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Abstract

Research in machine discovery to date has tended to concentrate on the replication
of particular episodes in the history of science, and more recently on the extraction
of regula.rities from large databases. In this respect, current models of induction and
discovery concentrate solely on the acquisition of knowledge, and lack the flexibility of
reasoﬁ.ing that is necessary in a real-world changing environment.

Against this backdrop, this dissertation addresses inductive reasoning, specifically
based around the scientific discovery paradigm. A framework for inductive reasoning
is presented which includes the six stages of prediction, experimentation, observation,
evaluation, revision and selection. Within this framework, different kinds of inductive
reasoning can be reduced to the same basic component processes. The difference be-
tween the various kinds of reasoning arises not through the use of different mechanisms,
but through the influence of motivations which bias the application of these mecha-
nisms accordingly. Also within this framework, a model and its implementation as a
computer program, the MID system, have been developed, concentrating primarily on
the internal stages of the framework, prediction, evaluation, revision and selection. The
role of motivations in allowing reasoning for both knowledge and action is investigated
and implemented in the program. By choosing different internal models of motivation for
reasoning systems, different behaviours can be achieved from the same basic architecture.

The MID system reasons in simple physical domains, both for knowledge and for
action. It demonstrates how a basic mechanism can be used to provide an effective means
for reasoning in a variety of contexts, and also how a simple motivational representation

can be used as an effective control strategy.
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Chapter 1

Introduction

The unity of all science consists alone in its method, not in its material.

— Karl Pearson, The Grammar of Science

1.1 Introduction

Throughout history, much of human endeavour has been directed at increasing the knowl-
edge available about the world. An important aim of science is, arguably, to increase our
understanding of the world in order that we may explain and predict events as part of
an ongoing effort to mitigate the effects of our environment. Such is the importance of
knowledge and scientific progress that the nature of science as an activity in itself has
also been studied extensively. The investigation of scientific reasoning is being pursued
along a number of fronts, inspired by episodes in the history of science, and by the re-
wards that will be provided by a better understanding. Many different accounts of the
nature of scientific activity have been suggested, ranging from philosophical attempts to
define it logically through to sociological and historical analyses. More recently, artificial
intelligence (AI) has provided techniques that allow scientific reasoning to be investigated
computationally. This thesis is concerned with the development of a computational ap-
proach to what we call scientific reasoning.

Scientific reasoning, and in particular induction and discovery, can be applied not
only in scientific domains and contexts, but also to more common situations. This thesis
claims that it is possible to provide a common framework within which different varieties
of inductive reasoning are unified, and from which a strong model of inductive reasoning

can be developed. By breaking down the reasoning procedure into its component parts,
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each component can be investigated separately and its role in the different kinds of
reasoning considered. In doing this, problems are identified, and a flexible and robust
model of reasoning that allows for these variations can be developed.

This chapter begins by discussing the role of knowledge in artificial intelligence and
its associated problems, outlining some of the deficiencies of current ‘intelligent’ systems.
It continues with a clarification of what is meant here by scientific reasoning, discovery,
induction and other terms which have become confused over time. Some background is
then introduced to provide a general perspective on the relation between this and other
work. Finally, the aims and motivations of the work are discussed, and an overview of

the thesis is presented.

1.2 The Role of Knowledge in Intelligence

The significance of knowledge in intelligence is undeniable. It is widely held that knowl-
edge is the primary force behind any system that can exhibit intelligent understanding
and action at a high level of competence (eg. [68]). If it is not the primary force, it is
certainly a necessary force. Without knowledge, or even just with little or poor knowl-
edge, the capability for intelligence is seriously curtailed. Currently, a number of research
efforts (such as the CYC project [69]) are directed at encoding a large and varied body
of knowledge in the belief that this will enable the construction of general intelligent
machines. Expert systems demonstrate very effectively the capabilities of knowledge-
based technology at one end of the artificial intelligence spectrum. The knowledge that
is encoded within an expert system is typically limited to a small domain of application,
however, but provides a useful and effective means for ‘understanding’ that domain.
Such knowledge-intensive techniques face many shortcomings, however. No matter
how simple the computational machinery involved, the problem of knowledge acquisition
cannot be avoided, and should not be underestimated. The difficulties of expertise elici-
tation and knowledge transfer, for example, are well known (see Gaines [25]), and suffice
it to say here that knowledge-based systems must not only be judged on performance,
but also on the work required to acquire that knowledge in the first instance. In addition,
acquisition of expert knowledge requires that all forms of potential interactions with that
knowledge be anticipated beforehand to ensure a proper functioning of systems that use

it. Furthermore, the explicit encoding of knowledge imposes restrictions upon the con-
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tent of the knowledge base that may later prove critical in any one of a number of tasks
undertaken, including the ability to learn effectively.

Our understanding of what constitutes knowledge itself is problematic, but whatever
notion of knowledge we may adopt, knowledge is ultimately dependent upon the changes
that occur in our environment over time. Knowledge, in many ways, is in flux. In other
words, what might be correct or consistent at one time might not be so at another. The
world is a dynamic fluid system, which demands that any repository of knowledge be
easily and efficiently modified so that it remains consistent with a changing reality. In a
concrete, real world context, we can relate this to the changes in our environment which
influence our everyday actions. For example, the knowledge that Margaret Thatcher is
Prime Minister might be encoded, only to discover some months later that this is wrong,
and that John Major is Prime Minister instead. (In reality, we know that the situation
of any single person being Prime Minister is only temporary, so we should allow for the
modification of that knowledge.)

Furthermore, knowledge, in a global sense, is not complete. Continually, we discover
more and more about the world in which we live; we discover things that were not known
before. This applies just as equally to scientific research which we can think of as com-
munal knowledge, as to individual knowledge about our own individual environment. For
example, advances in medicine (communal, scientific knowledge) have lead to a greatly
decreased infant mortality rate. At an individual level, one might ‘discover’ that a tube
of toothpaste is empty. In short, there is always the potential to add to knowledge,
and we must make allowance for the addition of such newly-discovered knowledge to our
knowledge bases.

Recent work in AI has begun to address these issues as a result of different lines
of research. First, the problems associated with using static, fixed and rigid knowledge
bases have been recognised, and the need for more flexible techniques allowing dynamic
modifications to be made to such knowledge bases identified. Second, research in the
philosophy of science, particularly that which is concerned with scientific discovery and
induction, has been given a new impetus with the advent of computational techniques
and, consequently, computational models of discovery are now being developed. Third,
a move towards consideration of real-world problems and scenarios, and their associated
variability, has necessitated a reappraisal of knowledge (and belief) as fluid and subject

to change.
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As progress continues in other areas of research concerned with using explicitly en-
coded knowledge, these issues are becomning ever more important, demanding the devel-
opment of systems which are capable of effective knowledge management as an inherent

part. Such capabilities will enable:

o The automatic generation of knowledge bases, avoiding the problems of knowledge

acquisition with human experts.
e The speedy construction of prototype domain theories.

e The modification of incorrect or inconsistent knowledge, including the imperfections

permitted by rapid prototyping.

The addition of newly-discovered knowledge to existing domain theories.
e The maintenance of correct knowledge in a rapidly changing environment.

This more closely mirrors the way things work in real world situations, and provides a

sound basis for learning systems.

1.3 Scientific Reasoning

1.3.1 Introduction

The above discussion identifies a number of problems that remain largely unsolved in
Al Classical logically valid reasoning techniques, primarily deduction (but also other
reasoning methods), while having a definite role to play in artificial intelligence, are
unsuitable here precisely because of their rigour. Deductive inferences are ezplicative in
that they reveal the relationships in existing knowledge, and allow for transitions between
small basic components and large complex structures. By contrast, what might loosely
be called scientific reasoning, aims to create new knowledge, to extend the knowledge
that may already exist. It is scientific in that it follows the aim of science in increasing
knowledge about the world. It is complementary to formal logic, but since it does not
lie in the realm of formal logic, it is not guaranteed to be correct or even to draw
an inference at all. Scientific reasoning broadly encompasses induction and discovery

techniques. These are considered below.
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1.3.2 What is induction?

There are many different concepts of what constitutes induction, and many different levels
of detail to that understanding. This is, in part, due to the different emphases that have
been placed on it by a variety of diverse groups and individuals. Philosophical concerns
with the logical (or otherwise) validity of induction may be different to those of computer
science interested in achieving certain results, and both of these will be different from
psychological concerns with induction which stem from understanding how it is used in
human reasoning processes. Even within the same field, judgements and concepts vary
to a great degree. A notable example is that of Mill who regarded induction as a logical
procedure analogous to deduction in contrast to the vast majority of the philosophical
community of the time. The continuing presence of heated debate and disagreement
over the nature and role of induction is indicative of its significance. The ambiguity
surrounding it and the lack of a consensus over definition embody the expressiveness
that is inherent. Yet in order to discuss induction mea.nj.ngfu.lly, we must tie it down to
definite ideas and procedures. Here, then, we aim for an informal yet clear description
of what we mean by induction.

First of all it is important to draw the distinction between scientific induction, which
concerns us here as a means for addressing the above issues, and mathematical induction,
which is an entirely different matter. Scientific induction is so called because of its original
invocation as a suitable reasoning method for science or for discovering knowledge, and
because of the now dismissed claim that it provided a logically valid complement to
deduction.

The view that science proceeds by inductively inferring laws directly from observations
without intermediate hypotheses was always problematic, and is now discredited. In its
place has arisen the notion of a methodology or programme for science rather than a
rigorous logical procedure. Traditionally, such methods have avoided the problem of the
creation of hypotheses in the first instance, and instead concentrated on the testing, and
refutation or revision of hypotheses as appropriate. The hypothetico-deductive method
which addresses these later stages of induction through logical analysis has been subjected
to much criticism. We take a pragmatic position on this, recognising the role of elements
of the hypothetico-deductive method in some form in scientific reasoning and also in

everyday reasoning, and noting the power that it brings to computational models of such
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reasoning.

A dictionary definition takes induction to be the process of inferring a general law or

principle from the observation of instances. This is close, but requires a little modification.
Definition Induction is the process of inferring an explicit general conclusion primarily
from observation of instances.
This allows the notion of inference and the kind of conclusion to be interpreted in a
number of ways, but requires that the premises of an inductive argument are observations.
It extends the scope of induction through to all domains and contexts, not just scientific
ones.

By induction, then, we mean scientific induction as denoting reasoning that is based
on empirical evidence obtained through observation of the world. Induction in this sense
may thus be harnessed through a methodology for reasoning such as discovery. It can be
seen to provide constraints on the nature of the reasoning laid out in a more precise and

well defined system.

1.3.3 What is discovery?

As mentioned above, the notion of induction of laws directly from observations is in-
adequate. In response to this, a shift away from the notion of induction as a logical
procedure introduced the concept of a system of scientific discovery for ‘doing science’.
Such systems set out rules of procedure for a programme designed to uncover laws and
principles governing the nature of the world. Many programmes of discovery have been,
and continue to be devised. Traditionally, these have been inductive, only admitting
observations as a basis for reasoning, or at least excluding those parts of the programme
which may suggest other influences, asserting that they are outside science. More re-
cently, work on scientific reasoning has acknowledged the role of other factors, including
such techniques as analogical reasoning, in the scientific process. Discovery is a broad
notion that admits many factors and influences.

Discovery is usually restricted to science. This is a restriction on the reasoning pro-
cess to the communal knowledge mentioned earlier, but there is no reason why it should
not also apply to tndividual or non-scientific knowledge. Discovery is difficult to define
because of disagreement about what it is that constitutes discovery, and how broad its
scope should be [130]. We can define discovery as follows:

Definition Discovery is the process of finding out new knowledge.

19



This definition applies as easily to individual knowledge as it does to communal knowl-
edge. What is known to one person may yet be discovered by another.

This thesis concentrates on inductive discovery — that is to say it is concerned pri-
marily with discovery that is constrained by a reliance on empirical observations. The
word discovery denotes the nature of the problem or the task at hand, while the word
inductive denotes the kind of reasoning used to address it; inductive reasoning as opposed
to analogical reasoning or any other. Thus we can define inductive discovery:
Definition Inductive discoveryis the process of finding out new knowledge from obser-
vation of instances.

In this thesis, the terms induction, discovery, and inductive discovery will all be
used to denote the same thing, discovery of the inductive kind, unless explicitly stated
otherwise. Indeed, these terms are usually used to refer to the same kind of reasoning

process, but in different contexts.

1.4 Perspectives on Induction and Discovery

As with much of Al, scientific reasoning has its roots deep in the history and philosophy of
science. An aim of science can be thought of as the acquisition of knowledge through ex-
perimentation and observation of the world. Attempts to achieve a better understanding
of nature have thus spawned many methodologies and programmes for science. Psychol-
ogy, too, is intimately bound up with AI in the investigation of intelligence, with areas
devoted to investigating and understanding human thought and reasoning processes.
The concern of this thesis is not with philosophical or psychological models or the-
ories. Emphasis is placed firmly on a computational approach. It would be reckless,
however, to ignore the vast amount of research that has been directed at the problems
considered here from these alternative but complementary points of view. Indeed, the
advent of the computer has provided a new impetus both to philosophical and psycho-
logical research on discovery and induction (see, for example, [116, 117]) which links up
strongly with AI. Thus we can look to psychology, philosophy and other fields for inspira-
tion towards solving many of the problems that confront us in AI. We might differentiate
between philosophy and psychology by saying that the concern of psychology is with
understanding these processes in humans (and animals) while the concern of philosophy

is with developing valid and effective processes for achieving greater knowledge of the
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world. The distinction is not firm, however, and in areas of cognitive science, for exam-
ple, philosophy and psychology merge in some of these points. It can be argued that
much of Al research follows on from long strands of research in the philosophy of science

and psychology, and as such it is important to provide some background.

1.4.1 A Philosophical-Historical Perspective

Although the discussion and investigation of knowledge, and what is now known as science
and the philosophy of science can be traced as far back as Plato and Aristotle, the usual
starting point for a discussion of the work in this area is the Seventeenth Century. This
is primarily due to two factors. First, the philosophers and scientists of the time believed
that their work was something entirely different from what went before, although as has
been pointed out [82], there are strong links to Aristotle and Plato. Second, the sudden
and rapid advance of science in the Seventeenth Century, with scientists such as Galileo
and Newton producing remarkable and significant results, provided a new impetus to

investigating the question of how knowledge, scientific or otherwise, was acquired.

Early Empiricism and Naive Inductivism

Empiricism is usually defined as, “the thesis that all knowledge of matter of fact as
distinct from that of purely logical relations, is based on experience [21].” Francis Bacon,
an important forerunner of the empiricist tradition, was perhaps the first significant
contributor to the methodology of science though he made no real contribution to science
itself. He gave examples of the use of his new methodology which was intended to search
for the causes of observed effects. Briefly, it involved the formulation of hypotheses,
the consequences of which were then tested against new data. This would lead to the
elimination of hypotheses which were incorrect, and eventually to the true explanation of
the effect. However, it depended for its success on a wide base of empirical information.

The fact that Bacon made no significant contribution to science itself is important
because a short while later, Isaac Newton, whose contribution to science concerning
mechanics and optics was phenomenal, denied the use of hypotheses in his reasoning.
He argued that certainty was required, and that it was to be achieved by reasoning
inductively from experiments and observations alone. A belief in the uniformity of nature
allowed the use of experimental ‘proofs’ and the deducibility of general conclusions from

these observations. Whether or not Newton actually used hypotheses in his own reasoning
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is a matter for debate. The important point here is that he claimed that hypotheses were
neither necessary nor desirable for inductive reasoning.

His claim of direct inference of general laws from specific observations which might
appropriately be called nasve inductivism because of the lack of any intermediate hy-
potheses, became part of the problem of induction. This came to the fore with Hume
(who formulated it as such) much later. On considering the matter of causality [44],
the question was raised of whether or not it is reasonable to believe in the uniformity of
nature, or whether there are ever grounds for believing that exact conclusions can be at-
tained by an inductive argument. Hume, however, denied the principle of the uniformity
of nature, giving a psychological account of our belief in it. Inductive generalizations are
never justified. Yet Hume provided a set of rules for scientific inquiry, a methodology,
despite his misgivings over causation and induction, and in other works he recommended
one of Newton’s rules of reasoning which embodied the essence of naive induction. This
inconsistency seems to reveal some pragmatism, and an identification of the need to avoid

paralysis of action.

Logical Positivism

The empiricism of Hume and more contemporary empiricists provided a foundation for
the very influential school of logical positivism (or logical empiricism) which was estab-
lished in the first half of this century. The empirical component maintained that all
knowledge must be grounded on experience. This was fixed in the verifiability principle
which stated that the meaning of a proposition consists in the method of its verification,
which is whatever observations (as experiences) show. Questions of theology and meta-
physics are thus neither true nor false, but become meaningless and inadmissible as a
consequence of their unverifiability. The logical aspect of the programme was intended to
systematize science through the manipulation of empirical propositions using symbolic
logic in an attempt to provide a formal rendering of its structure. Any proposition that
is not observable (ie. theoretical) must thus be indirectly determined via observational
propositions and the use of logic to specify the relationship between the two.

In the discussion of induction, the Logical Positivists made two important contribu-
tions. First, they distinguished between the context of discovery in which hypotheses
were developed, and the context of justification in which they were assessed. The discov-

ery of hypotheses was a problem that was left to psychologists to explain, since it was
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considered that it might well be nonlogical. Second, the emphasis on verification led to
the development of the notion of confirmation. They maintained that collecting positive

evidence confirming a hypothesis should increase the confidence in its truth.

Against Verification

Logical Positivism, in attempting to unite the rigour of logic with the epistemology of
empiricism, admitted serious flaws. These were most effectively exposed by Karl Popper
(among others), who proposed an alternative methodology for science [87]. In particular,
the difficulty that general empirical statements cannot be verified because of the problem
of induction was a major concern, and Popper attempted to avoid this by replacing the
traditional concept of confirmation with falsification. Falsificationismis based on the fact
that logic permits the establishment of the falsity but not the truth of theories in the
light of observations. Science thus begins with problems for which falsifiable hypotheses
are formulated as solutions. These hypotheses are then subjected to experimentation and
criticism in the course of which some will be deductively refuted while others may remain.
In the course of testing these hypotheses, the data collected may lead to new problems
which will need to be accommodated. This leads to the introduction of new hypotheses
which must, in turn, be tested. Popper contends that the continual application of this
method of conjectures and refutations is the basis for the progress of science. A hypothesis
is never regarded as being true even if it has passed a wide variety of stringent tests, but
it may be considered superior to its predecessors.

There are a number of important points here. Like the Logical Positivists, Popper
recognises two distinct phases in science, the imaginative phase as discovery and the
critical phase as justification. He only considers the critical phase in his programme
since he regards the invention of hypotheses as being irrational and outside science.
Falsifiability is also used as a criterion for demarcation between science and non-science,
those systems which are unfalsifiable such as astrology being deemed pseudo-science and

unsuitable for reasoning, since they can never be refuted.

1.4.2 A Psychological Perspective

Psychological approaches to the problem of scientific discovery have been distinguished
from others as involving analyses of the actual behaviour of humans engaged in aspects

of scientific reasoning [126]. Klahr et al. [49] further divide the psychological approaches
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into those which use a retrospective analysis of the scientific record of real scientists mak-
ing real discoveries, and those which recreate simulated laboratory contexts for scientific
discovery. The first of these can be considered an historical approach. The second has
enabled a detailed analysis of the behaviour of subjects under highly controlled condi-
tions, and an immediate investigation of the thought and reasoning processes involved.
It does, however, suffer from the drawback that it is only analogous to science rather
than being actual science. Nevertheless, there is a history of solid psychological research
into induction and discovery, with concerns ranging from human acquisition of sequential
patterns thirty years ago (eg. (132], [109],(50]) through to current efforts explicitly con-
cerned with the nature of human scientific reasoning in more realistic discovery problems
(eg. [49], [20], [99]). A recent review of much psychological research on discovery can be
found in [33].

This work shares a concern with the manner in which people actually reason, but
the emphasis here is not on modelling human cognition, but on developing effective

techniques for scientific reasoning that exploit the capabilities of computers.

1.5 Aims and Motivation

Research is currently being carried out on many aspects of discovery in many forms from
a variety of perspectives. Work is being done on theory revision, theory formation, theory
choice, numerical discovery, and so on. All of these are relevant, yet the plethora of terms
and apparently different paradigms has led to a fragmentation resulting in a collection of
distinct parts. Important motivations of this research are the belief that these divisions
have been artificially contrived, the desire to establish not just another account, but an
encompassing framework as a basis for relating differing models, and the construction of
a sufficiently general model of inductive discovery.

In particular, it is intended to show in this thesis that the varieties of induction and
discovery all involve essentially the same kind of reasoning, but with that reasoning being
controlled and distinguished through different motivations and priorities on the part of

the reasoning agent. The contributions of this thesis can be stated as follows:

¢ The development of an encompassing framework that includes all stages of inductive
discovery. This will provide a basis for evaluating and comparing different models

and a means for integrating the various component parts. The framework should
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include not just those stages (see Chapter 2) which are immediately obvious and
lend themselves easily to computational and psychological models, but also those
stages which are difficult to address and often ignored because of the limitations of

current technology and research, and the problems of integration.

¢ The development of a model of inductive reasoning using this framework based on
the scientific discovery paradigm. Basing the framework on a particular paradigm
provides a frame of reference for discussion and debate of the different elements.
The scientific discovery paradigm is a view of induction that we take to be useful and
effective because of the emphasis on a methodology and procedures for reasoning

which allow wide and easy application.

o The extension of the scientific discovery paradigm of induction to apply both to
scientific and non-scientific domains. Most AI (as opposed to psychological) re-
search on discovery has concentrated on purely scientific domains, much of it with
assumptions of idealized data that are often associated with science. Mechanisms
of scientific discovery and reasoning should also be capable of use in non-scientific

domains which more readily admit a less idealized model of the world.

o The extension of the model of induction to consider the subjective factors such as
goals and motivations that are necessary for a complete account. Real world prob-
lem solving in both scientific and non-scientific domains involves both objective and
subjective elements. The richness of scientific reasoning is due to the guidance of a
basic mechanism by the more varied and subtle influences of subjective collective

and individual factors.

¢ The construction of an implementation of the internal stages of the model of in-
duction as a demonstration of its capability and effectiveness. Although an instan-
tiation of the model as a computational implementation unavoidably loses some
expressiveness for numerous reasons, it is important to demonstrate its ability, and
to bring to light limitations. An implementation can be regarded as an experiment
designed to test the model of induction proposed here leading to the revision and

improvement of this model in a continuous process.

The research undertaken in providing this account of induction and discovery was

guided by a number of operating principles which are of particular significance in terms

25



of its development and contribution.

e Simplicity contributes to ease of development, evaluation and refinement. The
vast amount of research on Al has led to an ever growing variety of tools, and
methodologies for using those tools of ever increasing complexity. Arguments for
what has been called ‘minimalist AT’ suggest that there should be a limited range
of tools and methodologies which should only be added to when they can be shown
to be inadequate [86]. This is based on the premise that advances are not made
by increasing the number or complexity of tools, but from a small range of simpler
tools applied in useful ways. An important consequence of this approach is that it
allows the merit of such simple tools and methodologies to be evaluated easily and

the tools to be revised as appropriate.

e The minimalist approach to Al is also more intuitive. Simpler theories and models
are far more easily understood. This thesis does not aim for cognitive validity or
plausibility, but it is hoped that it may suggest avenues to explore and investigate in
the development of cognitively plausible models of human reasoning. The intuitive
appeal of simpler theories allows a more ready interaction with other theories and

models, cognitive or otherwise.

e Theoretical frameworks and models should not be tied to a particular discipline.
The complementary disciplines of artificial intelligence, philosophy, psychology (and
others) share some common goals but are subject to different traditions and em-
phases. Although research in a particular discipline must work to its own strengths,

concerns, and abilities, it should also be accessible to other relevant fields.

o The preservation of motivations and external influences is important. Any inten-
tional act in the world, physical or mental, is necessarily the result of the interaction
of goals, motivations and other external influences. Any theory or model of reason-

ing must consider the role that such factors play in the larger picture.

1.6 Thesis Overview

More attention is being paid to the possibility and potential of automated discovery pre-
cisely because of recent progress. The significance of computer programs is also having

an impact on the philosophy of science (eg. [58]), practical results being used effectively
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to demonstrate certain capabilities. Much work remains, however. The next chapter
discusses induction and discovery in more detail, stating more precisely how it is viewed,
what it offers, and the role it has to play in reasoning. It describes a new six-stage frame-
work for inductive discovery which encompasses prediction, ezperimentation, observation,
evaluation, revision and selection, and which provides a viewpoint from which to consider
related work and to identify problems and deficiencies. A brief overview of some related
work is also given, providing a base for more detailed discussion subsequently.

In Chapter 3, the notion of motivation is introduced, first in general terms, and then
with regard to its use in providing a control strategy for a reasoning system. A model of
motivations is described and its application to different stages of discovery is discussed.
Chapter 4 outlines the MID system for motivated inductive discovery. Based on the
six-stage framework, a model of inductive discovery and an instantiation of that model
are constructed in parallel. MID is a reasoning system that operates in the world of
simple physical processes. The chapter provides an overview of the system, describing
the knowledge representations, the main control strategy and the structure.

Subsequent chapters are concerned with the investigation of the individual stages of
the framework. The latter stages are considered in depth, with significant details of the
model and implementation being described. Chapter 5 addresses the first three stages of
the framework — prediction, experimentation and observation. In the MID system, these
stages are limited. The chapter discusses the role of the different stages, and considers the
problems raised by each. Chapters 6, 7 and 8 address the stages of evaluation, revision
and selection respectively. Finally, the results of the implementation are presented, and

conclusions offered, evaluating the contribution that this work has made.
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Chapter 2

Six-Stage Inductive Discovery

To be able to give attention to something, it is first necessary to abstract
or isolate its main features from all the infinite, fluctuating complexity of its

background.

— David Bohm and F. David Peat, Science, Order and Creativity

2.1 Introduction

Induction has been considered to be very many different things. This thesis is concerned
with induction as a form of scientific discovery for two reasons. First, scientific discovery
is a process that occurs in the real world. Many examples of actual discovery have been
observed and recorded, and these provide a basis for analyses of the reasoning methods
used by real scientists. This has led to the identification of temporally and physically
distinct elements in the discovery process which strongly support the notion of inductive
discovery as a methodology for reasoning rather than a single ‘magical’ process. Second,
the underlying motivation behind scientific reasoning (and discovery) is one of increasing
knowledge, understanding and awareness of a natural external environment in order to be
able to explain, predict and possibly manipulate that environment. The second of these
provides us with a large part of what we want to achieve in AI — to explain, predict and
manipulate our environment. The first, if the notion of a methodology for discovery is
even partly correct, provides us with a suitable means (in AI) for achieving it.

This chapter begins by discussing just what might be expected from the investigation
of inductive discovery in the context of AI, and stating a position on the possibility

and potential of automating discovery. Then follows the description of a framework
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for a methodology of inductive reasoning which is based around notions of scientific
discovery, but which subsumes other models of inductive reasoning. A brief and selective
introduction to related work is then given, outlining the structure of other systems, and

finding points of correspondence between them and the framework.

2.2 The Possibility of Automating Scientific Discovery

Exactly which elements of scientific discovery, if any, are rational or susceptible to rational
enquiry, is the subject of a continued and heated debate. Views held range over the entire
spectrum of opinion [58]. If we are to attempt to automate the process of discovery,
however, we must be clear about what it is that we hope to achieve, and must therefore
decide whether it is at all possible and if so, in precisely which parts and how.

The traditional view of scientific discovery holds that there is a clean and simple
division between the contexts of discovery and justification. The context of discovery
is concerned with the creation of hypotheses and theories, while that of justification is
concerned with the testing of those theories and their subsequent refutation or contin-
ued use (at least temporarily). Discovery is deemed irrational and outside the scope of
theories of scientific discovery, while the logical procedures of justification are capable of
rational investigation (and by extension, automation). There are arguments against the
rationality of justification, but these are limited and narrow, and shall not be considered
here. The context of discovery is particularly problematic because it lies outside rigorous
logical procedures, and is often explained by reference to insight, intuition, creativity,
and a host of sociological and psychological factors. It has consequently been referred to
as the ‘Aha reaction’. Certainly, hypothesis formation has a richness that is due to an ex-
tensive range of experience, but to exclude it from the bounds of possibility is premature.
Work on analogy, for example, focuses on just this problem in finding suitable analogical
mappings for solving problems. Recent research in Al has demonstrated the effectiveness
of reasoning by analogy in hypothesis formation for problem solving (see, for example,
(47], [134]). Though still limited, it offers proof of the possibility of methods for discovery.
Yet such methods of hypothesis formation lie outside the scope of induction, since they
rely on substantial amounts of existing knowledge rather than empirical observations.
Given some initial theory, however, the task of theory formation is transformed to one

of theory revision of an incorrect theory based on observations. This is an altogether
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different problem, and if the lack of a theory is treated as a null theory, then the theory
formation problem is avoided entirely. A methodology for scientific discovery based on
theory revision can as easily accommodate theories generated by other techniques (such
as analogy) as it can theories revised on the basis of observation, and has the potential for
the combination of such complementary techniques in a unified and integrated approach

to scientific reasoning. This thesis, however, is confined to inductive discovery.

2.3 A Six Stage Framework for Inductive Discovery

2.3.1 Introduction

In response to the fragmentation of induction and discovery that has occurred over recent
years as noted in the previous chapter, a new unifying framework for inductive discovery

is proposed [72]. It entails six stages:

1. Prediction. Deductively generating predictions from a domain theory and sce-

nario.

2. Experimentation. Testing the predictions (and hence the domain theory) by

constructing appropriate experiments.
3. Observation. Observing the results of experiments.

4. Evaluation. Comparing and evaluating observations and predictions to determine

if the domain theory has been deductively refuted.
5. Revision. Revising the domain theory to account for anomalies.
6. Selection. Choosing the best resulting revised domain theory.

The framework is a cyclical one, repeating until stability is achieved with a consistent
domain theory. It begins with prediction which entails generating predictions for a given
scenario, and then subjecting these to some kind of ezperimentation. Through observation
and evaluation, the results of the experiment are compared with the predictions and,
in the event that they are consistent with each other, no action is necessary. If the
observations and predictions are anomalous, however, the domain theory must be revised,

and a suitable revision selected to be passed through to the beginning of the cycle for use
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in generating new predictions. Even when no failure occurs, the domain theory is still
liable to provide anomalies at a later stage.

The framework is shown in Figure 2.1. Theories are represented by small thick-
edged boxes. The original domain theory in the top left-hand corner is the input to the

framework which may be a null theory if the domain is new. Shown in the figure are
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Figure 2.1: The progress of theories under the six-stage framework of inductive discovery

the different kinds of information that the framework requires in addition to the domain
theory. In order to be able to design and carry out experiments, for example, substantial
amounts of domain background knowledge as well as domain independent knowledge are

required. Thin arrows indicate the flow of knowledge and information involved in each
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stage. Thick black arrows indicate the direction of the cycle.

2.3.2 Prediction

Perhaps the least troublesome part of the cycle is prediction. This is a simple deductive
procedure that draws logical inferences from a domain theory and background knowledge
given a description of a particular scenario. In order to make sense of our environment,
we continually anticipate the effects of our actions, and of external factors — we make
predictions about what will happen next. Usually, our predictions are correct and we
anticipate well, but there are instances when the predictions fail, and we must deal with
these failures later on in the cycle.

Generating predictions can be an expensive procedure, however, demanding time and
resources which may not be available. We might for example be able to predict first,
second and third places in an election, yet if we are only interested in who wins, only
one of the predictions needs to be generated. This is related to the motivations of the
reasoning agent, in the context of which the relevance of predictions can be assessed.

It is not necessary even to have an initial domain theory here. However, if we lack a
theory, then we cannot generate predictions and must experience some kind of prediction
failure when we observe events not anticipated. This will lead to the gradual construction
of a new theory directly from observations.

In terms of the hypothetico-deductive model, the domain theory is the hypothesis

from which we draw deductive inferences which are then subjected to experimentation.

2.3.3 Experimentation

Once predictions have been generated, they may be empirically tested, and the results
of these experiments can be compared with the predictions to determine if the domain
theory (or indeed background knowledge) is, as much as possible, correct and consistent.
This implies a certain requirement on domain theories that has not yet been mentioned
— that they be refutable, or falsifiable. According to Popper [87], we may consider as
scientific, only those theories which are falsifiable. Anything else, he instructs, including
such diverse fields as astrology, Freudian psychology and so on, must not be considered,
and must be relegated to non-science. Our position is pragmatic; in such a programme of
inductive reasoning, unfalsifiable theories cannot be the subject of inference because the

programme proceeds through experimentation and subsequent refutation. Moreover, an
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important aim of this thesis is to show that induction and discovery do indeed apply to a
broad range of domains, without regard to what is or is not scientific. Our requirement of
falsifiability is necessarily independent of domain, and independent of concerns with the
demarcation of science. Furthermore, in a computational implementation, we implicitly
impose the restriction of falsifiability through the representation of the theory. The
constraint of falsifiability constrains the kind of theory that we can reason about.

We can think of experimentation as being one of two kinds. First, there are active
experiments in which the experimenter carefully constructs apparatus, or forces controlled
environmental conditions with the aim of testing a particular characteristic or condition
of a theory. Included in these are typical laboratory experiments. Alternatively, and
more commonly, there are passive experiments which include any situation for which an
expectation is generated, but for which there is no explicit theory. For example, squeezing
a tube of toothpaste when brushing teeth is a passive experiment which has no controlled
conditions, but which will determine if the expectation of producing toothpaste is correct
or not. Both of these are important. When concerned with the problem of specifically
acquiring knowledge in narrow domains, active experiments are prevalent. In normal
everyday affairs, passive experiments are the norm unless they meet with a prediction
failure. In this case, it is typical to switch to active experiments to find the reason for
the failure, if necessary.

Thus experimentation is responsible for designing and constructing experiments in
order that imperfections in the theory may be detected and corrected. This leads to

observation, an important but often neglected stage in the inductive reasoning cycle.

2.3.4 Observation

We intend this to be a complete and encompassing framework. Were we to exclude ob-
servation, it would not be so. Although observation immediately appears transparently
simple, requiring merely that changes in the environment be observed and recorded for
future reference, it is a little more complicated. (It should be noted that observations
may be forced by the use of controlled experiments, or may occur independently.) Obser-
vations are compared with predictions and used to decide whether the domain theory is
acceptable, or whether it needs to be revised. We shall see later that recording the results
of experiments is important in order to avoid oscillation in revising domain theories. In

addition, there have been criteria proposed for evaluating theories, such as confirmation,
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corroboration, etc., that may make use of this observational data.

Ideally, we would want an independent observer, a system capable of perceiving the
external world, filtering out irrelevant information, and providing observations as input
to the reasoning system. This is some way away. Even if it was possible to provide such
an observer, there are definite difficulties, and some suggest that observation cannot be
objective and can only be possible in the context of some existing domain theory. In other
words, it is suggested that observations are interpreted before they enter the reasoning
system!. For the moment, this is irrelevant since the point at which we can construct
such a system has not yet arrived, and it is beyond the scope of the current research.

Nevertheless, an appreciation of the difficulties ahead is important to this framework.

2.3.5 Evaluation

At this point, the experiment has been carried out, the observations have been recorded,
but it remains to decide whether or not the domain theory has been falsified, whether
or not it is acceptable. To make this decision, we need to be aware of a number of
influential factors and to evaluate the evidence in this light. Principally, this is concerned
with the quality of the evidence. If an inductive reasoning system is to be of value, then
it must be able to cope with both experimental and observational error, and must be
able to evaluate them in an appropriate context. Little needs to be said about the
occurrence of errors, for it is undeniable that they are always present to some degree. It
is, however, unacceptable to pretend to cope with them by introducing simple tolerance
levels. Experimental evidence must be evaluated relative to the current motivations of a
system, taking into account the implications of success or failure. In medical domains,
for example, even a small degree of error may be unacceptable if it would lead to the loss
of a patient’s life, while weather prediction systems may, in certain circumstances, allow

a far greater error tolerance.

2.3.6 Revision

If it is decided that the domain theory has been falsified, then it must be revised so
that it is consistent with the falsifying observations. Alternatively, new theories may

be introduced or generated by another reasoning technique such as analogy, case-based

!This is a contentious issue, and the subject of much debate. Hacking [34], for example, argues against

this.
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reasoning, etc. The problem of creating new theories beyond direct observation is outside
of this framework. Yet we do allow for their introduction into the inductive cycle, and
in addition we allow for new theories based solely upon direct observation.

Revisions to the domain theory should include all those possible within the restrictions
of the knowledge representation used that are consistent with the observations. This leads
to the problem of combinatorial explosion, however, and the revision process should
therefore be additionally constrained by heuristic search, the search heuristics being
considered in the next and final stage. Allowing all revisions, potentially at least, is

important in order that they are not pre-judged out of context.

2.3.7 Selection

As mentioned above, this is not really a separate stage, and proceeds in tandem with
revision, but the task is distinct. Since the number of possible revisions to a given
domain theory is extremely large, there must be criteria for selecting those theories
which are better than others. Many criteria for rating theories have been proposed, such
as simplicity, predictive power, modesty, conservatism and corroboration.

However, selection of theories must be in context. This means that the goals and
motivations of a system are relevant to the task of judging which criteria are more
important in evaluating a theory. The way in which these criteria are applied depends
upon the context in which they are used and the need for which they are used. For
appropriateness of use in many situations, we may prefer Newton’s laws to Einstein’s,

but in other circumstances, only Einstein’s may be acceptable.

2.3.8 Summary

In these six stages lies our framework for inductive reasoning. We reflect Lakatos’ method
of proof and refutation [57], proposing, refuting and revising theories as necessary and
appropriate until we arrive at a theory which suffices for the particular purpose at hand.
More than that, we see this as a continuing process, always waiting to be invoked at the
next inconsistency which is unlikely to be far away.

It should be pointed out that the temporal ordering on stages is not strict, and that
a degree of interaction between stages is possible and sometimes necessary as will be
discussed later. Briefly, though, there are three main times when this occurs. Prediction

and experimentation are intimately related, since predictions are made in the context
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of some situation or experiment. Evaluation and observation (and to some degree ex-
perimentation) are also linked in that evidence judged to be inadequate may require
re-observation (or re-experimentation). Finally, part of the selection stage occurs in

tandem with revision, constraining the space of revisions that can be generated.

2.4 Related Work

There has been, over recent years, a dramatic increase in the amount of research concen-
trating on aspects of discovery. In general, although many systems have been developed,
little effort has been made to develop domain and implementation independent, gen-
eral frameworks in which particular models or implementations can be viewed. The six
stages proposed here identify those elements that are necessary for an effective system
for inductive discovery. It is not the intention of this thesis to give yet another general
review of existing systems. In later chapters, however, related work will be drawn on to
justify and compare with this research. Below, therefore, a brief introduction to various
systems is given, primarily intending to show the diversity of structure and relation to
the six stage framework. It is not intended to be complete, and other systems will be dis-
cussed in other chapters as appropriate. Nevertheless, those considered here span a wide
range, covering numerical (or quantitative) discovery (BACON), qualitative discovery
(COAST), integrated discovery (HDD and STERN), historical discovery (KEKADA),
and psychological discovery (SDDS). We begin with GRI which is used mainly to intro-

duce the notion of dual search spaces, used by a number of other systems below.

2.4.1 The General Rule Inducer

An early attempt at unifying diverse approaches was Simon and Lea’s General Rule
Induction (GRI) program [110] which brought together problem-solving and concept
formation (or rule induction) tasks. Both are information-gathering tasks, and employ
guided search processes. The difference between the two is that rule induction requires
search in two problem spaces — a space of rules or patterns and a space of instances or
data — while problem solving requires just one — a space of rules.

In normal problem solving, the goal state is known in advance. New states are
generated through a search of the rule space, and these are tested by checking to see
if the goal state is a member of these. Since the goal state is part of the rule space, a
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second space is unnecessary. In rule induction, on the other hand, no goal state is known
ahead of time. Hypothesized rules cannot be tested directly, but only by applying them
to instances, and then checking to see whether these applications give the correct result.
These instances form a separate space complementary to the rule space. If the two spaces
are connected, however, information from each can be used to guide the search in the

other, allowing mutual heuristic search.

2.4.2 KEKADA

The KEKADA system described by Kulkarni and Simon (563, 54, 55] is a simulation of
historical discovery. It models Krebs’ discovery of the urea cycle, and draws on detailed
analyses of the actual manner in which the work was carried out. The system is based on
the two-space model of learning with an experiment space and a rule space. KEKADA is
a production system which uses sixty-four heuristics divided into roughly equal groups of
domain specific and domain independent productions. There are nine classes of produc-
tion which are the basic components of the system, the first two below used for search in

the experiment space, the others in the hypothesis space:

Experiment-proposers propose experiments.

Experimenters carry out experiments.

Hypothesis or strategy proposers decide which hypothesis or strategy to focus on.
Problem-generators propose new problems for the focus of attention.
Problem-choosers choose the next task to be tackled.

Expectation-setters determine expected results.

Hypothesis-generators generate new hypotheses about unknown phenomena.
Hypothesis-modiflers modify existing hypotheses.

Confldence-modifiers modify confidences in hypotheses based on experimental results.

KEKADA effectively simulates the discovery of the urea cycle, including the pursuit
of unproductive paths on the way. The concentration on the single historical episode
of discovery undoubtedly limits the system, yet it is a significant contribution to the

wider field. In relation to the framework proposed here, we can group the heuristics as
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follows: prediction in expectation setters; experimentation in experiment proposers and
experimenters; evaluation in confidence-modifiers; revision in hypothesis-generators and
hypothesis-modifiers; and selection in decision-makers which are used by hypothesis or

strategy proposers.

2.4.3 SDDS

Klahr and Dunbar in extending GRI, view scientific discovery as dual search (SDDS)
through a space of hypotheses and a space of experiments [48]. They carried out exper-
iments simulating scientific discovery (using a programmable vehicle) in which subjects
were required to discover new functions as program commands for the vehicle. Results
led to the identification of two groups of subjects with distinct strategies: theorists who
proposed theories and then tested them; and ezperimenters who carried out experiments
and used the results to infer theories.

Based on their findings, Klahr and Dunbar constructed a model comprising three

main components.

Search hypothesis space. This generates a fully specified hypothesis which may then

be used in the next stage.

Test Hypothesis. In order to test the hypothesis, an appropriate experiment is gener-
ated, a prediction made, and the results observed. This produces a description of

evidence for or against the current hypothesis.

Evaluate Evidence. The cumulative evidence is evaluated to determine whether the

hypothesis should be accepted or rejected.

Although the model is quite detailed at a number of lower levels, it was not im-
plemented in a computer program, but was intended as a specification of the control
structure for one yet to be built. At this highest level, these components exclude many
stages of the six-stage framework, but at lower levels some are revealed. Prediction and
observation are subprocesses of experimentation (test hypothesis). Revision and selection
can be taken together to be equivalent to the search of the hypothesis space, but they
are not explicitly identified.
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2.4.4 HDD

Reimann [99] investigates scientific discovery learning processes in the context of exper-
iments with refraction. He uses an analysis of experiments with novice human subjects
attempting to learn about refraction as a basis for developing a program (with a series
of extensions) to model these processes. HDD, the Hypothesis Driven Discoverer, is for-
mulated as an extension to and in terms of GRI which views discovery as a search in
two problem spaces, one for experiments and one for hypotheses. It is intended not as
a simulation of any particular subject, but as an abstract prototype learner which is
effective at problem solving for the task at hand. The program is based on a production
system shell with rules having condition parts on the right-hand side, and equation parts
on the left-hand side.

The task is to find quantitative rules which characterize the relationship between an-
gles and distances of objects and light rays so that the direction of refracted rays may
be predicted. It is said to be a problem of descriptive generalization or function induc-
tion. Since the problem in HDD involves the incremental introduction of instances and
does not have all the data available immediately, the generalizations must be augmented
with other processes for modifying them in the event of inconsistencies. These include
condition induction for modifying the condition part of the rules. More general rules are
generated first so that only discrimination (specialization) is necessary in modifying rules.
Differences between HDD and GRI include the induction of equations rather than rules,
the attachment of conditions to these equations, the selection of appropriate attributes
(in determining which features of an experiment are relevant), the use of multivalued
feedback, and the construction of experiments. In actuality, HDD does not address some
of these issues.

Reimann provides a model description for HDD which involves five steps:

Step 1 Designing an experiment. An experiment design is provided to the system.
Step 2 Making a prediction. One prediction is derived from applicable hypotheses.

Step 3 Evaluating the prediction. The prediction is compared with the actual result
(the ray path) provided to the system, and either a description of the difference
between prediction and result, or a statement that no difference was found is pro-
duced. No distinction is made between approzimately correct predictions and wrong

predictions.
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Step 4 Evaluating and modifying the hypothesis. If a hypothesis is wrong, a dis-
crimination process is triggered to attach new conditions to it using information

about the failure so that it is corrected.

Step 5 Generating new hypotheses. If the current hypothesis is incorrect (resulted
in a wrong prediction), then new hypotheses (rules) are created through trend-

detection and function ‘induction.

The breakdown of the model into stages shows a strong correlation with our frame-
work. Experimentation and prediction almost directly correspond to steps 1 and 2.
Evaluation of evidence is identified in step 3, but ignores important aspects. Steps 4 and

5 both deal with revision, but in different ways, depending on the kind of failure.

2.4.5 BACON

BACON, developed by Langley et al. [59], [61], [60], is really a suite of programs, most
of which are strongly related. The BACON system searches for regularities in data in an

effort to discover numeric laws. It is based around three main processes:

Gathering data. Given a set of dependent and independent variables, BACON or-
ganizes the data by varying appropriate independent variables and recording the

values supplied by the user.

Discovering regularities. From the data supplied, BACON looks for constant, linear,

and monotonically increasing and decreasing relations between variables.

Defining terms and computing values. Once BACON has found a relation between
variables, and depending on the relation found, it forms new terms and computes
new values for them from existing terms. This is designed to produce new terms

which have constant values.

Among the accomplishments claimed for BACON, are the discovery of Boyle’s Law, the
Law of Universal Acceleration, Ohm’s Law and Kepler’s Third Law.

The search through the data space is exhaustive, and all values are supplied by the
programmer. In the different versions of BACON, the search through the law space is
different. The initial version searches through the data space, instantiating all indepen-

dent and dependent variables, and only when all of the data has been gathered does it
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