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Abstract 

Mitochondrial failure and hypoxia are key contributors to multiple sclerosis pathophysiology. 

Importantly, improving mitochondrial function holds promise as a new therapeutic strategy in 

multiple sclerosis. Currently, studying mitochondrial changes in multiple sclerosis is hampered 

by a paucity of non-invasive techniques to investigate mitochondrial function of the central 

nervous system in vivo. It is against this backdrop that the anterior visual system provides new 

avenues for monitoring of mitochondrial changes. The retina and optic nerve are among the 

metabolically most active structures in the human body and are almost always affected to some 

degree in multiple sclerosis. Here, we provide an update on emerging technologies which have 

the potential to indirectly monitor changes of metabolism and mitochondrial function. We will 

report on the promising work with optical coherence tomography, showing structural changes 

in outer retinal mitochondrial signal bands, and with optical coherence angiography, 

quantifying retinal perfusion at the microcapillary level. We show that adaptive optics scanning 

laser ophthalmoscopy can visualise live perfusion through microcapillaries and structural 

changes at the level of single photoreceptors and neurons. Advantages and limitations of these 

techniques will be summarised with regard to future research into the pathology of the disease 

and as trial outcome measures. 
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Introduction 

 

Anita Harding’s landmark paper, describing a group of patients with the mitochondrial disease 

Leber’s hereditary optic neuropathy (LHON) that developed demyelinating disease of the CNS, 

indicated that mitochondrial gene mutations may contribute to multiple sclerosis susceptibility 

and poor outcome (Harding et al., 1992). Her work has prompted substantial expansion of 

research on mitochondrial failure in multiple sclerosis. However, the exact role of energy failure 

in the disease pathophysiology remains an issue of debate. Retinal imaging may provide 

valuable new tools for future investigations in this field. To show this, we will first summarise 

the current knowledge regarding the energy failure paradigm in multiple sclerosis. 

Subsequently, we will describe the unique cellular processes that account for the extremely high 

metabolic demand of the anterior visual system, which make retinal imaging an excellent tool 

for investigating energy failure. And finally, we will review the exciting prospects that the 

evolving field of retinal imaging offer to evaluate metabolic status. 

 

The anterior visual system is one of the most metabolically active structures in the human body 

and is often affected by multiple sclerosis  (Joyal et al., 2018; Wong-Riley, 2010, Okawa et al., 

2008; Beck et al., 2003). The prevalence of symptomatic multiple sclerosis associated optic 

neuritis (MSON) increases from 20% to 80% in early compared with later disease (Shams and 

Plant, 2009; Optic Neuritis Study Group, 1991). Post-mortem evidence even shows anterior 

visual pathway involvement in 90% of examined cases (Toussaint et al., 1983). Optical 

coherence tomography (OCT) reveals retinal thinning independent of clinical MSON (Coric et 

al., 2018; Petzold et al., 2017; Trip et al., 2006), suggesting that progressive features of multiple 

sclerosis, such as atrophy, can be captured in the retina. Furthermore, the pathology of multiple 

sclerosis involves all retinal layers in histological studies (Evangelou and Alrawashdeh, 2016; 

Green et al., 2010). This is relevant because retinal imaging permits imaging of a variety of 

retinal pathologic processes in multiple sclerosis, such as primary pathology to ganglion cells, 

anterograde degeneration (Saidha et al., 2011; Petzold et al., 2010) and inflammation in the 

nuclear layers (Balk et al. 2019; Petzold et al., 2017; Gelfand et al., 2012). 

 

Currently, there are no validated quantitative methods for non-invasive, longitudinal, in vivo 

assessment of CNS mitochondrial function and metabolism. Such methods are key to a better 
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understanding of the role of energy failure in patients suffering from multiple sclerosis. All 

existing methods for human in vivo studies rely on indirect measures. It is against this backdrop 

that we update on the potential of cutting-edge multimodal imaging tools of the anterior visual 

system.  

 

In summary, the eye provides an easily accessible window to the CNS, and retinal imaging 

tools, which in recent years have rapidly become smaller, faster and capable of extremely high 

resolutions, provide exciting new prospects for non-invasive investigations into local metabolic 

function (Koustenis Jr et al., 2017; Godara et al., 2010).  

 

Tissue energy failure in multiple sclerosis 

 

Mitochondrial failure 

 

Mitochondria are the key facilitators of oxidative phosphorylation, the most efficient metabolic 

pathway for producing energy in the form of ATP in aerobic organisms (Suomalainen and 

Battersby, 2018). Mitochondria also contribute to Ca2+ homeostasis, failure of which may lead 

to intracellular Ca2+ overload and apoptosis (Giorgi et al., 2018). The close functional and 

structural association of glia and the neuro-axonal complex is an important factor in multiple 

sclerosis pathophysiology. Glia are a major source of inflammatory mediators such as reactive 

oxygen species (ROS) (Fischer et al., 2012; Nave, 2010), which in increased concentrations 

aggravate demyelination and metabolic dysfunction by damaging vulnerable oligodendrocytes 

and mitochondria (Smith et al., 1999). Also, glia play important roles in adapting to variable 

energy demands by regulating glucose availability in multiple sclerosis lesions (Saab and Nave, 

2017; Nijland et al., 2014). 

 

Mitochondrial dysfunction, particularly the accumulation of dysmorphic and swollen 

mitochondria, is among the first histopathological manifestations of the murine multiple 

sclerosis model experimental autoimmune encephalomyelitis (EAE) (Nikić et al., 2011). 

Mitochondrial changes in EAE are related to clinical disease activity in time and severity 

(Sadeghian et al., 2016).   

 



Brain                                                                                                     Kleerekooper et al., 2020 

 

 4 

Chronic multiple sclerosis lesions, chronically demyelinated axons and even remyelinated 

axons typically contain increased numbers of mitochondria (Zambonin et al., 2011; Mahad et 

al., 2009) and marked upregulation of respiratory chain complex IV activity (Campbell et al., 

2011; Witte et al., 2009; Mahad et al., 2008).  

 

Multiple sclerosis plaques contain high levels of oxidative damage, particularly to the 

vulnerable mitochondrial DNA (mtDNA) (Vladimirova et al., 1998). One study found that 

respiratory deficient neurons affected by multiple sclerosis lack an mtDNA-encoded catalytic 

subunit of respiratory chain complex IV, which could be brought back to high levels of clonally 

expanded mtDNA deletions on a single-neuron level (Campbell et al., 2011). Furthermore, 

multiple sclerosis is associated with high levels of mtHSP70, a marker for mitochondrial stress 

(Witte et al., 2009), and a significant decrease in messenger RNA of peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1α), an important regulator of metabolism 

and mitochondrial function (Witte et al., 2013).  

 

Exposing neurons to cerebrospinal fluid (CSF) from individuals affected by multiple sclerosis 

in vitro leads to mitochondrial elongation and dysfunction of respiratory chain complexes I, III 

and IV. Interestingly, this neurotoxic effect could be reversed if extra glucose and lactate was 

supplied (Wentling et al., 2019). 

 

Studies investigating mitochondrial failure in multiple sclerosis in humans are relatively rare. 

However, patients with multiple sclerosis were found to have higher concentrations of extra-

mitochondrial glucose metabolites, such as lactate, as well as ATP metabolites (such as purines 

and oxypurines) in their CSF and serum compared with controls (Lazzarino et al., 2017; 

Albanese et al., 2016; Amorini et al., 2014). A recent study identified decreased respiratory 

chain complex IV activity in serum mononuclear cells of multiple sclerosis patients compared 

with controls (Hargreaves et al., 2018).  

 

Finally, lower concentrations of N-acetyl-acetate (NAA), a molecule believed to reflect 

mitochondrial function, have been shown to predict a worse clinical outcome in multiple 

sclerosis (Van Horssen et al., 2012). However, as NAA is thought to reflect neuronal cell loss 
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as well as dysfunction of neuronal mitochondria, these results might be partly confounded by 

CNS atrophy.  

 

Hypoxia 

 

Cerebral type-III multiple sclerosis lesions have histological characteristics similar to hypoxic 

insult and multiple sclerosis lesions tend to form in watershed areas of the brain, suggesting a 

role for hypoxia in its pathophysiology (Yang and Dunn, 2018; Martinez Sosa and Smith, 

2017).  

 

Indeed, several studies identified severe hypoxia of the brain and spinal cord in EAE affected 

animals (Johnson et al., 2016), which was related in time and severity to the neurologic deficit 

(Davies et al., 2013). In a model multiple sclerosis lesion in the rat spinal cord, demyelination 

could be considerably reduced by breathing oxygen in high concentrations (Desai et al, 2016).  

 

In humans, multiple studies demonstrated that multiple sclerosis is associated with reduced 

cerebral blood flow compared with healthy controls, also in areas of normal appearing white 

matter (Marshall et al., 2016; Law et al., 2004). A study which used near-infrared spectroscopy 

(NIRS) showed that almost half of multiple sclerosis patients had haemoglobin saturation 

values that were significantly reduced compared with healthy controls (Yang and Dunn, 2015).  

 

In addition to genuine hypoxia, the increased energy demands of impulse conduction along 

demyelinated axons in multiple sclerosis may result in mitochondrial upregulation, causing 

increased numbers of mitochondria to be a continuous source of deleterious ROS (Trapp and 

Stys, 2009). This situation, referred to as ‘virtual hypoxia’, initiates cellular signalling pathways 

affiliated with hypoxic and ischaemic conditions, resulting in oxidative stress, further 

mitochondrial dysfunction and increased intracellular Ca2+ concentrations through release of 

toxic Ca2+ from the axoplasmic reticulum (Desai and Smith, 2017; Trapp and Stys, 2009).  

 

Hypoxia and mitochondrial dysfunction can cause a vicious circle inducing axonal failure and 

neurodegeneration in multiple sclerosis, with one process impairing neuronal resilience to the 

other.   
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The anterior visual system as a model for metabolic failure  

 

Energy demand 

The CNS has a very high energy demand, representing only 2% of bodyweight, but 20% of all 

resting state energy consumption (Lax et al., 2017). The retina consumes even more energy, 

with its metabolic rate generally reported to exceed that of the brain (Joyal et al., 2018, Wong-

Riley, 2010, Warrant, 2009; Okawa et al., 2008) (Fig. 1). Accordingly, the choroid has the 

highest perfusion rate of any other structure within the human body and can rapidly adapt to 

changes in energy demands (Yu et al., 2019; Joyal et al., 2018). 
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The main function of the retina is the process of converting photons into an electrical retinal 

signal, called phototransduction. Counter-intuitively, in daylight, rods use approximately 75% 

less energy than in scotopic conditions. In contrast, cones use a similar amount of energy as 

dark-adapted rods in scotopic as well as photopic conditions. So, cones are more metabolically 

costly than rods on a cellular level, but because rods greatly outnumber cones, net retinal energy 

demand still decreases in daylight (Okawa et al., 2008). In the dark, ion channels in the cell 

membrane of photoreceptors are open and allow influx of ions (Warrant, 2009). To maintain a 

relative depolarisation of -40 mV, a state called the ‘dark current’, Na+ and Ca2+ ions are actively 

pumped out extracellularly against an ion-concentration gradient using two solute pumps, 

Na+/K+-ATPase and Ca2+-ATPase. Together, these two pumps account for virtually all 

expended energy in dark-adapted photoreceptors. The energy consumption of a dark-adapted 

photoreceptor ranks top of all mammalian cells (Wong-Riley, 2010; Warrant, 2009). 

 

Human vision starts with photon absorption by visual pigments in the photoreceptor outer 

segments, of which rhodopsin is the most abundant. Captured photons activate rhodopsin, after 

which rhodopsin binds to the G-protein transducin. As a result, the GDP molecule bound to the 

transducin α-subunit (T-α) is replaced by GTP, and the T-α GTP complex is released. The T-α 

GTP complex subsequently removes one ɣ-subunit from inactive phosphodiesterase (PDE). A 

total of two ɣ-subunits need to be removed to fully activate PDE. Activated PDE decreases the 

intracellular concentration of cyclic guanine monophosphate (cGMP) by hydrolysing cGMP to 

GMP. As a result of the lower cGMP concentration, ion channels in the cell membrane of the 

photoreceptor close, halting ion influx which leads to subsequent hyperpolarisation of the 

neuron.  

 

The hyperpolarised photoreceptor stops releasing excitotoxic neurotransmitter glutamate, 

resulting in the generation of an electrical potential in one or more bipolar cells (Wong-Riley 

et al, 2010; Okawa et al., 2008). Most energy is used in the rod outer segments, while the 

majority of energy is created in the inner segments, where 60-65% of all retinal mitochondria 

accumulate.  
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Axons in the nerve fibre layer conducting this information are unmyelinated before they pass 

through the lamina cribrosa. This unmyelinated portion has slower conduction velocities and a 

markedly higher energy demand, as signified by marked cytochrome c oxidase (COX) staining 

locally (Carelli et al., 2004). 

 

 

Mitochondrial optic neuropathies 

 

The combination of LHON and multiple sclerosis (LHON-MS) occurs approximately 50 times 

more often than is expected by chance (Matthews et al., 2015). Both LHON-MS and multiple 

sclerosis predominantly occur in women, even though LHON is more prevalent in men, and 

have a relapsing and a progressive course (Palace, 2009; Harding et al., 1992). MRI images of 

traditional multiple sclerosis and LHON-MS patients have been found to be radiologically 

indistinguishable (Matthews et al., 2015) and a post-mortem case report found multiple 

sclerosis-like neuropathological features, such as axonal damage and demyelination, in the 

motor cortex of a patient with LHON-MS (Kovács et al., 2005). From clinical experience we 

recognise that patients with LHON-MS have more severe visual loss and poorer recovery of 

optic neuropathy compared with multiple sclerosis, implying that impaired metabolism related 

to LHON mtDNA mutations aggravates the inflammatory insult and impairs recovery. 

Interestingly, both multiple sclerosis and mitochondrial optic neuropathies such as LHON 

predominantly affect the thinner retinal ganglion cell fibres ending in the parvocellular layers 

of the lateral geniculate nucleus (Carelli et al., 2004; Evangelou et al., 2001). One possible 

explanation is that the thin diameter of these parvocellular fibres poses anatomical constraints 

on the transport of mitochondria through the axon (Carelli et al., 2004). 

 

Furthermore, another mitochondrial optic neuropathy, ‘dominant optic atrophy’ can cause 

extra-ocular neurologic manifestations such as ataxia and spasticity, and some patients show 

MRI lesions resembling multiple sclerosis (Yu-Wai-Man et al., 2010).  

 

 

Retinal imaging of metabolism 
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Structural changes  

Besides the use of OCT for imaging of retinal layer thickness as a marker of atrophy and 

microcystic macular oedema as a marker of inflammation (Gelfand et al., 2012), novel OCT 

modalities, focusing on the metabolically active photoreceptors, could indirectly provide 

insight into mitochondrial function. Mitochondria have a high reflectivity index on OCT (Litts 

et al., 2018). Both the second and the fourth hyperreflective band seen on OCT relate to local 

mitochondrial accumulation, with the second band corresponding to the ellipsoid zone of the 

photoreceptor inner segments, containing the majority of retinal mitochondria (Cuenca et al., 

2018). Reduced relative intensity or structural integrity of the ellipsoid zone may reflect 

decreased numbers or function of mitochondria. In age-related macular degeneration (AMD), 

a decreased relative intensity of this ellipsoid zone has indeed been reported (Tao et al., 2016). 

This is an interesting observation as mitochondrial complex failure has been implicated in AMD 

(Nag and Wadhwa, 2016). 

 

Furthermore, OCT allows functional imaging of retinal dynamics during dark-adaptation. 

Photoreceptor outer segments increase in length in dark-adapted compared with photopic 

conditions (Lu et al., 2017). This lengthening of retinal outer segments during dark adaptation 

was found to be reduced in vitelliform macular dystrophy (synonymous Best disease) 

(Abràmoff et al., 2013). Taken into account the discussed very high energy demands of dark 

adaptation and the close relationship of severity with well characterised genetic mutations in 

Best disease, this observation warrants further exploration as it may be a valid indirect 

quantitative measure for metabolic failure in the retina.  

 

Adaptive optics uses an adaptive mirror to reduce wavefront distortions and can thereby 

improve the resolution of imaging techniques. The combination of adaptive optics and scanning 

laser ophthalmoscopy (AOSLO) has a particularly high spatial resolution and is capable of 

imaging the individual cone photoreceptor mosaic within the retina (Godara et al., 2010) (Fig. 

2). Using AOSLO, cones of patients with the mitochondrial syndrome of neurogenic weakness, 

ataxia and retinitis pigmentosa (NARP) have been shown to contain various levels of 

photoreceptor degeneration and significant variability in spacing and packing within individual 

eyes (Yoon et al., 2009). This might be the first non-invasive and in vivo measurement 
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photographing the effects of mitochondrial dysfunction on cone structure at a single cellular 

level.  
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In the evolving field of retinal imaging, multiple approaches to en face imaging techniques are 

promising alternatives to regular OCT, which uses an axial B-scan approach. Dynamic full field 

OCT (FFOCT) achieves resolutions of less than 1µm ex vivo, allowing for visualising dynamic 

properties of subcellular structures such as mitochondria (Leitgeb, 2019; Dubois et al., 2002). 

Acquisition of in vivo images of similar resolution is still hampered by challenges, mainly 

related to ocular movement (Leitgeb, 2019). However, provided that similar resolutions could 

be achieved, this would allow quantification of retinal mitochondria and potentially evaluation 

of their structural integrity. If done longitudinally, these evaluations could provide valuable 

insights into the timing of mitochondrial failure in multiple sclerosis. 

 

The imaging methods described above may provide relevant outcome measures in trials 

investigating the effect of newly proposed metabolism targeted therapies in multiple sclerosis. 

For example, biotin (vitamin B7) is a co-enzyme involved in the TCA cycle and has been shown 

to improve ATP availability in a state of virtual hypoxia. Currently, a large trial investigating 

the effects of biotin in secondary progressive multiple sclerosis is under way, following a small 

trial that showed reduced progression rates in progressive multiple sclerosis patients (Tourbah 

et al., 2016). Lipoic acid, an antioxidant and cofactor for key enzymes in the TCA cycle, has 

also been shown to be well tolerated while reducing brain atrophy rates in patients with 

secondary progressive multiple sclerosis (Spain et al., 2017).  

 

Vascular density 

OCT angiography (OCTA) images the microvasculature in the retina and choroid by inferring 

information on blood flow through motion contrast between high-speed repeated B-scans 

(Koustenis Jr et al., 2017). Unlike old retinal vascular imaging techniques, such as fluorescein 

angiography, OCTA is non-invasive, quick and depth resolved (Yu et al, 2019; Leitgeb et al., 

2014) (Fig. 3).  

 

Already, OCTA has consistently shown that vessel density in the superficial and deep vascular 

plexuses is reduced in multiple sclerosis patients compared with healthy controls, and relates to 

visual function and disability scores (Feucht et al., 2019; Murphy et al., 2019; Wang et al., 

2018a). This decreased retinal vessel density, called ‘capillary dropout’, is mainly present 
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within the optic nerve head, and to a lesser degree in the macular area (Wang et al., 2018a). 

Whether or not capillary dropout on OCTA imaging in acute MSON precedes later ganglion 

cell and inner plexiform layer loss on OCT is not known. If shown prospectively, this would 

lend further weight to the hypothesised role of hypoxia in multiple sclerosis lesion formation. 
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AOSLO can also image the retinal microvasculature, at even higher magnification. In diabetic 

retinopathy, small vasculopathies, such as neovascularisation and microaneurysms,  that were 

not detectable with conventional methods such as OCT were readily detectable with AOSLO 

(Karst et al., 2018). Additionally, multiple microscopic inner-retinal phenotypes of unknown 

aetiology and relevance have been observed with AOSLO in multiple neurological diseases 

(Scoles et al., 2014). Future research has to show if similar changes might also be of clinical 

importance in multiple sclerosis (Fig. 4). 
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Retinal blood flow and velocity 

Several approaches have been developed to assess retinal blood flow and velocity, although 

quantification of total retinal blood flow remains challenging.  

 

Currently, OCTA cannot provide highly accurate information on blood flow velocity, although 

constant improvements in hardware and algorithms mean this might change in the future 

(Ploner et al., 2017). Doppler OCT techniques, making use of the Doppler effect, have a great 

advantage in combining volumetric flow rate with blood flow velocity, which allows 

calculation of total retinal blood flow with relatively high reliability and reproducibility 

(Leitgeb et al., 2014). This technique is most suitable in larger retinal blood vessels 

(approximately >30μm), as it has insufficient sensitivity for low flow rates in smaller vessels. 

Doppler OCT has been used successfully to approximate total retinal blood flow in vivo, and 

recent advancements in en face Doppler OCT seem to provide even more accurate 

approximations of total retinal blood flow (Lee et al., 2017). 

 

In vivo measurements of erythrocyte velocity has been accomplished with AOSLO by tracking 

erythrocytes in medium sized retinal arteries (Zhong et al., 2008). This allows for accurate flow 

measurements without the use of contrast dye (Supplementary Video 1). Additionally, AOSLO 

permits real-time visualisation of individual leukocytes. As leukocytes comprise approximately 

1% of all blood cells, this technique is most accurate in small capillaries near the fovea where 

blood cells move in single file (Godara et al., 2010).  

 

Whether cerebral hypoperfusion is a primary disease process or a result of cerebral atrophy in 

multiple sclerosis has long been an issue of debate. Two studies have investigated retinal 

microcirculation in multiple sclerosis patients using the Retinal Function Imager, a multimodal 

retinal imaging device which uses motion contrast to create structural capillary maps and 

measure blood flow velocity. Both studies found decreased retinal blood flow volume and 

velocities in multiple sclerosis compared with healthy controls. Importantly, these 

microcirculatory changes were not related to retinal nerve fibre layer thickness or clinical 

history of MSON, indicating these changes may be related to more global disease processes 

(Wang et al., 2018b; Jian et al., 2016). These results will need to be corroborated by larger 



Brain                                                                                                     Kleerekooper et al., 2020 

 

 15 

studies employing the described techniques to evaluate perfusion in multiple sclerosis 

longitudinally in concordance with retinal thickness and visual acuity measurements. The 

techniques may also provide valuable outcome measures for treatment trials aiming to improve 

cerebral perfusion in multiple sclerosis, such as currently being done with bosentan, an 

endothelin-1 antagonist (Hostenbach et al., 2019).  

 

Retinal oxygen saturation 

Dual-wavelength spectrophotometric retinal oximetry measures oxygen saturation of retinal 

blood vessels by comparing relative reflectance at 570 nm and 600 nm light. Oxidised and 

deoxidised haemoglobin absorb light equally at 570 nm light, while at 600 nm light deoxidised 

haemoglobin absorbs more light than oxidised haemoglobin. Retinal oximetry can distinguish 

venules from arteries and plot an oxygenation map of the retina. This is an improvement 

compared with cerebral NIRS, which calculates the average oxygenation in venules and arteries 

combined (Van Keer et al., 2018).  

 

Pioneering work shows that retinal oxygen uptake is reduced in longstanding optic neuritis, but 

is increased in the acute stage in the absence of retinal atrophy (Einarsdottir et al., 2018; 

Svrčinová et al., 2018). Future longitudinal data should explore if retinal oxygen uptake in acute 

optic neuritis predicts retinal thinning or visual recovery.  

 

Challenges and limitations 

Even though these retinal imaging techniques give an encouraging outlook on investigating 

metabolic function in vivo in multiple sclerosis, it is important to remember that prospective 

and longitudinal trials are necessary to validate most described methods. Also, like all current 

in vivo measures of mitochondrial function, these techniques mostly give indirect information 

on metabolic function. Furthermore, some techniques suffer from issues to ensure quality 

control, requiring further development to allow clinical implementation. 

 

Conclusion 

The anterior visual system holds great potential for indirect in vivo investigation of 

mitochondrial (dys)function in MSON as an accessible model for multiple sclerosis. Recent 

years have seen significant methodological developments in multiple fields which permit for 
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complementary assessment of structure and function. Validated body fluid biomarkers are 

already included as secondary outcome measures in clinical and experimental treatment trials. 

These data can now be complemented by non-invasive structural and function retinal imaging. 

Specifically, techniques such as OCT, OCTA and AOSLO can supply functional in addition to 

structural data to provide indirect assessment of mitochondrial failure in the human eye. Better 

understanding of mitochondrial changes in multiple sclerosis might provide new therapeutic 

options, particularly in the progressive stage.  
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Supplementary Video 1.  

Video of parafoveal capillaries captured using a split detection adaptive optics scanning laser 

ophthalmoscope. Individual erythrocyte passage is observed. The video has been slowed from 

16fps to 5fps to allow for easier visualisation. Video courtesy of Dr. Adam Dubis and Ms. 

Sarah Houston (UCL, Institute of Ophtalmology). Scale bar = 50 micrometers. 
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