of Pol III
in the redox stress response.

Brf2, a new key player in the redox stress
response

Pol III is responsible for the transcription of short and
untranslated RNAs, such as the entire pool of tRNAs
and the U6 snRNA, the RNA molecule harboring the
active site of the spliceosome. Synthesis of SeCys
tRNA is under the control of Pol III type III promoter
that is characterized by a unique architecture when
compared to the bulk of Pol III transcriptional units
(see20 for an overview of the architecture of Pol III
promoters). This extragenic promoter is composed of
a Distal Sequence Element (DSE, ¡200 base pairs
upstream of the transcriptional start site), an enhancer
that recruits Znf143 and Oct-1, and the Proximal
Sequence Element (PSE, ¡50 base pairs upstream of
the transcriptional start site), which recruits the
SNAPc complex. A positioned nucleosome brings the
DSE and the PSE in close proximity, allowing direct
interaction between SNAPc and Oct1.21 SNAPc
enhances the recruitment of a TFIIIB complex on a
TATA-Box located at ¡20. Finally, TFIIIB physically
bridges Pol to the transcription start site. At type III
promoters, TFIIIB is composed of Bdp1, TBP and
Brf2 (Fig. 1). Brf2 shares structural and functional fea-
tures with TFIIB, the canonical Pol II factor, and Brf1,
the TFIIIB component present at most Pol III pro-
moters. However, Brf2 uniquely contains a redox sen-
sitive module that regulates TFIIIB assembly on the
DNA.5 Under oxidative stress conditions, formation
of Brf2-containing TFIIIB complexes is impaired,
resulting in lower Pol III transcriptional output at the
type III promoters. As a consequence, the levels of
precursors and mature SeCys tRNAs decrease, which
impacts the translation of selenoproteins5 (Fig. 1). The
detoxification process therefore relies solely on the
pre-existing pool of SeCys tRNAs, which displays a
higher turn-over rate compared to other tRNAs.22

This ultimately modulates the redox stress response.
Indeed, overexpression of Brf2 allows cells to tolerate
higher levels of ROS before triggering apoptosis.5 We
postulated that Brf2 acts as safety mechanism to set
the limit of stress that cells can sustain.

Additional layers of Brf2 regulation?

Regulation of Brf2 upon redox stress might not be all
black or white but rather modulated by the levels of
ROS (Fig. 1). In fact, we have observed a quick recov-
ery of SeCys tRNA transcription upon removal of the

TRANSCRIPTION 63



oxidative agent. This can be due to the reactivation of
Brf2 by a rapid reduction of the redox sensitive C361
residue. Furthermore, we observed that the oxidation
of C361 is almost fully reversible by addition of reduc-
ing agents in vitro, suggesting that the cysteine is pro-
tected from irreversible modifications. A possible
explanation for this could be the formation of an
intramolecular disulfide bond with C370 since both
cysteines were shown to be S-gluthationylated in
vitro.5 Additionally, the nuclear localization signal
(NLS) of Brf2 is predicted to be bipartite and located
around C361 (score 11.8, NLSMapper.23) A disulfide
bridge between C361 and 370 might therefore hide
the NLS and sequester Brf2 in the cytoplasm under
oxidative stress.

We also noted that Brf2 and the SeCys tRNA pre-
cursors levels are upregulated in situation of low oxi-
dative stress (short exposure and/or low concentration
of stressor), suggesting the existence of a positive regu-
latory mechanism in these conditions. Concomitantly,
as expected, we observed the activation of the Nrf2
pathway. Despite the fact that Brf2 gene was not found
to be a target of Nrf2 in ChIP-seq experiments,9,10 we
interrogated the eukaryotic promoter database (EPD-
new24) and found a Nrf2 binding site in the 50-UTR
of Brf2 (Chr8: 37849845–37849855, GRCh38/hg38).
This putative binding site is a perfect EpRE
(GTGAGGCAGCA compared to (G/A)TGA(G/C)
NNNGC(G/A).8) It is tantalizing to envisage a model
in which Nrf2 might positively regulate Brf2 expres-
sion levels at the onset of the oxidative stress response.

Brf2 and cancer

Brf2 has cytoprotective effects by transcribing the
SeCys tRNA required by the detoxifying enzymes.
Redox regulation by Brf2 allows the cells to have a pre-
cise threshold for the amount of stress that they can
tolerate. However, cancer cells, which often have ele-
vated levels of ROS, have bypassed this safety mecha-
nism to proliferate in otherwise lethal conditions.

Brf2 has been identified as a putative oncogenic
driver by different groups over the years25-27 and is
often amplified and overexpressed in many types of
cancer.28 The mechanistic link, however, remained
elusive. The newly discovered role of Brf2 as a master
switch of the antioxidant defense opened new avenues
to dissect the role of Brf2 in cancer. Increased levels of
Brf2 help cells to evade apoptosis under high ROS

levels. Conversely, cancer cells that naturally overex-
press Brf2 can be sensitized by siRNA knockdown of
the protein, leading to rapid induction of apoptosis.5

Thus, this transcription factor can play an important
role during tumorigenesis; Brf2 overexpression allows
the cells to tolerate high ROS levels, allowing accumu-
lation of DNA damage and, as a consequence, enhanc-
ing their mutagenic rate.

Conclusion and perspectives

The antioxidant response possesses an innate safety
mechanism that governs the level of stress that can be
tolerated before allowing the cells to trigger apoptosis.
It relies on a Pol III core transcription factor, Brf2,
that is redox sensitive. Cancer cells have hijacked this
process to survive in conditions that would normally
be lethal. However, they subsequently become
addicted to the cytoprotective effects of Brf2. This
constitutes an opportunity to treat cancer: several
therapies aim at increasing the redox state of cancer
cells to promote their death.29,30 In this regard, target-
ing Brf2 represents an attractive option, especially
considering the very small number of genes affected
by the Brf2-dependent transcriptional program.
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