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Highlights	  

   
 Models  with  one  or  two  gene  states  are  unable  to  accurately  describe  dynamic  transcription  for  many  
genes  

 Many  alternative  multi-state  models  have  been  proposed  but  these  are  likely  to  be  highly  context-
specific  

 Understanding  the  contributions  of  numerous  different  cellular  features  and  processes  to  bursting  is  
required  to  build  more  accurate  and  general  models  of  transcription  dynamics  

 Emerging  imaging  technologies  are  beginning  to  facilitate  the  monitoring  of  these  diverse  sources  of  
regulation  
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The idea that gene activity can be discontinuous will not surprise many 15  

biologists  many genes are restricted in when and where they can be 16  

expressed.  Yet during the past 15 years, a collection of observations compiled 17  

under the umbrella term transcriptional bursting  has received considerable 18  

interest. Direct visualization of the dynamics of discontinuous transcription 19  

has expanded our understanding of basic transcriptional mechanisms and 20  

their regulation, and provides a real-time readout of gene activity during the 21  

life of a cell.  In this review, we try to reconcile the different views of the 22  

transcriptional process emerging from studies of bursting, and how this work 23  

contextualizes the relative importance of different regulatory inputs to normal 24  

dynamic ranges of gene activity.  25  
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 26  

An Introduction 27  

If we accept that genes can be on  or off  and that cells are able to change their 28  

gene expression, then it requires no major leap of faith to accept the possibility that 29  

transcription can be discontinuous over time.  Indeed, direct visual evidence of 30  

discontinuous transcription emerged as early as the 1970s.  When viewed under an 31  

electron microscope, Miller chromatin spreads from the fruit fly embryo showed 32  

unequal distribution of nascent transcripts along gene sequences (Figure 1A) [1].  33  

The gaps between groups of multiple transcripts were interpreted as interruptions in 34  

transcription initiation events.  35  

Attempts to directly visualize transcription were far from the mainstream for 36  

the next 25 years, with the emphasis instead on defining transcriptional regulatory 37  

components and their interactions. These reductionist strategies were essential for 38  

determining the molecular players involved, but lacked certain features necessary for 39  

building a more complete view of the transcriptional process.  Firstly, the 40  

measurements were static, merging transcription and RNA degradation into a single 41  

RNA quantity.  Secondly, samples were ensemble, usually the average of millions of 42  

cells, blurring the dynamics of the activity of individual genes.  Finally, the 43  

biochemical and genetic strategies used to define regulatory components, by their 44  

very nature, detach gene regulation from normal cell physiology, making it difficult to 45  

arrive at meaningful models of the transcriptional process.    46  

Solving these issues of reductionism required the ability to see transcription of 47  

single genes, in single cells, in an appropriate physiological context. This needed 48  

improvements in fluorescence microscopy, to approach the speed and sensitivity 49  

required for single molecule imaging in living cells, combined with the development 50  

of appropriate RNA labeling strategies for transcript detection (Box 1). More 51  

specifically, the application of single molecule fluorescence in situ hybridization 52  

(smFISH) [2] on fixed cells and MS2 stem-loop-based detection (Figure 1B) [3] in 53  

living cells, corroborated the temporal transcriptional discontinuity inferred from Miller 54  

spreads [4-6]. These approaches also highlighted the dynamics of transcriptional 55  

events. The bursts  or pulses  of transcriptional activity were found to operate over 56  

timescales of a few minutes (Figure 1C), and were measurably responsive to 57  

features such as developmental time and local environment. The study of this 58  

phenomenon has since expanded to many different organisms, both prokaryotic and 59  
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eukaryotic, with an increasing number of mechanistic models used to explain the 60  

different dynamic behaviors observed across a variety of genes. Here we collate and 61  

review these models, focusing on recent studies where features of transcriptional 62  

mechanism have been explored through the study of bursts, and how these features 63  

can be linked to specific molecular regulatory events. 64  

 65  

What is a Burst? 66  

67  

potentially different phenomena.  There is nothing implicit in the word burst  that 68  

implies a specific model, mechanism or dynamic behavior, beyond being 69  

discontinuous over time.  Although the term is vague, the descriptions of bursting 70  

have often been highly quantitative and integrated with simple models of gene 71  

activity.  Typically, a model applied to a bursting phenotype will focus on the number 72  

 (Figure 2, Key 73  

Figure). Although a simple one-state  model based on a fixed initiation rate can give 74  

rise to fluctuations in transcriptional activity [7, 8] and such a model can fit well to 75  

distributions of smFISH RNA counts for a few genes [9], the complexity offered by 76  

these models is not sufficient to explain the dynamic behavior of most genes that 77  

have been studied.  A two-state or random telegraph model [10] has been more 78  

widely adopted. . 79  

Fluctuations betw n , result in short spurts 80  

of mRNA production interspersed with periods of no activity [6]. This model is now 81  

widely used to explain how pulsatile mRNA synthesis is controlled, particularly when 82  

inferring dynamics from fixed-cell smFISH transcript distributions. It has also been 83  

used in genome-wide studies to show how transcriptional dynamics can explain 84  

developmental gene expression heterogeneity [11] and to understand broad 85  

mechanisms of sequence-encoded regulation [12]. 86  

 As a recent example, using a two-state model [13] uncovered a common 87  

regulatory mechanism governing transcription of gap genes in Drosophila. 88  

Comparisons between mRNA count distributions showed almost identical statistical 89  

relationships for all four genes studied. Modulation of promoter occupancy alone was 90  

found to be sufficient to explain the common regulation, with tight coupling of ON and 91  

OFF switching rates resulting in the emergence of a unified pattern of transcriptional 92  

control across the gene set [13].  A similar coupling of switching rates was found in 93  



   5  

live imaging experiments using even-skipped, which is regulated by the gap gene 94  

transcription factors (TFs) [14]. However, experiments on developmentally matched 95  

gene sets in Dictyostelium do not exhibit such statistical similarities in bursting 96  

activity [15] suggesting such unified control suits rigidly instructive forms of 97  

development, such as in the Drosophila embryo, rather than more responsive 98  

developmental systems. 99  

 Despite its widespread use, the assumptions of the standard two-state model 100  

 constant rates for initiation, degradation, and switching between active and inactive 101  

states  are unrealistic in many biological systems.  Transcription changes in 102  

response to a multitude of signals, yet the model does not easily account for this.  103  

These assumptions rather marginalise bursting as a side issue of transcription, 104  

failing to accommodate extrinsic sources of variation (such as signaling to 105  

transcription), with bursting consigned to only those processes designated intrinsic 106  

(molecular noise).  Ideally a model should be an informed attempt to explain the 107  

biology, rather than a device that inadvertently excludes much that is interesting.  108  

This case of the model owning  the bursting phenomenon is widespread, but rather 109  

unusual if one considers bursting as the dynamic manifestation of the complete 110  

transcriptional process.  Beyond these issues, it is now clear the two-state model 111  

cannot accurately describe transcription kinetics for all genes, in all systems. The 112  

use of fixed-cell approaches can be limiting when exploring alternative models of 113  

regulation; theoretical work has shown how dynamic measurements, rather than 114  

transcript counting by smFISH, must be made in order to distinguish between certain 115  

promoter state conformations (such as two-state and some three-state models) [16, 116  

17]. In keeping with this, a gene found by live imaging to show a spectrum of activity 117  

states would be well-described by a two-state model if assayed by smFISH [7].  118  

 119  

More Complexity, Less Consensus 120  

If a two-state model is largely unsatisfactory as a description of transcription, what 121  

alternatives are there? Models containing multiple promoter activity states have been 122  

employed theoretically to account for experimental data in numerous cell types [18-123  

21], with imaging studies demonstrating more explicitly that an expansion of the two-124  

state model architecture could be appropriate [22, 23]. In yeast, a four-state model 125  

with a single inactive state was identified as the best fit to smFISH data for a small 126  

number of stress-response genes [24]. Multiple timescales of transcriptional bursting 127  
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were also inferred from measurements of HIV-1 promoter activity using the MS2 128  

system in mammalian cells [25]. Here, TATA-binding protein (TBP) and mediator 129  

were found to independently regulate gene activity on these alternate timescales, 130  

and a three-state model of transcription was proposed, with inactive and active 131  

   132  

 Multi-133  

gene promoter must pass before reactivation can occur have also emerged, from 134  

studies using destabilized reporter proteins (Box 1; Figure 2) [26-28]. Endogenous 135  

promoters were typically found to pass through 5-7 sequential inactive steps before 136  

reactivation, while synthetic or TATA-containing promoters had fewer inactive steps 137  

which resulted in noisier gene expression [29]. Bartman et al. [30] combined PolII-138  

chromatin immunoprecipitation (ChIP) with smFISH and also identified refractory 139  

period-based models as consistent with their data, although their preferred model 140  

involved burst initiation and polymerase pause release as limiting steps in gene 141  

activation. Refractoriness is often associated with reset molecular components 142  

in preparation for receiving a new stimulus. A less intuitive role for refractoriness in 143  

transcription may be to enable rapid and sensitive responses to stimuli [31]. Models 144  

of promoter progression, in which events at the promoter form an ordered sequence 145  

of recruitment of different parts of the transcriptional machinery, may be consistent 146  

with refractory behaviour [32]. An alternative view questions whether the refractory 147  

period is a transcriptional phenomenon, or merely an adaptation response in the 148  

upstream signaling, such as phosphatase activity or receptor down-regulation [33].  149  

While refractoriness has now been described across several systems and genes, in 150  

terms of information transmission, this type of system may be less favourable than a 151  

simple two-state model of gene expression [16]. 152  

Rodriguez et al. [34] also found inefficient information transfer in multi-state 153  

transcription while studying TFF1 regulation in MCF7 cells. Here, a model containing 154  

 (activity levels 155  

in the ON state) was the best fit to the data from an MS2 reporter cell line, with a 156  

highly inactive state occupied for extremely long periods of time. By measuring 157  

changes in chromatin contacts in response to an estradiol (E2) stimulus the authors 158  

showed that while cells can effectively sense multiple levels of E2 dose, the 159  

information transfer to transcriptional output is inefficient and slow. While it is unclear 160  

why such regulatory schemes have evolved in this way, it could represent a similar 161  
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process of robustness through sub-optimisation of the network, a concept also 162  

applied to sub-optimal binding of TFs to developmental enhancers [35] and core 163  

promoter sites [36].  Alternatively, these observations may imply that a coherent 164  

transcriptional response is only likely in the presence of the full complement of 165  

signals available in a normal tissue niche, with measurement of these additional 166  

signals likely to provide more explanatory power [37]. 167  

 Although the inclusion of additional activity states can improve the fit between 168  

a model and experimental data, how far should one go with this? Is there an upper 169  

limit to the descriptive benefits of increased model complexity? A continuum or 170  

spectrum of activity states, rather than a discrete number, can provide the best fit to 171  

dynamic expression data from genes in diverse systems (Figure 2) [7, 38].  172  

Intuitively, this makes sense given the myriad of molecular inputs influencing gene 173  

transcription.  Whether a continuum actually represents many discrete activity states 174  

which simply cannot be resolved is unclear and such distinctions may remain 175  

elusive.  In their paper describing a general multi-state mathematical framework for 176  

transcriptional bursting, [39] show that it may be difficult to determine the precise 177  

number of activity states, particularly if the time spent in each is very short. If the 178  

number of regulatory inputs (and therefore perhaps the number of activity states) of 179  

transcription is high, and the relative time spent in individual regulatory 180  

conformations is low, it will be difficult to distinguish these states accurately.  Along 181  

these lines, a fast switching model emerged as the most appropriate scenario to 182  

explain transcript output from the lysogeny maintenance promoter of lambda phage 183  

[40]. 184  

 Finally, it is not the case that simply adding more activity states to a 185  

computational model provides a better fit to experimental data. Fritzsch et al. [41] 186  

explored the E2-regulated GREB1 gene in MCF7 cells and found that despite 187  

sampling several multi-state models (with up to 10 discrete levels), a two-state model 188  

gave the best fit to their data. Therefore, while use of a two-state model to describe 189  

transcriptional bursting of a gene should not be the default position, equally, a multi-190  

state architecture of some form is not guaranteed to be more descriptive.  191  

 With so many different models describing gene regulation, is it possible to 192  

derive general principles of transcriptional bursting? Which, if any, of the 193  

conformations described above could be relevant more generally to describe 194  

transcription?  Should we even expect consensus, especially considering the 195  
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diversity in the genes and experimental systems, and the different methods that have 196  

been employed?  Diversity in bursting is clear even in more closely-related contexts. 197  

Comparing separate detailed studies of bursting in oestrogen-inducible genes, where 198  

similar regulation might be expected, highlights different regulatory regimes. As 199  

previously mentioned, Rodriguez et al. [34] proposed a model containing five activity 200  

levels, including a deep repressive state defined by long periods of inactivity for 201  

TFF1, even at saturating E2 concentrations in MCF7 cells. On the other hand, in the 202  

same cells with similar saturating induction conditions, GREB1 showed near-203  

constant activity in most cells and a simple two-state model was preferable to those 204  

with multiple states and circular architecture [41]. Despite their different cellular 205  

functions, these genes previously showed similarly strong induction by E2 206  

stimulation in multiple cell types [42, 43]. While this comparison is somewhat limited 207  

in scope, it shows that even genes with superficially similar regulation can be subject 208  

to very different dynamic control. Therefore, the regulation of bursting may well be 209  

highly gene-specific and will depend, potentially to differing extents, on the multiple 210  

different inputs to gene regulation.  Despite the apparent convergence of regulatory 211  

mechanisms in certain specific contexts [13], any substantial coherence between 212  

models of transcriptional bursting will require a more detailed understanding of the 213  

relative contributions of the processes affecting bursts.  214  

 215  

Making Bursts 216  

Cis-Regulation 217  

As the scaffold for RNA polymerase loading onto a gene, the promoter represents an 218  

important integration zone for transcriptional control [44]. Sequence diversity permits 219  

enormous heterogeneity in transcriptional output [45] and individual promoter cis-220  

regulatory elements have been shown to influence transcriptional bursting at the 221  

single-cell level [7, 46]. Even within a family of duplicated actin genes encoding 222  

exactly the same protein, considerable diversity in bursting patterns was identified 223  

[15]. The role of the upstream sequence was directly evaluated by a reciprocal 224  

switching experiment exchanging around 500bp of the proximal  regulatory regions 225  

of genes with different bursting patterns. This treatment revealed bursting dynamics 226  

to be almost entirely instructed by the upstream regulatory sequence with only a 227  

minor role for features specific to genomic context.   228  
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At least superficially, this result goes against the grain of some earlier ideas 229  

on the origins of bursts, which suggested switching between ON and OFF states 230  

reflects chromatin remodeling [47].  Clearly, chromatin regulation is an important part 231  

of transcriptional control, and several studies have shown that disruption of the 232  

normal chromatin landscape can affect bursting [29, 48-51]. Recent live imaging 233  

studies directly showed an increase in H3K27ac levels immediately prior to the 234  

appearance of active forms of RNA pol II at transcriptionally active nuclear 235  

compartments in early zebrafish development [52, 53]. This is consistent with a 236  

prominent role for the chromatin environment in influencing transcriptional decisions, 237  

although it is not clear if the sensitivity of detecting the different chromatin and 238  

polymerase modifications is equivalent.  Similarly, histone acetylation was also found 239  

to regulate burst frequency-mediated changes in circadian clock gene expression 240  

[54]. A role for chromatin modification and remodeling is evident  chromatin is the 241  

substrate, it is close to the action- it is almost expected that experimentally 242  

perturbing chromatin will affect transcription.  But to what extent do chromatin 243  

changes drive bursting dynamics? Given the direct demonstration that actin gene 244  

bursts can be dominated by the promoter region [15] as well as other data showing 245  

similar bursting patterns at multiple genomic loci [29, 55], our current view is that 246  

although chromatin is crucial for the functional integrity of the bursting process, it 247  

does not instruct the dynamic behaviour. 248  

Bursting is influenced by distal enhancers as well as proximal promoters, with 249  

these elements directly involved in regulating transcriptional bursts, predominantly by 250  

modulating the frequency of these events [31, 34, 41, 56-58]. Genome wide 251  

inferences from single cell RNAseq data suggest regulation of burst frequency is the 252  

most widespread method of modulating transcription during developmental 253  

progression [11], with enhancers likely to be a major control point for this regulation 254  

[12].  However, enhancer regulation by modulating burst frequency is not universal, 255  

with burst size regulation predominating in response to Notch signalling [59, 60]. 256  

Further complexity arises when considering the combined effects of multiple 257  

enhancers at different times and places during embryogenesis [61, 62].  258  

The importance of enhancer-promoter proximity for bursts has recently been 259  

evaluated using dual labelling of both DNA and nascent RNA in live cells. Dynamic 260  

transcription was found to be both correlated [63] and uncorrelated [64] with 261  

enhancer-promoter proximity, suggesting a number of models are required to explain 262  
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enhancer activity. Indeed, such a dichotomy exists even at a single locus, as 263  

different tissue-specific enhancers of the Shh gene showed both increased [65] and 264  

decreased [66] enhancer-promoter proximity concomitant with gene activation. The 265  

rules governing enhancer-mediation of dynamic transcription in tissues are 266  

seemingly complex, and will likely depend on the specific transcription and structural 267  

factors bound there at any particular time, in addition to higher order features of the 268  

nuclear microenvironment [67, 68].  Current excitement for potential roles of liquid-269  

liquid phase separation (LLPS) in forming compartments that enhance the efficiency 270  

of transcriptional reactions has been discussed elsewhere [69], although at the time 271  

of writing, there is a lack of convincing experimental evidence that compartments 272  

formed by LLPS bring any functional benefits [70]. 273  

 274  

Transcription Factors 275  

The binding of transcription factors (TFs) to target motifs at both promoter and 276  

enhancer elements is key to activation of a gene yet, until recently, it has not been 277  

clear how TF binding events are dynamically related to transcriptional activity. 278  

Residence times of TF binding at target sites are typically on the order of seconds 279  

[71, 72], which contrasts the timescales of minutes usually associated with bursts.  280  

 While single-molecule tracking (SMT) methods have enabled the study of 281  

individual TF molecule binding dynamics, it has remained challenging to assess the 282  

importance of these events to transcription of a specific gene of interest, given the 283  

many other potential binding sites for the TF within the genome.  New imaging 284  

methods have made headway in solving this issue.  One approach uses 3D orbital 285  

tracking (3DOT) to simultaneously monitor transcriptional dynamics from a PP7 286  

reporter together with binding of individual Halo-tagged TF molecules. Unlike 287  

conventional confocal microscopy, 3DOT only collects intensity information from the 288  

site of transcription via orbital scanning of the sample, limiting the amount of 289  

photobleaching [73-75]. This method explicitly revealed the temporal coupling 290  

between TF binding and initiation of transcriptional bursts [76, 77]. In yeast, for 291  

example, an average TF (GAL4) binding time of 34 seconds initiates a mean burst 292  

duration of around 2.5 minutes.  An analogous approach to computationally fix  the 293  

transcription site during imaging is target-locking 3D STED [78].  This live cell super-294  

resolution technique was used for simultaneous molecular quantitation and spatial 295  

mapping of protein factors at the transcription site. A number of surprising features of 296  
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gene regulation were revealed for pluripotency markers.  In particular, the gene 297  

encoding Oct4 (Pou5f1) appears to have around 20 molecules of the TF Sox2 298  

clustered nearby when active, contrasting the textbook view of a single or dimeric TF 299  

binding and triggering a cascade of events.  In addition, echoing the potential for 300  

transcription in the absence of enhancer-promoter communication [64], Sox2 TFs 301  

were spatially distinct from the active transcription site (Figure 1D).  These 302  

approaches are a significant advance for the field, and will allow a more detailed 303  

understanding of the molecular interplay driving a transcriptional burst. In particular, 304  

a detailed dissection of the relative contributions of different proteins and complexes 305  

to multi-state models of dynamic transcription is now seemingly within reach. 306  

 307  

Concluding Remarks 308  

As bursting has finally entered mainstream thought, the challenge for the future is 309  

the same challenge faced by the entire study of transcription 310  

. How can we possibly formulate realistic models of dynamic 311  

transcriptional activity given the sheer number of factors influencing the process? 312  

The ability to directly visualize the interaction of different regulatory factors with 313  

transcriptional activity at loci of interest is a big step towards building such models.  314  

Limitations that need to be overcome include the restrictions on the number of 315  

different components that can be imaged in healthy living cells.  Transcriptional 316  

regulation is often discussed in terms of complexes, but if one can only see a single 317  

component of a complex, then detailed mechanistic insight will remain elusive. Our 318  

impression is that the brute force approaches of drug treatment and genetics need to 319  

be superseded if we are to make more effective models. Optogenetics potentially 320  

provides a more subtle way of perturbing a system [79-81], although again, this 321  

takes the system outside its normal dynamic range, albeit in a potentially more 322  

sensitive manner.  For all the reservations expressed here about the applicability of 323  

two state models, applying the new tools described above to genes which fit more 324  

simple regulatory regimes may yet provide the most straightforward route to a more 325  

complete understanding of bursting.  326  

  327  
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 510  

Figure 1. Approaches to Visualize Transcription.  511  

A) Chromatin spreads from Drosophila embryos (image reproduced from [1]).  The 512  

image shows a pair of sister chromatids aligned in parallel, with inferred initiation 513  

sites marked by  and .  Note the increasing size of the fibres (transcripts) 514  

extending from the central axis of each chromatid with increasing distance from the 515  

initiation sites (scale bar 1 m).  Also note the fibre-free gaps (marked by arrows).  B) 516  

Schematic of the MS2/MCP system for visualizing nascent transcripts.  MS2 arrays 517  

are targeted into the gene of interest.  The MS2 RNA forms stem loops, and can be 518  

detected at the site of transcription, as a fluorescent spot, by the MCP-GFP fusion 519  

protein.  C) Transcription visualized using the MS2/MCP system, with stills from a 520  

movie sequence showing nascent RNA detected in bursts from the act5 gene of 521  

Dictyostelium (scale bar 5 m).  Normalised spot intensity values are shown in the 522  

plot below the film strip, with yellow dots corresponding to the images.  D) Combining 523  

imaging of transcription, using MS2/MCP, with imaging of transcription regulators 524  

(image taken from Li et al. 2019).  Images show nascent transcript foci from the 525  

mouse Pou5f1 gene detected alongside different SNAP-tagged transcription factors 526  

(scale bars 300nm). 527  

 528  
Figure 2. Key Figure. Models of Transcriptional Dynamics. 529  

A selection of different model architectures used to describe transcriptional bursting 530  

dynamics. 531  

  532  
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Box 1. Popular Approaches to Measure Single Cell Transcription Dynamics 533  

 534  

1. Live cell imaging of nascent RNA 535  

These approaches use live cell RNA detection systems based upon stem-loop motifs 536  

from the genomes of RNA bacteriophages MS2 or PP7 [3, 82].  The distinct stem-537  

loops structures have a high affinity interaction with the cognate coat proteins of the 538  

phages (MCP or PCP, respectively).  By fusing fluorescent proteins to MCP or PCP, 539  

the stem loops recruit the fluorescent reporter, allowing live cell detection of the 540  

RNA.  For imaging dynamic nascent transcript production, a sequence encoding an 541  

array of the stem loops (up to 128 repeats have been used) is targeted into the gene 542  

of interest.  Upon transcription, the loops are incorporated into the nascent RNA and 543  

rapidly bind the fluorescent coat protein, allowing the nascent RNA to be visualized 544  

at the site of transcription as a fluorescent spot (see Figure 1B).  The high specificity 545  

of these systems means MS2 and PP7 can be used together in the same cell to 546  

monitor activity of different genes, or to determine kinetic parameters of the 547  

transcriptional process, such as elongation rate, at a single gene. 548  

 549  

2. Destabilised protein reporters 550  

An alternative technique is to use protein reporters such as GFP or luciferase to 551  

observe activity of a particular gene. While these methods enable measurement of 552  

the output of a gene over time, and therefore provide dynamic information, using a 553  

protein rather than RNA reporter to model transcription requires the addition of 554  

several assumptions about intervening processes such as mRNA export and 555  

translation. Recent studies have tended to corroborate findings using other 556  

techniques, such as smFISH. 557  

 558  

3. Single molecule RNA FISH (smFISH) and single-cell RNA sequencing 559  

(scRNAseq) 560  

Fixed-cell measurements from methods such as smFISH produce distributions of 561  

both nascent and mature mRNA counts in single cells. From these data, parameters 562  

such as the frequency of burst initiation as well as the number of transcripts initiated 563  

(burst size) can be inferred. The approach of extracting dynamic behaviours from 564  

static measurement distributions has recently been extended to genome-wide 565  

approaches such as scRNAseq [11, 12]. In both cases, certain assumptions about 566  
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the regulation of the gene (i.e., whether it can be modelled as one-state, two-state or 567  

multi-state, see main text for further details) must be made which can limit the 568  

accuracy of such methods.  More recent scRNAseq methods and analysis tools can 569  

give a coarse view of the changing gene expression of a cell [83, 84], adding an 570  

element of temporal detail onto otherwise static measurements. 571  

 572  
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Outstanding	  questions:	  

1. What	  are	  the	  relative	  contributions	  of	  the	  numerous	  regulatory	  inputs	   	  
involving	  tens,	  if	  not	  hundreds	  of	  cellular	  components	   	  to	  transcriptional	  
bursting?	  

2. How	  are	  the	  effects	  of	  these	  inputs	  integrated	  to	  generate	  the	  bursting	  patterns	  
we	  observe?	  

3. What	  are	  the	  barriers	  to	  information	  transfer	  from	  cellular	  signalling	  to	  
transcriptional	  apparatus?	  Is	  it	  really	  chromatin,	  or	  is	  the	  barrier	  function	  
distributed	  through	  the	  regulatory	  network	  of	  the	  cell?	  

4. Does	  the	  apparently	  haphazard	  nature	  of	  transcription	  have	  any	  benefit	  for	  the	  
organism,	  or	  is	  it	  simply	  a	  tolerable	  level	  of	  disorder?	  


