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Abstract
Uncertainties arising at different stages of a measurement process can be estimated using analysis of variance (ANOVA) on 
duplicated measurements. In some cases, it is also desirable to calculate confidence intervals for these uncertainties. This 
can be achieved using probability models that assume the measurement data are normally distributed. However, it is often 
the case in practice that a set of otherwise normally distributed measurement values is contaminated by a small number of 
outlying values, which may have a disproportionate effect on the variances calculated using the ‘classical’ form of ANOVA. 
In this case, robust ANOVA methods are able to provide variance estimates that are much closer to the parameters of the 
underlying normal distributions. A method using bootstrapping to calculate confidence intervals from robust estimates of 
variances is proposed and evaluated and is shown to work well when the number of outlying values is small. The method 
has been implemented in a visual basic program.
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Introduction

The importance of the estimation of measurement uncer-
tainty, including the uncertainty from sampling, by either 
modelling or empirical methods, is now well established 
[1]. One empirical method, recommended because of its 
cost-effectiveness and simple application, is the duplicate 
method. In this method, the processes of sampling and 
analysis are duplicated following pre-determined proto-
cols applied to a number of different sampling targets. This 
allows the variances at each of these two stages to be sepa-
rated and estimated by analysis of variance (ANOVA).

In some cases, it is useful for the analyst or researcher 
to quantify the reliability of variance estimates, expressing 
this reliability as confidence intervals for the variance esti-
mates from the ANOVA. For example, the researcher might 
estimate uncertainties of measurements on the same targets 
using more than one analytical method. Confidence limits 
(i.e. the extremes of the confidence interval) on these uncer-
tainties would indicate whether the uncertainty estimates 
themselves were significantly different between different 
analytical methods. A further potential application is the 
comparison of analyte heterogeneity in materials, which can 
also be estimated using the duplicate method [2].

The uncertainties and CI’s can be estimated using a 
probability model, if the nature of the distribution of meas-
urements can be assumed. An example of this approach is 
provided by Lyn et al. [3]. This study demonstrated two 
important characteristics of uncertainties estimated by the 
duplicate method:

1. As would be expected, the width of the confidence inter-
vals around the uncertainty estimates decreases as the 
number of sampling targets (n) increases.

2. It is suggested that for many applications the decrease in 
widths of the confidence intervals obtained when n > 8 
may not justify the costs of obtaining the additional 
duplicated measurements.
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In this case, the validity of estimates of the uncertain-
ties and their CI’s from the classical ANOVA method 
depends on the assumption that the data are normally dis-
tributed. However, many data sets obtained by experiment 
contain a small proportion of outlying values that may 
have a disproportionately large effect on these estimates. 
One solution to this problem is the use of robust statisti-
cal methods, where estimates are adjusted to accommo-
date up to 10 % of outlying values [4]. Robust ANOVA 
has been widely used for the estimation of measurement 
uncertainty, especially that arising from the primary sam-
pling process [5, 6].

Previously, there has not been a method available to 
calculate the confidence interval on a value of uncertainty 
estimated using robust ANOVA. The overall purpose of 
this paper is to propose such a method, using a bootstrap-
ping approach, applied with a new computer program CI-
RANOVA, and to evaluate its performance for both normal 
and contaminated data. One practical problem with doing 
this arises from the fact that CI-RANOVA is, for ease of use 
by the analytical community, implemented in Excel. This 
is fine for routine use but too slow to permit the extensive 
simulations needed to accurately estimate coverage prob-
abilities for the confidence intervals. To enable this to be 
done, the method was also implemented in Matlab. Having 
two independent, in the sense that they were coded on dif-
ferent platforms by different programmers, implementations 
also enabled a validation of the CI-RANOVA coding, and to 
this end simulations were run using both versions.

The objectives of this work are as follows:

1. Validate the confidence limits produced by a bootstrap-
ping method against those calculated by analytical 
(mathematical) formulas from the results of a classical 
ANOVA, using multiple simulations of normally distrib-
uted data.

2. Validate the implementation of the bootstrapping 
method in CI-RANOVA, by comparing the confidence 
limits produced by CI-RANOVA with those produced 
by the Matlab implementation.

3. Validate the bootstrapping method applied by CI-
RANOVA when up to 10 % outlying values are included.

The analytical method for estimating CI’s is shown in the 
next section, with examples of its application to normally 
distributed data and further demonstrating the breakdown 
of the method when outliers are present. The bootstrapping 
method for estimating CI’s is described in the “Methods” 
section. The “Results” section is in three parts: (1) validation 
of the bootstrapping method with normally distributed data 
(uncontaminated by outliers); (2) validation of the Excel 
implementation (CI-RANOVA); (3) further validation of the 
bootstrapping method with data that include outlying values.

The duplicate method and the analysis 
of the resulting data by classical ANOVA

The simplest form of the full three-tiered balanced experi-
mental design is illustrated in Fig. 1. A number of sam-
pling targets (n) are chosen at random, where ideally n ≥ 8 
[3], from a wide selection of such targets. Two samples are 
acquired from each of these targets by independent duplica-
tion of the sampling protocol. These two samples are then 
treated individually and are both subjected to the same 
preparation procedures. Two test portions are then drawn 
from each of these test samples and analysed individually. 
This method enables variance estimates to be extracted by 
ANOVA for each of the following levels:

1. Between-target variance;
2. Between-sample variance;
3. Between-analysis variance (an estimate of analytical 

repeatability).

The method is described in more detail in the Eurachem 
guide [1].

If the variability at each of these three levels can be 
assumed to be normally distributed, then a confidence inter-
val at the bottom (analysis) level can be derived from a Chi-
squared distribution, and Williams [7] provides a method of 
calculating approximate confidence limits at the top 2 (target 
and sample) levels. Details can be found in Graybill [8]. The 
equations below give the confidence intervals for a nested 
experimental design of size I × J × K where I is the number 
of targets, assumed to be drawn from a normal distribution 
with mean µ and variance �2

Target
 , J is the number of samples 

per target, with sampling variance �2
Sample

 , and K is the num-
ber of analyses per sample, with analytical variance �2

Analysis
 . 

MSSample is the mean square of the middle (sampling) level 

Target 
(Ti) 

Sample 
(TiS1)

Sample 
(TiS2)

Analysis 
(TiS1A1)

Analysis 
(TiS1A2)

Analysis 
(TiS2A1)

Analysis 
(TiS2A2)

Target
Level

Sample
Level

Analysis
Level

Fig. 1  The simplest form of the fully balanced experimental design 
for the evaluation of measurement uncertainty with n targets Ti where 
1 <= i <= n. The fully balanced design requires a minimum of two 
samples per target and two analyses per sample (referred to as an 
n × 2 × 2 experimental design)
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from the ANOVA. A circumflex denotes an estimate, e.g. 
�̂�2
Target

 is an estimate of the target variance.
Fp, ν1, ν2 is the inverse cumulative distribution function 

(cdf) of the F probability distribution with degrees of free-
dom ν1,ν2 for a probability p, and χp,ν

2 is the inverse cdf of 
the Chi-squared distribution with degrees of freedom ν for 
probability p.

Target level

Sample level

Analysis level

These equations give confidence intervals for variances. 
To obtain intervals for the standard deviations, as reported 
below, one simply takes the square root of each of the limits 
of the intervals for the variances. At the target and sample 
levels, the ANOVA estimates of variance are obtained by 
subtraction, and it is possible for the lower limits or even the 
variance estimates themselves to be negative. The standard 
practice of replacing negative estimates or confidence lim-
its by zero, given that the true value of the variance cannot 
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possibly be in the negative part of the interval, is followed 
here.

A numerical example showing the effect 
of an outlier

The data in Table  1 were simulated using normal dis-
tributions with input parameters µ = 26.3, σTarget = 8.9, 
σSample = 3.0, σAnalysis = 1.2.

The classical ANOVA has produced estimates close to the 
true values of the standard deviations, and the confidence 
intervals include these true values, as they should do in 95 % 
of examples.

Table 2 shows the same simulated data but with the inclu-
sion of 1 large outlying value in the final position (Target 
number 10, S2A2). It can be seen that this single analytical 
outlier has had a large effect on both the variances calculated 
by classical ANOVA and the associated confidence limits. 
These are no longer representative of the bulk of the data 
and differ significantly from the input parameters used in the 
original simulation.

An alternative is to use Robust ANOVA. In brief, the 
robust mean µr is initially estimated as the classical mean, and 
the robust standard deviation σr as the median of the absolute 
differences between duplicated measurements. Any values 
that are found to exceed µr + c σr are replaced with µr + c σr, 
and any values that fall below µr − c σr are replaced with µr 
− c σr, where c is a factor between 1 and 2 (typically set to 
1.5). The robust statistics µr and σr are then recalculated, and 
the process is repeated multiple times, until µr converges to 
an acceptable level of accuracy [4]. Robust ANOVA on the 
data in Table 2 using the program RANOVA2 [9] yields the 
following results: �̂�Target = 9.8, �̂�Sampling = 4.3 , �̂�Analysis = 1.1. 
These are much closer to both the input parameters and also 
to the standard deviations calculated by classical ANOVA 

Table 1  Estimated standard 
deviations from classical 
ANOVA, with 95 % confidence 
intervals from Eqs. (1) to (3), on 
data without outliers

Target Simulated data, normally distributed Estimated standard deviations ( ̂𝜎 ) from classical 
ANOVA, confidence intervals from Eqs. (1) to (3)

S1A1 S1A2 S2A1 S2A2 Level TRUE Estimated Confidence

σ �̂� Interval

1 31.2 29.8 29.8 28.2 Target 8.9 8.7 5.1, 16.5
2 26.7 26.2 29.1 27.6 Sample 3.0 3.9 2.6, 6.8
3 12.5 13.5 13.2 10.3 Analysis 1.2 1.0 0.7, 1.4
4 22.2 22.6 35.9 34.8
5 28.4 28.8 28.2 30.7
6 37.2 34.4 41.5 42.2
7 32.7 31.7 24.3 24.8
8 16.9 15.7 20.6 20.6
9 16.9 17.9 19.3 18.2
10 43.7 44.6 40.4 39.9
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on the original normal data (Table 1). They are also more 
representative of the main body of data in Table 2 than those 
calculated using classical methods. The high value outlier 
in this example is the original value (39.9) multiplied by 10 
and demonstrates the ability of robust ANOVA to cope with 
extreme outliers that might be encountered from, for exam-
ple, a transcription error. Ideally, values resulting from this 
type of mistake would not be included in uncertainty estima-
tion [10], but practically they are not always identified and 
corrected or removed.

An extreme outlying value such as shown in Table 2 
needs serious consideration. Its presence and the method 
used to treat it should be reported. The presence of such 
an outlying value may affect the inferences drawn from the 
experiment. Less extreme outlying values can occur for 
a number of reasons, e.g. deficiencies in the experimen-
tal method, operator error, or a simple typing error. They 
might also be due to genuine variations in the property being 
measured and should not be ignored. One potential use of 
robust statistics in this application is to draw attention to the 
presence of outliers in experimental data. For example, the 
difference between the robust and classical standard devia-
tions derived from the data in Table 2 is a clear indication 
that these data are not normally distributed, and one or more 
outlying values may be present.

Robust ANOVA provides reasonable estimates of the 
underlying variances, i.e. the variances of the “good” data, in 
data that include a small proportion of outlying values. It can 
be easily applied using the program RANOVA2 [9]. How-
ever, the calculation of confidence intervals in the context 
of a robust ANOVA is far from straightforward. It cannot be 
achieved via formulas based on assumed probability distribu-
tions, because it is precisely when these assumptions break 
down that we need to use the robust approach. An alterna-
tive is to use bootstrapping methods. In this computer-based 
approach, a large number B of independent bootstrap samples 

are generated. A bootstrap sample is a data set, of the same 
size and structure as the observed one, generated by random 
sampling with replacement from the observed data set. The 
statistic of interest (e.g. a variance) is calculated for each 
bootstrap sample. Confidence intervals can then be derived 
from the empirical distribution of these results [11].

Method: Estimating confidence limits 
on variances from robust ANOVA

The existing program RANOVA2 [9] was modified to pro-
vide confidence intervals on variances calculated by both 
classical and robust ANOVA. It is intended that the new 
program CI-RANOVA will also be made available on the 
AMC website.

The data simulation, robust ANOVA and CI estimation 
were reproduced in Matlab software supplied by Math-
Works. This is much more efficient than Excel when pro-
cessing multiple data arrays, allowing a greater number of 
simulations to be created and analysed within a practical 
time frame, and in particular allowing the accurate estima-
tion of coverage probabilities, requiring 50 000 simulations. 
Versions of the two programs were produced independently 
by different researchers based in different institutions.

Both programs calculate confidence limits on variances 
produced by classical ANOVA using a mathematical method 
based on Eqs. (1) to (3). Confidence limits on the variances 
produced by robust ANOVA are estimated using a bootstrap-
ping method. During development, a problem was encoun-
tered if a large number of bootstrap samples are generated on 
data containing outlying values. The bootstrapping method 
generates samples by selecting means and differences (at 
every level) at random with replacement. Some of these 
bootstrap samples therefore contain fewer outliers than the 
original data set, while some contain more. When a large 

Table 2  Standard deviation 
estimates and confidence 
intervals calculated from 
the data in Table 1 with the 
inclusion of a single analytical 
outlier in Target number 10

Target Data including 1 analytical outlier Estimated standard deviations ( ̂𝜎 ) from classical 
ANOVA, confidence intervals from Eqs. (1) to (3)

S1A1 S1A2 S2A1 S2A2 Level TRUE Estimated Confidence

σ �̂� Interval

1 31.2 29.8 29.8 28.2 Target 8.9 20.2 0.0, 57.4
2 26.7 26.2 29.1 27.6 Sampling 3.0 0.0 0.0, 59.2
3 12.5 13.5 13.2 10.3 Analysis 1.2 56.7 43.4, 81.9
4 22.2 22.6 35.9 34.8
5 28.4 28.8 28.2 30.7
6 37.2 34.4 41.5 42.2
7 32.7 31.7 24.3 24.8
8 16.9 15.7 20.6 20.6
9 16.9 17.9 19.3 18.2
10 43.7 44.6 40.4 399.0



111Accreditation and Quality Assurance (2020) 25:107–119 

1 3

number (e.g. B = 2000) of bootstrap samples are generated, 
some of these samples are likely to contain many repeti-
tions of very large outlying differences. The robust routines 
used in RANOVA2 are only intended to accommodate up 
to 10 % of outlying values. It was found in practice that 
a small proportion of the bootstrap samples includes too 
many large outlying differences for the robust ANOVA to 
cope with. For this reason, a winsorization process (Fig. 2) 
was incorporated into both programs. This is applied to the 
input data matrices after the initial robust analysis but prior 
to generating the bootstrap samples.

The winsorization process brings in large outliers in a 
very similar way to how they are dealt with in the robust 
analysis, but using wider limits. The idea, due to [12], is 
that this will change the results of the robust analysis very 
little, because the outliers are still outside the limits used 

in that analysis, but it will limit the damage that they can 
cause when they occur in large numbers and in particular 
will avoid the breakdown of the robust analysis that can 
occur in this situation. The limit used here, as suggested by 
Singh [12], is 1.5 times the limit used in the robust analy-
sis, which itself is 1.5 [4], hence the 1.52 in the algorithm 
in Fig. 2.

An example of the winsorization process is shown in 
Table 3. In this case, the bootstrapping method randomly 
produced three top-level outlying values on rows 1, 2 and 
4 (Table 3a), even though the input data (from Table 2) 
included only 1 outlying value. This results in a spuriously 
high robust estimate of the target standard deviation, due to 
breakdown of the robust algorithm. Applying the winsori-
zation method prior to robust ANOVA reduces the mag-
nitude of the outlying values sufficiently that they can be 

Fig. 2  Winsorization process used to limit the effect of multiple occurrences of outlying observations prior to bootstrapping, for an n * 2 * 2 
experimental design (See Fig. 1)
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accommodated by the robust algorithm (Table 3b). Note 
that all other data values and standard deviations remain 
unchanged.

Following winsorization, a large number B of bootstrap 
samples (B = 2000) are generated. The method of producing 
the bootstrap samples for an n * 2 * 2 experimental design 
(Fig. 1) is detailed in Fig. 3.

Variances are calculated for each of the B bootstrap sam-
ples using robust ANOVA. The variance at the target (top) 
level needs to be multiplied by n/(n − 1) to compensate for 
a bias caused by sampling with replacement from the n tar-
gets [11]. The bootstrap samples at the lower levels were 
based on the differences, so no such correction is needed 
for the other two variances. The variances for each level 
are sorted into numerical order. The 2.5 and 97.5 percen-
tiles of the sorted variances could then be considered as 

bootstrap estimates of the 95 % confidence limits. However, 
this simple approach is known not to work particularly well 
for skewed distributions, especially when the data being 
bootstrapped are small, and Efron and Tibshirani [11] rec-
ommend what they call the Bca method in this case. This is 
described in Fig. 4, where the constant a has been chosen 
to optimise the procedure for the Chi-squared distributions 
that one would expect to see with normally distributed data.

Validation of the bootstrapping method was performed 
by simulating 50 000 normally distributed data sets based 
on five input parameters: (a) the number of targets n; (b) 
the mean target value µTarget; (c) between-target standard 
deviation σTarget; (d) between-sample standard deviation 
σSample; (e) between-analyses standard deviation σAnalysis. 
In the case of contaminated data, outliers were introduced 
at one of the three levels in each simulation. These were 
created by randomly selecting a target or targets from the 
normally distributed data sets and adding a constant, in this 
case 500, to either all four measurements for that target, 
or both measurements for one of its samples, or one single 
analytical measurement (similar to the method described by 
Ramsey et al. [5]). Tests were also performed to investigate 
the effects of different severities of the outlying value by 
varying the magnitudes of the added constant between 0 
and 1000. An example data set (n = 20) with all three types 
of contamination is shown in Table 4.

Results and discussion

The underlying calculations, including the averaging of 
the results of different simulations, were performed using 
variances, because variances from classical ANOVA are 
unbiased estimators of the population variances, whereas 
their square roots are not unbiased estimators of the cor-
responding standard deviations. However, the tables in this 
section present the results as standard deviations because 
these have the same units as the original data and are more 
readily interpretable.

Objective 1: Validation of the bootstrap confidence 
intervals with normally distributed data

Validation of the bootstrapping method of estimating confi-
dence limits at three different levels was performed by com-
parison with those produced by the mathematical method. 
Two values of n were used (n = 10 and n = 100). For each n, 
variances and confidence intervals were estimating using 
the Matlab program, with B set to 2000. This allowed 50 
000 simulated data matrices to be analysed in a practi-
cal time frame to give coverage probabilities accurate to 
approximately 0.1 %. Coverage percentages were estimated 
by counting the number of times the CI contained the true 

Table 3  Example of the winsorization method of accommodating 
outlying values on an individual bootstrap sample created from the 
data in Table 2

Bold values in (a) indicate outlying values produced by bootstrapping
Bold values in (b) indicate adjusted values

(a) Data and robust ANOVA for individual bootstrap sample without 
prior winsorization

S1A1 S1A2 S2A1 S2A2 Level TRUE Robust

SD SD

130.0 129.5 134.8 133.3 Target 8.9 56.2
132.2 130.8 − 47.0 311.6 Sample 3.0 6.1
36.2 37.2 42.5 39.6 Analysis 1.2 1.1
125.4 125.5 138.1 138.6
25.0 23.7 29.2 31.7
32.5 33.2 26.6 23.8
19.2 19.2 17.5 17.9
32.2 32.6 44.8 45.8
32.0 30.4 24.1 23.1
32.7 31.7 25.3 23.8

(b) Data and robust ANOVA for individual bootstrap sample with 
prior winsorization. Adjusted values are shown in bold type

S1A1 S1A2 S2A1 S2A2 Level TRUE Robust

SD SD

47.2 46.8 52.1 50.6 Target 8.9 11.7
49.5 48.0 47.8 51.3 Sample 3.0 6.1
36.2 37.2 42.5 39.6 Analysis 1.2 1.1
42.7 42.7 55.4 55.9
25.0 23.7 29.2 31.7
32.5 33.2 26.6 23.8
19.2 19.2 17.5 17.9
32.2 32.6 44.8 45.8
32.0 30.4 24.1 23.1
32.7 31.7 25.3 23.8
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Fig. 3  The procedure used to generate bootstrap samples for an n * 2 * 2 experimental design (See Fig. 1)

The Bca (Bias-Corrected and Accelerated) intervals adjust the percentiles used to construct confidence limits to 

reflect the shape of the distribution of the variances over the bootstrap samples. Two numbers z0 (Bias-

Correction) and a (Acceleration) are calculated as follows:

0 = Φ−1 ⋕ vi < v

B

The numerator of this equation is the number of variances from the bootstrap samples that are less than their 

mean value, B is the total number of bootstraps, and Φ−1 is the inverse normal cdf.

=
1

3

2

Where is the degrees of freedom in the line of the ANOVA table corresponding to the level of interest. The 

corrected percentiles are then calculated as follows:

1 = Φ 0 +
0 −

1 − ( 0 − )

2 = Φ 0 +
0 +

1 − ( 0 + )

Where z is the z-score for the coverage probability, e.g. for a coverage probability of 95 %, z = 1.96, and Φ is 

the standard normal cdf.

Fig. 4  Bca (Bias-corrected and accelerated) correction for 95 % confidence limits
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value of the input parameter. Input parameters were the same 
for all simulations, based on real values from experimental 
data (Table 5). Results of these trials are shown in Table 6 
(n = 10) and Table 7 (n = 100).

For both n = 10 and n = 100, the means and component 
standard deviations at the three different levels calculated 
by classical ANOVA are good approximations of the input 

parameters. For n = 10, the component standard deviations 
calculated by robust ANOVA are slightly higher than the 
true values, especially at the two upper levels (Table 6). This 
is a consequence of the approximations involved in the bias 
correction of the robust estimates in the case of the simulta-
neous estimation of both mean and variance.

The coverage probabilities calculated by the mathemati-
cal method in Tables 6 and 7 are close to the expected 95 %, 
although in most cases they appear to be slightly conserva-
tive: the intervals are a little wider than is required for true 
95 % confidence. With n = 10, the intervals calculated using 
the bootstrapping method are too narrow resulting in < 95 % 
coverage (Table 6). This is consistent with previous findings 
where bootstrapping methods have been applied to estimate 
confidence intervals on variances (See p. 181–183 in [11]). 
For n = 100, these coverage percentages are very close to the 
expected 95 % (Table 7), indicating that a higher value of n 
enables better estimates of the confidence intervals on the 
component standard deviations.

Objective 2: Validation of the implementation using 
CI‑RANOVA with a smaller number of simulations

The same trials were performed with CI-RANOVA using a 
smaller number (1000) of simulated data matrices (Tables 8, 
9). It is not possible to calculate precise coverage percent-
ages with this number of simulations; however, comparison 
of the CI’s with those in Tables 6 and 7 shows there is good 
agreement between the two programs.

Table 4  Example illustrating the three types of contamination used in 
the simulations. Only one type was used in any one simulation

Outlying values are shown in bold

Target S1A1 S1A2 S2A1 S2A2

1 4.0 − 6.7 − 29.7 − 32.8
2 580.5 618.1 562.6 598.4
3 19.2 − 18.7 − 45.4 − 20.6
4 − 44.9 − 55.8 − 18.1 1.6
5 104.3 118.3 − 16.9 40.3
6 19.0 47.9 600.5 548.9
7 43.0 43.4 102.8 59.0
8 149.1 133.4 180.7 173.8
9 − 34.0 11.3 − 5.5 49.9
10 143.5 167.3 102.9 632

Table 5  Input parameters for simulations

Mean target value (µTarget) 75.8
Between-target standard deviation (σTarget) 73.2
Between-sample standard deviation (σSample) 27
Between-analyses standard deviation (σAnalysis) 20.4

Table 6  Comparison between average standard deviations and confidence limits calculated by classical and robust ANOVA on 50000 simulated 
data matrices with no outlying values (n = 10), also showing coverage probability (cov, %)

(µTarget=75.8) Classical ANOVA ( �̂�Target = 75.8) Robust ANOVA ( �̂�Target = 75.8)

σ �̂� Math. CI cov, % �̂� Bootstrap CI cov, %

Target 73.2 73.1 (43.7, 137.7) 95.7 74.8 (37.2, 122.6) 92.4
Sample 27.0 27.0 (13.3, 52.0) 96.2 28.0 (16.2, 48.8) 89.0
Analysis 20.4 20.4 (15.6, 29.5) 95.0 20.7 (15.5, 30.5) 92.0

Table 7  Comparison between average standard deviations and confidence limits calculated by classical and robust ANOVA on 50 000 simulated 
data matrices with no outlying values (n = 100), also showing coverage probability (cov, %)

(µTarget=75.8) Classical ANOVA ( �̂� Target = 75.8) Robust ANOVA ( �̂� Target = 75.8)

σ �̂� Math. CI cov, % �̂� Bootstrap CI cov, %

Target 73.2 73.2 (62.9, 86.2) 95.9 73.3 (61.8, 88.7) 95.4
Sample 27.0 27.0 (22.3, 32.6) 95.9 27.1 (22.1, 33.6) 94.5
Analysis 20.4 20.4 (18.6, 22.6) 95.1 20.4 (18.3, 23.1) 94.8
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Objective 3: Validation of the robust confidence 
intervals on data including outliers

Further simulations were created with outlying values added 
to the data. Outlying values were generated using the three 
scenarios shown in Table 4. Each outlying value was applied 
by randomly selecting a target (without replacement), and 
adding 500 to the original simulated value(s) to create one or 
more extreme outlier(s). Each independently simulated data 
matrix was then analysed using CI-RANOVA.

Summaries of the average variances (expressed as stand-
ard deviations) and their associated confidence limits for 
1000 simulations are shown in Table 10 for n = 100. The 
simulation input parameters (‘true’ values) have been 
included to simplify comparisons with the average values. 
This table also shows coverage percentages calculated from 
50 000 simulations using the Matlab program. This program 
and CI-RANOVA implement the same method and give con-
sistent results, so the coverage probabilities can be taken to 
apply to CI-RANOVA as well. 

Note that in the simulations with contaminated data, the 
coverage probabilities are still calculated as the percentage 
of intervals that include the parameters used to generate the 
data before contamination.

Robust confidence interval estimates with different 
types of outlier

Comparisons of the classical and robust standard devia-
tions for the three different levels (Table 10) confirm that 

the robust method produces values that are much closer esti-
mates of the input parameter ‘true’ values than the classical 
method, especially for the level at which outliers have been 
added. This is consistent with earlier work [4, 5, 13]. With 
a small number of outlying values (2) the robust estimates 
show a relatively small positive bias (< 4 %) compared to the 
true values. These biases are most evident at the levels where 
outliers have been added, and also at any levels above. For 
example, adding two sample outliers result in a positive bias 
at the sample and target levels. The same pattern is seen for 
all of the outlier scenarios.

With two outliers, the coverage percentages calculated 
using the Matlab program range between 92 and 95 %, indi-
cating that the bootstrapping method is producing accurate 
confidence intervals when there are a small number of outly-
ing values. The coverage percentages are slightly below the 
nominal 95 %. This is not because the intervals are too nar-
row, but because the robust estimates have a slight upwards 
bias compared to the true values for the uncontaminated 
data.

Increasing the number of outlying values to 4 increases 
the biases in robust standard deviation estimates of the 
affected levels, by up to 9 % for 4 outliers at the sample 
level. Coverage percentages are consequently lower (mini-
mum 86 %). The unaffected levels still show coverage per-
centages that are very close to the nominal 95 %. This latter 
observation remains true when the number of outlying val-
ues is increased to 10, although in this scenario the biases 
in the robust estimates increase to 23 to 24 % at the sample 
level, and the coverage percentages at the affected levels are 
reduced in some cases to < 50 %.

Overall, these results suggest that the bootstrapping 
method produces reasonable estimates of the confidence 
intervals of the robust standard deviations when there are a 
small number of outlying values (i.e. < 5 %). When a larger 
number of outliers are present (e.g. at 10 % of targets), the 
coverage calculated from the true value is seriously reduced 
below the nominal 95 %.

Lower values of n (n <100)

The n = 100 scenario discussed above suggests that the boot-
strapping method produces good estimates of confidence 
intervals for lower numbers of outliers. This value of n 
would be fairly unusual in practice, due to the financial cost 
of obtaining that quantity of duplicated measurements. It is 
therefore appropriate to repeat the experiments for lower n 
values. Tables 11 and 12 show the averaged standard devia-
tions, CIs and coverage percentages for n = 20 and n = 10, 
respectively.

The widths of the robust confidence intervals decrease as 
n increases (Fig. 5). Again the robust estimates of standard 
deviations are closer to the true values than are the classical 

Table 8  The results shown in Table  6, n = 10 reproduced using CI-
RANOVA with a smaller number (1000) of simulated data matrices

(µTarget=75.8) Classical ANOVA  
( �̂� Target = 74.5)

Robust ANOVA  
( �̂� Target = 74.4)

σ �̂� Mathematical CI �̂� Bootstrap CI

Target 73.2 73.0 (43.9, 137.5) 74.7 (37.2, 122.4)
Sample 27.0 26.4 (12.6, 51.0) 27.4 (15.8, 47.7)
Analysis 20.4 20.4 (15.6, 29.5) 20.6 (15.4, 30.6)

Table 9  The results shown in Table 7. N = 100 reproduced using CI-
RANOVA with a smaller number (1000) of simulated data matrices

(µTarget=75.8) Classical ANOVA  
( �̂�Target = 75.7)

Robust ANOVA  
( �̂�Target = 75.7)

σ �̂� Mathematical CI �̂� Bootstrap CI

Target 73.2 73.4 (63.1, 86.5) 73.4 (62.0, 89.0)
Sample 27.0 27.0 (22.3, 32.6) 27.1 (22.0, 33.6)
Analysis 20.4 20.4 (18.6, 22.7) 20.5 (18.4, 23.1)



116 Accreditation and Quality Assurance (2020) 25:107–119

1 3

estimates for the levels at which outliers have been included. 
For n = 20 with 1 outlying value (Table 11), the biases in the 
robust standard deviations range between 9 and 14 % above 
the true values for the levels with outlying values and any 
levels above. Coverage percentages for the true values are a 
minimum of 87 % for the sample level with 1 sample outlier. 
Generally, the sample level appears to show the highest bias, 
and also the lowest percentage coverage, in all scenarios 
where this level has been affected by outliers either in the 
level itself, or in the analysis level below it.

One consequence of narrowing CI’s with increasing n is 
that the lower confidence limits for high n become close to 
the true values. This is illustrated in Fig. 5, where it can be 
seen that in one case, with outliers added to 10 targets, the 
true value μTarget lies just outside the average CI for n = 100.

In the cases where outlying values have been added to 
10 % of the targets (the 2-outlier scenarios in Table 11, 

and all single outlier scenarios in Table 12), there is up 
to ~ 25 % bias at the affected levels, as previously seen in 
Table 9 where 10 outliers were added to 100 targets. This 
has caused a loss of coverage. This loss arises because of the 
bias in the robust estimate, which results in the true value 
lying below the lower confidence limit for a larger number 
of simulations.

The coverage percentage drops to 75 % at the sample level 
for n = 10 (Table 12), which may be thought to imply that the 
bootstrapping method of estimating confidence intervals is 
unreliable with this value of n. However, these experiments 
suggest that the problem lies with the bootstrap estimates 
themselves, which show some upwards bias when compared 
with the parameters of the underlying uncontaminated distri-
bution. The bootstrapping is able to accurately represent the 
random variability in the robust estimates but cannot correct 
for this bias, and hence the coverage falls below the nominal 

Table 10  Average classical and robust standard deviations and robust confidence interval estimates with three different outlier scenarios

Outliers have been applied to (a) 2 targets, (b) 4 targets, (c) 10 targets. Calculated with n = 100, using Excel CI-RANOVA with 1000 simulations. 
Raw values are provided in the electronic supplement
a Coverage% is based on the number of times the true value of the input parameter occurs within the robust CI in 50 000 simulations created by 
the Matlab program

(µTarget =75.8) �̂�Target classical �̂�Target robust Level σ True �̂� Classical �̂� Robust Robust CI Cov, %a

(a) 2 Outliers Target Level 85.7 78.3 Target 73.2 101.7 75.8 (63.7, 92.7) 92.9
Sample 27.0 27.1 27.3 (22.3, 33.9) 94.6
Analysis 20.4 20.4 20.4 (18.3, 23.0) 94.7

(a) 2 Outliers Sample Level 80.7 78.5 Target 73.2 73.1 75.7 (63.7, 92.5) 93.6
Sample 27.0 56.8 28.1 (22.9, 35.1) 91.8
Analysis 20.4 20.4 20.5 (18.4, 23.1) 94.7

(a) 2 Outliers Analysis Level 78.2 77.8 Target 73.2 73.1 74.5 (62.6, 90.4) 94.7
Sample 27.0 27.0 28.0 (22.8, 35.1) 92.2
Analysis 20.4 40.7 20.8 (18.6, 23.5) 93.4

(b) 4 Outliers Target Level 95.5 81.2 Target 73.2 122.8 78.9 (66.3, 97.9) 86.4
Sample 27.0 27.0 27.2 (22.2, 33.7) 94.5
Analysis 20.4 20.4 20.4 (18.3, 23.0) 94.8

(b) 4 Outliers Sample Level 86.2 81.8 Target 73.2 73.0 78.6 (65.8, 97.3) 88.6
Sample 27.0 75.6 29.4 (24.1, 37.2) 85.7
Analysis 20.4 20.4 20.5 (18.4, 23.1) 94.8

(b) 4 Outliers Analysis Level 80.8 80.0 Target 73.2 73.1 75.9 (63.6, 92.3) 92.1
Sample 27.0 27.1 29.2 (23.7, 37.0) 87.4
Analysis 20.4 54.0 21.1 (18.9, 23.9) 90.2

(c) 10 Outliers Target Level 125.6 92.3 Target 73.2 167.3 90.7 (75.7, 125.4) 39.3
Sample 27.0 27.0 27.2 (22.1, 33.7) 94.6
Analysis 20.4 20.4 20.5 (18.4, 23.2) 94.9

(c) 10 Outliers Sample Level 100.5 91.5 Target 73.2 68.6 87.9 (72.5, 116.0) 53.5
Sample 27.0 115.2 33.6 (27.4, 44.7) 46.6
Analysis 20.4 20.3 20.4 (18.3, 23.0) 94.7

(c) 10 Outliers Analysis Level 87.7 86.2 Target 73.2 72.1 79.6 (66.4, 97.4) 84.7
Sample 27.0 27.3 33.1 (26.8, 44.4) 55.3
Analysis 20.4 81.6 22.1 (19.7, 25.4) 71.2
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value. Thus, when this robust method is used on data that 
includes outlying values, caution is needed in the interpreta-
tion of both the bootstrap point estimates and the bootstrap 
CI’s as they relate to the parameters of any supposed under-
lying (‘uncontaminated’) distribution. This is particularly 
the case for smaller values of n (i.e. n < 100) or for large 
n values with more than a small percentage (e.g. > 2 %) of 
outlying values.

The simulations used input parameters that were derived 
from a single set of real experimental values (Table 4). 

Experiments using substantially different input parameters 
support these findings.

The effects of changing the severity of the outlying value 
by adding different amounts (the perturbation) to the original 
simulated values are shown in Figs. 6 and 7. Figure 6 shows 
that the robust estimate of standard deviation is affected 
by the outlier, but the effect is bounded as the perturba-
tion increases, whereas the classical estimate increases in an 
unbounded way and is severely affected once the size of the 
perturbation increases beyond 200, or approximately 3 × the 

Table 11  Average results of standard deviation and confidence limits (as Table 9) calculated with n = 20, with outliers applied to (a) 1 target and 
(b) 2 targets. Raw values are provided in the electronic supplement

a Coverage% is based on the number of times the true value of the input parameter occurs within the robust CI in 50 000 simulations created by 
the Matlab program

(µTarget = 75.8) �̂� Target Classical �̂� Target Robust Level σ True �̂� Classical �̂� Robust Robust CI Cov, %a

(a) 1 Outlier Target Level 101.7 83.9 Target 73.2 132.6 80.8 (55.2, 130.7) 91.3
Sample 27.0 26.8 27.3 (17.7, 42.9) 92.6
Analysis 20.4 20.4 20.5 (16.5, 27.3) 93.8

(a) 1 Outlier Sample Level 88.1 82.5 Target 73.2 73.5 80.1 (53.4, 127.9) 93.0
Sample 27.0 83.7 30.9 (20.8, 52.3) 87.0
Analysis 20.4 20.5 20.7 (16.6, 27.4) 93.9

(a) 1 Outlier Analysis Level 81.8 80.7 Target 73.2 72.5 76.7 (50.4, 116.3) 94.4
Sample 27.0 28.1 30.4 (20.2, 51.9) 88.0
Analysis 20.4 59.6 21.4 (17.2, 29.1) 91.2

(b) 2 Outliers Target Level 125.0 91.2 Target 73.2 170.9 92.1 (63.8, 157.5) 78.1
Sample 27.0 26.8 27.4 (17.9, 43.1) 92.6
Analysis 20.4 20.4 20.4 (16.4, 27.3) 93.8

(b) 2 Outliers Sample Level 100.2 90.5 Target 73.2 71.5 88.5 (58.4, 145.8) 85.8
Sample 27.0 115.1 33.9 (23.5, 61.7) 73.5
Analysis 20.4 20.3 20.5 (16.4, 27.3) 94.0

(b) 2 Outliers Analysis Level 87.8 86.2 Target 73.2 72.5 80.5 (52.1, 123.0) 93.4
Sample 27.0 28.2 33.1 (22.2, 61.0) 76.8
Analysis 20.4 81.7 22.3 (17.8, 31.4) 85.9

Table 12  Average results of standard deviation and confidence limits (as Table 9) calculated with n = 10, with outliers applied to 1 target. Raw 
values are provided in the electronic supplement

a Coverage% is based on the number of times the true value of the input parameter occurs within the robust CI in 50 000 simulations created by 
the Matlab program

(µTarget =75.8) �̂� Target classical �̂� Target Robust Level σ True �̂� Classical �̂� Robust Robust CI Cov, %a

1 Outlier Target Level 126.1 91.4 Target 73.2 174.5 91.6 (52.9, 178.0) 85.7
Sample 27.0 27.5 28.4 (16.6, 49.8) 89.5
Analysis 20.4 20.3 20.7 (15.5, 30.3) 91.9

1 Outlier Sample Level 102.3 92.1 Target 73.2 74.2 88.6 (47.1, 163.1) 91.3
Sample 27.0 115.1 33.9 (21.9, 72.2) 75.3
Analysis 20.4 20.4 20.7 (15.4, 30.5) 92.0

1 Outlier Analysis Level 90.1 88.4 Target 73.2 73.4 82.0 (39.3, 137.8) 94.5
Sample 27.0 30.2 33.9 (21.6, 72.6) 77.8
Analysis 20.4 81.8 22.5 (16.9, 35.8) 86.4
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standard deviation of the target. Figure 7 shows the effect 
on coverage of the 95 % CI’s. Coverage percentages were 
estimated by counting the number of times the estimated CI 

contained the true value of the standard deviation of the tar-
get. Coverage of the estimated robust 95 % CI falls slightly 
below 95 % due to the outlier, but stays fairly constant as 
the perturbation increases. The classical interval is severely 
affected once the size of the perturbation increases beyond 
3 × the standard deviation of the target.

Conclusion

Confidence limits on uncertainties estimated using the 
duplicate method are potentially useful to the researcher. A 
mathematical method can be used for normally distributed 
data. When outlying values are present, the robust ANOVA 
method consistently gives closer estimates of the param-
eters of the underlying distribution than classical ANOVA. 
A bootstrapping method has been devised and incorporated 
into a new computer program (CI-RANOVA) that allows the 
confidence limits of robust ANOVA to be estimated in the 
presence of outliers, for a 3-tier nested experimental design. 
When data are normally distributed within levels, the CI’s 
produced by the bootstrapping method from robust ANOVA 
compare well with an established mathematical method for 
a high n value (n = 100), with coverage percentages close 
to the nominal 95 %, ranging between 94.5 % and 95.4 %. 
When a low value of n is used (n = 10), the coverage percent-
ages are lower at 89.0 % to 92.4 %. This is consistent with 
previously reported limitations of using the bootstrapping 
method to estimate variances (See p. 181–183 in [11]).

When data with outlying values are analysed using robust 
ANOVA, the widths of the confidence intervals decrease 
with increasing n, as would be expected. If outlying values 
are deliberately added to a known (underlying) distribution, 
they result in biases in the robust estimates of variances 
against the known variances of the underlying distribution. 
This occurs both at the level where the outliers are present, 
and also at any levels above this. The biases tend to increase 
as the proportion of outlying values increases; however, the 
robust estimates are still much closer estimates of the param-
eters of the underlying distribution than those obtained from 
classical ANOVA. The simulated scenarios presented here 
suggest that the bootstrapping method as described pro-
duces estimates of confidence limits that are accurate repre-
sentations of the random variability in the robust variance 
estimates. Caution should be used when interpreting these 
intervals with respect to the parameters of a known or theo-
retical underlying distribution. This is particularly the case 
with a low n value and/or proportions of outlying values 
that exceed 2 %.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
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as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.
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