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ABSTRACT
We present a novel retrieval technique that attempts to model phase curve observations of
exoplanets more realistically and reliably, which we call the 2.5-dimensional (2.5D) approach.
In our 2.5D approach we retrieve the vertical temperature profile and mean gaseous abundance
of a planet at all longitudes and latitudes simultaneously, assuming that the temperature or
composition, x, at a particular longitude and latitude (�, �) is given by x(�,�) = x̄ +
(x(�, 0) − x̄) cosn �, where x̄ is the mean of the morning and evening terminator values of
x(�, 0), and n is an assumed coefficient. We compare our new 2.5D scheme with the more
traditional 1D approach, which assumes the same temperature profile and gaseous abundances
at all points on the visible disc of a planet for each individual phase observation, using a set
of synthetic phase curves generated from a GCM-based simulation. We find that our 2.5D
model fits these data more realistically than the 1D approach, confining the hotter regions
of the planet more closely to the dayside. We then apply both models to WASP-43b phase
curve observations of HST/WFC3 and Spitzer/IRAC. We find that the dayside of WASP-43b is
apparently much hotter than the nightside and show that this could be explained by the presence
of a thick cloud on the nightside with a cloud top at pressure <0.2 bar. We further show that
while the mole fraction of water vapour is reasonably well constrained to (1–10) × 10−4,
the abundance of CO is very difficult to constrain with these data since it is degenerate with
temperature and prone to possible systematic radiometric differences between the HST/WFC3
and Spitzer/IRAC observations. Hence, it is difficult to reliably constrain C/O.

Key words: radiative transfer – methods: numerical – planets and satellites: atmospheres –
planets and satellites: individual: WASP-43b.

1 IN T RO D U C T I O N

Studying the atmospheres of exoplanets is a field that has expanded
rapidly in the past decade. Transiting exoplanets have been studied
in both primary transit (e.g. Barstow et al. 2013, 2017; Evans et al.
2018; Krissansen-Totton et al. 2018) and secondary eclipse (e.g.
Barstow et al. 2014; Lee et al. 2014; Gandhi & Madhusudhan 2018),
with each technique providing a unique insight of the atmospheres
of these alien worlds. The primary transit spectrum allows us to
probe composition at high altitudes at the day/night terminator of
these planets and a number of studies have been made comparing
the observed properties and inferred atmospheres of a representative
range of planets (e.g. Sing et al. 2016; Barstow et al. 2017; Pinhas
et al. 2019), finding a wide range of apparent H2O abundances and
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obscuration by clouds, with in one study the presence or absence of
clouds apparently dependent on the effective temperature of the
planet (Barstow et al. 2017). Meanwhile the secondary eclipse
spectrum allows us to probe the temperature and composition of
the dayside. Recently, using the Hubble/WFC3 and Spitzer/IRAC
instruments, it has become possible to obtain spectroscopic ob-
servations of the full phase curve of three exoplanets: WASP-43b
(e.g. Stevenson et al. 2014; Mendonça et al. 2018), discovered
by Hellier et al. (2011), WASP-103b (Kreidberg et al. 2018),
discovered by Gillon et al. (2014), and WASP-18b (e.g. Maxted
et al. 2013; Arcangeli et al. 2019), discovered by Hellier et al.
(2009). The HST/WFC3 observations cover wavelengths from ∼1
to 2 μm at a spectral resolution of �λ ∼ 0.035 μm, while the broad
Spitzer/IRAC channel observations at 3.6 and 4.5 μm, which have
higher signal-to-noise ratio (SNR) but lower spectral resolution
(�λ ∼ 1 μm), extend the coverage to higher altitudes with different
gaseous sensitivities. Techniques have been developed to invert such
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2.5D phase curve retrievals of WASP-43b 107

phase curves to derive longitudinal brightness temperature maps
at individual wavelengths (e.g. Burrows, Budaj & Hubeny 2008;
Cowan & Agol 2008), but to perform full atmospheric ‘retrievals’
of such data, where we attempt to find a global distribution of
temperature and abundance that fits the measured phase curves
at all wavelengths simultaneously, the prevalent current technique
has been to fit the observed spectra from each phase individually
assuming a model that has the same temperature profile and gaseous
abundances at all points on the visible disc; this process is then
repeated for all the other phases of the planet’s orbit. Such a ‘1D’
model approach ignores the fact that atmospheric conditions will
vary across the face of the observable disc and also fails to utilize the
constraints on the atmospheric structure arising from observations
at nearby phases. A study of former effect has been made by Blecic,
Dobbs-Dixon & Greene (2017) who used a retrieval model to
retrieve a single atmospheric temperature profile from a secondary
eclipse spectra generated by a general circulation model (GCM)
simulation of HD189733b. Meanwhile, Feng et al. (2016) explored
how the assumption of a single 1D thermal profile can bias the
interpretation of synthetic thermal emission spectra generated from
a model atmosphere composed of two different thermal profiles
(to approximate the appearance of a Hot Jupiter with a sub-stellar
region much hotter than the surrounding background). In some cases
it was found that considerable biases could arise.

In this paper, we present a novel technique that performs a
more consistent retrieval of the complete phase curve to extract
atmospheric structure and composition at all latitudes and longi-
tudes simultaneously, which we believe represents a considerable
improvement over the traditional 1D approach. In Section 2, we
review the numerical process of simulating disc-averaged spectra
and propose an efficient scheme for computing this numerically and
in Section 3 we introduce our new 2.5D retrieval scheme. Section 4
describes the radiative transfer model we use in our retrieval model
and Section 5 describes how we validated our retrieval model with
synthetic phase curve spectra generated from a model based on
a GCM simulation. In Section 6, we apply our new scheme to
observed phase curve spectra of Stevenson et al. (2017) of WASP-
43b and we discuss our findings and present our conclusions in
Sections 7 and 8.

2 C A LCULATING D ISC-AV ERAG ED SPECTRA
F RO M I N H O M O G E N E O U S AT M O S P H E R E S

When calculating the disc-averaged spectra of planets there are
several numerical techniques that can be used, which have various
levels of precision. In this work, where we attempt to retrieve
observations from disc-averaged spectra of inhomogeneous atmo-
spheres, it was vital that the disc-averaging was treated as accurately
as possible, but also that we used a scheme that was not too
computationally expensive; this is important since in a retrieval
we have to iterate over many possible solutions before we arrive at
our best estimate.

At the most basic level, the contribution to the total spectral
irradiance, I(λ) (units of W m−2 μm−1), at wavelength λ, seen from
an area on the ‘surface’ of a planet is given by

dI (λ) = R(λ) d�, (1)

where R(λ) is the spectral radiance (W m−2 sr−1 μm−1) calculated
for a particular area on the disc and d� is the solid angle it projects.
An element of area dA on the ‘surface’ of a planet at a distance D
from the Earth, viewed at a local zenith angle θ , subtends a solid
angle d� = dAcos θ /D2 and since for a planet with radius a, dA =

a2sin θ dθ dφ (where θ is the local zenith angle, and φ is the azimuth
angle), the total planetary spectral irradiance or ‘flux’ seen is

Fplan = a2

D2

∫ 2π

φ=0

∫ π/2

θ=0
R(λ, θ, φ) sin θ cos θ dθ dφ (2)

or

Fplan = a2

2D2

∫ 2π

φ=0

∫ π/2

θ=0
R(λ, θ, φ) sin 2θ dθ dφ. (3)

By substituting μ = cos θ , equation (2) can be simplified to

Fplan = a2

D2

∫ 2π

φ=0

∫ 1

μ=0
R(λ,μ, φ)μ dμ dφ. (4)

The disc-averaged radiance R̄(λ) (W m−2 sr−1 μm−1) can be
calculated from Fplan as

R̄(λ) = Fplan

�total
= Fplan

πa2

D2

. (5)

We can see from equation (3) that the planetary flux (and thus
disc-averaged radiance) is most strongly weighted by the radiance
emitted at a zenith angle of 45◦. Hence to a rough first approxima-
tion, the disc-averaged radiance can be estimated as

R̄(λ) = 1

2π

∫ 2π

φ=0
R(λ, θ = 45◦, φ) dφ, (6)

and even more simply, if we assume azimuthal symmetry, as R̄(λ) =
R(λ, θ = 45◦). However, the most accurate estimate of the disc-
averaged radiance [especially if R(λ, μ, φ) varies significantly with
position on the disc] comes from the full integration:

R̄(λ) = 1

π

∫ 2π

φ=0

∫ 1

μ=0
R(λ, μ, φ)μ dμ dφ. (7)

For our integration scheme we integrated equation (7) with respect
to μ = cos θ using a Gauss–Lobatto quadrature scheme, while
we used a Trapezium rule integration for the azimuth part of the
integration, splitting the circle for each zenith angle into equally
spaced points on the nightside from disc edge to terminator (the
distance between the points on a zenith angle circle being ∼R/Nμ)
and equally spaced points on the dayside from terminator to disc
edge (Fig. 1) with the same approximate separation. Our computed
disc-averaged radiance was thus calculated as

R̄(λ) = 2
Nμ∑
i

Nφ∑
j

R(λ, μi, φij )μi�μiwij , (8)

where μi are the Gaussian quadrature points, �μi are the Gaus-
sian weights, φij are the azimuth angles (which are different
for different μi), and wij are the azimuth angle trapezium-rule
integration weights. To ensure correct normalization,

∑
jwij =

1.0 and
∑Nμ

i �μi = 1.0 (i.e.
∑Nμ

i μi�μi = 0.5). In addition, we
assumed that the exoplanet had a transit with low impact parameter
such that northern and southern hemispheres were observed at the
same emission angle and we also assumed north/south symmetry
such that we only had to integrate over half the disc.

An example of the chosen quadrature points for our scheme using
Nμ = 2, 3, 4, or 5 zenith angles is shown in Fig. 1 for a phase of
0.125 (i.e. a phase angle ζ = 45◦). Here we can see that as we
add more zenith angles, the number of sampled points on the disc
is greatly increased. In our scheme if a given zenith angle circle
intersects the day–night terminator, one azimuth quadrature point
is placed on that terminator and the remaining azimuth points are
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108 P. G. J. Irwin et al.

Figure 1. Example of disc-averaging quadrature points chosen for Nμ = 2,
3, 4, and 5 and phase angle ζ = 45◦ (where 0◦ is nightside and 180◦
is dayside). The daylight side of the planet is coloured light grey, while
the nightside is dark grey. The zenith angles of the chosen Gauss–Lobatto
quadrature scheme are shown by the dotted white lines. The azimuth points
along each zenith angle line (indicated by the asterisk symbols) are chosen
to coincide with the terminator for zenith angles that intersect the terminator
and be roughly equally spaced with a fractional disc distance of 1.0/Nμ. As
we assume north–south symmetry, only points on or above the equator are
needed for disc-integration.

chosen to be roughly equally spaced on the day and nightside, as
noted above. The reason for doing this is that if we were to observe
a planet where the reflected starlight is strong, we would expect that
contribution to fall rapidly towards the terminator. By making sure
we place a quadrature point at the terminator, we can thus ensure a
better estimate of the azimuthal average of the radiance at a given
zenith angle. Although in this study we have not included reflected
starlight in our models, the disc-integration scheme we have defined
means that we well be able to seamlessly and accurately incorporate
this in future.

2.1 Computation of contribution of reflected starlight

Assuming a Lambertian reflecting surface, the scattered radiance at
any point on the disc is equal to αFstar/π , where α is the reflectivity
and Fstar is the local stellar irradiance (i.e. W m−2), calculated as
Fstar = Pcos θ /(4πd2), where P is the total power of the star, d is
the distance of the planet from the star, and θ is the local stellar
zenith angle at the point on the disc. At a phase angle of ζ = 180◦

the stellar and viewing zenith angles are the same and hence, after
equation (4), the planet flux is

Fplan = αPa2

4πd2D2

∫ 2π

φ=0

∫ π/2

θ=0
sin θ cos2 θ dθ dφ (9)

or

Fplan = αPa2

2d2D2

∫ 1

0
μ2 dμ = αPa2

6d2D2
. (10)

Hence, since Fstar = P/(4πD2) we have

Fplan

Fstar
= α

2

3

a2

d2
(11)

which, at a general phase angle ζ can be approximated to

Fplan

Fstar
= α

2

3

a2

d2

1 − cos ζ

2
. (12)

We will return to the likely contribution of reflected starlight to the
observed phase curve observations of WASP-43b later.

3 C O M PA R I S O N O F 1 D A N D 2 . 5 D R E T R I E VA L
SCHEMES

The simplest way of retrieving atmospheric information from phase
curve observations, such as those reported by Stevenson et al.
(2017), is for each phase angle, ζ , in the set of Nphase phase angles to
assume that the hemisphere facing Earth has the same temperature
and gaseous abundance profiles at all visible parts of the disc. A disc-
averaged spectrum can then be computed very simply (in the most
simple cases by just computing the spectrum at a viewing zenith
angle of 45◦) and the temperature/abundance profiles retrieved using
schemes such as optimal estimation (e.g. Rodgers 2000; Irwin et al.
2008) or more generally with Bayesian methods, such as nested
sampling (e.g. Skilling 2006). Such techniques, which we will
here refer to as one-dimensional (i.e. 1D) retrievals, are easy to
understand and implement, but suffer from a crucial systematic
disadvantage: in order to model the disc-averaged spectra we
assume homogeneous conditions across the visible disc, but we then
use these retrievals to infer that the atmospheric conditions change
markedly with the sub-stellar longitude. Hence, for observations
at phase angles sampling mostly the nightside, for example, we
assume we cannot see the dayside at all, which is demonstrably
incorrect, geometrically, as can be seen in Fig. 1. Here, we aimed
to develop a technique where the spatial variation of atmospheric
conditions with position on the planet was incorporated directly
within the radiative transfer scheme used to retrieve them.

In our new retrieval scheme, for a set of Nphase phase curve spectral
observations, we fitted all Nphase spectra simultaneously with a
model that contained the temperature profile and mean gaseous
abundances at Nl equally spaced longitudes covering 180◦W to
180◦E. We then set the value of either temperature or abundance,
x(�, �), at a longitude and latitude (�, �) to be

x(�, �) = x̄ + (x(�, 0) − x̄) cosn �, (13)

where x(�, 0) is the modelled value of the abundance or temperature
(at a particular pressure level) at the equator and longitude, �,
and x̄ is mean of the morning and evening terminator values of
x(�, 0), i.e. x̄ = (x(−90◦, 0) + x(90◦, 0))/2. For the exponent of
cos � in this equation, n, we used values of n = 0.25 (assuming
Stefan–Boltzmann-like equilibrium with the stellar irradiation), but
also values such as n = 1 and n = 2 to test for likely latitudinal
variation. With this parametrization we can then calculate the disc-
averaged radiance over an inhomogenous disc using our numerical
disc-integration scheme described above, but more importantly we
can retrieve directly the atmospheric conditions on a planet as a
function of longitude and height [by retrieving the set of values
x(�, 0)] and also have some sensitivity to latitudinal distribution
through the assumed cos n� dependence. Hence, we call our new
technique a 2.5dimensional (i.e. 2.5D) retrieval scheme.

Since we aim to retrieve both temperature and abundances from
disc-averaged spectra where we have to perform radiative transfer
calculations at a large number of positions across the visible disc for
each of the Nphase phase angles, our radiative-transfer, or ‘forward
model’, is computationally intensive. Hence, for this paper we
have used the retrieval method of optimal estimation (e.g. Rodgers
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2.5D phase curve retrievals of WASP-43b 109

2000). Although less suitable than Bayesian approaches in cases of
observations with low SNR, where we need to assess the suitability
of a wide range of solutions, the optimal estimation method is
very much faster and was thus useful in setting up and testing this
approach. For future work, however, we recommend implementing
this approach within a Bayesian framework.

The method of optimal estimation is not used as often for
exoplanetary work as Bayesian methods (although it has been used
several times before, e.g. Lee et al. 2014; Barstow et al. 2017)
and some aspects of it may appear counter-intuitive to readers
more familiar with techniques such as Monte Carlo Markov chain
(MCMC) analysis and nested sampling. The fundamental idea of the
approach is that we start with an a priori estimate of the atmospheric
state and associated a priori errors (contained in an error covariance
matrix that holds, for example, the expected variances of the
temperature profile as a function of height and longitude, and the
covariances between these temperatures) and then find a solution
that most closely matches the observations without deviating
too greatly from the a priori estimate by minimizing the cost
function φ:

φ = (ym − yn)TS−1
ε (ym − yn) + (xn − x0)TS−1(xn − x0), (14)

where ym is the measurement vector, composed of the measured
observations, yn is the vector of modelled observations calculated
from the state vector of model parameters xn, Sε is the measurement
covariance matrix, S is the a priori covariance matrix, and x0 is
the a priori state vector. The approach (e.g. Rodgers 2000) was
originally developed for analysing Earth observations, where we
have very good a priori estimates of the expected atmospheric
state from climatology and in situ observations. However, in its
formulation the a priori error covariance matrix effectively provides
a means of ‘braking’ or ‘smoothing’ the solutions, with small a
priori error values leading to solutions that differ little from the
a priori estimates and large values leading to solutions that fit
the observed data closely, but are not constrained by the a priori
estimates at all. The problem with the latter type of solution,
known as the ‘exact’ solution, is that it is ‘ill-conditioned’: random
noise in the observations can potentially lead to the appearance
of large amplitude oscillations in the retrieved vertical profiles.
Although such profiles may generate synthetic spectra that match
the observations very well, we do not, from atmospheric physics
modelling experience, expect the retrieved temperature profiles to
vary very rapidly with height. For planetary work, where we do
not have a well-known a priori based on climatology, models such
as our NEMESIS code (Irwin et al. 2008) instead use the a priori
errors as adjustable ‘tuneable’ parameters to vary the balance of the
retrieval between not differing too far from some a priori estimate
and fitting the observations so closely that the retrieval becomes
ill-conditioned. In essence, reducing the a priori temperature error
in such a scheme reduces the ability of the model to ‘bend’ the fitted
temperature profile too greatly from the a priori temperature profile
to generate spectra that better fit those observed. The diagonal
elements of the a priori covariance matrix S are set to the square of
the a priori error for each state vector element, while to achieve the
vertical and horizontal smoothing required by our 2.5D model the
off-diagonal elements are set (e.g. Irwin et al. 2008) as

Sij = (SiiSjj )1/2 exp

(
− |i − j |

l

)
, (15)

where l is a ‘correlation length’ that adjusts the degree of covariance
and thus smoothing. We will return to the specific settings used in
our model later.

4 R A D I AT I V E TR A N S F E R MO D E L

In this paper our aim was to model the phase curve observations
of WASP-43b, reported by Stevenson et al. (2017), using our
NEMESIS retrieval model (Irwin et al. 2008) in its traditional
optimal estimation mode using either the 1D approach or our new
2.5D approach. The measured phase curves of Stevenson et al.
(2017) include 15 curves extracted from HST/WFC3 observations,
binned in equally spaced bins of width 0.035 μm covering the
wavelength range 1.1425–1.6325 μm, and two phase curves from
Spitzer/IRAC from broad channels (see Fig. 6) centred at 3.6 and
4.5 μm. Although Mendonça et al. (2018) and Morello et al. (2019)
have independently reprocessed the Spitzer/IRAC observations and
found significantly different fluxes at 3.6 and 4.5 μm, we have used
the measured phase curves of Stevenson et al. (2017) here for ease of
comparison of our results. We modelled the spectra using the method
of correlated-k (Lacis & Oinas 1991), using k-distribution look-up
tables generated from the most recently available line data (e.g.
Garland & Irwin 2019), in particular H2O (Barber et al. 2006), CH4

(Yurchenko & Tennyson 2014), CO2 (Tashkun & Perevalov 2011),
and CO (Rothman et al. 2010). For high-resolution calculations we
used these k-tables at their native resolution of 0.02 μm. However,
for our retrievals, where we needed to compute the spectra for
multiple iterations, we calculated averaged k-tables for each of the
17 individual ‘channels’. Test calculations proved this to be an excel-
lent approximation, even for broad Spitzer/IRAC channels, resulting
in residuals far less than the quoted measurement noise of Stevenson
et al. (2017). The k-tables were compiled separately for each
gas and combined during the radiative-transfer calculation using
the random-overlapping-line approximation (Lacis & Oinas 1991).
Again, we found this approximation to give residuals insignificant
compared with measurement error, as has been found by other
authors (e.g. Mollière et al. 2015). Collision-induced absorption of
H2–H2 and H2–He was modelled using the coefficients of Borysow,
Frommhold & Moraldi (1989) and Borysow & Frommhold (1989).
Since in this study we assumed thermal emission only, we were
able to use NEMESIS in its implicit differentiation mode, where
the functional derivatives (i.e. rate of change of computed radiance
with atmospheric parameter) are calculated implicitly and thus very
rapidly. The planet was modelled to have a mass of 2.052 MJ and
radius 1.036 RJ (Gillon et al. 2012), orbiting its star at a distance
of 0.015 au. The planet orbits a main-sequence K-type star with
a mass of 0.717 M�, radius of 0.667 R�, effective temperature
of 4520 ± 120 K and metallicity [Fe/H] = −0.01 dex (Gillon
et al. 2012). These parameters were used to generate a stellar
spectrum from the Kurucz ATLAS model atmospheres (Castelli &
Kurucz 2004). This was compared with a spectrum extracted for
the same star from PHOENIX (Allard, Hauschildt & Schweitzer
2000). While there were some small differences, the effect on the
retrieved atmospheric parameters was found to be small.

5 VALI DATI ON O F R ETRI EVAL SCHEMES
WI TH SYNTHETI C OBSERVATI ONS

Before applying our model to the observed WASP-43b phase curve
spectra of Stevenson et al. (2017) themselves, we needed to test
both the 1D and 2.5D schemes for accuracy and reliability. To do
this we used a global thermal structure calculated for WASP-43b
from a GCM SPARC/MITgcm (Showman et al. 2009). The specific
model for WASP-43b was run based on the set-up of Parmentier
et al. (2016) and produces results extremely similar to the published
model of Kataria et al. (2015). The model we used was generated
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110 P. G. J. Irwin et al.

Figure 2. Temperature latitude/longitude contour maps generated by our GCM-based model at six different pressure levels.

assuming no clouds and the gas abundances varied with altitude
and location according to equilibrium chemistry leading to rather
significant variation with longitude for CH4. However, because of
horizontal ‘quenching’ (e.g. Cooper & Showman 2006; Agúndez
et al. 2014) we do not expect there to be significant longitudinal
variation in the abundance of any gas. Hence, to enable a simpler
test of our retrieval approaches, the gas abundances for H2O, CO,
CO2, and CH4 were reset at all altitudes and locations to be the
latitudinally averaged abundances in the 0.1–1-bar pressure region
(using cos � as the weight, where � is the latitude) at the sub-stellar
meridian. This gave abundances for H2O, CO2, CO, and CH4 of
4.8 × 10−4, 7.4 × 10−8, 4.6 × 10−4, and 1.3 × 10−7, respectively.
The modified abundance profiles at all latitudes and longitudes
were then used to generate a set of synthetic HST/Spitzer Fplan/Fstar

spectra that we could then use as our ‘ground-truth’ in our retrieval
tests. Although the approach is not fully self-consistent (varying
the abundances and thus atmospheric gas opacities will affect
the modelled thermal structure also in a self-consistent scheme,
see e.g. Drummond et al. 2018; Steinrueck et al. 2019), this is
not a concern for the purpose of testing our retrieval schemes
since here we retrieve the temperature and abundance profiles
independently, with no assumption on the radiative equilibrium
state of the atmosphere. Fig. 2 shows the horizontal temperature
distribution at six different pressure levels in this model, where
we can see that the sub-stellar hotspot is shifted eastwards at
all levels, but less so at mid-latitudes and lower pressures. We
have plotted these contour maps as a function of longitude and
latitude, with the plotted latitudinal distance � weighted by cos � to
mimic the fact that we observe WASP-43b from above the equator
and thus polar latitudes are foreshortened. Fig. 3 compares the
longitudinal variation of the equatorial temperature profile with a
latitudinally averaged temperature profile, where the weights are
set as cos �. Such an average can be seen to smooth over much

Figure 3. Averaged temperatures and abundances in GCM-based model.
Top panel shows the temperature at the equator as a function of longitude
and pressure. Bottom panel shows the average temperature profile for each
longitude, averaged over all latitudes using cos(latitude) as a weight.

of the structure seen in the equatorial temperature profiles, more
tightly constrains the hotter regions of the planet to the dayside
(i.e. between longitudes of −90◦ and 90◦E), and also moves the
centre of the hotspot slightly westwards. Finally, Fig. 4 compares
the latitudinally averaged temperature profiles for all longitudes
together with test retrieved profiles that are described later.

The phase curve observations of WASP-43b of Stevenson et al.
(2017) give the Fplan/Fstar ratios at fifteen different phases between
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2.5D phase curve retrievals of WASP-43b 111

Figure 4. Panel A: Latitudinally averaged temperature profiles for all longitudes from our GCM-based model [using cos(latitude) as a weight], compared with
the two a priori temperature profiles used in our study, one set to 1000 K at all levels (red), and the other using the latitudinally-averaged nightside temperature
profile at a solar longitude of 180◦. The a priori errors were set to either ±50, ±100, or ±200 K at all levels. Panels B–E: Comparison of temperature profiles
retrieved from GCM-based synthetic phase curve spectra at four different central meridian longitudes using our 1D and 2.5D retrieval models: −180◦, −90◦,
0◦, and 90◦. The horizontal bars indicate the error due to measurement noise, while the black profile indicates the ‘true’ latitudinally averaged GCM-based
temperature profiles at these longitudes. Since the retrieved error, σ r, tend back to a priori error, σ a, where there is little information, we have here plotted the
equivalent raw measurement error σm = √

(1/σ 2
r − 1/σ 2

a ), which better shows the unconstrained retrieval error.

0.0625 and 0.9375. Hence, we computed the spectra we would
expect to see with our model WASP-43b atmosphere at these same
phases, assuming thermal emission only. We computed synthetic
phase curve spectra using our disc-integration scheme for Nμ = 2,
3, 4, and 5 zenith angles and found that the computed phase curves
converged rapidly as Nμ increased, with χ2/n (where n is the number
of spectral points) reducing by 0.4 going from Nμ = 2 to 3, further
falling by 0.02 going from Nμ = 3 to 4 and decreasing by only 0.003
going from Nμ = 4 to 5 (using the measurements errors of Stevenson
et al. (2017) for computing χ2/n). These differences are negligible
compared with measurement error for Nμ > 2, but to be sure of
numerical accuracy we used Nμ = 5 in all further calculations. As
can be seen later in Figs 12 and 13 our model atmosphere provides a
reasonable first approximation to the observed phase curves and thus
we were satisfied that the GCM-based model provided a reasonably
representative data set with which to test our retrieval method. In
addition to the disc-averaged spectra, we also generated from the
model atmosphere images of the disc of WASP-43b as it would
appear at the WFC3/IRAC wavelengths for each phase, i.e. how the
planet would appear to an observer who was able to spatially resolve
the planet. These images, for the 4.5-μm Spitzer/IRAC channel, are
shown in Fig. 5. In addition to this primary set of synthetic phase
curves, we also generated a secondary set where randomly generated
Gaussian noise was added to the spectra with the standard deviation
set to the quoted error estimates of Stevenson et al. (2017).

We tested our retrieval model with two a priori temperature pro-
files: (1) one where the a priori temperature profile at all longitudes
was set to the latitudinally averaged nightside temperature profile
of our model at 180◦E (using cos � as a weight); and (2) one where
the a priori temperature profile was set to a constant temperature

of 1000 K at all altitudes and longitudes. In both cases we found
in ‘tuning’ tests that using a priori errors of either ±50, ±100, or
±200 K at all altitudes, with the vertical correlation length in the a
priori covariance matrix set to �H = 1.5 pressure scale heights,
allowed the retrieval model to fit to the observed spectra reasonably
well, but were not so large that the retrieval model became ‘ill-
conditioned’ (as described in Section 3). These profiles are shown
for reference in Fig. 4. It is important to recognize that these assumed
a priori errors are not hard limits as they might be in models such
as MCMC or nested sampling, but instead set the relevant weights
in the cost function (equation 14) between fitting the observations
well without differing too greatly from the a priori. If the data are
sufficiently constraining, the fitted temperatures can differ from
a priori by much more than the a priori error. Using either a
priori temperature profile we found that our retrieval model tended
smoothly to consistent temperature solutions at pressures where we
have most sensitivity (∼0.1–1 bar), and tended smoothly back to
a priori values at pressures outside this range. However, although
retrievals with both a priori profiles were consistent, we found the
former profile resulted in better behaved retrievals when applied
to the spectra measured at all phases since the temperature profile
remained close to a physically plausible solution on the nightside,
were the SNR is low, and led to more realistic-looking retrievals
on the dayside with temperatures tending back to the a priori of a
smooth increase with pressure at pressures >1 bar, consistent with
expectations. Hence, this was our preferred a priori profile in the
results we describe.

Our atmosphere had an assumed He/H2 mole fraction ratio of
0.1765 and contained four additional gases: H2O, CO2, CO, and
CH4, whose abundances were fitted or assumed. The gas abundances
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112 P. G. J. Irwin et al.

Figure 5. Simulated appearance of disc of WASP-43b at 4.5 μm at different phases for nine different cases: (A) the GCM-based model atmosphere; (B)
retrieved appearance from GCM-based synthetic phase curves with 1D model; (C) retrieved appearance from GCM-based synthetic phase curves with 2.5D
model, assuming (cos �)0.25 latitude dependence; (D) retrieved appearance from GCM-based syntheticl phase curves with 2.5D model, assuming cos �

latitude dependence; (E) retrieved appearance from real observed phase curves with 1D model; (F) retrieved appearance from real observed phase curves with
2.5D model, assuming (cos �)0.25 latitude dependence; (G) retrieved appearance from real observed phase curves with 2.5D model, assuming cos � latitude
dependence; (H) retrieved appearance from real observed phase curves with 2.5D model, assuming (cos �)0.25 latitude dependence and forcing nightside
temperatures to 500 K at all altitudes; and (I) retrieved appearance from real observed phase curves with 2.5D model, assuming cos � latitude dependence and
forcing nightside temperatures to 500 K at all altitudes. The phase angle increases from left to right in all cases and is indicated at the top of the figure.

were assumed to have a constant mole fraction (or volume mixing
ratio, VMR) with height and when allowing abundance to vary we
retrieved logarithmic scaling factors, i.e. VMR = VMRaprioriexp (x),
where x is the relevant state vector element, to ensure the mole
fractions remained positive during the retrievals. At each iteration
the H2 and He abundances were adjusted (keeping He/H2 fixed) to
ensure the sum of mole fractions added to unity. The mean molecular
weight of the atmosphere was then recomputed in order to calculate
the scale height accurately and thus determine the altitudes of each
level (above the 20 bar level) assuming hydrostatic equilibrium.

For our first test, we took our synthetic disc-averaged spectrum
(with no additional noise) for a phase of 0.5 (i.e. phase angle ζ =
180◦, or secondary eclipse) and performed a 1D retrieval assuming
thermal emission only. Since we assume the same atmospheric
conditions at all locations on the disc in our 1D scheme, the
azimuthal part of the integration in equation (8) was not required
and so we just integrated over the Nμ = 5 zenith angles. We set
our a priori scaling factors to x = 0 ± 1, with a priori mole
fractions set to the averaged dayside abundances of the GCM
simulation, namely 4.8 × 10−4, 7.4 × 10−8, 4.6 × 10−4, and
1.3 × 10−7, for H2O, CO2, CO, and CH4, respectively. We then
split the atmosphere into 50 layers from 20 to 10−5 bar [split equally
with respect to log(pressure)] and retrieved for temperature profile
and gas abundances. Our a priori temperature profile here was set
to the latitudinally averaged nightside temperature profile of our

GCM at 180◦E, with an error of ±100 K. Fig. 6 shows the fitted
spectral flux ratio spectrum in the seventeen HST/Spitzer ‘channels’
compared with a spectrum recalculated from the fitted atmospheric
state at reasonably high resolution (�λ = 0.02μm) over the whole
spectral range, showing the channel response functions of the
HST/WFC3 and Spitzer/IRAC observations considered. Panel A
of Fig. 6 also shows the highest likely reflected solar component,
which was calculated from equation (11) assuming a reflectivity
α = 1. Comparing this with the observed fluxes we find that at the
longer wavelengths the reflected component is likely a relatively
small part of the total observed flux. However, it seems that reflected
sunlight could potentially be a significant component at the shorter
wavelengths. Stevenson et al. (2014) deduce a Bond albedo of
0.18+0.07

−0.12 from the HST/WFC3 observations and more recently,
Keating & Cowan (2017) have reanalysed these data to deduce a
near-infrared geometric albedo of 0.24 ± 0.01 and note that reflected
light may be significant at the WFC3 wavelengths. However, given
the fact that the likely estimated component of reflected starlight at
the HST/WFC3 wavelengths is smaller than the estimated error bars
on these observations, we have chosen to ignore any reflected com-
ponent in this analysis, as was also done by Stevenson et al. (2017).

Fig. 6 also shows the transmission weighting functions computed
by our retrieval model (i.e. dT/dz, where T is the transmission
to space and z is the altitude), showing that our sensitivity to
temperature variations peaks between 10 and 0.05 bar. We can
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2.5D phase curve retrievals of WASP-43b 113

Figure 6. 1D model fit to synthetic data generated from our GCM-based model for a phase of 0.5 (i.e. phase angle ζ = 180◦). (A) Modelled Fplan/Fstar spectrum
at a resolution of 0.02 μm using our Nμ = 5 quadrature scheme. The grey lines indicate the WFC3/Spitzer filter functions, while the horizontal dotted line shows
the maximum possible estimated reflected stellar contribution (assuming unit reflectivity, although since the albedo of WASP-43b is estimated to be ∼0.24 the
likely reflected component is considerably less). (B) Assumed stellar power spectrum. (C) Modelled disc-averaged radiance spectrum, compared with Planck
functions for different temperatures. (D) Modelled disc-averaged spectrum plotted as equivalent brightness temperature. (E) Modelled transmission weighting
functions (normalized to unity at each wavelength) at high resolution (i.e. 0.02 μm) plotted against wavelength. (F) Normalized modelled transmission
weighting functions integrated over filter function and plotted against channel number. (G) Jacobians (plotted against wavelength) for gas abundances (coloured
lines – multiplied by 1000) compared with Jacobian for temperature at a p ∼ 1 bar (black line). (H) As Panel G, but channel-averaged values plotted against
channel number; a key for the gas colour lines is also included.

thus use these observations to retrieve the temperature between
these levels, but outside this pressure region the temperatures will
tend back to a priori in our optimal estimation scheme. Fig. 6 also
compares the Jacobians for gas abundance (i.e. the rate of change
of measured signal with respect to change in abundance) with that
of temperature near 1 bar. It can be seen that CO2 absorption is
only detectable in the 4.5-μm IRAC channel, while CO absorption
is significant in the 4.5-μm IRAC channel and the three longer
wavelength WFC3 channels. However, since the observation in
the 4.5-μm IRAC channel has much lower measurement error
than the WFC3 channels, we can see that there will likely be a

degeneracy in the retrieval between the temperature at ∼0.1 bar
and the CO/CO2 abundance. The Jacobian for CH4 absorption is
more widely distributed with wavelength, but peaks in the 3.6-μm
IRAC channel, which is again measured to a higher precision than
the WFC3 channels. Hence, there will likely be a degeneracy in
the retrieval between the temperature at just over 0.1 bar and the
CH4 abundance. It can be seen that the Jacobian for water vapour
abundance is almost perfectly anticorrelated with the Jacobian for
1-bar-temperature. This is easily understood since water is the
main absorber and has features across the 1–5 μm spectral range.
By increasing water abundance we shift the weighting functions
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to lower pressures where the temperature is lower, producing
a change in modelled spectrum almost indistinguishable from
simply lowering the temperature. Within our optimal estimation
framework we see the same high degree of anticorrelation in the
retrieved covariance matrix and at first glance it might be concluded
that it is impossible to distinguish between water abundance and
temperature. Certainly, where optimal estimation has usually been
used before it is common practice to assume the abundance of one
gas to be well known such that it can be used as a ‘thermometer
gas’ and its absorption features analysed to retrieve atmospheric
temperature. Since we do not, a priori, know the water vapour
abundance, how can meaningful information on temperature and
abundance be retrieved? Fortunately, while the anticorrelation is
strong at this pressure level for the assumed GCM-based model
abundances the anticorrelation becomes less strong at higher and
lower pressures due to effects such as the varying widths of the H2O
lines caused by pressure-broadening and the increasing importance
of H2–H2 and H2–He collision-induced absorption at depth. Hence,
instead of retrieving a single value it is possible to infer a range
of abundances for which we achieve similarly good fits to the
observations. Analysing the secondary eclipse and primary transit
observations of WASP-43b, Kreidberg et al. (2014) report the water
vapour mole fraction to be in the range (3.1−44.0) × 10−4 from
secondary eclipse observations and (0.33−14) × 10−4 from primary
transit analysis, arriving at a joint constraint of (2.4−21.0) × 10−4.
This estimate was further refined by Stevenson et al. (2017) who
estimate the water vapour abundance to be (0.25−1.1) × 10−4. The
approach of optimal estimation is not best designed for exploring
a wide parameter space such as this, but with care it can be used
to explore the range of solutions consistent with the observations,
in this particular case the synthetic observations generated from a
GCM-based model atmosphere and for which we know the ‘ground
truth’. We can see from Fig. 6 that the signatures of CO2 and CO
are difficult to distinguish between with the WFC3/IRAC data, as
was also noted by Stevenson et al. (2017). Hence, we first fixed the
mole fraction of CO2 to 10−7 and tried to estimate the abundance of
CO only. We then set up a grid of trial CO and H2O mole fractions
varying between 10−5 and 5 × 10−3 and then retrieved for each grid
combination the vertical profile of temperature and mean methane
abundance. The a priori methane mole fraction was set to 10−5 with
the log scaling factor (natural logs) set to 0 ± 10 to allow the model
to fit the CH4 abundance as freely as possible.1

Fig. 7 shows the atmospheric parameters fitted to the synthetic
phase curve data (without additional random Gaussian-generated
noise) at all phases with our 1D model, where the a priori
temperature profile was set to the nightside GCM profile with an
error of ±200K. Here, we took each of the Nphase = 15 synthetic
spectra in turn and for each assumed CO and H2O mole fraction
combination fitted the vertical temperature profile and mean CH4

abundance that gave the closest disc-averaged Fplan/Fstar ratio (using
Nμ = 5 zenith angles and assuming azimuthal symmetry). We then
took all Nphase individually retrieved temperature profiles and plotted
them as a function of the central meridian longitude of WASP-
43b (assuming 0◦E is the sub-stellar point). The top two rows of
Fig. 7 shows how χ2 varies with fixed CO and H2O abundance
for our models (with the second row also showing the fitted CH4

abundances at 0◦E), while the remaining rows plot the longitudinal

1Remember that in optimal estimation, the a priori errors are weights, not
hard limits. Hence, it is possible to retrieve variations larger than the a priori
errors if the data are sufficiently constraining.

variation of temperature for a single choice of the H2O and CO
abundance, indicated by the green asterisk in the top panel of each
column. Looking at the χ2 contour plot in Fig. 7 it can be seen that
we achieve an excellent fit to the synthetic observations (χ2/n < 0.1)
and that the water vapour abundance is reasonably well constrained
and consistent with the ‘true’ GCM-based value. However, the CO
abundance is much less well constrained. The temperature profiles
shown in the first column of Fig. 7 are for CO and H2O values close
to ‘true’, but the remaining two columns explore how the retrieved
temperatures vary with the assumed CO and H2O abundances, by
first increasing the assumed H2O abundance by factor of 10, and
then increasing the assumed CO abundance by the same factor. We
find that the retrieved temperatures vary with the assumed H2O
abundance as expected, with increased H2O abundance leading to
the higher temperature regions being retrieved at lower pressure
levels. However, we also find a significant variation in retrieved
temperature with CO abundance, with the sub-stellar hotspot
moving to higher altitude and forming a slight inversion at ∼0.2 bar
for large CO values; this is consistent with our observation earlier
that the CO abundance and temperature at ∼0.1 bar are degenerate.
All the temperature profiles for the entire grid of CO and H2O
abundances vary moderately smoothly with longitude and altitude,
indicating reasonable constraint and while they look different from
the ‘true’ temperature profiles, it would be difficult to recognize
them to be in error if we did not know what the ‘true’ values were.
Hence, it can be seen that although the WFC3/IRAC data, measured
with the spectral coverage and error values reported, allow some
degree of constraint on the water abundance, they do not allow
very strong constraint on the CO abundance due to the degeneracy
with temperature. For CH4, we find that the retrieved abundances
are approximately 10 times larger than ‘true’, with retrieved error
bars consistent with the spread of retrieved values. To check that
the methane retrievals were not being biased by our chosen a priori
methane abundance of 10−5 we repeated our retrievals reducing this
a priori to 10−7 and found essentially identical results. The high
CH4 abundances retrieved with the 1D model are consistent with
one of the conclusions of Feng et al. (2016), that the 1D approach
‘overestimates both its (i.e. CH4) abundance and the precision’. As
for temperature, we can see that the retrieved temperatures are hotter
near the sub-stellar point, but offset eastwards as is the case in the
GCM simulations used to generate the synthetic spectra. However,
it can be noticed that the hotter temperatures extend some way past
the day/night terminator at 90◦E and 90◦W, unlike the ‘true’ GCM
temperatures. This can be seen most clearly in the bottom left panel
of Fig. 7, where the retrieved–true temperatures at 0.1–1 bar show
significantly negative differences of ∼−200 K near the sub-stellar
longitude, but significantly positive differences of ∼+200 K at
90◦W and 120◦E. This can also be seen in Fig. 4, where we compare
the ‘true’ and retrieved temperatures in detail at 180◦W, 90◦W, 0◦E,
and 90◦E. Here, we can see that the 1D model overestimates the
temperature at 90◦W by almost 500 K. This behaviour is expected
since for 1D retrievals we use the same temperature profile at all
points on the disc and to model the slow variation of observed
Fplan/Fstar with phase angle ζ , we need the temperature to vary more
slowly with longitude. This can also be seen in modelled appearance
of the planet in the 4.5-μm channel in Fig. 5.

Although we computed these spectra assuming our Nμ = 5
Gaussian integration scheme, we checked the necessity of using
such a scheme with 1D retrievals for phase curves measured with
currently achievable SNR. We did this by modelling the spectra
with a single zenith angle of 45◦ and found that we achieved
a similarly close fit to the observations (average differences in
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2.5D phase curve retrievals of WASP-43b 115

Figure 7. Retrieval of GCM-based synthetic phase curve data (excluding randomly generated synthetic noise) using our 1D model. Figure shows three sets of
retrievals: Column (1) 1D retrieval with the CO and H2O abundance for the temperature plots set to the GCM-based ‘true’ values of ∼5 × 10−4; Column (2)
1D retrieval with H2O abundance for the temperature plots increased to 5 × 10−3; and Column (3) 1D retrieval with CO abundance for the temperature plots
increased to 5 × 10−3. The top row shows contour plots of the total χ2, with contours set at min(χ2), min(χ2) + 1, min(χ2) + 4, min(χ2) + 9, min(χ2) + 16.
Red contours indicate χ2/n. For 3σ detection we should be within min(χ2) + 9. The blue dashed lines in this row indicates where the abundance of CO is
the same as that of H2O, while the green line indicates the approximate principal axis of the best-fitting solutions for CO and H2O. In each plot the black
asterisk marks the ‘true’ mole fractions, the red diamond indicates the best-fitting mole fractions and the green asterisk indicates the abundances chosen for
the temperature plots in the remaining rows. Row 2 shows plots of χ2 versus H2O (green) and CO (purple) mole fraction. Also indicated are the retrieved
abundances of CH4 (blue), with the retrieved errors indicated by the horizontal bars. The ‘true’ GCM-based abundances are indicated by the solid vertical lines
using the same colour scheme (N.B., the a priori CO and H2O values are effectively indistinguishable for this overall range of abundances at ∼5 × 10−4, so
the H2O abundance is plotted as solid green and the CO abundance overplotted as dashed purple). The dashed vertical blue line is the a priori CH4 abundance.
The horizontal lines in this row show the minimum χ2 value (dashed lines) and min(χ2) + 1, min(χ2) + 4, min(χ2) + 9 (dotted lines). Finally, the black filled
circles in this row indicate the abundances chosen for the temperature plots in the remaining rows. Row 3: Retrieved temperatures as a function of longitude
and pressure. The white contour indicates the region where the retrieval is well constrained by the observations and has higher values of the ‘Improvement
factor’, I, defined as I = 1 − σ r/σ a, where σ a is the a priori error and σ r is the retrieval error. Row 4: cos � – weighted latitudinally averaged GCM-based
temperature profiles. Row 5: Retrieved temperature minus latitudinally averaged GCM-based temperature (red-blue scale, white = zero difference).
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χ2/n, averaged over all 15 phases, of <0.05) and very similar
retrieved properties. This demonstrates that for cases where we
assume the same atmospheric conditions at all observable parts of
the disc, setting ¯R(λ) = R(λ, θ = 45◦) is a good approximation.
In fact, we found that setting ¯R(λ) = R(λ, θ = 0◦) we were also
able to achieve similarly close fits to the synthetic observations,
and similar retrieved atmospheric properties as compared with the
full numerical integration scheme. However, in this case, because
the transmission weighting functions peak at deeper pressures the
retrieved vertical temperature distribution is also shifted to deeper
pressures.

While our 1D approach gives an excellent fit to the synthetic ob-
servations and is broadly consistent with GCM-based model temper-
atures and abundances it is oversimplistic to assume that the atmo-
spheric conditions are the same at all points on the disc as can clearly
be seen in Fig. 5. We hence applied our 2.5D retrieval scheme (with
different assumed values of the latitudinal coefficient n), where we
fitted all Nphase = 15 spectra simultaneously with a model where the
state vector contained the temperature at 20 levels equally spaced in
log pressure between 20 and 0.001 bar at 16 different longitudes cov-
ering 0◦E to 337.5◦E in steps of 22.5◦. For the temperature profile at
each longitude we again set a correlation length of 1.5 scale heights.
For horizontal smoothing we applied a correlation length of 22.5◦

between the temperatures at different longitudes. For the CH4 abun-
dance, since we assumed horizontal ‘quenching’ we fitted a single
mole fraction for all longitudes. Fig. 8 compares our 2.5D model fits
to the synthetic phase curve data with our 1D model, but this time for
the synthetic phase curve data where additional random Gaussian-
generated noise has been added. For our 2.5D model we assumed a
latitude temperature dependence of (cos �)0.25 (i.e. n = 0.25) and for
both 1D and 2.5D retrievals we set the a priori temperature profile
to the nightside GCM profile with errors of either ±100 or ±200 K.
It can be seen from Fig. 8 that we achieve similarly close fits to
the synthetic phase curve data with either the 1D or 2.5D models,
but with the 2.5D scheme our fitted temperatures correspond much
more closely with the weighted-mean longitudinal temperatures of
the GCM-based model, with the hot region more tightly constrained
to the dayside than the 1D cases and so smaller differences seen the
retrieved–true contour plots. To explore this more quantitatively, our
fitted temperature profiles for longitudes 180◦W, 90◦W, 0◦E, and
90◦E are compared with the respective latitudinally averaged GCM-
based model profiles in Fig. 4. Here we see that the 2.5D-retrieved
temperatures are closer to the GCM-based model profiles than the
1D retrieved profiles and that the retrieved temperature profiles dif-
fer from a priori by much more than the a priori errors, underlining
the point made earlier that these a priori errors are weights, rather
than hard limits. It can also be seen that the differences in the
temperature profiles derived by the 1D and 2.5D retrieval models
are at some pressure levels larger than the estimated retrieval error,
showing these differences to be statistically significant.

With regards to composition, for the 2.5D cases it can be seen
in Fig. 8 that the water vapour abundance is again reasonably
well constrained and consistent with the ‘true’ GCM-based value.
However, the CO abundance is again more poorly constrained. In
contrast with the 1D cases, the 2.5D cases recover slightly lower
values of CH4 with larger error bars, more consistent with the
assumed GCM-based model values,2 and again consistent with

2In an additional test, we found that when fitting to the synthetic phase curve
data without additional noise, the retrieved CH4 abundances were slightly
more consistent with ‘true’.

Feng et al. (2016), although the difference compared with the
1D approach is only of 1σ significance at best with the assumed
HST/Spitzer errors. While we have only shown 2.5D retrievals
with n = 0.25 [i.e. (cos �)0.25 latitude dependence] we found little
difference between the temperatures and abundances retrieved by
the 2.5D scheme for latitude dependences n = 1 and n = 2. However,
we did find that the minimum χ2 values increased monotonically as
n increased and that the lowest values were found for the (cos �)0.25

case, indicating that this is our preferred solution. Fig. 5 shows
the fitted appearance of the disc of WASP-43b at 4.5 μm from
our 1D and 2.5D retrievals for the case σ T = ±100 K (for n =
0.25 and n = 1 for the 2.5D fits) where it can be seen that the 2.5D
approach generates much more realistic-looking disc images, which
correspond better with the ‘true’ simulated appearance of this planet.
It can also be seen that the n = 0.25 case better approximates the
north/south distribution of the ‘true’ appearance. We then explored
how the retrieved temperatures varied with assumed CO and H2O
abundance for the 2.5D approach. As for the 1D approach we
find that increased H2O abundances raises the vertical location of
the higher temperature regions to lower pressure levels. We also
again find a significant variation in retrieved temperature with CO
abundance, with the sub-stellar hotspot moving to higher altitude
and forming an inversion at ∼0.2 bar for large CO values. However,
what is particularly clear from Fig. 8 is that the best fit CO and
H2O values lie along a rough diagonal indicated by the green line
in Figs 7 and 8, and that the position along that line of the best
fit depends on the assumed a priori temperature error and thus
the degree of vertical smoothing imposed by the retrieval on the
vertical temperature profile. Increasing the a priori temperature
error leads not only to reduced vertical smoothing and the retrieval
of temperature profiles that vary more rapidly with altitude, but
also leads to the retrieval of higher H2O and CO abundances.
While this does not lead to very large changes in the best-fitting
H2O abundance, it leads to large changes in the best-fitting CO
abundance. This suggests that trying to estimate the metallicity of
WASP-43b from the CO absorption for the WFC3/IRAC data is
likely to be prone to significant systematic error since the inferred
value depends greatly on the assumed/fitted temperature profile. In
simple terms this correlation arises from the fact that, as we can see
from Fig. 6, the most sensitive wavelength for CO is the 4.5-μm
Spitzer channel, while the temperature solution is driven by fitting
to all the channels simultaneously. Hence, the optimal estimation
approach finds that that when fitting to the observations with a
temperature profile that is constrained to not to vary too greatly
with altitude, a lower CO abundance is required in order to allow
the 4.5-μm channel to see to the deeper, warmer levels, where the
radiances are higher. If the temperature profile is able to vary more
rapidly, higher temperatures are retrieved at the lower pressures and
hence higher CO values are needed to push the weighting function
for the 4.5-μm channel up to pressure levels where the radiances
are consistent with the observations. A similar effect is seen for the
CH4 retrievals, for which the most sensitive wavelength is the 3.6-
μm Spitzer/IRAC channel. It should be noted that this correlation
between CO and H2O abundance has been seen in previous retrieval
analyses using Bayesian approaches (e.g. Kreidberg et al. 2014;
Line et al. 2016).

For both 1D and 2.5D retrievals, we see that the difference
between retrieved and ‘true’ is worst for pressures less than 0.05
bar on the dayside. This is because the retrievals tend towards the
a priori estimates at pressures where there is little information.
Figs 7 and 8 also plot contours of the temperature ‘Improvement
factor’, I, for the temperature retrievals. This is defined as I = 1 −

MNRAS 493, 106–125 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/493/1/106/5715917 by U
C

L, London user on 14 February 2020



2.5D phase curve retrievals of WASP-43b 117

Figure 8. Retrieval of GCM-based synthetic phase curve data (including randomly generated synthetic noise) using both our 1D model and 2.5D models. The
rows are the same as described in Fig. 7. Four sets of retrievals are shown: Column (1) 1D retrieval with a priori temperature error ±100 K; Column (2) 1D
retrieval with a priori temperature error ±200 K; Column (3) 2.5D retrieval (n = 0.25) with a priori temperature error ±100 K; and Column (4) 2.5D retrieval
(n = 0.25) with a priori temperature error ±200 K. The rows are as described for Fig. 7. Here the H2O and CO abundances chosen for the temperature plots
are different from the ground truth and are indicted by the green asterisks in the plots on the top row. N.B., the reduced area of significant improvement for the
2.5D retrieval with temperature error ±100 K compared with ±200 K is easily explained: by reducing the a priori temperature error, the retrieval cannot vary
as far from a priori on the nightside since the data are less precise. Hence, the improvement factor contours surround only the dayside regions, where the data
have a higher SNR.

σ r/σ a, where σ a is the a priori error and σ r is the retrieval error.
Higher values of I indicate where the retrieval is more constrained
by the measurements and thus where the retrieved temperatures
are most reliable. We can see here that this region corresponds
to the ∼0.05–10 bar region for the 1D approach and ∼0.2–10 bar
region for the 2.5D approach (with diminished improvement factors

on the nightside for the 2.5D retrievals since the temperatures
are lower here leading to reduced SNR and solutions that can
deviate less from the a priori estimate). Outside this pressure
region, the temperature profiles revert smoothly to a priori and thus
differences between ‘true’ and retrieved should not cause concern.
We repeated our retrievals using our other a priori temperature
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118 P. G. J. Irwin et al.

Figure 9. Application of our 1D and 2.5D models (n = 0.25) to the measured phase curves of Stevenson et al. (2017), assuming an a priori temperature error
of ±200 K. The rows are as described for Fig. 7. For the temperature maps, we have chosen H2O and CO abundances (indicated by green asterisks in row 1)
that balance the requirement to have the lowest χ2 values with the expectation to have roughly equal abundances (2 × 10−4 and 5 × 10−4, respectively for all
cases).

profile (T = 1000 K at all altitudes) and found consistent results
within the pressure regions where the ‘Improvement factor’ was
significant.

6 A PPLICATION O F R ETRIEVAL SCHEME S
TO R E A L W F C 3+IRAC OBSERVATIONS

Having demonstrated the efficacy and reliability of our modelling
approach on a set of simulated observed data, where we knew
what the ‘ground truth’ was, we then applied both our 1D and
2.5D models (using identical set-ups to the validation tests) to the

observed phase curves of Stevenson et al. (2017). Our results are
shown in Figs 9, 10, and 11 for a priori temperature errors of ±200,
±100, and ±50 K, respectively.

Comparing the 1D and 2.5D retrievals it can be seen that the
nightside of WASP-43b appears much colder than the GCM-based
simulation and that the 2.5D approach finds that the hot region of
the planet is much more tightly constrained to the dayside of the
planet than the 1D approach. For the dayside we retrieve the highest
temperatures at ∼200 mb, significantly shifted to the east, but at
lower altitudes the hotter regions appear to be centred more to the
west, mirroring the GCM simulations, where the hotter regions are
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2.5D phase curve retrievals of WASP-43b 119

Figure 10. Application of our 1D and 2.5D models (n = 0.25) to the measured phase curves of Stevenson et al. (2017), assuming an a priori temperature
error of ±100 K. The rows are as described for Fig. 7. For the temperature maps, we have chosen H2O and CO abundances (indicated by green asterisks in
row 1) that balance the requirement to have the lowest χ2 values with the expectation to have roughly equal abundances (2 × 10−4 and 1 × 10−3, respectively
for all cases).

shifted more to the east near the equator, but further westward at mid
to polar latitudes (Fig. 2). It seems in our retrievals that this pattern
may be even more enhanced in the actual atmosphere of WASP-43b.
This day–night temperature difference becomes much more marked
for the 2.5D case where the modelling finds the temperature at all
longitudes simultaneously. We repeated these retrievals for different
values of the latitude dependence coefficient, n, and as for the GCM
simulations found the best fits for n = 0.25. Fig. 5 shows the fitted
appearance of the disc of WASP-43b at 4.5 μm from our 1D and
2.5D retrievals for the case σ T = ±100 K (for n = 0.25 and n = 1)

where it can be seen that the 2.5D approach generates much more
realistic-looking disc images, which correspond much better with
the expected appearance of this planet.

The much colder temperatures retrieved on the nightside of
WASP-43b (especially for the 2.5D case), which is difficult to
reproduce in GCM simulations, means that emission from the
nightside contributes much less to the disc-averaged radiance
for phases that can see both sides of the planet. Although the
Improvement Factors are found to be lower on the nightside than the
dayside for the 2.5D retrieval, we should not think that the retrieval
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120 P. G. J. Irwin et al.

Figure 11. Application of our 1D and 2.5D models (n = 0.25) to the measured phase curves of Stevenson et al. (2017), assuming an a priori temperature
error of ±50 K. The rows are as described for Fig. 7. For the temperature maps, we have chosen H2O and CO abundances (indicated by green asterisks in row
1) that balance the requirement to have the lowest χ2 values with the expectation to have roughly equal abundances. In this case, rather different solutions are
chosen for the three cases shown.

does not return information on the nightside. Rather its best solution
comes from driving the nightside temperatures so low that it cannot
specify exactly how cold they should be, only that they should be
low enough not to contaminate too much the radiance from the
dayside. This phenomenon has been noted before (Kataria et al.
2015; Parmentier et al. 2016) and it has been used to suggest that if
the temperatures fall low enough on the nightside that a thick cloud
forms at a level which effectively obscures any emission. From the
transmission weighting functions shown in Fig. 6 we can see that
such a cloud must have a cloud top pressure less than ∼200 mb

in order to suppress emission at all the WFC3/IRAC wavelengths.
To explore whether such a scenario could be supported within our
2.5D retrieval framework, we repeated our retrievals with the same
temperature a priori on the dayside, but fixing the temperatures to
be arbitrarily low (500 K) on the nightside, so that we only retrieved
the dayside temperature variation and dayside abundances of H2O,
CO and CH4. Our results are shown in column 3 of Figs 9–11 for
σ T = ±200, ±100, and ±50 K, respectively. Here, it can be seen
from the fitted χ2/n values that we achieve a much closer fit to
the data when we force the nightside emission to be very low than
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2.5D phase curve retrievals of WASP-43b 121

when we try to fit the temperature on both dayside and nightside.
This suggests that in the former retrievals the temperatures on the
nightside were limited from falling as low as the retrieval model
wanted by the a priori constraints. By forcing the nightside to be
very cold (and thus simulating the presence of a cloud with a top
at <200 mb and cloud-top temperature of ∼500 K) we obtain an
excellent fit to the observations and can also place tighter constraints
on the gaseous abundances with the H2O mole fraction found to be
in the range (2−10) × 10−4. Hence, we conclude that the WASP-
43b phase curve observations are consistent with the nightside of
this planet being obscured by cloud. The simulated appearance of
WASP-43b at 4.5 μm with this ‘cloudy’ 2.5D model is also shown
in Fig. 5. Figs 12 and 13 show that our retrievals (for σ T = 100 K)
achieve very close fits to the observed phase curves of WASP-43b.

Although the retrieved temperatures appear plausible and the
observations are consistent with the presence of cloud on the
nightside, the gas abundances inferred from these observations is
more puzzling. It can be seen that for all retrievals from the real
observations of WASP-43b (Stevenson et al. 2017) a CO abundance
of 5 × 10−3 is favoured, unless the a priori temperature error is
reduced to <100 K, in which case the stronger a priori constraint
leads to noticeably poorer fits and higher χ2/n values. We also find
that the methane abundance lies in the range (1−10) × 10−6 for
the 2.5D cases. At high temperatures (such as those found in the
atmosphere of WASP-43b) we expect carbon to be predominantly
in the form CO and oxygen to be split between CO and H2O. We
thus expect the CH4 abundance to be very low at such temperatures.
For a solar composition atmosphere the C/O ratio is ∼0.53 and so
we expect roughly equal abundances of H2O and CO and very low
CH4 abundance, which is what is found in the GCM-based model.
However, for the WASP-43b observations we find the best fit CO and
CH4 abundances to be 10 times greater than expected, from which
we infer a C/O ratio of ∼0.91, since CO/H2O ∼ C/(O–C). The
question of the C/O ratio in the atmospheres of giant exoplanets has
been addressed by a number of authors (e.g. Öberg, Murray-Clay &
Bergin 2011; Madhusudhan, Amin & Kennedy 2014; Espinoza et al.
2017; Cridland et al. 2019). When planetesimals form they trap more
oxygen than carbon in solid form, meaning that the gas is enriched
in C/O. Authors such as Öberg et al. (2011) argue that this means
that giant planets should be carbon-rich since they accrete more gas
than planetisimals, but authors such as Espinoza et al. (2017) note
that if such planets accrete both gas and solids at the same time, then
they should generally be oxygen-rich. Hence, there is considerable
interest in the C/O ratio of planetary atmospheres and so our
retrieved C/O ratio is potentially significant. However, the derivation
of this ratio is prone to several sources of systematic error, which
need to be fully addressed. One possible source of systematic error
we considered was whether we might be using an incorrect stellar
spectrum (needed to convert the measured Fplan/Fstar observations
to radiance). However, comparing our stellar spectrum from the
Kurucz ATLAS model atmospheres (Castelli & Kurucz 2004) with
the stellar spectrum for WASP-43b assumed by other authors from
PHOENIX (Allard et al. 2000) we found insignificant differences.
Instead, we believe our main source of error in determining C/O
is that the abundance of CO comes almost entirely from the 4.5-
μm Spitzer/IRAC observations and the CH4 abundance from the
3.6-μm Spitzer/IRAC observations, while the temperature comes
from the combined HST/Spitzer observations. We already noted
earlier that there is considerable degeneracy between atmospheric
temperature near the tropopause and the abundances of these two
constituents. However, in addition to this, we must remember that
if there is any systematic error in the Fplan/Fstar ratios between the

Figure 12. Fit to the phase curves (σ T = 100 K) for each wavelength bin
reported by Stevenson et al. (2017), normalized for ease of reference. The
measured, normalized phase curves and errors are indicated by the points
and error bars. The line colours are: grey – fits to these curves using our 1D
model; purple-dashed – fits to these curves using our 2.5D model, assuming
(cos �)0.25 latitude dependence; and green – fits to these curves using our
2.5D model, assuming (cos �)0.25 latitude dependence and forcing nightside
temperatures to 500 K. For reference, the normalized synthetic phase curves
caclulated from our GCM-based model atmosphere are shown in blue.
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122 P. G. J. Irwin et al.

Figure 13. Phase curves for each wavelength bin reported by Stevenson et al. (2017), compared with moderate resolution spectra (�λ = 0.02 μm) calculated
from the fitted atmospheric temperatures and abundances (σ T = 100 K) for the same geometry. Curves are compared for phases 0.06, 0.25, 0.5, and 0.75. The
observations are compared to the ab initio GCM-based simulations (blue), our 1D model fit (grey), our 2.5D model, assuming (cos �)0.25 latitude dependence
(purple-dashed) and our 2.5D model, assuming (cos �)0.25 latitude dependence and forcing nightside temperatures to 500 K (green).

HST/WFC3 and Spitzer/IRAC observations, we could very easily
retrieve systematically offset CO abundances. For example, if the
Spitzer radiances flux ratios are either lower than they should be
compared with the HST observations or, alternatively, if the HST
flux ratios are higher than they should be, then the optimal fit to
the combined data would be obtained by increasing the CO and
CH4 abundance to lower the Spitzer radiances relative to the HST
radiances, which may be what is happening here. We note that in two
independent reprocessings of the Spitzer flux ratios Mendonça et al.
(2018) and Morello et al. (2019) found significantly different values
from Stevenson et al. (2017) for the Spitzer/IRAC channels, which
suggests that there may indeed by systematic differences between
the HST/WFC3 and Spitzer/IRAC channels in the reported phase
curve spectra. The fact that we find both CO and CH4 to be larger
than we might expect for a hot solar composition atmosphere leads
us to suspect that these differences do exist. Finally, we note that
the larger CO abundances we infer here compared with the lower
abundances retrieved from the same data by Stevenson et al. (2017)
are most likely caused by the differences in temperature profile
parametrization. In this work we have allowed the atmospheric
temperature to vary at all altitudes and we have seen that there
is a degeneracy between how rapidly the temperature is allowed to
vary with altitude and the retrieved CO abundance. The temperature
profile used in retrieval model employed by Stevenson et al. (2017),
CHIMERA (Line et al. 2014), is parametrized (as is necessary for
Bayesian models that explore a large parameter space) and so has
an implicit limitation in vertical variability; any such constraint
on vertical variability could lead to systematic differences in the
inferred CO abundance.

Although the best fits are for rather large CO values, it can be
seen from Figs 9–11 that a wide range of CO and H2O values gives
fits to the data with a χ2/n < 1.0. If we assume that the metallicity
of WASP-43b is similar to that of the Sun then we would expect
the abundances of H2O and CO to be very similar and thus the
solution to lie along the dashed blue lines in the χ2 contour plots
of Figs 9–11. Looking at the right-hand column (i.e. where the
nightside emission has been forced to be very low) for Fig. 10, for
σ T = 100 K, it can be seen that solutions where the mole fraction of
both H2O and CO are in the range (1 − 7) × 10−4 fit the observed
spectra to χ2/n < 0.9. For these values, the mole fraction of CH4

is (1 − 3) × 10−6. Since we fix the abundance of CO2 to 10−7 our
estimate for CO+CO2 is effectively the same as that for CO.

For comparison, with their 1D Bayesian approach and
parametrized temperature profiles, Stevenson et al. (2017) report
mole fractions of 10(−4.28 ± 0.32) = (0.25–1.1) × 10−4 for H2O,
10(−3.5 ± 0.4) = (1.3–7.9) × 10−4 for CO+CO2, and >10−5.3 =
5 × 10−6 for CH4. These results overlap with our determinations,
but we find higher abundances of H2O are consistent with the
observations.

7 D ISCUSSION

We have developed a novel retrieval technique for modelling the
phase curves of exoplanets that we have shown is robust and
which provides an excellent fit to the observations of WASP-
43b reported by Stevenson et al. (2017). Our approach uniquely
models the radiance contributed to the disc-averaged radiance from
both dayside and nightside simultaneously with a full treatment of
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observation angles and disc integration. We find that the nightside
temperatures are required to be much cooler than those predicted
from the traditional 1D approach to be consistent with observations
and our fitted temperatures and gaseous compositions agree much
better with the ‘true’ values of our GCM-based model atmosphere
when tested on GCM-based synthetic observations. Indeed, we find
nightside temperatures of WASP-43b to be so low that we can
model the observations effectively from the dayside radiances only,
suggesting that the nightside of WASP-43b may be obscured by a
thick cloud with a cloud top at <0.2 bar.

We also find considerable degeneracy in our retrievals between
gaseous abundance and temperature. While the abundance of water
vapour is reasonably well constrained, the retrieval of the abundance
of CO and CH4 comes effectively from the two Spitzer/IRAC
observations at 3.6 and 4.5 μm, co-retrieved with temperatures
derived to be most consistent between the HST and Spitzer channels.
It is found that allowing different degrees of vertical smoothing
in the retrieved temperature profiles gives substantial differences
in the retrieved CO abundance. This behaviour helps to explain
why our retrievals appear to favour considerably more CO than
the study of Stevenson et al. (2017), which used a temperature
profile that was more vertically constrained. We do not believe the
difference is caused by systematic radiative transfer differences
in the NEMESIS model used here and the CHIMERA model
(Line et al. 2014) used by Stevenson et al. (2017), since a recent
study (Barstow et al. 2018) has shown that these models generate
consistent spectra given identical inputs. However, we note that
possible systematic differences between the radiometric calibration
between the HST/WFC3 and Spitzer/IRAC datasets could easily
lead to large differences in the retrieved CO/H2O ratio.

Although our approach is a significantly more geometrically
realistic than previous methods, there are potentially a number or
areas in which it could be improved and/or developed, which we
will discuss now.

(1) We used an optimal estimation retrieval model here because
such an approach is fast, especially in implicit differentiation mode
(where the Jacobians are calculated analytically rather than by
numerical differentiation), which NEMESIS can employ for thermal
emission calculations. In addition, we used channel-averaged k-
tables, which gives an additional improvement in computational
speed. Even then, however, the retrievals are time consuming as
we have to model Nphase × Nwave = 15 × 17 = 255 flux ratio
measurements using a disc-integration scheme that for Nμ = 5
comprises 45–47 points on the disc for each phase angle. Hence,
255 × 45 = 11, 475 radiative transfer calculations are done for
each iteration of the model. Since our optimal estimation model
typically takes 10–15 iterations to converge, this gives ∼138 800
calculations per retrieval. While the optimal estimation method
is fast and efficient, it is less easy to explore the full solution
space than Bayesian techniques such as MCMC or nested sampling.
However, in this study we have mapped a wide range of acceptable
solutions by performing retrievals for a grid of assumed H2O
and CO abundances and find that such an approach allows us to
give conservative estimates on the likely gaseous abundances and
leads to more realistic-looking temperature distributions than the
1D approach. Nevertheless, although Bayesian techniques need
∼10 000 iterations before they converge, which is considerably
more than 10–15 iterations needed for optimal estimation, we plan in
the near future to incorporate the new 2.5D approach into our nested
sampling version of NEMESIS to more fully explore solutions that
are consistent with the observed phase curves.

(2) We have modelled these observations assuming no clouds. It
is possible that the reason we see such a large day/night contrast
in the WASP-43b observations is not that the temperatures vary
greatly with longitude, but that the nightside, which is cooler, forms
clouds that obscure the thermal emission from lower altitudes (e.g.
Kataria et al. 2015; Parmentier et al. 2016). We have assessed
this possibility with our model and find that it gives improved
fits to the observations. As we note, looking at the weighting
functions in Fig. 6 it can be seen that such a cloud would have
a cloud top at pressure level of <0.2 bar in order to suppress the
radiation at all 17 wavelengths considered here, with a cloud top
temperature of ∼500 K. In this paper we have modelled the effect
of clouds by forcing the nightside temperatures to arbitrarily low
values. However, in future work we could instead add a cloud
into our radiative transfer scheme. To do this, we would need
to make some estimate of its complex refractive index spectrum
in order to compute, with Mie theory, its extinction cross-section
spectrum. Since we need a cloud that is opaque over the whole
range considered here of 1–5 μm, it is likely that the particles must
have radii on the order of a few μm.

(3) If we are in the future to include clouds in our model, we
should then also consider the scattered stellar contribution they
might make. We noted earlier and showed in Fig. 6 that reflection
from cloud could potentially make a significant contribution to
the observed flux ratios at wavelengths less than 2 μm. We have
designed our disc-averaging scheme to be able to incorporate
scattering, but such computations are hugely computationally chal-
lenging. Not only are the radiative transfer calculations themselves
computationally expensive, but our implicit differentiation scheme
is inefficient for tracking the partial derivatives of our Matrix-
Operator scattering model (Plass, Kattawar & Catchings 1973)
and hence the functional derivatives are calculated numerically.
In our current model we have 16 longitudes, 20 pressure levels for
temperature, and 4 gas abundances giving 384 state vector elements.
Hence, if calculating the functional derivatives numerically, our
radiative transfer calculations would be at least 385 times slower,
even before factoring in the at least 10 times slower speed of our
scattering model. Hence, such modelling will be challenging.

(4) We have here assumed the temperature profile to be con-
tinuous and retrieve at all pressures in our model. The use of a
parametrized profile would simplify and further increase the speed
of our model, but at the disadvantage of restricting the range of
solutions we can explore to those covered by the parametrization.
Such an approach could be optimal for Bayesian realizations of our
2.5D retrieval technique, but as we have seen there is considerable
degeneracy between temperature and the abundance of CO and H2O.
By constraining the temperature profile more strongly, we may bias
our estimates of the abundances of the gaseous constituents of the
atmosphere of WASP-43b. It can also be seen from Figs 9 to 11 and
previous Bayesian retrivals from these data (e.g. Stevenson et al.
2017), that the prior and method chosen to fit to the observations can
significantly change the retrieved temperatures also. Hence, the ac-
curacy with which we can estimate how the temperature varies with
longitude and altitude and also the molecular abundances is strongly
limited by the inherent degeneracy in these HST/WFC3 data.

(5) We have assumed here that there is a single n coefficient the
(cos �)n latitude dependence. However, looking at the brightness
of the disc simulated from the GCM atmosphere in Fig. 5 it can be
seen that while (cos �)0.25 is generally most appropriate, at some
phases cos � or (cos �)2 might be a better approximation. It would
be interesting to explore whether a parametrization that combines
different n-dependencies might give more reliable retrievals.
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(6) Finally, in this study we assumed the abundance of CH4

to be the same at all longitudes for the 2.5D model, because of
the expected horizontal ‘quenching’. However, our model set-up
is also able to retrieve abundances that do vary with longitude, as
noted earlier. In early tests with such a model using synthetic phase
curves generated from GCM simulations that included longitudinal
abundance variation (rather than the hybrid test model used here,
where the abundances were set to longitudinal averages) we found
that we were able to recover significant longitudinal variation
in CH4, approximately matching the synthetic model variation.
However, adding this additional degree of freedom led to some
instability in the temperature retrievals, which is easily understood
given the degeneracy between CH4 abundance and temperature
at pressures greater than 0.1 bar, already noted. However, future
measurements covering a wider wavelength range at higher SNR
might be able to break such degeneracy, and we could then use this
approach to determine longitudinal variations in abundance also.

8 C O N C L U S I O N

We have developed a novel retrieval technique, which we call a 2.5D
retrieval approach that attempts to model more realistically and
reliably phase curves observations of exoplanets. In our 2.5D ap-
proach we retrieve the vertical temperature profile and mean gaseous
abundance at all longitudes and latitudes simultaneously, assuming
that the temperature or composition, x, at a particular longitude and
latitude (�, �) is given by x(�,�) = x̄ + (x(�, 0) − x̄) cosn �,
where x̄ is the mean of the morning and evening terminator values
of x(�, 0), i.e. x̄ = (x(−90◦, 0) + x(90◦, 0))/2, and n is an assumed
coefficient. We find that this model fits the synthetic flux ratio phase
curve observations of our WASP-43b GCM-based simulations more
realistically than the traditional 1D approach, and provides a more
geometrically realistic retrieval of the observed WASP-43b phase
curve observations of Stevenson et al. (2017). Our retrieved gaseous
abundances are broadly consistent with previous determinations and
we find the mole fraction of H2O lies in the range (1−10) × 10−4,
which is consistent with the atmosphere of this planet having an
approximately solar composition. In tests where we retrieve from
synthetic phase curves generated from a GCM-based model, we
find that the current HST/Spitzer WASP-43b data provide much
poorer constraint on the abundance of CO, with the choice of a
priori temperature profile influencing the best-fitting parameters.
Finally, when fitting to the measured phase curves reported by
Stevenson et al. (2017) we find that the best-fitting CO and CH4

abundances both seem biased to larger values than we might expect,
with CH4 ∼ 10 times larger than the expected thermodynamically-
expected value and CO/H2O ∼ 10, suggesting a C/O ratio of ∼0.91.
While the CO/H2O results alone might lead us to conclude than
C/O ∼ 1, the fact that the CH4 abundance also seems overestimated
leads us to suspect that there might be a systematic difference in the
radiometric calibrations between the HST/WFC3 and Spitzer/IRAC
observations. We conclude that the uncertainty on the Spitzer points
is probably underestimated by the error bars assumed in these
retrievals as three different data reductions of the same phase curve
(Stevenson et al. 2017; Mendonça et al. 2018; Morello et al. 2019)
lead to flux ratio differences larger than 1σ . Since the inferred C/O
ratio is highly dependent on the relative HST versus Spitzer flux
ratios (and the errors on these ratios) a robust determination will
not be possible until a consensus is arrived at in the community
on the radiometric calibrations of these data sets, which includes
all possible contaminating effects (e.g. stellar variability, Knutson
et al. 2012).

Having demonstrated the efficacy of this 2.5D approach for the
HST/Spitzer phase curve observations of WASP-43b, the next step
will be to apply them also to recent observations of WASP-103b
(Kreidberg et al. 2018) and WASP-18b (e.g. Arcangeli et al. 2019)
and possible new observations of other exoplanets. Further into the
future, the James Webb Space Telescope (JWST) plans to make phase
curve observations of several exoplanets over a wide wavelength
range with much higher SNR than the HST/Spitzer observations
analysed here. It is hoped that these improved observations will
break many of the degeneracies inherent in existing observations
and allow us to retrieve temperature profiles that are much less
dependent on the prior and method chosen to fit to the observations.
In particular, the acquisition of high-SNR observations covering the
absorption features of H2O, CO, and CH4 should allow us to more
effectively discriminate between the abundances of these gases and
temperature in the atmosphere of WASP-43b and other exoplanets
and thus enable us to more reliably determine the C/O ratios and
enrichment of heavy elements in these exotic worlds. The new
2.5D approach described here should be particularly effective in
analysing these improved data and we intend to start testing this
approach on synthetic JWST observations in the near future.
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